Università di Cassino. Esercitazioni di Statistica 1 del 19 Febbraio Dott. Mirko Bevilacqua

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Università di Cassino. Esercitazioni di Statistica 1 del 19 Febbraio Dott. Mirko Bevilacqua"

Transcript

1 Unverstà d Cassno Eserctazon d Statstca del 9 Febbrao 00 Dott. Mro Bevlacqua DATASET STUDENTI N SESSO ALTEZZA PESO CORSO NUMERO COLORE COLORE (cm) (g) LAUREA SCARPA OCCHI CAPELLI M INFORMAICA 43 scur Ner M 0 6 INFORMATICA 43 scur Ner 3 F INFORMATICA 39 scur Castan 4 F INFORMATICA 37 verd Castan 5 F MATEMATICA 37 azzurr Bond 6 F 60 4 MATEMATICA 36 scur Bond 7 F MATEMATICA 3 verd Castan F MATEMATICA 3 scur Castan 9 M 0 73 MATEMATICA 43 verd Castan 0 M 6 6 MATEMATICA 45 azzurr Ner F MATEMATICA 4 scur Castan M 0 6 INFORMATICA 4 scur Ner 3 M 0 5 INFORMATICA 43 scur Castan 4 F INFORMAATICA 37 scur Bond 5 M 70 7 INFORMATICA 4 verd Castan 6 M 0 65 INFORMATICA 4 scur Ner 7 M 70 7 INFORMATICA 4 scur Ner F 7 70 INFORMATICA 40 scur Castan 9 M 7 0 INFORMATICA 45 scur Castan 0 F 6 49 BIOLOGIA 37 scur Ner

2 ESERCIZIO N Confontare, facendo uso del boxplot, la dstrbuzone delle e degl uomn per l carattere Peso. Nelle eserctazon precedent abbamo vsto che le mede e gl ndc d varabltà sono molto utl per descrvere sntetcamente alcune caratterstche della dstrbuzone de dat. Ora ntroducamo un metodo d rappresentazone grafca, detto BOX PLOT, che s avvale d tal msure e che rsulta estremamente maneggevole nella comparazone d due o pù collettv. Il box plot d una dstrbuzone è un grafco caratterzzato da tre element prncpal: Una lnea o punto che ndcano la poszone della medana della dstrbuzone. Un rettangolo (BOX) la cu altezza ndca la varabltà de valor prossm alla meda. Due segment che partono dal rettangolo e cu estrem sono determnat n base a valor estrem della dstrbuzone. Peso_ n f F (Peso_) 47 0, 0, , 0, , 0, , 0, , 0, , 0, , 0, , 4900 = n = 0 = f = = X n = 304 µ Peso_ = µ = = 30, 4 ( Peso_ ) 0 ( _ ) ( ) Peso_ Peso_ Peso σ = µ µ = 30, 4 55 = 57, MePeso_ = = 53 Q = 49 ( Peso_ )

3 Q = 59 3( Peso_ ) ( ) ( ) a = Q, 5 Q Q = 49, = 34 da cu α = 47 3 (α è l mnmo de valor maggor d a) ( ) ( ) b = Q +, 5 Q Q = 59 +, = 74 da cu β = (β è l massmo de valor mnor d b) Fgura. Box Plot (Peso_) Peso_uomn n f F (Peso_uomn) 6 0, 0, , 0, , 0, , 0, , 0, , 0, , 0, , 7396 = n = 0 = f = = X n = 53636

4 µ Peso_ uomn = 7, µ = = 5363, 6 ( Peso_ uomn) 0 ( _ mn ) ( ) Peso_ uomn Peso_ uomn Peso uo σ = µ µ = 5363, 6 7, = 63, 76 Me 7 Peso_ uomn = Q = 65 ( Peso _ uo mn ) Q = 0 3( Peso_ uomn) ( ) ( ) a = Q, 5 Q Q = 65, = 4, 5 da cu α = 6 3 (α è l mnmo de valor maggor d a) ( ) ( ) b = Q +, 5 Q Q = 0 +, = 0, 5 da cu β = (β è l massmo de valor mnor d b) Fgura. Box Plot (Peso_uomn)

5 ESERCIZIO N Calcolare gl ndc d forma Yule-Bowley e Hotellng-Solomon per le due dstrbuzon uomn e. Una dstrbuzone s dce asmmetrca se non è possble ndvduare un asse vertcale che suddvda la dstrbuzone n due part specularmente ugual. La nozone d asmmetra ha senso qund solo se l carattere è almeno ordnable. Una dstrbuzone d frequenza n, n,.,n è smmetrca se: n =n ; n = n - ;. ; n j =n -j+ Una dstrbuzone non smmetrca potrà mostrare asmmetra postve o negatve a seconda che sano pù frequent nella dstrbuzone le modaltà pù pccole o pù grand. Consderando un carattere quanttatvo unmodale, s ha che. Se la dstrbuzone è smmetrca: Meda=Medana=Moda. Se la dstrbuzone è asmmetrca postva: Meda>Medana>Moda 3. Se la dstrbuzone è asmmetrca negatva: Meda<Medana<Moda Indce d asmmetra Hotellng Solomon: A HS µ x Me = σ A HS =0 (smmetra) -<A HS <0 (asmmetra negatva) 0<A HS < (asmmetra postva) Indce d asmmetra Yule Bowley: A YB Me Q Q = Q Q x 3 3 A YB =0 (smmetra) A YB <0 (asmmetra postva) A YB >0 (asmmetra negatva) µ Me x AHS = = = 0, 6 peso_ σx 7, 57 µ Me 7, 7 x AHS = = = 0, peso_ uomn σx 7, 9 Me Q Q AYB = = = 0, peso_ Q3 Q Me Q Q AYB = = = 0, 07 peso_ uomn Q3 Q 0 65

6 ESERCIZIO N 3 Calcolare l ndce d eterogenetà d Gn per caratter Colore Occh e Colore Capell. Nell eserctazone d venerdì scorso, abbamo vsto che gl ndc d concentrazone msurano se una dstrbuzone d quanttà s trova pù vcno al caso d equdstrbuzone oppure al caso d massma concentrazone. Un concetto analogo può essere applcato anche a una dstrbuzone d frequenza. In questo caso s drà che s è n presenza d massma omogenetà quando tutte le untà del collettvo presentano stessa modaltà, per esempo la j-esma, ottenendo qund: max omogenetà: f=f=..=f j- =.f =0 e f j = Vceversa, s è n presenza d mnma omogenetà o max eterogenetà, se tutte le modaltà sono present con la stessa frequenza nel collettvo: max eterogenetà: f= f=..=f j =...f = /. Indce d eterogenetà d GINI: Dato un carattere qualtatvo X con modaltà: In caso d max eterogenetà f = /K per ogn. G = f Sosttuendo la precedente la condzone d massma eterogenetà, s ottene l valore massmo che l ndce può assumere: = G = Indce d Gn normalzzato (ossa compreso tra 0 e ): K G K G* = = G G K COLORE OCCHI n f (f ) AZZURRI 0, 0,0 SCURI 4 0,7 0,49 VERDI 4 0, 0,04 tot. =0 = f = 0, 54 = G = f = 0, 5 4 = 0, 4 6 G = = = 0, 6 6 K 3 G 0, 4 6 G* = = = 0, 6 9 G 0, 6 6

7 G* è abbastanza elevato. La dstrbuzone è abbastanza eterogenea: entrambe le modaltà sono present, ma con frequenze non equlbrate tra loro. COLORE CAPELLI n f (f ) BIONDI 3 0,5 0,0 CASTANI 0 0,5 0,5 NERI 7 0,35 0, tot. =0 = f = 0, 39 = G = f = 0, 3 9 = 0, 6 G = = = 0, 6 6 K 3 G 0, 6 G* = = = 0, 9 G 0, 6 6 G* molto prossmo ad. La dstrbuzone è molto eterogenea: tutte le modaltà sono present e con frequenze molto sml tra loro.

8 ESERCIZIO N 4 Consderando l DATASET STUDENTI, s dscuta se esste connessone tra caratter CORSO DI LAUREA e SESSO. SESSO MASCHIO FEMMINA Totale CORSO DI LAUREA BIOLOGIA 0 MATEMATICA 5 7 INFORMATICA 4 Totale La msura dell assocazone tra due caratter qualtatv sconness avvene analzzando la dstrbuzone congunta delle frequenze de due caratter. Per questo tpo d anals, s rcorre, tpcamente, all ndce <<ch-quadrato>>. Quest ndce s basa sulla dfferenza tra le frequenze osservate n e le frequenze teorche j nˆ (queste dfferenza vengono anche j dette contngenze) che corrspondono alle frequenze che avremmo dovuto avere se, date le dstrbuzon semplc, due caratter fossero stat ndpendent. Indce Ch-quadrato d Pearson: χ r c = = j= ( n ) j ˆn j ˆn j Dove r e c rappresentano, rspettvamente, l numero d rghe e d colonne della tabella d frequenza a doppa entrata. Se due caratter sono perfettamente ndpendent tutte le contngenze devono essere nulle e dunque l ndce Ch-quadrato assumerà valore par a zero. Se al contraro due caratter sono assocat, l ndce sarà postvo, assumendo valor tanto pù grand quanto pù le frequenze osservate s dfferenzano da quelle teorche. Poché Corso d laurea e Sesso sono due caratter qualtatv sconness, l loro grado d connessone s msura attraverso l ndce χ. Le frequenze teorche nˆj ˆn j n. n. j = sono raccolte nella seguente tabella: N

9 SESSO MASCHIO FEMMINA Totale CORSO DI LAUREA BIOLOGIA 0,5 0,5 MATEMATICA 3,5 3,5 7 INFORMATICA 6 6 Totale ( ) ( ) ( ) ( ) ( ) ( ) 0,5 0 0,5 5 3,5 3, χ = = 3,6 0,5 0,5 3,5 3,5 6 6 L ndce ch-quadrato dpende dalla numerostà del collettvo coscché, a partà d assocazone, l suo valore aumenta all aumentare d n (cfr. formula dell ndce). In genere s prefersce utlzzare degl ndc che dano msure non dpendent dalle frequenze delle dstrbuzon margnal o dal totale della tabella, come l ndce d Fsher e l ndce T-chuprov: φ = T χ n φ χ = = mn r ;c n mn r ;c { } { } Indce d Fscher: χ 3,6 φ = = = 0, n 0 Tale valore va confrontato con l ntervallo [0, ], n quanto ( ) 0 ϕ mn r ; c Indce d T-chuprov: φ χ 3,6 T = = = = 0, mn r ;c n mn r ;c 0 { } { } poché 0 < T<, possamo affermare che v è un basso grado d connessone.

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso d Statstca medca e applcata 3 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone I concett prncpal che sono stat presentat sono: Mede forme o analtche (Meda artmetca semplce, Meda artmetca

Dettagli

Esame di Statistica tema A Corso di Laurea in Economia Prof.ssa Giordano Appello del 15/07/2011

Esame di Statistica tema A Corso di Laurea in Economia Prof.ssa Giordano Appello del 15/07/2011 Esame d Statstca tema A Corso d Laurea n Economa Prof.ssa Gordano Appello del /07/0 Cognome Nome atr. Teora Dmostrare che la somma degl scart dalla meda artmetca è zero. Eserczo L accesso al credto è sempre

Dettagli

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo UNIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECONOMIA Corso d laurea n Economa Azendale Lezon d Statstca (25 marzo 2013) Docente: Massmo Crstallo QUARTILI Dvdono la dstrbuzone n quattro part d uguale

Dettagli

Università degli Studi di Urbino Facoltà di Economia

Università degli Studi di Urbino Facoltà di Economia Unverstà degl Stud d Urbno Facoltà d Economa Lezon d Statstca Descrttva svolte durante la prma parte del corso d corso d Statstca / Statstca I A.A. 004/05 a cura d: F. Bartolucc Lez. 8/0/04 Statstca descrttva

Dettagli

,29 7. Distribuzioni di frequenza. x 1 n 1 n 1 n 1 /N n 1 /N*100 x 2 n 2 n 1 +n 2 n 2 /N n 2 /N*100

,29 7. Distribuzioni di frequenza. x 1 n 1 n 1 n 1 /N n 1 /N*100 x 2 n 2 n 1 +n 2 n 2 /N n 2 /N*100 Dstrbuzon d frequenza Varable x Frequenze Frequenze Frequenze Frequenze % cumulate relatve x 1 n 1 n 1 n 1 / n 1 /*100 x n n 1 +n n / n /*100 x k n k n 1 +.+n k = n k / n k /*100 totale 1 100 Indc sntetc

Dettagli

LEZIONE 2. Riassumere le informazioni: LE MEDIE MEDIA ARITMETICA MEDIANA, MODA, QUANTILI. La media aritmetica = = N

LEZIONE 2. Riassumere le informazioni: LE MEDIE MEDIA ARITMETICA MEDIANA, MODA, QUANTILI. La media aritmetica = = N LE MEDIE LEZIOE MEDIE ALGEBRICHE: calcolate con operazon algebrche su valor del carattere (meda artmetca) per varabl Rassumere le nformazon: MEDIA ARITMETICA MEDIAA, MODA, QUATILI MEDIE LASCHE: determnate

Dettagli

Esame di Statistica tema B Corso di Laurea in Economia Prof.ssa Giordano Appello del 15/07/2011

Esame di Statistica tema B Corso di Laurea in Economia Prof.ssa Giordano Appello del 15/07/2011 Esame d Statstca tema B Corso d Laurea n Economa Prof.ssa Gordano Appello del 15/07/011 Cognome Nome Matr. Teora Dmostrare la propretà assocatva della meda artmetca. Eserczo 1 L accesso al credto è sempre

Dettagli

STATISTICA SOCIALE Corso di laurea in Scienze Turistiche, a.a. 2007/2008 Esercizi 16 novembre2007

STATISTICA SOCIALE Corso di laurea in Scienze Turistiche, a.a. 2007/2008 Esercizi 16 novembre2007 STATISTICA SOCIALE Corso d laurea n Scenze Turstche, a.a. 07/08 Esercz 6 novembre07 Eserczo La Tabella contene alcun dat relatv a 6 lavorator delle azende Alfa e Beta. Tabella Lavorator delle azende Alfa

Dettagli

Esercitazione 5 del corso di Statistica (parte 1)

Esercitazione 5 del corso di Statistica (parte 1) Eserctazoe 5 del corso d Statstca (parte 1) Dott.ssa Paola Costat 8 Novembre 011 I alcue crcostaze s poe u maggor teresse sullo studo della varabltà tra le sgole utà statstche, puttosto che lo studo della

Dettagli

LA VARIABILITA. Nella metodologia statistica si distinguono due aspetti della variabilità:

LA VARIABILITA. Nella metodologia statistica si distinguono due aspetti della variabilità: LA VARIABILITA LA VARIABILITA E L ATTITUDINE DEL FENOMENO QUANTITATIVO AD ASSUMERE DIVERSE MODALITA, O MEGLIO LA TENDENZA DI OGNI SINGOLA OSSERVAZIONE AD ASSUMERE VALORI DIFFERENTI RISPETTO AL VALORE MEDIO.

Dettagli

Modelli descrittivi, statistica e simulazione

Modelli descrittivi, statistica e simulazione Modell descrttv, statstca e smulazone Master per Smart Logstcs specalst Roberto Cordone (roberto.cordone@unm.t) Statstca descrttva Cernusco S.N., govedì 28 gennao 2016 (9.00/13.00) 1 / 15 Indc d poszone

Dettagli

Sommario. Obiettivo. Quando studiarla? La concentrazione. X: carattere quantitativo tra le unità statistiche. Quando studiarla?

Sommario. Obiettivo. Quando studiarla? La concentrazione. X: carattere quantitativo tra le unità statistiche. Quando studiarla? Corso d Statstca a.a. 9- uando studarla? Obettvo Dagramma d Lorenz Rapporto d concentrazone rea d concentrazone Esemp Sommaro La concentrazone uando studarla? Obettvo X: carattere quanttatvo tra le untà

Dettagli

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni Scenze Geologche Corso d Probabltà e Statstca Prove d esame con soluzon 004-005 1 Corso d laurea n Scenze Geologche - Probabltà e Statstca Appello del 1 gugno 005 - Soluzon 1. (Punt 3) In una certa zona,

Dettagli

Lezione 2 a - Statistica descrittiva per variabili quantitative

Lezione 2 a - Statistica descrittiva per variabili quantitative Lezone 2 a - Statstca descrttva per varabl quanttatve Esempo 5. Nella tabella seguente sono rportat valor del tasso glcemco rlevat su 10 pazent: Pazente Glcema (mg/100cc) 1 x 1 =103 2 x 2 =97 3 x 3 =90

Dettagli

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 01/013 Elaborazone Dat Lab B CdL Fsca Lab B CdL Fsca Elaborazone dat spermental Prncpo della massma verosmglanza Quando eseguamo una sere d msure relatve ad una data grandezza fsca, quanto

Dettagli

Strada B. Classe Velocità valore frequenza Frequ. ass Frequ. % hi Freq. Cum

Strada B. Classe Velocità valore frequenza Frequ. ass Frequ. % hi Freq. Cum Eserczo SINTESI S supponga d avere eseguto 70 msure della veloctà stantanea de vecol che transtano nelle sezon d due strade A e B. S supponga che tal msure sano state eseguta n corrspondenza d valor modest

Dettagli

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE ESAME di STATISTICA 17/09/2012

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE ESAME di STATISTICA 17/09/2012 CdL n SCIENZE DELL ORGANIZZAZIONE ESAME d STATISTICA ESERCIZIO 1 (+.5+.5+3) La tabella seguente rporta la dstrbuzone d frequenza del peso X n gramm d una partta d mele provenent da un certo frutteto. X=peso

Dettagli

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO ECONOMIA INDUSTRIALE Unverstà degl Stud d Mlano-Bcocca Chrstan Garavagla Soluzone 7 a) L ndce d concentrazone C (o CR k ) è la somma delle uote d mercato (o share)

Dettagli

La regressione. La Regressione. La Regressione. min. min. Var X. X Variabile indipendente (data) Y Variabile dipendente

La regressione. La Regressione. La Regressione. min. min. Var X. X Variabile indipendente (data) Y Variabile dipendente Unverstà d Macerata Facoltà d Scenze Poltche - Anno accademco - La Regressone Varable ndpendente (data) Varable dpendente Dpendenza funzonale (o determnstca): f ; Da un punto d vsta analtco, valor della

Dettagli

Capitolo 3. Cap. 3-1

Capitolo 3. Cap. 3-1 Statstca Captolo 3 Descrzone Numerca de Dat Cap. 3-1 Obettv del Captolo Dopo aver completato l captolo, sarete n grado d: Calcolare ed nterpretare la meda, la medana e la moda d un set tdd dat Trovare

Dettagli

1) Dato un carattere X il rapporto tra devianza entro e devianza totale è 0.25 e la devianza totale è 40. La devianza tra vale: a) 10 b) 20 c) 30

1) Dato un carattere X il rapporto tra devianza entro e devianza totale è 0.25 e la devianza totale è 40. La devianza tra vale: a) 10 b) 20 c) 30 1) Dato un carattere X l rapporto tra devanza entro e devanza totale è 0.25 e la devanza totale è 40. La devanza tra vale: a) 10 b) 20 c) 30 2) Data una popolazone normalmente dstrbuta con meda 10 e varanza

Dettagli

Università di Cassino. Esercitazioni di Statistica 1 del 29 Gennaio 2010. Dott. Mirko Bevilacqua

Università di Cassino. Esercitazioni di Statistica 1 del 29 Gennaio 2010. Dott. Mirko Bevilacqua Università di Cassino Esercitazioni di Statistica del 29 Gennaio 200 Dott. Mirko Bevilacqua DATASET STUDENTI N SESSO ALTEZZA PESO CORSO NUMERO COLORE COLORE (cm) (kg) LAUREA SCARPA OCCHI CAPELLI M 79 65

Dettagli

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca Eserctazon del corso d Relazon tra varabl Gancarlo Manz Facoltà d Socologa Unverstà degl Stud d Mlano-Bcocca e-mal: gancarlo.manz@statstca.unmb.t Terza eserctazone Mlano, 8 febbrao 7 SOMMARIO TERZA ESERCITAZIONE

Dettagli

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

Variabili statistiche - Sommario

Variabili statistiche - Sommario Varabl statstche - Sommaro Defnzon prelmnar Statstca descrttva Msure della tendenza centrale e della dspersone d un campone Introduzone La varable statstca rappresenta rsultat d un anals effettuata su

Dettagli

STATISTICA DESCRITTIVA CON EXCEL

STATISTICA DESCRITTIVA CON EXCEL STATISTICA DESCRITTIVA CON EXCEL Corso d CPS - II parte: Statstca Laurea n Informatca Sstem e Ret 2004-2005 1 Obettv della lezone Introduzone all uso d EXCEL Statstca descrttva Utlzzo dello strumento:

Dettagli

Correlazione lineare

Correlazione lineare Correlazone lneare Varable dpendente Mortaltà per crros 50 45 40 35 30 5 0 15 10 5 0 0 5 10 15 0 5 30 Consumo d alcool Varable ndpendente Metodologa per l anals de dat spermental L anals d stud con varabl

Dettagli

Analisi della Varianza

Analisi della Varianza Anals della Varanza Esempo: Una ndustra d carta usata per buste per salumere vuole mglorare la resstenza alla trazone del propro prodotto. S rtene che resstenza alla trazone = f(concentrazone d legno nella

Dettagli

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

ESERCITAZIONE 2 DIAGRAMMI A BARRE, COSTRUZIONE DI ISTOGRAMMA. Notazione: x i = i-esima modalità della variabile X

ESERCITAZIONE 2 DIAGRAMMI A BARRE, COSTRUZIONE DI ISTOGRAMMA. Notazione: x i = i-esima modalità della variabile X ESERCITAZIONE 2 DIAGRAMMI A BARRE, COSTRUZIONE DI ISTOGRAMMA Notazone: x = -esma modaltà della varable X Nel caso d dstrbuzon n class: x = Lmte superore della classe -esma x -1 = Lmte nferore della classe

Dettagli

= = = = = 0.16 NOTA: X P(X) Evento Acquisto PC Intel Acquisto PC Celeron P(X)

= = = = = 0.16 NOTA: X P(X) Evento Acquisto PC Intel Acquisto PC Celeron P(X) ESERCIZIO 3.1 Una dtta vende computer utlzzando on-lne, utlzzando sa processor Celeron che processor Intel. Dat storc mostrano che l 80% de clent preferscono acqustare un PC con processore Intel. a) Sa

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI IL LEGAME TRA DUE VARIABILI I METODI DELLA CORRELAZIONE Prof.ssa G. Sero, Prof. P. Trerotol, Cattedra d Statstca Medca, Unverstà d Bar 1/19 IL PROBLEMA

Dettagli

Precisione e Cifre Significative

Precisione e Cifre Significative Precsone e Cfre Sgnfcatve Un numero (una msura) è una nformazone! E necessaro conoscere la precsone e l accuratezza dell nformazone. La precsone d una msura è contenuta nel numero d cfre sgnfcatve fornte

Dettagli

La ripartizione trasversale dei carichi

La ripartizione trasversale dei carichi La rpartzone trasversale de carch La dsposzone de carch da consderare ne calcol della struttura deve essere quella pù gravosa, ossa quella che determna massm valor delle sollectazon. Tale aspetto nveste

Dettagli

Campo di applicazione

Campo di applicazione Unverstà del Pemonte Orentale Corso d Laurea n Botecnologa Corso d Statstca Medca Correlazone Regressone Lneare Corso d laurea n botecnologa - Statstca Medca Correlazone e Regressone lneare semplce Campo

Dettagli

La Regressione X Variabile indipendente o esplicativa. La regressione. La Regressione. Y Variabile dipendente

La Regressione X Variabile indipendente o esplicativa. La regressione. La Regressione. Y Variabile dipendente Unverstà d Macerata Dpartmento d Scenze Poltche, della Comuncazone e delle Relaz. Internazonal La Regressone Varable ndpendente o esplcatva Prezzo n () () 1 1 Varable dpendente 15 1 1 1 5 5 6 6 61 6 1

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

Esame di Statistica Corso di Laurea in Economia

Esame di Statistica Corso di Laurea in Economia Esame d Statstca Corso d Laurea n Economa 9 Gennao 0 Cognome Nome atr. Teora S dmostr la propretà d lneartà della meda artmetca. Eserczo Una casa edtrce è nteressata a valutare se tra lettor d lbr esste

Dettagli

Statistica Descrittiva ed Inferenziale

Statistica Descrittiva ed Inferenziale Statstca Descrttva ed Inferenzale 1 Why Statstcs? A? A B Descrpton and Predcton Samples Analyss A1 A A B C Pared Samples Analyss MultSamples Analyss 1 Why Statstcs? Formal defnton of Probablty σ-feld 3

Dettagli

Il campionamento casuale semplice

Il campionamento casuale semplice Il camponamento casuale semplce Metod d estrazone del campone. robabltà d nclusone. π = n N π j = n N n 1 N 1 Stmatore corretto del totale e della meda. Ŷ = Nȳ e ˆȲ = ȳ Varanza degl stmator corrett. V

Dettagli

Dalla sola analisi della tabella dei profili colonna, pensi ci sia un associazione tra le due variabili in tabella? (motiva brevemente la risposta)

Dalla sola analisi della tabella dei profili colonna, pensi ci sia un associazione tra le due variabili in tabella? (motiva brevemente la risposta) Corso d Statstca Docente: Smona Balzano ESERCIZIO 1 La tabella ndagnestudentflorda, dsponble sul sto (n formato pdf e xls), rporta dat d un'ndagne condotta su 60 student laureat presso la Unversty of Florda,

Dettagli

Due distribuzioni, stessa media ma in quale delle due la media rappresenta, sintetizza meglio la situazione?

Due distribuzioni, stessa media ma in quale delle due la media rappresenta, sintetizza meglio la situazione? Prma dstrb. Secoda dstrb. Totale Meda 0 5 8 35 85 63 63/5 =3,6 5 5 38 40 45 63 63/5 =3,6 Due dstrbuzo, stessa meda ma quale delle due la meda rappreseta, stetzza meglo la stuazoe? Le mede stetzzao la dstrbuzoe,

Dettagli

STATISTICA 1 ESERCITAZIONE 6

STATISTICA 1 ESERCITAZIONE 6 STATISTICA 1 ESERCITAZIONE 6 Dott. Giuseppe Pandolfo 5 Novembre 013 CONCENTRAZIONE Osservando l ammontare di un carattere quantitativo trasferibile su un collettivo statistico può essere interessante sapere

Dettagli

1 La domanda di moneta

1 La domanda di moneta La domanda d moneta Eserczo.4 (a) Keynes elenca tre motv per detenere moneta: Scopo transattvo Scopo precauzonale Scopo speculatvo Il modello d domanda d moneta a scopo speculatvo d Keynes consdera la

Dettagli

La t di Student. Per piccoli campioni si definisce la variabile casuale. = s N. detta t di Student.

La t di Student. Per piccoli campioni si definisce la variabile casuale. = s N. detta t di Student. Pccol campon I parametr della dstrbuzone d una popolazone sono n generale ncognt devono essere stmat dal campone de dat spermental per pccol campon (N N < 30) z = (x µ)/ )/σ non ha pù una dstrbuzone gaussana

Dettagli

Studente estratto Esami sostenuti voto Frequenza Pos.ne lavor.va sesso rendimento si No M B si No M O no No F S

Studente estratto Esami sostenuti voto Frequenza Pos.ne lavor.va sesso rendimento si No M B si No M O no No F S Esercz del corso d Statstca A.A 00-0 a cura d : Gulana Satta Eserczo E stato estratto un campone d 5 student tra frequentant l secondo semestre e s sono osservate le seguent caratterstche: esam sostenut

Dettagli

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità:

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità: ESERCIZIO. S consder una popolazone consstente delle quattro msurazon,, e descrtta dalla seguente dstrbuzone d probabltà: X P(X) ¼ ¼ ¼ ¼ S estrae casualmente usando uno schema d camponamento senza rpetzone

Dettagli

5. Baricentro di sezioni composte

5. Baricentro di sezioni composte 5. Barcentro d sezon composte Barcentro del trapezo Il barcentro del trapezo ( FIURA ) s trova sull asse d smmetra oblqua (medana) della fgura; è suffcente, qund, determnare la sola ordnata. A tal fne,

Dettagli

MEDIA DI Y (ALTEZZA):

MEDIA DI Y (ALTEZZA): Uverstà d Casso Eserctazo d Statstca del 4 Marzo 0 Dott. Mrko Bevlacqua ESERCIZIO Su u collettvo d dvdu soo stat rlevat caratter X Peso( kg) e Altezza ( cm) otteamo la seguete dstrbuzoe d frequeza coguta:

Dettagli

Relazioni tra variabili: Correlazione e regressione lineare

Relazioni tra variabili: Correlazione e regressione lineare Dott. Raffaele Casa - Dpartmento d Produzone Vegetale Modulo d Metodologa Spermentale Febbrao 003 Relazon tra varabl: Correlazone e regressone lneare Anals d relazon tra varabl 6 Produzone d granella (kg

Dettagli

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard Corso d Statstca (canale P-Z) A.A. 2009/0 Prof.ssa P. Vcard VALORI MEDI Introduzone Con le dstrbuzon e le rappresentazon grafche abbamo effettuato le prme sntes de dat. E propro osservando degl stogramm

Dettagli

Vengono ripresi di seguito alcuni concetti base di matematica, di statistica descrittiva, inferenziale e di calcolo delle probabilità.

Vengono ripresi di seguito alcuni concetti base di matematica, di statistica descrittiva, inferenziale e di calcolo delle probabilità. 3333 PARTE PRIMA. Introduzone e Rcham Vengono rpres d seguto alcun concett base d matematca, d statstca descrttva, nferenzale e d calcolo delle probabltà. Dspense d econometra Pag. 1 Rcham d matematca

Dettagli

Tabella 1 concentrazione di alcol in 150 bottiglie di Vital. L'esattezza di misura: 0.001

Tabella 1 concentrazione di alcol in 150 bottiglie di Vital. L'esattezza di misura: 0.001 1A Mede analtche: artmetca, geometrca, armonca, quadratca e la meda d potenze. Formule n modaltà array Vtal è un preparato vtamnco-mnerale per le persone pù anzane, che gl permette d stare n buona salute.

Dettagli

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1 APAT Agenza per la Protezone dell Ambente e per Servz Tecnc Dpartmento Dfesa del Suolo / Servzo Geologco D Itala Servzo Tecnologe del sto e St Contamnat * * * Nota nerente l calcolo della concentrazone

Dettagli

Università di Cassino Esercitazioni di Statistica 1 del 5 Febbraio Dott. Mirko Bevilacqua

Università di Cassino Esercitazioni di Statistica 1 del 5 Febbraio Dott. Mirko Bevilacqua Uverstà d Casso Eserctazo d Statstca del 5 Febbrao 00. Dott. Mrko Bevlacqua ESERCIZIO N A partre dalla dstrbuzoe semplce del carattere peso rlevata su 0 studet del corso d Mcroecooma peso: { 4, 59, 65,

Dettagli

INDICI STATISTICI MEDIA, MODA, MEDIANA, VARIANZA

INDICI STATISTICI MEDIA, MODA, MEDIANA, VARIANZA Lezone 7 - Indc statstc: meda, moda, medana, varanza INDICI STATISTICI MEDIA, MODA, MEDIANA, VARIANZA GRUPPO MAT06 Dp. Matematca, Unverstà d Mlano - Probabltà e Statstca per le Scuole Mede -SILSIS - 2007

Dettagli

Modelli con varabili binarie (o qualitative)

Modelli con varabili binarie (o qualitative) Modell con varabl bnare (o qualtatve E( Y X α + βx + ε quando Y è una varable benoullana Y 1 0 s ha l modello lneare d probabltà Pr( Y 1 X α + βx + ε dove valor stmat della Y assumono l sgnfcato d probabltà.

Dettagli

Per calcolare le probabilità di Testa e Croce è possibile risolvere il seguente sistema di due equazioni in due incognite:

Per calcolare le probabilità di Testa e Croce è possibile risolvere il seguente sistema di due equazioni in due incognite: ESERCIZIO.1 Sa X la varable casuale che descrve l numero d teste ottenute nella prova lanco d tre monete truccate dove P(Croce)= x P(Testa). 1) Defnrne la dstrbuzone d probabltà ) Rappresentarla grafcamente

Dettagli

lxmi.mi.infn.it/~camera/silsis/laboratorio-1/2-statistica.ppt http://www2.dm.unito.it/paginepersonali/zucca/index.htm Misura:

lxmi.mi.infn.it/~camera/silsis/laboratorio-1/2-statistica.ppt http://www2.dm.unito.it/paginepersonali/zucca/index.htm Misura: Elaborazone de dat geochmc e cenn d statstca lm.m.nfn.t/~camera/slss/laboratoro-1/-statstca.ppt http://www.dm.unto.t/pagnepersonal/zucca/nde.htm Msura: Espressone quanttatva del rapporto fra una grandezza

Dettagli

Corso di Economia Applicata

Corso di Economia Applicata Corso d Economa Applcata a.a. 2007-08 II modulo 16 Lezone Programma 16 lezone Democraza rappresentatva e nformazone Rcaptolando L agenza e l mercato (Arrow, 1986) Lezone 16 2 Introduzone Governo e Parlamento

Dettagli

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3 Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

Teorema di Thévenin-Norton

Teorema di Thévenin-Norton 87 Teorema d Téenn-Norton E detto ance teorema d rappresentazone del bpolo, consente nfatt d rappresentare una rete lneare a due morsett (A, B) con: un generatore d tensone ed un resstore sere (Téenn)

Dettagli

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica.

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica. Lezone 7 Prereqst: L'nseme de nmer nter Lezone 6 Nmer prm Teorema Fondamentale dell'artmetca Defnzone 7 Un nmero ntero p dverso da 0 e s dce prmo se per ogn a b Z Altrment p s dce composto p ab p a oppre

Dettagli

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG

Dettagli

3 (solo esame 6 cfu) Elementi di Analisi Numerica, Probabilità e Statistica, modulo 2: Elementi di Probabilità e Statistica (3 cfu)

3 (solo esame 6 cfu) Elementi di Analisi Numerica, Probabilità e Statistica, modulo 2: Elementi di Probabilità e Statistica (3 cfu) lement d Anals Numerca, Probabltà e Statstca, modulo 2: lement d Probabltà e Statstca ( cfu) Probabltà e Statstca (6 cfu) Scrtto del 06 febbrao 205. Secondo Appello Id: A Nome e Cognome: same da 6 cfu

Dettagli

FUNZIONAMENTO IN REGIME ALTERNATO SINUSOIDALE

FUNZIONAMENTO IN REGIME ALTERNATO SINUSOIDALE FUNZIONAMENTO IN REGIME ALTERNATO SINUSOIDALE In presenza d una almentazone alternata snusodale tutte le grandezze elettrche saranno alternate snusodal. Le equazon d funzonamento n regme comunque varale

Dettagli

Laboratorio 2B A.A. 2013/2014. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2013/2014. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 013/014 Elaborazone Dat Lab B CdL Fsca Elaborazone dat spermental Come rassumere un nseme d dat spermental? Una statstca è propro un numero calcolato a partre da dat stess. La Statstca

Dettagli

Esercitazione 8 del corso di Statistica (parte 1)

Esercitazione 8 del corso di Statistica (parte 1) Eserctazone 8 del corso d Statstca (parte ) Dott.ssa Paola Costantn Eserczo Marzo 0 Un urna rossa contene 3 pallne banche, nere e galla. S consder l estrazone d due pallne. S calcol la probabltà d estrarre:.

Dettagli

Modelli decisionali su grafi - Problemi di Localizzazione

Modelli decisionali su grafi - Problemi di Localizzazione Modell decsonal su graf - Problem d Localzzazone Massmo Paolucc (paolucc@dst.unge.t) DIST Unverstà d Genova Locaton Problems: modell ed applcazon Decson a medo e lungo termne (panfcazone) Caratterstche

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE Matematca e statstca: da dat a modell alle scelte www.dma.unge/pls_statstca Responsabl scentfc M.P. Rogantn e E. Sasso (Dpartmento d Matematca Unverstà d Genova) STATISTICA DESCRITTIVA - SCHEDA N. REGRESSIONE

Dettagli

Esercitazioni del corso: STATISTICA

Esercitazioni del corso: STATISTICA A. A. 0-0 Eserctazon del corso: STATISTICA Sommaro Eserctazone : Moda Medana Meda Artmetca Varabltà: Varanza, Devazone Standard, Coefcente d Varazone ESERCIZIO : UNIVERSITÀ DEGLI STUDI DI MILANO BICOCCA

Dettagli

Scelta dell Ubicazione. di un Impianto Industriale. Corso di Progettazione Impianti Industriali Prof. Sergio Cavalieri

Scelta dell Ubicazione. di un Impianto Industriale. Corso di Progettazione Impianti Industriali Prof. Sergio Cavalieri Scelta dell Ubcazone d un Impanto Industrale Corso d Progettazone Impant Industral Prof. Sergo Cavaler I fattor ubcazonal Cost d Caratterstche del Mercato Costruzone Energe Manodopera Trasport Matere Prme

Dettagli

L'Analisi in Componenti Principali. Luigi D Ambra Dipartimento di Matematica e Statistica Università di Napoli Federico II

L'Analisi in Componenti Principali. Luigi D Ambra Dipartimento di Matematica e Statistica Università di Napoli Federico II L'Anals n Component Prncpal Lug D Ambra Dpartmento d Matematca e Statstca Unverstà d Napol Federco II ANALISI MULTIDIMENSIONALE DEI DATI (AMD) L Anals Multdmensonale de Dat (AMD) è una famgla d tecnche

Dettagli

Unità n La concentrazione

Unità n La concentrazione 01 La concentrazone Corso d Laurea: Economa Azendale Docente: M.Msuraca (aula1)/ D.Costanzo(aula2) Untà n 05 Nello studo de fenomen economc e socal descrtt attraverso caratter quanttatv d tpo trasferblepuò

Dettagli

Statistica - metodologie per le scienze economiche e sociali /2e S. Borra, A. Di Ciaccio - McGraw Hill

Statistica - metodologie per le scienze economiche e sociali /2e S. Borra, A. Di Ciaccio - McGraw Hill Statstca - metodologe per le scenze economche e socal /e S Borra, A D Cacco - McGraw Hll Es Soluzone degl esercz del captolo 7 In base agl arrotondament effettuat ne calcol, s possono rscontrare pccole

Dettagli

frazione 1 n dell ammontare complessivo del carattere A x

frazione 1 n dell ammontare complessivo del carattere A x La Cocetrazoe Il cocetto d cocetrazoe rguarda l modo cu l ammotare totale d u carattere quattatvo trasferble s rpartsce tra utà statstche. Tato pù tale ammotare è addesato u sottoseme d utà, tato pù s

Dettagli

Elementi di statistica

Elementi di statistica Element d statstca Popolazone statstca e campone casuale S chama popolazone statstca l nseme d tutt gl element che s voglono studare (ndvdu, anmal, vegetal, cellule, caratterstche delle collettvtà..) e

Dettagli

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100)

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100) ESERCIZIO Il Moblty Maager d u azeda ha rlevato l umero d chlometr percors settmaalmete da 60 mpegat. I dat soo rportat ello schema successvo. 67 4 93 58 66 87 5 53 86 8 7 47 56 70 54 86 48 43 60 58 5

Dettagli

Lavoro, Energia e stabilità dell equilibrio II parte

Lavoro, Energia e stabilità dell equilibrio II parte Lavoro, Energa e stabltà dell equlbro II parte orze conservatve e non conservatve Il concetto d Energa potenzale s aanca per mportanza a quello d Energa cnetca, perché c permette d passare dallo studo

Dettagli

PREVEDONO: Capitolo 17 del libro di testo. Copyright 2005 The McGraw-Hill Companies srl

PREVEDONO: Capitolo 17 del libro di testo. Copyright 2005 The McGraw-Hill Companies srl Le Inferenze sul modello d regressone PREVEDONO: Assunzone d normaltà degl error e nferenza su parametr Anals della Varanza Inferenza per la rsposta meda e la prevsone Anals de resdu Valor anomal Captolo

Dettagli

Trigger di Schmitt. e +V t

Trigger di Schmitt. e +V t CORSO DI LABORATORIO DI OTTICA ED ELETTRONICA Scopo dell esperenza è valutare l ampezza dell steres d un trgger d Schmtt al varare della frequenza e dell ampezza del segnale d ngresso e confrontarla con

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

Potenzialità degli impianti

Potenzialità degli impianti Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Potenzaltà degl mpant Impant ndustral Potenzaltà degl mpant 1 Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Defnzone della potenzaltà

Dettagli

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2 RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A La rappresentazone n Complemento a Due d un numero ntero relatvo (.-3,-,-1,0,+1,+,.) una volta stablta la precsone che s vuole ottenere (coè l numero d

Dettagli

Lez. 10 Forze d attrito e lavoro

Lez. 10 Forze d attrito e lavoro 4/03/015 Lez. 10 Forze d attrto e lavoro Pro. 1 Dott., PhD Dpartmento Scenze Fsche Unverstà d Napol Federco II Compl. Unv. Monte S.Angelo Va Cnta, I-8016, Napol mettver@na.nn.t +39-081-676137 1 4/03/015

Dettagli

DESTINAZIONE ORIGINE A B C A B C Esercizio intersezioni a raso - pag. 1

DESTINAZIONE ORIGINE A B C A B C Esercizio intersezioni a raso - pag. 1 ESERCIZIO Argomento: Intersezon a raso Data l ntersezone a raso a tre bracc rappresentata n fgura s vuole procedere al dmensonamento de suo element. I dat nzal necessar per la progettazone sono d seguto

Dettagli

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua Uverstà d Casso Eserctazo d Statstca del 26 Febbrao 200 Dott. Mrko Bevlacqua ESERCIZIO Cosderado le class d altezza 60 6; 6 70; 70 78; 78 86 per u collettvo d 20 persoe, s può affermare che l ALTEZZA dpede

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MODELLI SCHEDA DI LAVORO 1 Le tabelle d crescta Nella tabella sono rportat dat relatv alle altezze mede delle bambne dalla nascta fno a un anno d età. Stablsc se esste una relazone lneare tra

Dettagli

CORSO DI STATISTICA I (Prof.ssa S. Terzi)

CORSO DI STATISTICA I (Prof.ssa S. Terzi) CORSO DI STATISTICA I (Prof.ssa S. Terz) 1 STUDIO DELLE DISTRIBUZIONI SEMPLICI Eserctazoe 2 2.1 Da u dage svolta su u campoe d lavorator dpedet co doppo lavoro è stata rlevata la dstrbuzoe coguta del reddto

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model Rcerca Operatva e Logstca Dott. F.Carrabs e Dott.ssa M.Gentl Modell per la Logstca: Sngle Flow One Level Model Mult Flow Two Level Model Modell d localzzazone nel dscreto Modell a Prodotto Sngolo e a Un

Dettagli

CAPITOLO X ANALISI DELLA VARIANZA (ANOVA I) A UN CRITERIO DI CLASSIFICAZIONE E CONFRONTI TRA PIU MEDIE

CAPITOLO X ANALISI DELLA VARIANZA (ANOVA I) A UN CRITERIO DI CLASSIFICAZIONE E CONFRONTI TRA PIU MEDIE CAPITOLO X ANALISI DELLA VARIANZA (ANOVA I) A UN CRITERIO DI CLASSIFICAZIONE E CONFRONTI TRA PIU MEDIE 10.1. Anals della varanza ad un crtero d classfcazone o a camponamento completamente randomzzato 4

Dettagli

Rappresentazione dei numeri

Rappresentazione dei numeri Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

dei quali si conoscono solo la media x e la deviazione standard σ e dato un valore reale positivo K, possiamo affermare che:

dei quali si conoscono solo la media x e la deviazione standard σ e dato un valore reale positivo K, possiamo affermare che: Eserctazoe VI: Il teorema d Chebyshev Eserczo La statura meda d u gruppo d dvdu è par a 73,78cm e la devazoe stadard a 3,6. Qual è la frequeza relatva delle persoe che hao ua statura superore o ferore

Dettagli

RAPPRESENTAZIONE DI MISURE. carta millimetrata

RAPPRESENTAZIONE DI MISURE. carta millimetrata carta mllmetrata carta mllmetrata non è necessaro rportare sul foglo la tabella (ma auta; l mportante è che sta da qualche parte) carta mllmetrata 8 7 6 5 4 3 smbolo della grandezza con untà d msura!!!

Dettagli

Architetture aritmetiche. Corso di Organizzazione dei Calcolatori Mariagiovanna Sami

Architetture aritmetiche. Corso di Organizzazione dei Calcolatori Mariagiovanna Sami Archtetture artmetche Corso d Organzzazone de Calcolator Maragovanna Sam 27-8 8 Sommator: : Full Adder s = x y c + x y c + x y c + x y c Full Adder x y c s x y c = x y + x c + + y c c + Full Adder c x

Dettagli

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS Captolo 7 1. Il modello IS-LM La «sntes neoclassca» e l modello IS-LM Defnzone: ndvdua tutte le combnazon d reddto e saggo d nteresse per le qual l mercato de ben (curva IS) e l mercato della moneta (curva

Dettagli

IL RUMORE NEGLI AMPLIFICATORI

IL RUMORE NEGLI AMPLIFICATORI IL RUMORE EGLI AMPLIICATORI Defnzon S defnsce rumore elettrco (electrcal nose) l'effetto delle fluttuazon d corrente e/o d tensone sempre present a termnal degl element crcutal e de dspostv elettronc.

Dettagli

CARATTERISTICHE DEI SEGNALI RANDOM

CARATTERISTICHE DEI SEGNALI RANDOM CARATTERISTICHE DEI SEGNALI RANDOM I segnal random o stocastc rvestono una notevole mportanza poché sono present, pù che segnal determnstc, nella maggor parte de process fsc real. Esempo d segnale random:

Dettagli

Ettore Limoli. Lezioni di Matematica Prof. Ettore Limoli. Sommario. Calcoli di regressione

Ettore Limoli. Lezioni di Matematica Prof. Ettore Limoli. Sommario. Calcoli di regressione Sto Personale d Ettore Lmol Lezon d Matematca Prof. Ettore Lmol Sommaro Calcol d regressone... 1 Retta d regressone con Ecel... Uso della funzone d calcolo della tendenza... 4 Uso della funzone d regressone

Dettagli