SISTEMI INFORMATIVI AZIENDALI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "SISTEMI INFORMATIVI AZIENDALI"

Transcript

1 SISTEMI INFORMATIVI AZIENDALI Prof. Andrea Borghesan venus.unive.it/borg Ricevimento: Alla fine di ogni lezione Modalità esame: scritto 1

2 Data Mining. Introduzione La crescente popolarità dei sistemi di data mining all interno dei sistemi informativi aziendali è giustificata dalla grande disponibilità di enormi quantità di dati generati dai vari processi aziendali informatizzati. Questi dati contengono sicuramente informazioni potenzialmente utili al processo decisionali ma spesso tali informazioni non sono facilmente identificabili (es. complessità delle relazioni). Per evitare che una decisione venga presa solo sulla base dell esperienza o dell intuito dell imprenditore si utilizzano strumenti di data mining al fine di elevare il grado di obiettività e di precisione dell analisi inglobando magari anche aspetti che potrebbero addirittura non valutati 2

3 Cosa sono i sistemi Data Mining. Il data mining è l attività volta a riconoscere automaticamente ed estrarre informazione da base di dati digrandi dimensioni. Il data mining è spesso definito anche come il processo di scoperta della conoscenza da basi di dati (Knowledge Discovery in Databases, KDD). Il processo di scoperta della conoscenza si articola nei seguenti passaggi: Pulizia dei dati, significa eliminare le inconsistenze e correggere gli eventuali errori Integrazione dei dati, integrare fonti diverse in un unico modello 3

4 Selezione dei dati, significa selezionare solo i dati che servono all analisi Trasformazione dei dati, significa riorganizzare o aggregare i dati in base al tipo di elaborazione Data mining, il processo vero e proprio di analisi Valutazione dei pattern, significa che spesso le tecniche di data mining portano alla luce informazioni che possono essere classificate come non rilevanti per l indagine Presentazione della conoscenza, le informazioni devono essere presentate all utente tramite opportune rappresentazioni grafiche (a colpo d occhio l utente deve comprendere la conoscenza che scaturisce dalle informazioni) 4

5 Architetture dei sistemi di data mining Data Warehouse Motore di data mining Base di conoscenza Valutazione delle condizioni Presentazione 5

6 6 Componenti dell archittetura L archichettura della slide precedente, si fonda sui seguenti componenti: DataWarehouse, è la base di dati di analisi Base di conoscenza (Knowledge Base), contiene l insieme di regole e conoscenze date per note che verranno utilizzate per guidare la ricerca e per filtrare i risultati valutando l effettivo interesse dei pattern rilevati Motore di data mining (Data Mining Engine), è composto dall intero insieme di funzioni di analisi dei dati provenienti da discipline diverse come la statistica, l intelligenza artificiale, reti neurali, l analisi dei segnali Sistema di valutazione delle condizioni (Pattern Evaluation), focalizza la ricerca sui pattern (condizioni) interessanti Sistema dipresentazione, è l interfaccia tramite la quale l utente può specificare le tecniche di data mining, formulare nuove ipotesi o semplicemente visualizzare i risultati ottenuti

7 7 Data Mining e Data Warehouse Un sistema di data mining può non essere integrato nel sistema di data warehousing, allora il sistema di data mining deve mantenere una copia propria dei dati informazionali e periodicamente aggiornarla. Oppure integrarsi perfettamente, il sistema data mining viene visto come una componente funzionale del sistema informazionale, il vantaggio sta in una facilità di implementazione delle funzioni di data mining e in prestazioni elevate. Altre 2 caratteristiche sono: Scalabilità, capacità di elaborare le funzioni di analisi con tempi di risposta lineari rispetto alla numerosità dei dati. Requisito non sempre soddisfatto in quanto le informazioni superano una soglia critica il sistema rallenta in modo evidente (soluzione: calcolo parallelo) Interpretabilità, facilità con cui l utente interagisce con l interfaccia del sistema per l attivazione delle funzioni di analisi e rappresentazione dei dati

8 8 Funzioni di mining 1/3 In generale le funzioni di mining possono essere ripartite in 2 macro classi: Il mining descrittivo, descrive le proprietà generali dei dati. Il mining predittivo, che analizzando i dati presenti, determina delle regole e crea modelli per predire il futuro. Tipologie di analisi: Descrizione di classi e concetti Concetto: è una astrazione dei fatti (clienti e vendite) Classe: raggruppamento di elementi aventi stesse caratteristiche Analisi associativa, scopre le regole associative identificando nella massa dei dati i valori di attributi che si presentano insieme con elevata frequenza (importanti nei piani di marketing, campagne prodotti)

9 Funzioni di mining 2/3 Tecniche di classificazione e predizione, utilizzate per costruire modelli a partire dall analisi dei dati di un campione (es. analisi rischio-clienti). Tali modelli permettono di ricondurre ad una classe nota qualsiasi elemento in base alle caratteristiche di suoi attributi. Analisi cluster, i dati vengono raggruppati in classi (cluster) sulla base della similitudine; elementi che appartengono alla stessa classe hanno caratteristiche comuni che li rendono simili. Le regole di similitudine non sono date a priori ma sono determinate dal sistema sulla base dell osservazione dei valori assunti dai dati 9

10 Funzioni di mining 2/3 Analisi degli outlier, gli outlier sono gli elementi che si discostano dal modello generale dei dati, quelli che presentano qualche anomalia rispetto al profilo generale, esempio: La ricerca di frodi (operazioni o importi sospetti) La ricerca di intrusioni non autorizzate nei sistemi elettronici Valutazione efficienza impianti (individuazione macchine con guasti superiori alla media) Analisi evolutiva dei dati, descrive il comportamento nel tempo degli elementi sottoposti ad analisi, sottolineandone regolarità (comportamenti stagionali o ciclici) e tendenze. Analisi utilizzata per predire comportamenti futuri e quindi guidare le decisioni sulle politiche aziendali. 10

11 Processo di mining dei dati Ogni analisi di mining dei dati richiede, da parte dell utente, l indicazione dei parametri elencati di seguito: Insieme dei dati di analisi Tipo di informazioni da ricercare Misure di interesse Base di conoscenza Presentazione dei pattern 11

12 Insieme dei dati di analisi L insieme dei dati di analisi definisce la porzione dei dati da fornire in ingresso alle funzioni di data mining. Esempio, un analisi delle abitudini di acquisto dei propri clienti ha come base i fatti di vendita e non avrebbe alcun senso lanciare l analisi comprendendo fatti di produzione o fatti legati alla logistica. Circoscrivere l insieme dei dati di partenza migliora le prestazioni. È possibile che questa attività sia fatta da un utente che non ha una idea precisa ne consegue che potrebbe vanificare l attività di mining sui dati 12

13 Tipo di informazioni da ricercare L utente può/deve indicare quali informazioni ricercare scegliendo tra le funzioni disponibili quella che si presta meglio al suo obiettivo di conoscenza (descrittivo, di classificazione, predittivo o di analisi delle eccezioni). 13

14 Misure di interesse dei pattern Le analisi di mining possono produrre un insieme assai numeroso di elementi in uscita. È necessario un passaggio di post-processing per focalizzare l attenzione, un pattern interessante si caratterizza per: Novità, si intende informazione nuova, non ancora conosciuta (non duplicata) Semplicità, facilmente comprensibile da chi conduce l analisi Certezza, la regola definita dal pattern deve essere valida anche su dati nuovi o diversi Utilità, la regola identificata deve avere una qualche utilità potenziale per il decisore 14

15 Base di conoscenza Alcuni parametri che potrebbero essere utili per discriminare i pattern significativi dipendono dalla struttura dei dati, dalle regole aziendali e dall esperienza di chi conduce l analisi. Tali parametri devono essere descritti all interno di una base di dati dedicata, la base di conoscenza, sotto forma di regole, di relazioni tra elementi. Per esempio, la base di conoscenza potrebbe descrivere le varie gerarchie (strutturali, di raggruppamento) all interno del sistema. 15

16 Visualizzazione dei pattern La visualizzazione dei risultati ottenuti non è un elemento da sottovalutare, si può considerare come uno dei fattori di successo di qualsiasi sistema di analisi dei dati. Nei sistemi di data mining alcuni tipi di visualizzazione sono particolarmente utili. Esempio, gli alberi di decisione si utilizzano prevalentemente nelle analisi di classificazione, i diagrammi di dispersione nelle analisi di clustering. 16

17 Statistiche elementari e analisi relative Un primo insieme di funzioni di mining dei dati è costituito dagli strumenti che permettono di descrivere in modo sintetico ma preciso le informazioni contenuti nel database. Gli strumenti descrittivi operano tramite: Generalizzazione, attività che permette di ripartire i dati elementari in gruppi caratterizzati da attributi comuni Caratterizzazione, descrive le particolarità Discriminazione, che marca le differenze tra gruppo e gruppo 17

18 18 Caratterizzazione Si utilizzano misure di tendenza al fine di capire come i dati si dispongono attorno ad un determinato valore: Media,media pesata, centro numerico diuninsieme divalori Mediana, valore/modalità che si trova nel mezzo della distribuzione Moda, valore che ha la massima frequenza Oppure misure di dispersione: Varianza, come i dati si distribuiscono attorno al valore medio Confidenza, identifica l intervallo di valori intorno alla media che si distribuiscono come una Gaussiana all interno di una probabilità data (intervallo di confidenza pari al 98%) Percentili, rappresentano, dato un insieme ordinato di misure, il limite al di sotto del quale ricade una certa percentuale dei dati (quartili)

19 Discriminazione Nella discriminazione le caratteristiche di una classe vengono messe a confronto con quelle di classi diverse ma ovviamente paragonabili. 19 Rappresentazione grafica I principali sono: Istogramma difrequenza Plot quantile Scatter plot Uno degli strumenti grafici più efficace per vedere a colpo d occhio se è presente una relazione di qualsiasi genere tra 2 misure descrittive della stessa classe. La coppia di valori è vista come una coppia di coordinate. Si evidenziano blocchi di aggregazione o tendenze o punti isolati

20 20 Analisi associative I meccanismi di associazione permettono di identificare le condizioni che tendenzialmente si verificano contemporaneamente. Nati principalmente per l analisi delle vendite, tracciano le propensioni d acquisto legate alle caratteristiche dei clienti. Le informazioni che scaturiscono permettono di pianificare campagne promozionali efficaci, strutturare i listini o addirittura identificare clienti potenzialmente a rischio di insoluti. In sostanza si cerca di individuare dei pattern che si ripetono in determinate condizioni e che consentono di derivare delle regole di implicazione del tipo A => B (se si verifica A allora è probabile si verifichi anche B). Le condizioni vengono rappresentate nella forma: Attributo(soggetto, valore) Attributo1(soggetto, valore1) AND Attributo2(soggetto, valore2)

21 Significatività delle associazioni 1/2 La significatività di un associazione viene principalmente valutata in base a 2 misure particolari: confidenza e supporto. Confidenza, è una misura della certezza del pattern. Definita come la probabilità condizionata P(A B), cioè la probabilità che un elemento che contenga A contenga anche B. Calcolato come P(A B) = P(A B)/P(B) Supporto, è una misura della frequenza con cui il pattern è stato identificato sulla base di dati. È calcolato come (elementi che soddisfano la regola)/(totale elementi dell insieme dati di analisi) 21

22 Significatività delle associazioni 2/2 Esempio, la regola: Compra(X, divano a 2 posti ) => Compra(X, poltrona ) Ha una misura di confidenza dell 85% e una di supporto del 30%. Come si legge? Significa che tutti coloro che hanno comprato un divano a 2 posti erano all 85% intenzionati a comprare anche una poltrona ma solo nel 30% delle vendite il cliente ha comprato sia un divano a 2 posti che una poltrona Le associazioni forti sono quelle che il supporto è significativo (oltre una certa soglia) e la confidenza è elevata. 22

23 Classificazione Le tecniche di classificazione sono anche definite tecniche di apprendimento assistito: i parametri per la creazione del modello sono infatti forniti dall utente che specifica le classi, i dati per il modello e a che classe appartiene il dato. Nella creazione del modello l utente divide i dati in 2 sottoinsiemi, il training set (per l apprendimento) e il testing set (per la validazione del modello). Le tecniche usate sono molteplici: Alberi di decisione Reti neurali e algoritmi genetici Reti bayesiane 23

24 Alberi di decisione 1/3 Titolo di studio Zona Età Acquista divano Laurea Nord < 40 Sì Laurea Sud No Laurea Nord >50 Sì Diploma Sud < 40 Sì Diploma Nord Sì Laurea Sud No Diploma Nord < 40 Sì Laurea Sud >50 No Laurea Nord >50 Sì Diploma Nord >50 No 24

25 Alberi di decisione 2/3 Data la tabella slide precedente, costruiamo l albero delle decisioni. Prima di iniziare definiamo la struttura: I nodi interni sono attributi del soggetto da classificare Gli archi in uscita da un nodo sono etichettati con i valori che l attributo può assumere I nodi foglia sono le classi La tecnica di costruzione usa raffinamenti successivi: sceglie un attributo come radice, divide gli elementi in sottoinsiemi sulla base dei valori assunti dall attributo e crea gli archi, uno per ogni possibile valore dell attributo, che portano a nuovi nodi. Se tutti gli elementi di un sottoinsieme appartengono alla stessa classe, il nodo corrente è una foglia, altrimenti sceglie un nuovo attributo per etichettare il nodo e riprende la divisione. 25

26 Alberi di decisione 3/3 L albero avrà la seguente forma: Sì <40 Sì Età Titolo di studio No >50 No Zona diploma laurea sud nord diploma Sì Titolo di studio laurea No 26

27 Caratteristiche dei classificatori Accuratezza della previsione Velocità, tempo impiegato sia per costruire il modello sia che per classificare gli elementi Scalabilità Robustezza, capacità del modello di classificare correttamente elementi anche in presenza di dati errati o mancanti Interpretabilità, modello di facile comprensione (vedi l albero delle decisioni) a differenza delle reti neurali o quelle bayesiane 27

SISTEMI INFORMATIVI AZIENDALI

SISTEMI INFORMATIVI AZIENDALI SISTEMI INFORMATIVI AZIENDALI Prof. Andrea Borghesan venus.unive.it/borg borg@unive.it Ricevimento: Alla fine di ogni lezione Modalità esame: scritto 1 Sistemi informazionali La crescente diffusione dei

Dettagli

PDF created with pdffactory trial version www.pdffactory.com. Il processo di KDD

PDF created with pdffactory trial version www.pdffactory.com. Il processo di KDD Il processo di KDD Introduzione Crescita notevole degli strumenti e delle tecniche per generare e raccogliere dati (introduzione codici a barre, transazioni economiche tramite carta di credito, dati da

Dettagli

Data Mining. Gabriella Trucco gabriella.trucco@unimi.it

Data Mining. Gabriella Trucco gabriella.trucco@unimi.it Data Mining Gabriella Trucco gabriella.trucco@unimi.it Perché fare data mining La quantità dei dati memorizzata su supporti informatici è in continuo aumento Pagine Web, sistemi di e-commerce Dati relativi

Dettagli

Data mining e rischi aziendali

Data mining e rischi aziendali Data mining e rischi aziendali Antonella Ferrari La piramide delle componenti di un ambiente di Bi Decision maker La decisione migliore Decisioni Ottimizzazione Scelta tra alternative Modelli di apprendimento

Dettagli

KNOWLEDGE DISCOVERY E DATA MINING

KNOWLEDGE DISCOVERY E DATA MINING KNOWLEDGE DISCOVERY E DATA MINING Prof. Dipartimento di Elettronica e Informazione Politecnico di Milano LE TECNOLOGIE DI GESTIONE DELL INFORMAZIONE DATA WAREHOUSE SUPPORTO ALLE DECISIONI DATA MINING ANALISI

Dettagli

Uno standard per il processo KDD

Uno standard per il processo KDD Uno standard per il processo KDD Il modello CRISP-DM (Cross Industry Standard Process for Data Mining) è un prodotto neutrale definito da un consorzio di numerose società per la standardizzazione del processo

Dettagli

Esplorazione dei dati

Esplorazione dei dati Esplorazione dei dati Introduzione L analisi esplorativa dei dati evidenzia, tramite grafici ed indicatori sintetici, le caratteristiche di ciascun attributo presente in un dataset. Il processo di esplorazione

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

DATA MINING PER IL MARKETING

DATA MINING PER IL MARKETING DATA MINING PER IL MARKETING Andrea Cerioli andrea.cerioli@unipr.it Sito web del corso GLI ALBERI DI CLASSIFICAZIONE Algoritmi di classificazione Zani-Cerioli, Cap. XI CHAID: Chi-square Automatic Interaction

Dettagli

Il DataMining. Susi Dulli dulli@math.unipd.it

Il DataMining. Susi Dulli dulli@math.unipd.it Il DataMining Susi Dulli dulli@math.unipd.it Il Data Mining Il Data Mining è il processo di scoperta di relazioni, pattern, ed informazioni precedentemente sconosciute e potenzialmente utili, all interno

Dettagli

Descrizione... 3 Comprensione del Processo Produttivo... 3. Definizione del Problema... 4. Selezione delle Caratteristiche... 5. Box Plot...

Descrizione... 3 Comprensione del Processo Produttivo... 3. Definizione del Problema... 4. Selezione delle Caratteristiche... 5. Box Plot... Pagina 2 Descrizione... 3 Comprensione del Processo Produttivo... 3 Definizione del Problema... 4 Selezione delle Caratteristiche... 5 Box Plot... 6 Scatterplot... 6 Box Plot... 7 Scatterplot... 7 Alberi

Dettagli

Lezione 8. Data Mining

Lezione 8. Data Mining Lezione 8 Data Mining Che cos'è il data mining? Data mining (knowledge discovery from data) Estrazione di pattern interessanti (non banali, impliciti, prima sconosciuti e potenzialmente utili) da enormi

Dettagli

Data mining. Data Mining. processo di Data Mining estrarre automaticamente informazioneda un insieme di dati

Data mining. Data Mining. processo di Data Mining estrarre automaticamente informazioneda un insieme di dati Data mining Il consente l informazione processo di Data Mining estrarre automaticamente informazioneda un insieme di dati telefoniche, ènascostaa a causa di fra quantitàdi loro, complessità: non... ci

Dettagli

1. Aspetti di Marketing... 3 Obiettivi... 3 Esempi... 4 2. Aspetti Applicativi... 4 Obiettivi... 4. 3. Aspetti Prestazionali... 4

1. Aspetti di Marketing... 3 Obiettivi... 3 Esempi... 4 2. Aspetti Applicativi... 4 Obiettivi... 4. 3. Aspetti Prestazionali... 4 Pagina 2 1. Aspetti di Marketing... 3 Obiettivi... 3 Esempi... 4 2. Aspetti Applicativi... 4 Obiettivi... 4 Esempi... 4 3. Aspetti Prestazionali... 4 Obiettivi... 4 Esempi... 4 4. Gestione del Credito

Dettagli

DATA MINING. Data mining. Obiettivo: estrarre informazione nascosta nei dati in modo da consentire decisioni strategiche

DATA MINING. Data mining. Obiettivo: estrarre informazione nascosta nei dati in modo da consentire decisioni strategiche DATA MINING datamining Data mining Obiettivo: estrarre informazione nascosta nei dati in modo da consentire decisioni strategiche Una materia interdisciplinare: - statistica, algoritmica, reti neurali

Dettagli

Il data mining. di Alessandro Rezzani

Il data mining. di Alessandro Rezzani Il data mining di Alessandro Rezzani Cos è il data mining.... 2 Knowledge Discovery in Databases (KDD)... 3 Lo standard CRISP-DM... 4 La preparazione dei dati... 7 Costruzione del modello... 7 Attività

Dettagli

I vantaggi ottenibili nei campi applicativi attraverso l uso di tecniche di data mining

I vantaggi ottenibili nei campi applicativi attraverso l uso di tecniche di data mining Dipartimento di Informatica e Sistemistica I vantaggi ottenibili nei campi applicativi attraverso l uso di tecniche di data mining Renato Bruni bruni@dis.uniroma1.it Antonio Sassano sassano@dis.uniroma1.it

Dettagli

AIR MILES un case study di customer segmentation

AIR MILES un case study di customer segmentation AIR MILES un case study di customer segmentation Da: G. Saarenvirta, Mining customer data, DB2 magazine on line, 1998 http://www.db2mag.com/db_area/archives/1998/q3/ 98fsaar.shtml Customer clustering &

Dettagli

Data Mining e Analisi dei Dati

Data Mining e Analisi dei Dati e Analisi dei Dati Rosaria Lombardo Dipartimento di Economia, Seconda Università di Napoli La scienza che estrae utili informazioni da grandi databases è conosciuta come E una disciplina nuova che interseca

Dettagli

Tecniche di DM: Alberi di decisione ed algoritmi di classificazione

Tecniche di DM: Alberi di decisione ed algoritmi di classificazione Tecniche di DM: Alberi di decisione ed algoritmi di classificazione Vincenzo Antonio Manganaro vincenzomang@virgilio.it, www.statistica.too.it Indice 1 Concetti preliminari: struttura del dataset negli

Dettagli

Statistica descrittiva: prime informazioni dai dati sperimentali

Statistica descrittiva: prime informazioni dai dati sperimentali SECONDO APPUNTAMENTO CON LA SPERIMENTAZIONE IN AGRICOLTURA Statistica descrittiva: prime informazioni dai dati sperimentali La statistica descrittiva rappresenta la base di partenza per le applicazioni

Dettagli

Tecniche di DM: Link analysis e Association discovery

Tecniche di DM: Link analysis e Association discovery Tecniche di DM: Link analysis e Association discovery Vincenzo Antonio Manganaro vincenzomang@virgilio.it, www.statistica.too.it Indice 1 Architettura di un generico algoritmo di DM. 2 2 Regole di associazione:

Dettagli

Il guadagno informativo negli alberi decisionali: un nuovo approccio

Il guadagno informativo negli alberi decisionali: un nuovo approccio Il guadagno informativo negli alberi decisionali: un nuovo approccio Sommario Descrizione del problema... 2 Il guadagno informativo di Nanni... 3 Il software Weka... 3 Cos è Weka... 3 Il guadagno Informativo

Dettagli

Costruzione di Modelli Previsionali

Costruzione di Modelli Previsionali Metodologie per Sistemi Intelligenti Costruzione di Modelli Previsionali Ing. Igor Rossini Laurea in Ingegneria Informatica Politecnico di Milano Polo Regionale di Como Agenda Knowledge discovery in database

Dettagli

Data warehouse. Architettura complessiva con OLTP e OLAP OLTP. Sistemi di supporto alle decisioni

Data warehouse. Architettura complessiva con OLTP e OLAP OLTP. Sistemi di supporto alle decisioni Data warehouse Data warehouse La crescita dell importanza dell analisi dei dati ha portato ad una separazione architetturale dell ambiente transazionale (OLTP on-line transaction processing) da quello

Dettagli

Analisi dei requisiti e casi d uso

Analisi dei requisiti e casi d uso Analisi dei requisiti e casi d uso Indice 1 Introduzione 2 1.1 Terminologia........................... 2 2 Modello del sistema 4 2.1 Requisiti hardware........................ 4 2.2 Requisiti software.........................

Dettagli

Introduzione al Data Mining Parte 1

Introduzione al Data Mining Parte 1 Introduzione al Data Mining Parte 1 Corso di Laurea Specialistica in Ingegneria Informatica II Facoltà di Ingegneria, sede di Cesena (a.a. 2009/2010) Prof. Gianluca Moro Dipartimento di Elettronica, Informatica

Dettagli

Esperienze di Apprendimento Automatico per il corso di Intelligenza Artificiale

Esperienze di Apprendimento Automatico per il corso di Intelligenza Artificiale Esperienze di Apprendimento Automatico per il corso di lippi@dsi.unifi.it Dipartimento Sistemi e Informatica Università di Firenze Dipartimento Ingegneria dell Informazione Università di Siena Introduzione

Dettagli

-Possibilità di svolgere le attività commerciali per via elettronica, in particolare tramite Internet.

-Possibilità di svolgere le attività commerciali per via elettronica, in particolare tramite Internet. COMMERCIO ELETTRONICO -Possibilità di svolgere le attività commerciali per via elettronica, in particolare tramite Internet. -Un qualsiasi tipo di transazione tendente a vendere o acquistare un prodotto

Dettagli

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca

Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva. Brugnaro Luca Come descrivere un fenomeno in ambito sanitario fondamenti di statistica descrittiva Brugnaro Luca Progetto formativo complessivo Obiettivo: incrementare le competenze degli operatori sanitari nelle metodiche

Dettagli

Per forma di una distribuzione si intende il modo secondo il quale si dispongono i valori di un carattere intorno alla rispettiva media.

Per forma di una distribuzione si intende il modo secondo il quale si dispongono i valori di un carattere intorno alla rispettiva media. FORMA DI UNA DISTRIBUZIONE Per forma di una distribuzione si intende il modo secondo il quale si dispongono i valori di un carattere intorno alla rispettiva media. Le prime informazioni sulla forma di

Dettagli

Data warehousing Mario Guarracino Data Mining a.a. 2010/2011

Data warehousing Mario Guarracino Data Mining a.a. 2010/2011 Data warehousing Introduzione A partire dagli anni novanta è risultato chiaro che i database per i DSS e le analisi di business intelligence vanno separati da quelli operazionali. In questa lezione vedremo

Dettagli

Data mining for e- commerce sites

Data mining for e- commerce sites Data mining for e- commerce sites Commercio elettronico Possibilità di svolgerele attività commerciali per via elettronica, in particolare tramite Internet. Un qualsiasi tipo di transazione tendente a

Dettagli

Indici (Statistiche) che esprimono le caratteristiche di simmetria e

Indici (Statistiche) che esprimono le caratteristiche di simmetria e Indici di sintesi Indici (Statistiche) Gran parte della analisi statistica consiste nel condensare complessi pattern di osservazioni in un indicatore che sia capace di riassumere una specifica caratteristica

Dettagli

MASTER UNIVERSITARIO

MASTER UNIVERSITARIO MASTER UNIVERSITARIO Analisi Dati per la Business Intelligence In collaborazione con II edizione 2013/2014 Dipartimento di Culture, Politica e Società Dipartimento di Informatica gestito da aggiornato

Dettagli

CAPITOLO 10. Controllo di qualità. Strumenti per il controllo della qualità e la sua gestione

CAPITOLO 10. Controllo di qualità. Strumenti per il controllo della qualità e la sua gestione CAPITOLO 10 Controllo di qualità Strumenti per il controllo della qualità e la sua gestione STRUMENTI PER IL CONTROLLO E LA GESTIONE DELLA QUALITÀ - DIAGRAMMI CAUSA/EFFETTO - DIAGRAMMI A BARRE - ISTOGRAMMI

Dettagli

Introduzione al Data Mining

Introduzione al Data Mining Introduzione al Data Mining Sistemi informativi per le Decisioni Slide a cura di Prof. Claudio Sartori Evoluzione della tecnologia dell informazione (IT) (Han & Kamber, 2001) Percorso evolutivo iniziato

Dettagli

STUDIO DI SETTORE UG53U

STUDIO DI SETTORE UG53U ALLEGATO 9 NOTA TECNICA E METODOLOGICA STUDIO DI SETTORE UG53U ORGANIZZAZIONE DI CONVEGNI ED ATTIVITA DI TRADUZIONI ED INTERPRETARIATO CRITERI PER L EVOLUZIONE DELLO STUDIO DI SETTORE L'obiettivo dell'applicazione

Dettagli

Analisi Statistica per le Imprese (6 CFU) - a.a. 2010-2011 Prof. L. Neri RICHIAMI DI STATISTICA DESCRITTIVA UNIVARIATA

Analisi Statistica per le Imprese (6 CFU) - a.a. 2010-2011 Prof. L. Neri RICHIAMI DI STATISTICA DESCRITTIVA UNIVARIATA Analisi Statistica per le Imprese (6 CFU) - a.a. 2010-2011 Prof. L. Neri RICHIAMI DI STATISTICA DESCRITTIVA UNIVARIATA 1 Distribuzione di frequenza Punto vendita e numero di addetti PUNTO VENDITA 1 2 3

Dettagli

STUDIO DI SETTORE VG87U

STUDIO DI SETTORE VG87U ALLEGATO 21 NOTA TECNICA E METODOLOGICA STUDIO DI SETTORE VG87U CONSULENZA FINANZIARIA, AMMINISTRATIVO-GESTIONALE E AGENZIE DI INFORMAZIONI COMMERCIALI CRITERI PER L EVOLUZIONE DELLO STUDIO DI SETTORE

Dettagli

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili:

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili: Incertezze di misura Argomenti: classificazione delle incertezze; definizione di incertezza tipo e schemi di calcolo; schemi per il calcolo dell incertezza di grandezze combinate; confronto di misure affette

Dettagli

MASTER UNIVERSITARIO. Analisi Dati per la Business Intelligence e Data Science. IV edizione 2015/2016

MASTER UNIVERSITARIO. Analisi Dati per la Business Intelligence e Data Science. IV edizione 2015/2016 MASTER UNIVERSITARIO Analisi Dati per la Business Intelligence e Data Science In collaborazione con IV edizione 2015/2016 Dipartimento di Culture, Politica e Società Dipartimento di Informatica Dipartimento

Dettagli

Ingegneria del Software Progettazione

Ingegneria del Software Progettazione Ingegneria del Software Progettazione Obiettivi. Approfondire la fase di progettazione dettagliata che precede la fase di realizzazione e codifica. Definire il concetto di qualità del software. Presentare

Dettagli

QUARTO INCONTRO LABORATORIO CORSO INDAGINI CAMPIONARIE. Laboratorio Stefania Porchia

QUARTO INCONTRO LABORATORIO CORSO INDAGINI CAMPIONARIE. Laboratorio Stefania Porchia QUARTO INCONTRO LABORATORIO CORSO INDAGINI CAMPIONARIE Laboratorio Stefania Porchia Incontri e argomenti trattati nel laboratorio 29 marzo 14.00 15.30 l indagine qualitativa come strategia di formulazione

Dettagli

Lezione 10. La classificazione dell Intelligenza Artificiale

Lezione 10. La classificazione dell Intelligenza Artificiale Lezione 10 Intelligenza Artificiale Cosa è l Intelligenza Artificiale Elaborazione del linguaggio naturale La visione artificiale L apprendimento nelle macchine La classificazione dell Intelligenza Artificiale

Dettagli

Statistica Applicata all edilizia Lezione 2: Analisi descrittiva dei dati

Statistica Applicata all edilizia Lezione 2: Analisi descrittiva dei dati Lezione 2: Analisi descrittiva dei dati E-mail: orietta.nicolis@unibg.it 1 marzo 2011 Prograa 1 Analisi grafica dei dati 2 Indici di posizione Indici di dispersione Il boxplot 3 4 Prograa Analisi grafica

Dettagli

ht://miner Un sistema open-source di data mining e data warehousing per lo studio dei comportamenti degli utenti su Internet

ht://miner Un sistema open-source di data mining e data warehousing per lo studio dei comportamenti degli utenti su Internet ht://miner Un sistema open-source di data mining e data warehousing per lo studio dei comportamenti degli utenti su Internet Gabriele Bartolini Comune di Prato Sistema Informativo Servizi di E-government

Dettagli

Presentazione. Risorse Web. Metodi Statistici 1

Presentazione. Risorse Web. Metodi Statistici 1 I-XVI Romane_ 27-10-2004 14:25 Pagina VII Prefazione Risorse Web XI XIII XVII Metodi Statistici 1 Capitolo 1 Tecniche Statistiche 3 1.1 Probabilità, Variabili Casuali e Statistica 3 1.1.1 Introduzione

Dettagli

Una miniera di dati sul comportamento degli utenti del Web

Una miniera di dati sul comportamento degli utenti del Web Una miniera di dati sul comportamento degli utenti del Web Organizzare le informazioni sull'utilizzo della rete in PostgreSQL utilizzando ht://miner, un sistema open-source di data mining e data warehousing

Dettagli

Data warehousing Mario Guarracino Laboratorio di Sistemi Informativi Aziendali a.a. 2006/2007

Data warehousing Mario Guarracino Laboratorio di Sistemi Informativi Aziendali a.a. 2006/2007 Data warehousing Introduzione A partire dalla metà degli anni novanta è risultato chiaro che i database per i DSS e le analisi di business intelligence vanno separati da quelli operazionali. In questa

Dettagli

Verifica e Validazione (V & V) Software e difetti. Processo di V & V. Test

Verifica e Validazione (V & V) Software e difetti. Processo di V & V. Test Software e difetti Il software con difetti è un grande problema I difetti nel software sono comuni Come sappiamo che il software ha qualche difetto? Conosciamo tramite qualcosa, che non è il codice, cosa

Dettagli

STUDIO DI SETTORE VK18U

STUDIO DI SETTORE VK18U ALLEGATO 11 NOTA TECNICA E METODOLOGICA STUDIO DI SETTORE VK18U STUDI DI ARCHITETTURA CRITERI PER L EVOLUZIONE DELLO STUDIO DI SETTORE L'obiettivo dell'applicazione dello studio di settore è di attribuire

Dettagli

Relazione sul data warehouse e sul data mining

Relazione sul data warehouse e sul data mining Relazione sul data warehouse e sul data mining INTRODUZIONE Inquadrando il sistema informativo aziendale automatizzato come costituito dall insieme delle risorse messe a disposizione della tecnologia,

Dettagli

CONTROLLI STATISTICI

CONTROLLI STATISTICI CONTROLLI STATISTICI Si definisce Statistica la disciplina che si occupa della raccolta, effettuata in modo scientifico, dei dati e delle informazioni, della loro classificazione, elaborazione e rappresentazione

Dettagli

[ ] [ ] 5.2. Statistiche descrittive

[ ] [ ] 5.2. Statistiche descrittive traffico nei tratti stradali limitrofi (deficienza non trascurabile data la fitta tessitura che caratterizza la rete stradale mestrina). I dati ottenuti, però, possono fornire una stima del fenomeno ed

Dettagli

ANALISI DEI DATI PER IL MARKETING 2014

ANALISI DEI DATI PER IL MARKETING 2014 ANALISI DEI DATI PER IL MARKETING 2014 Marco Riani mriani@unipr.it http://www.riani.it LA CLASSIFICAZIONE CAP IX, pp.367-457 Problema generale della scienza (Linneo, ) Analisi discriminante Cluster Analysis

Dettagli

UNIVERSITA DEGLI STUDI DI PADOVA TESI DI LAUREA TRIENNALE

UNIVERSITA DEGLI STUDI DI PADOVA TESI DI LAUREA TRIENNALE UNIVERSITA DEGLI STUDI DI PADOVA FACOLTA DI SCIENZE STATISTICHE CORSO DI LAUREA IN STATISTICA E GESTIONE DELLE IMPRESE TESI DI LAUREA TRIENNALE Cluster Analysis per la segmentazione della clientela utilizzando

Dettagli

Grafici. Lezione 4. Fondamenti di Informatica 2 Giuseppe Manco Ester Zumpano

Grafici. Lezione 4. Fondamenti di Informatica 2 Giuseppe Manco Ester Zumpano Fondamenti di Informatica 2 Giuseppe Manco Ester Zumpano Grafici Lezione 4 Grafici e cartine Grafici [1/13 1/13] Rappresentare graficamente le informazioni per renderle interessanti e facilmente comprensibili.

Dettagli

C4.5 Algorithms for Machine Learning

C4.5 Algorithms for Machine Learning C4.5 Algorithms for Machine Learning C4.5 Algorithms for Machine Learning Apprendimento di alberi decisionali c4.5 [Qui93b,Qui96] Evoluzione di ID3, altro sistema del medesimo autore, J.R. Quinlan Ispirato

Dettagli

STUDIO DI SETTORE VG82U

STUDIO DI SETTORE VG82U ALLEGATO 18 NOTA TECNICA E METODOLOGICA STUDIO DI SETTORE VG82U SERVIZI PUBBLICITARI, RELAZIONI PUBBLICHE E COMUNICAZIONE 862 CRITERI PER L EVOLUZIONE DELLO STUDIO DI SETTORE L'applicazione dello studio

Dettagli

Database. Organizzazione di archivi mediante basi di dati. ing. Alfredo Cozzi 1

Database. Organizzazione di archivi mediante basi di dati. ing. Alfredo Cozzi 1 Database Organizzazione di archivi mediante basi di dati ing. Alfredo Cozzi 1 Il database è una collezione di dati logicamente correlati e condivisi, che ha lo scopo di soddisfare i fabbisogni informativi

Dettagli

Data mining. Vincenzo D Elia. vincenzo.delia@polito.it. DBDMG - Politecnico di Torino

Data mining. Vincenzo D Elia. vincenzo.delia@polito.it. DBDMG - Politecnico di Torino Data mining Vincenzo D Elia vincenzo.delia@polito.it DBDMG - Politecnico di Torino vincenzo.delia@polito.it Archivi Multimediali e Data Mining - p. 1 Rapid Miner vincenzo.delia@polito.it Archivi Multimediali

Dettagli

Sistemi Informativi Multimediali Indicizzazione multidimensionale

Sistemi Informativi Multimediali Indicizzazione multidimensionale Indicizzazione nei sistemi di IR (1) Sistemi Informativi Multimediali Indicizzazione multidimensionale ugusto elentano Università a Foscari Venezia La struttura fondamentale di un sistema di information

Dettagli

DATABASE SU EXCEL: I FILTRI

DATABASE SU EXCEL: I FILTRI DATABASE SU EXCEL: I FILTRI È possibile mettere in relazione i dati in base a determinati criteri di ricerca e creare un archivio di dati E necessario creare delle categorie di ordinamento in base alle

Dettagli

Grafici delle distribuzioni di frequenza

Grafici delle distribuzioni di frequenza Grafici delle distribuzioni di frequenza L osservazione del grafico può far notare irregolarità o comportamenti anomali non direttamente osservabili sui dati; ad esempio errori di misurazione 1) Diagramma

Dettagli

Data Warehousing (DW)

Data Warehousing (DW) Data Warehousing (DW) Il Data Warehousing è un processo per estrarre e integrare dati storici da sistemi transazionali (OLTP) diversi e disomogenei, e da usare come supporto al sistema di decisione aziendale

Dettagli

STUDIO DI SETTORE VK17U

STUDIO DI SETTORE VK17U A L L E G AT O 6 NOTA TECNICA E METODOLOGICA STUDIO DI SETTORE VK17U P E R I T I I N D U S T R I A L I CRITERI PER L EVOLUZIONE DELLO STUDIO DI SETTORE L'applicazione dello studio di settore attribuisce

Dettagli

IBM SPSS Direct Marketing 21

IBM SPSS Direct Marketing 21 IBM SPSS Direct Marketing 21 Nota: Prima di utilizzare queste informazioni e il relativo prodotto, leggere le informazioni generali disponibili in Note a pag. 109. Questa versione si applica a IBM SPSS

Dettagli

E-marketing Intelligence e personalizzazione

E-marketing Intelligence e personalizzazione E-marketing Intelligence e personalizzazione Nel mondo degli affari di oggi comprendere e sfruttare il potere delle 4 P del marketing (product, price, place e promotion) è diventato uno dei fattori più

Dettagli

SCADA: struttura modulare

SCADA: struttura modulare Sistemi per il controllo di supervisione e l acquisizione dati o (Supervisory Control And Data Acquisition) Sistema informatico di misura e controllo distribuito per il monitoraggio di processi fisici

Dettagli

Sistemi Informativi I Lezioni di Ingegneria del Software

Sistemi Informativi I Lezioni di Ingegneria del Software 4 Codifica, Test e Collaudo. Al termine della fase di progettazione, a volte anche in parallelo, si passa alla fase di codifica e successivamente alla fase di test e collaudo. In questa parte viene approfondita

Dettagli

Data Mining Algorithms

Data Mining Algorithms Proposte di Tesi Elena Baralis, Silvia Chiusano, Paolo Garza, Tania Cerquitelli, Giulia Bruno, Daniele Apiletti, Alessandro Fiori, Luca Cagliero, Alberto Grand, Luigi Grimaudo Torino, Giugno 2011 Data

Dettagli

Dipartimento di Economia Seconda Università di Napoli. Dispensa didattica. Data Mining. Lombardo R. Lombardo R.

Dipartimento di Economia Seconda Università di Napoli. Dispensa didattica. Data Mining. Lombardo R. Lombardo R. Dipartimento di Economia Seconda Università di Napoli Dispensa didattica Data Mining Lombardo R. Lombardo R. Cos é il Data Mining? Premessa Il Data Mining è un processo di analisi dei dati da diverse prospettive

Dettagli

Metodi e Modelli per le Decisioni

Metodi e Modelli per le Decisioni Metodi e Modelli per le Decisioni Corso di Laurea in Informatica e Corso di Laurea in Matematica Roberto Cordone DI - Università degli Studi di Milano Lezioni: Giovedì 13.30-15.30 Venerdì 15.30-17.30 Ricevimento:

Dettagli

Identificazione del dispositivo sorgente

Identificazione del dispositivo sorgente UNIVERSITÀ DEGLI STUDI DI FIRENZE Facoltà di Ingegneria Corso di Laurea in INGEGNERIA INFORMATICA Identificazione del dispositivo sorgente mediante tecniche di Image Forensics Tesi di Laurea di ANDREA

Dettagli

Reti neurali nel Data Mining, altre tecniche utilizzate nel DM e valutazione dei modelli.

Reti neurali nel Data Mining, altre tecniche utilizzate nel DM e valutazione dei modelli. Reti neurali nel Data Mining, altre tecniche utilizzate nel DM e valutazione dei modelli. Vincenzo Antonio Manganaro vincenzomang@virgilio.it, www.statistica.too.it Indice 1 Utilizzo di reti neurali nel

Dettagli

Introduzione a data warehousing e OLAP

Introduzione a data warehousing e OLAP Corso di informatica Introduzione a data warehousing e OLAP La Value chain Information X vive in Z S ha Y anni X ed S hanno traslocato Data W ha del denaro in Z Stile di vita Punto di vendita Dati demografici

Dettagli

Sistemi Informativi La Modellazione Dimensionale dei Fatti. Obiettivi Concetti Base Operazioni OLAP DFM Casi Modellazione Logica Esercizi

Sistemi Informativi La Modellazione Dimensionale dei Fatti. Obiettivi Concetti Base Operazioni OLAP DFM Casi Modellazione Logica Esercizi Sistemi Informativi La Modellazione Dimensionale dei Fatti Obiettivi Concetti Base Operazioni OLAP DFM Casi Modellazione Logica Esercizi Obiettivi Nelle lezioni precedenti abbiamo modellato i processi

Dettagli

Introduzione al Data Mining Parte 1

Introduzione al Data Mining Parte 1 Introduzione al Data Mining Parte 1 Corso di Laurea Specialistica in Ingegneria Informatica II Facoltà di Ingegneria, sede di Cesena (a.a. 2010/2011) Prof. Gianluca Moro Dipartimento di Elettronica, Informatica

Dettagli

Il questionario. Claudio Pizzi Dipartimento di Economia Università Ca Foscari Venezia

Il questionario. Claudio Pizzi Dipartimento di Economia Università Ca Foscari Venezia Il questionario Claudio Pizzi Dipartimento di Economia Università Ca Foscari Venezia 1 Il questionario Il questionario è uno strumento per la rilevazione delle informazioni attraverso un piano strutturato

Dettagli

STUDIO DI SETTORE VG82U

STUDIO DI SETTORE VG82U ALLEGATO 18 NOTA TECNICA E METODOLOGICA STUDIO DI SETTORE VG82U SERVIZI PUBBLICITARI, RELAZIONI PUBBLICHE E COMUNICAZIONE CRITERI PER L EVOLUZIONE DELLO STUDIO DI SETTORE L'applicazione dello studio di

Dettagli

STUDIO DI SETTORE UG87U

STUDIO DI SETTORE UG87U ALLEGATO 22 NOTA TECNICA E METODOLOGICA STUDIO DI SETTORE UG87U CONSULENZA FINANZIARIA, AMMINISTRATIVO- GESTIONALE E AGENZIE DI INFORMAZIONI COMMERCIALI CRITERI PER L EVOLUZIONE DELLO STUDIO DI SETTORE

Dettagli

STUDIO DI SETTORE SM44U

STUDIO DI SETTORE SM44U ALLEGATO 4 NOTA TECNICA E METODOLOGICA STUDIO DI SETTORE SM44U NOTA TECNICA E METODOLOGICA CRITERI PER LA COSTRUZIONE DELLO STUDIO DI SETTORE Di seguito vengono esposti i criteri seguiti per la costruzione

Dettagli

ALLEGATO 7. Nota Tecnica e Metodologica SK16U

ALLEGATO 7. Nota Tecnica e Metodologica SK16U ALLEGATO 7 Nota Tecnica e Metodologica SK16U NOTA TECNICA E METODOLOGICA 1. CRITERI PER LA COSTRUZIONE DELLO STUDIO DI SETTORE Di seguito vengono esposti i criteri seguiti per la costruzione dello studio

Dettagli

Alberi Decisionali di Vito Madaio

Alberi Decisionali di Vito Madaio Tecnica degli Alberi Decisionali Cosa è un albero decisionale Un albero decisionale è la dimostrazione grafica di una scelta effettuata o proposta. Non sempre ciò che istintivamente ci appare più interessante

Dettagli

Pianificazione del data warehouse

Pianificazione del data warehouse Pianificazione del data warehouse Dalla pianificazione emergono due principali aree d interesse: area commerciale focalizzata sulle agenzie di vendita e area marketing concentrata sulle vendite dei prodotti.

Dettagli

Introduzione al Data Mining

Introduzione al Data Mining Introduzione al Data Mining Prof. Matteo Golfarelli Alma Mater Studiorum - Università di Bologna Modalità didattiche e materiale Lezioni in aula e in laboratorio utilizzando il software open source Weka

Dettagli

STUDIO DI SETTORE SG54U

STUDIO DI SETTORE SG54U ALLEGATO 5 NOTA TECNICA E METODOLOGICA STUDIO DI SETTORE SG54U NOTA TECNICA E METODOLOGICA CRITERI PER LA COSTRUZIONE DELLO STUDIO DI SETTORE Di seguito vengono esposti i criteri seguiti per la costruzione

Dettagli

Tecnologie dell informatica per l azienda SISTEMA INFORMATIVO E SISTEMA INFORMATICO NEI PROCESSI AZIENDALI

Tecnologie dell informatica per l azienda SISTEMA INFORMATIVO E SISTEMA INFORMATICO NEI PROCESSI AZIENDALI Tecnologie dell informatica per l azienda SISTEMA INFORMATIVO E SISTEMA INFORMATICO NEI PROCESSI AZIENDALI IL SISTEMA INFORMATIVO AZIENDALE Un azienda è caratterizzata da: 1. Persone legate tra loro da

Dettagli

FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea Triennale in Informatica per il management. Business Analytics

FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea Triennale in Informatica per il management. Business Analytics Alma Mater Studiorum Università di Bologna FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea Triennale in Informatica per il management Business Analytics Tesi di Laurea in Basi di Dati

Dettagli

DATA MINING IN TIME SERIES

DATA MINING IN TIME SERIES Modellistica e controllo dei sistemi ambientali DATA MINING IN TIME SERIES 01 Dicembre 2009 Dott. Ing.. Roberto Di Salvo Dipartimento di Ingegneria Elettrica Elettronica e dei Sistemi Anno Accademico 2009-2010

Dettagli

STUDIO DI SETTORE SG79U

STUDIO DI SETTORE SG79U ALLEGATO 5 NOTA TECNICA E METODOLOGICA STUDIO DI SETTORE SG79U NOTA TECNICA E METODOLOGICA CRITERI PER LA COSTRUZIONE DELLO STUDIO DI SETTORE Di seguito vengono esposti i criteri seguiti per la costruzione

Dettagli

Convergenza. Schema di fatto

Convergenza. Schema di fatto Convergenza Quando due attributi dimensionali possono essere connessi da due o più cammini direzionali distinti pur mantenendo le dipendenze funzionali di tutte le direzioni. 451 Schema di fatto 452 1

Dettagli

Computazione per l interazione naturale: Modelli dinamici

Computazione per l interazione naturale: Modelli dinamici Computazione per l interazione naturale: Modelli dinamici Corso di Interazione Naturale Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it boccignone.di.unimi.it/in_2015.html

Dettagli

Text mining ed analisi di dati codificati in linguaggio naturale. Analisi esplorative di dati testuali

Text mining ed analisi di dati codificati in linguaggio naturale. Analisi esplorative di dati testuali Text mining ed analisi di dati codificati in linguaggio naturale Analisi esplorative di dati testuali Il text mining: una definizione Data mining per dati destrutturati ovvero documenti codificati in linguaggio

Dettagli

Capitoli del testo. ALBERTO FORTUNATO a l b e r t o f o r t u n a t o. c o m CONTENUTI

Capitoli del testo. ALBERTO FORTUNATO a l b e r t o f o r t u n a t o. c o m CONTENUTI CONTENUTI Capitoli del testo Capitolo 1 Il controllo del processo Capitolo 2 Rilevazione e registrazione dei dati Capitolo 3 L analisi strutturale del processo Capitolo 4 L analisi dinamica-strutturale

Dettagli

Sistemi Informativi. Basi di Dati. Progettazione concettuale. Architettura Progettazione Analisi funzionale

Sistemi Informativi. Basi di Dati. Progettazione concettuale. Architettura Progettazione Analisi funzionale 6LVWHPL,QIRUPDWLYL H DVLGL'DWL Oreste Signore (Oreste.Signore@cnuce.cnr.it) &RQWHQXWR Sistemi Informativi Basi di Dati Architettura Progettazione Analisi funzionale Progettazione concettuale Information

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso di Statistica medica e applicata Dott.ssa Donatella Cocca 1 a Lezione Cos'è la statistica? Come in tutta la ricerca scientifica sperimentale, anche nelle scienze mediche e biologiche è indispensabile

Dettagli

Sistemi informativi aziendali

Sistemi informativi aziendali Sistemi informativi aziendali Lezione 12 prof. Monica Palmirani Sistemi informativi e informatici Sistemi informativi = informazioni+processi+comunicazione+persone Sistemi informatici = informazioni+hardware+software

Dettagli

Optimized Technology. March 2008. www.neodatagroup.com - info@neodatagroup.com

Optimized Technology. March 2008. www.neodatagroup.com - info@neodatagroup.com XML Banner Feeding Optimized Technology March 2008 www.neodatagroup.com - info@neodatagroup.com Tel: +39 095 7226111 - Fax: +39 095 7374775 Varese: Via Bligny, 16 21100 - Milano: Via Paolo da Cannobio,

Dettagli