M P = PA^V. Il risultante e denito semplicemente come la somma dei vettori di a

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "M P = PA^V. Il risultante e denito semplicemente come la somma dei vettori di a"

Transcript

1 VETTORI APPLICATI Sistema di vettori applicati L'ente matematico costituito da un punto P e da un vettore (libero) V, si dice vettore applicato in P e si denota con (P;V). E comodo rappresentare il vettore applicato (P;V) geometricamente con un segmento orientato la cui origine coincide con P (g. (1.1)). Da quanto detto risulta che due vettori applicati (P;V) e(q; W) sono eguali se P = Q e V = W (come vettori liberi g. (1.2)). La retta che contiene il vettore V e passa per il punto di applicazione P si chiama retta sostegno del vettore applicato (P;V) (g. (1.3)). Un insieme di vettori applicati S = f(p i ; V i )g i2i si dice sistema di vettori applicati. Dalla denizione di uguaglianza fra due vettori applicati discende che due sistemi di vettori applicati si debbano denire eguali se sono coincidenti, cioe se sono lo stesso sistema di vettori applicati. Se I, insieme dei punti di applicazione dei vettori, e discreto, S si dice un sistema nito di vettori applicati e lo si indica con a. Nelle applicazioni capita spesso che I sia una linea, una supercie o una regione tridimensionale dello spazio ordinario; in tal caso S si dice rispettivamente una distribuzione lineare, superciale o cubica di vettori applicati. Dire quando e possibile schematizzare la forza peso di un sistema continuo in una distribuzione lineare, superciale o cubica di vettori applicati. Momento polare risultante e risultante Dato un vettore applicato (A; V) edunpuntop il momento polare e denito da (g. (1.1.1)): M P = PA^V Il momento polare e ortogonale al piano contenente PA e V e risulta, per denizione, un vettore libero. Se a e un sistema di vettori applicati, il momento polare risultante del sistema rispetto ad un polo Q e denito: M Q = QA i ^ V i : Il risultante e denito semplicemente come la somma dei vettori di a R = V i : In generale il momento polare del risultante e diverso dal risultante dei momenti polari. Tuttavia esiste un caso in cui il momento polare e uguale al momento polare del risultante. (di Varignon) Se tutti i vettori sono applicati allo stesso punto, il momento polare del risultante e uguale al risultante dei momenti polari. Cioe se: allora: A1 = A2 = A3 = =A n =A M Q = QA i ^ V i = QA ^ V i = QA ^ R Variazione del momento polare risultante al variare del polo Dalla denizione discende che il momento polare risultante varia al variare del polo rispetto al quale lo si calcola; qui stabiliremo la legge che mette in evidenza il modo di variare del momento polare al variare 1

2 del polo. Consideriamo il punto Q 6= P, allora si ha (g. (2.1)): M P = PA i ^V i = (PQ+QA i ) ^ V i = {z } = (PQ^V i +QA i ^ V i )= = PQ^V i + QA i ^ V i = =M Q + PQ^R Il momento polare risulta indipendente dal polo se e solo se R = 0. Infatti: M Q M P = M Q quali che siano P e Q se e solo se PQ ^R = 0; cioe stante l'arbitrarieta dip eq se e solo se R = 0. Esistono sistemi in cui il risultante e uguale a zero. Adattare le formule che deniscono il momento polare risultante ed il risultante ad una distribuzione lineare, superciale, cubica di vettori applicati. Dimostrare che se AA 0 e parallelo a V, allora il momento polare di (A; V) e uguale a quello di (A 0 ; V). Momento assiale Consideriamo un vettore applicato (A; V) ed una retta orientata a di versore bu. Si denisce momento assiale (g. (2.1.1)) m a = QA ^ V b U : La denizione (2:1:1) e ben posta, in quanto e indipendente dal polo Q scelto sull'asse a. Per vericare cio si scelga un altro punto Q1 sulla retta a; avremo: m a1 =Q1A ^ V b U = =(Q1Q + QA) ^ V b U = = Q1Q ^ V {z b U + QA ^ V } {z b U } 0 m a = m a Si e vericato, quindi, che il momento assiale dipende solamente dal vettore applicato e dalla retta orientata a. a = QA i ^ V i b =b U QA i ^ V i = M Q b Si denisce momento assiale risultante di un sistema di vettori applicati a rispetto ad una retta orientata a: M a = m (i) U = U cioe la componente del momento risultante rispetto all'asse. Nella (2:1:1) si puo sostituire al vettore applicato V la sua parte ortogonale alla retta a cioe: m (V) a = m (V?) a : 2

3 La componente V? risulta uguale a: V? = V V k = V (V bu)b U ; sostituendo nella (2:1:1) avremo: m (V) a =QA ^ [V? +(Vbu)b U] b U= =QA ^ (V? ) b U + QA ^ (V b U) b U b U = m (V?) a essendo il secondo addendo il vettore nullo (g. (2.1.2)). Grandezze intrinseche di un vettore applicato rispetto ad un asse Dato un vettore applicato e una retta orientata, restano denite le seguenti grandezze intrinseche, del vettore applicato rispetto a quest'ultima: { modulo di V, { braccio b di V rispetto all'asse, { angolo di V con la retta orientata ' =(d V;U). Il braccio e la distanza fra le due rette sghembe a ed s, retta sostegno del vettore. Se l'asse a e la retta sostegno s del vettore sono incidenti o parallele, incidenza all'innito, il braccio del vettore risulta nullo. Il momento assiale di un vettore rispetto alla retta orientata si puo esprimere in termini delle grandezze intrinseche del vettore V rispetto alla retta a per mezzo della seguente espressione: Dimostrare la validita della formula di cui sopra. m a = bv sin ' + se V e levogira rispetto ad a se V e destrogira rispetto ad a 3

4

5

6

Tutorato di Analisi 2 - AA 2014/15

Tutorato di Analisi 2 - AA 2014/15 Tutorato di Analisi - AA /5 Emanuele Fabbiani 5 marzo 5 Integrali doppi. La soluzione più semplice... Come per gli integrali in una sola variabile, riconoscere eventuali simmetrie evita di sprecare tempo

Dettagli

VA. Vettori applicati

VA. Vettori applicati VA. Vettori applicati I ettori, considerati da un punto di ista matematico, engono tutti riferiti all origine degli assi, in quanto si considerano equialenti tutti i segmenti orientati di uguale direzione,

Dettagli

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali Grandezze scalari e vettoriali Esempio vettore spostamento: Esistono due tipi di grandezze fisiche. a) Grandezze scalari specificate da un valore numerico (positivo negativo o nullo) e (nel caso di grandezze

Dettagli

Esame di Geometria - 9 CFU (Appello del 28 gennaio 2013 - A)

Esame di Geometria - 9 CFU (Appello del 28 gennaio 2013 - A) Esame di Geometria - 9 CFU (Appello del 28 gennaio 23 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Nello spazio R 3, siano dati il piano e i punti P = (, 2, ), Q = (2,, ). π : x + 2y 3

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Esercizi di Analisi Matematica CAPITOLO 1 LE FUNZIONI Exercise 1.0.1. Risolvere le seguenti disuguaglianze: (1) x 1 < 3 () x + 1 > (3) x + 1 < 1 (4) x 1 < x + 1 x 1 < 3 x + 1 < 3 x < 4 Caso: (a): x 1

Dettagli

Prova scritta di Geometria 2 Prof. M. Boratynski

Prova scritta di Geometria 2 Prof. M. Boratynski 10/9/2008 Es. 1: Si consideri la forma bilineare simmetrica b su R 3 associata, rispetto alla base canonica {e 1, e 2, e 3 } alla matrice 3 2 1 A = 2 3 0. 1 0 1 1) Provare che (R 3, b) è uno spazio vettoriale

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

LA FORZA DI COULOMB. = 0.01 C si trova nel punto con ascissa (A) 1.721 m (B) 0.387 m (C) 0.500 m (D) 0.613 m (E) 2.721 m

LA FORZA DI COULOMB. = 0.01 C si trova nel punto con ascissa (A) 1.721 m (B) 0.387 m (C) 0.500 m (D) 0.613 m (E) 2.721 m Fisica generale II, a.a. 01/013 L FORZ DI OULOM.1. Date le due cariche fisse della figura dove q 1 = 0. e q = 0.5 la posizione di equilibrio lungo l'asse di una terza carica mobile q 3 = 0.01 si trova

Dettagli

Funzioni reali di più variabili reali

Funzioni reali di più variabili reali Funzioni reali di più variabili reali Generalità. Indichiamo con R n il prodotto cartesiano di R per sé stesso, n volte: R n = {(, 2,, n ) ;! R,, n!r}. Quando n = 2 oppure n = 3 indicheremo le coordinate

Dettagli

ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA Corso di Laurea Ingegneria Edile-Architettura

ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA Corso di Laurea Ingegneria Edile-Architettura Cognome Nome Matricola ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA Corso di Laurea Ingegneria Edile-Architettura (Primo appello/ii prova parziale 15/6/15 - Chiarellotto-Urbinati) Per la II prova: solo esercizi

Dettagli

CONI, CILINDRI, SUPERFICI DI ROTAZIONE

CONI, CILINDRI, SUPERFICI DI ROTAZIONE CONI, CILINDRI, SUPERFICI DI ROTAZIONE. Esercizi x + z = Esercizio. Data la curva x, calcolare l equazione del cilindro avente γ y = 0 come direttrice e con generatrici parallele al vettore v = (, 0, ).

Dettagli

Proiezioni Grafica 3d

Proiezioni Grafica 3d Proiezioni Grafica 3d Giancarlo RINALDO rinaldo@dipmat.unime.it Dipartimento di Matematica Università di Messina ProiezioniGrafica 3d p. 1 Introduzione Il processo di visualizzazione in 3D è intrinsecamente

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

La spirale iperbolica: Fu descritta per la prima volta da Pierre Varignon (1654-1722). L equazione, espressa in coordinate polari, è del tipo:

La spirale iperbolica: Fu descritta per la prima volta da Pierre Varignon (1654-1722). L equazione, espressa in coordinate polari, è del tipo: Esistono delle forme geometriche che sono in grado, per complessi fattori psicologici non del tutto chiariti, di comunicarci un senso d equilibrio, di gradimento e di benessere. Tra queste analizzeremo

Dettagli

A. Pesci - E. Vitali. Dipartimento di Matematica F. Casorati Università degli studi di Pavia. Le geometrie: tra concretezza e astrazione.

A. Pesci - E. Vitali. Dipartimento di Matematica F. Casorati Università degli studi di Pavia. Le geometrie: tra concretezza e astrazione. Le geometrie: tra Dipartimento di Matematica F. Casorati Università degli studi di Pavia 1. Dall evidenza percettiva alla consapevolezza della deduzione. 1. Dall evidenza percettiva alla consapevolezza

Dettagli

0. Piano cartesiano 1

0. Piano cartesiano 1 0. Piano cartesiano Per piano cartesiano si intende un piano dotato di due assi (che per ragioni pratiche possiamo scegliere ortogonali). Il punto in comune ai due assi è detto origine, e funziona da origine

Dettagli

Appunti ed esercizi. di Meccanica Razionale

Appunti ed esercizi. di Meccanica Razionale Appunti ed esercizi di Meccanica Razionale Università degli Studi di Trieste - Sede di Pordenone Facoltà di Ingegneria Appunti ed esercizi di Meccanica Razionale Luciano Battaia Versione del 27 settembre

Dettagli

Il gruppo dei vettori

Il gruppo dei vettori Capitolo Terzo Il gruppo dei vettori 3.1. Le strutture di gruppo e di corpo Un operazione binaria (1) definita in un insieme è un applicazione fra il quadrato cartesiano dell insieme e l insieme stesso,

Dettagli

Analisi Matematica di circuiti elettrici

Analisi Matematica di circuiti elettrici Analisi Matematica di circuiti elettrici Eserciziario A cura del Prof. Marco Chirizzi 2011/2012 Cap.5 Numeri complessi 5.1 Definizione di numero complesso Si definisce numero complesso un numero scritto

Dettagli

LA RETTA. Retta per l'origine, rette orizzontali e verticali

LA RETTA. Retta per l'origine, rette orizzontali e verticali Retta per l'origine, rette orizzontali e verticali LA RETTA Abbiamo visto che l'equazione generica di una retta è del tipo Y = mx + q, dove m ne rappresenta la pendenza e q il punto in cui la retta incrocia

Dettagli

Specchio parabolico: MIRASCOPE. a cura di Pietro Pozzoli

Specchio parabolico: MIRASCOPE. a cura di Pietro Pozzoli Specchio parabolico: MIRASCOPE Proprietà coinvolte: Rifrazione dei raggi partenti dal fuoco lungo rette parallele all asse Focalizzazione dei raggi paralleli all asse sul fuoco PUNTO DI VISTA FISICO: Quali

Dettagli

Prove d'esame a.a. 20082009

Prove d'esame a.a. 20082009 Prove d'esame aa 008009 Andrea Corli settembre 0 Sono qui raccolti i testi delle prove d'esame assegnati nell'aa 00809, relativi al Corso di Analisi Matematica I (trimestrale, 6 crediti), Laurea in Ingegneria

Dettagli

Funzioni. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Funzioni. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Funzioni Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

LE FUNZIONI MATEMATICHE

LE FUNZIONI MATEMATICHE ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante

Dettagli

Algebra Lineare e Geometria

Algebra Lineare e Geometria Algebra Lineare e Geometria Corso di Laurea in Ingegneria Elettronica A.A. 2013-2014 Prova d esame del 16/06/2014. 1) a) Determinare la matrice associata all applicazione lineare T : R 3 R 4 definita da

Dettagli

5. LE RAPPRESENTAZIONI CARTOGRAFICHE vers 100609

5. LE RAPPRESENTAZIONI CARTOGRAFICHE vers 100609 5. LE RAPPRESENTAZIONI CARTOGRAFICHE vers 100609 sostituscono le pagg. 50-58 (fino alle eq. 5.28) Come già visto è stato scelto l'ellissoide come riferimento planimetrico sul quale proiettare tutti i punti

Dettagli

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω GIROSCOPIO Scopo dell esperienza: Verificare la relazione: ω p = bmg/iω dove ω p è la velocità angolare di precessione, ω è la velocità angolare di rotazione, I il momento principale d inerzia assiale,

Dettagli

I polinomi 1; x;x 2 ;x 3 sono linearmente indipendenti; infatti. 0= 1 1+ 2 x+ 3 x 2 + 4 x 3 =) 1 = 2 == 4 =0

I polinomi 1; x;x 2 ;x 3 sono linearmente indipendenti; infatti. 0= 1 1+ 2 x+ 3 x 2 + 4 x 3 =) 1 = 2 == 4 =0 ASPETTI TEORICI Spazio vettoriale Un insieme qualunque di inniti elementi V = fv i g si dice uno spazio vettoriale sull'insieme dei numeri reali R se: { E possibile denire un'operazione binaria fra gli

Dettagli

MODULO 3/4 - TRASFORMAZIONI GEOMETRICHE - (Supporto didattico)

MODULO 3/4 - TRASFORMAZIONI GEOMETRICHE - (Supporto didattico) MODULO 3/4 - TRASFORMAZIONI GEOMETRICHE - (Supporto didattico) 1. Alcuni obiettivi da far conseguire agli alunni entro la quinta classe della scuola primaria riguardano sostanzialmente un capitolo della

Dettagli

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo Momento di una forza Nella figura 1 è illustrato come forze uguali e contrarie possono non produrre equilibrio, bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo esteso.

Dettagli

Corso di Visione Artificiale. Stereopsi. Samuel Rota Bulò

Corso di Visione Artificiale. Stereopsi. Samuel Rota Bulò Corso di Visione Artificiale Stereopsi Samuel Rota Bulò Introduzione La stereopsi è il processo di inferenza della struttura 3D da una coppia di immagini di una stessa scena catturate da posizioni diverse.

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni affini del piano o affinità Le similitudini Le isometrie Le traslazioni Le rotazioni Le simmetrie assiale e centrale Le omotetie

Dettagli

2.1 Difetti stechiometrici Variano la composizione del cristallo con la presenza di elementi diversi dalla natura dello stesso.

2.1 Difetti stechiometrici Variano la composizione del cristallo con la presenza di elementi diversi dalla natura dello stesso. 2. I difetti nei cristalli In un cristallo perfetto (o ideale) tutti gli atomi occuperebbero le corrette posizioni reticolari nella struttura cristallina. Un tale cristallo perfetto potrebbe esistere,

Dettagli

2) Sul piano coordinato z = 0 studiare il fascio Φ di coniche di equazione. determinando in particolare le sue coniche spezzate ed i suoi punti base.

2) Sul piano coordinato z = 0 studiare il fascio Φ di coniche di equazione. determinando in particolare le sue coniche spezzate ed i suoi punti base. DPARTMENTO D MATEMATCA E NFORMATCA Corso di Laurea in ngegneria Telematica Prova scritta di Elementi di Algebra e Geometria assegnata il 18/7/02 È assegnato l endomorfismo f : R 3 R 3 definito dalle relazioni

Dettagli

Corrado Malanga ARCHETIPI E NUMERI

Corrado Malanga ARCHETIPI E NUMERI Corrado Malanga Nel precedente lavoro ho parlato degli archetipi, ne ho fornito le definizioni ed ho descritto cosa i suddetti archetipi siano, come funzionino e perché siano legati ad alcuni numeri e

Dettagli

CdS in Ingegneria Energetica, Università di Bologna Programma dettagliato del corso di Fisica Generale T-A prof. S. Pellegrini

CdS in Ingegneria Energetica, Università di Bologna Programma dettagliato del corso di Fisica Generale T-A prof. S. Pellegrini CdS in Ingegneria Energetica, Università di Bologna Programma dettagliato del corso di Fisica Generale T-A prof. S. Pellegrini Introduzione. Il metodo scientifico. Principi e leggi della Fisica. I modelli

Dettagli

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il

Soluzione Punto 1 Si calcoli in funzione di x la differenza d(x) fra il volume del cono avente altezza AP e base il Matematica per la nuova maturità scientifica A. Bernardo M. Pedone 74 PROBLEMA Considerata una sfera di diametro AB, lungo, per un punto P di tale diametro si conduca il piano α perpendicolare ad esso

Dettagli

f : A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che si può invertire.

f : A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che si può invertire. Consideriamo l insieme P dei punti del piano e una f funzione biiettiva da P in P: f : { P P A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che

Dettagli

ED. Equazioni cardinali della dinamica

ED. Equazioni cardinali della dinamica ED. Equazioni cardinali della dinamica Dinamica dei sistemi La dinamica dei sistemi di punti materiali si può trattare, rispetto ad un osservatore inerziale, scrivendo l equazione fondamentale della dinamica

Dettagli

CS. Cinematica dei sistemi

CS. Cinematica dei sistemi CS. Cinematica dei sistemi Dopo aver esaminato la cinematica del punto e del corpo rigido, che sono gli schemi più semplificati con cui si possa rappresentare un corpo, ci occupiamo ora dei sistemi vincolati.

Dettagli

Andrea Pagano, Laura Tedeschini Lalli

Andrea Pagano, Laura Tedeschini Lalli 3.5 Il toro 3.5.1 Modelli di toro Modelli di carta Esempio 3.5.1 Toro 1 Il modello di toro finito che ciascuno può costruire è ottenuto incollando a due a due i lati opposti di un foglio rettangolare.

Dettagli

LEZIONI DEL LABORATORIO DI PROGETTAZIONE TECNICA E STRUTTURALE - A.A. 2013-14 DOCENTE ING. GIUSEPPE DESOGUS IL PERCORSO DEL SOLE

LEZIONI DEL LABORATORIO DI PROGETTAZIONE TECNICA E STRUTTURALE - A.A. 2013-14 DOCENTE ING. GIUSEPPE DESOGUS IL PERCORSO DEL SOLE LEZIONI DEL LABORATORIO DI PROGETTAZIONE TECNICA E STRUTTURALE - A.A. 2013-14 DOCENTE ING. GIUSEPPE DESOGUS IL PERCORSO DEL SOLE LA POSIZIONE DEL SOLE È noto che la terra ruota intorno al sole muovendosi

Dettagli

con le coppie ordinate di numeri reali, sulla base di alcune operazioni convenzionali.

con le coppie ordinate di numeri reali, sulla base di alcune operazioni convenzionali. 1 I vettori ordinari In questo capitolo approfondiremo innanzitutto lo studio delle proprieta geometriche del piano cartesiano. I concetti e i risultati di cui ci occuperemo saranno quindi generalizzati,

Dettagli

CORPO GIREVOLE ATTORNO AD UN ASSE E MOMENTI. TORNA ALL'INDICE

CORPO GIREVOLE ATTORNO AD UN ASSE E MOMENTI. TORNA ALL'INDICE CORPO GIREVOLE ATTORNO AD UN ASSE E MOMENTI. TORNA ALL'INDICE Consideriamo adesso un corpo esteso, formato da più punti, e che abbia un asse fisso, attorno a cui il corpo può ruotare. In questo caso l

Dettagli

MOMENTI DI INERZIA. m i. i=1

MOMENTI DI INERZIA. m i. i=1 MOMENTI DI INEZIA Massa Ad ogni punto materiale si associa uno scalare positivo m che rappresenta la quantità di materia di cui è costituito il punto. m, la massa, è costante nel tempo. Dato un sistema

Dettagli

AL. Algebra vettoriale e matriciale

AL. Algebra vettoriale e matriciale PPENDICI L. lgebra vettoriale e matriciale Vettori Somma di vettori: struttura di gruppo Come abbiamo richiamato nell introduzione vi sono delle grandezze fisiche caratterizzabili come vettori, cioè tali

Dettagli

Consideriamo una forza di tipo elastico che segue la legge di Hooke: F x = kx, (1)

Consideriamo una forza di tipo elastico che segue la legge di Hooke: F x = kx, (1) 1 L Oscillatore armonico L oscillatore armonico è un interessante modello fisico che permette lo studio di fondamentali grandezze meccaniche sia da un punto di vista teorico che sperimentale. Le condizioni

Dettagli

Appunti ed esercizi. di Meccanica Razionale

Appunti ed esercizi. di Meccanica Razionale Appunti ed esercizi di Meccanica Razionale Università degli Studi di Trieste - Sede di Pordenone Facoltà di Ingegneria Appunti ed esercizi di Meccanica Razionale Luciano Battaia Versione del 29 dicembre

Dettagli

GEOMETRIA DELLE MASSE

GEOMETRIA DELLE MASSE 1 DISPENSA N 2 GEOMETRIA DELLE MASSE Si prende in considerazione un sistema piano, ossia giacente nel pian x-y. Un insieme di masse posizionato nel piano X-Y, rappresentato da punti individuati dalle loro

Dettagli

CORSO DI LAUREA IN INGEGNERIA.

CORSO DI LAUREA IN INGEGNERIA. CORSO DI LAUREA IN INGEGNERIA. FOGLIO DI ESERCIZI 4 GEOMETRIA E ALGEBRA LINEARE 2010/11 Esercizio 4.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i

Dettagli

Programmazione per competenze del corso Matematica, Secondo biennio

Programmazione per competenze del corso Matematica, Secondo biennio Programmazione per del corso Matematica, Secondo biennio Competenze di area Traguardi per lo sviluppo delle degli elementi del calcolo algebrico algebriche di primo e secondo grado di grado superiore al

Dettagli

Esercizi di riepilogo Matematica II Corso di Laurea in Ottica ed Optometria

Esercizi di riepilogo Matematica II Corso di Laurea in Ottica ed Optometria Esercizi di riepilogo Matematica II Corso di Laurea in Ottica ed Optometria Esercizio 1 Testo Sia F F 1 x,y),f x,y)) ) x 1 x y + 1 x, y 1 x y + 1 y un campo vettoriale. 1. Si determini il dominio in cui

Dettagli

Qual è la distanza tra Roma e New York?

Qual è la distanza tra Roma e New York? Qual è la distanza tra Roma e New York? Abilità Conoscenze Nuclei coinvolti Utilizzare i vettori e il prodotto Elementi di geometria Spazio e figure scalare nello studio di problemi della sfera: del piano

Dettagli

Geometria analitica di base (prima parte)

Geometria analitica di base (prima parte) SAPERE Al termine di questo capitolo, avrai appreso: come fissare un sistema di riferimento cartesiano ortogonale il significato di equazione di una retta il significato di coefficiente angolare di una

Dettagli

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012 Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 211/212 Ricordare: una funzione lipschitziana tra spazi metrici manda insiemi limitati in insiemi limitati; se il dominio di una funzione

Dettagli

Dimensionamento delle strutture

Dimensionamento delle strutture Dimensionamento delle strutture Prof. Fabio Fossati Department of Mechanics Politecnico di Milano Lo stato di tensione o di sforzo Allo scopo di caratterizzare in maniera puntuale la distribuzione delle

Dettagli

CAMPI E LORO PROPRIETÀ

CAMPI E LORO PROPRIETÀ CMPI E LORO PROPRIETÀ 1.1 Introduzione ia una regione nello spazio in cui, in ogni suo punto, sia definita una grandezza g. La regione si dice allora soggetta ad un campo. Un campo può essere scalare,

Dettagli

GEOGEBRA I OGGETTI GEOMETRICI

GEOGEBRA I OGGETTI GEOMETRICI GEOGEBRA I OGGETTI GEOMETRICI PROPRIETA : Finestra Proprietà (tasto destro mouse sull oggetto) Fondamentali: permette di assegnare o cambiare NOME, VALORE, di mostrare nascondere l oggetto, di mostrare

Dettagli

Laboratorio di Rappresentazione e Modellazione dell Architettura

Laboratorio di Rappresentazione e Modellazione dell Architettura Laboratorio di Rappresentazione e Modellazione dell Architettura Seconda Università di Napoli Facoltà di Architettura Corso di Laurea in Architettura Laboratorio di Rappresentazione e Modellazione dell

Dettagli

LAVORO ED ENERGIA. 9.11 10 31 kg = 1.2 m 106 s. v 2 f = v 2 i + 2as risolvendo, sostituendo i valori dati, si ha

LAVORO ED ENERGIA. 9.11 10 31 kg = 1.2 m 106 s. v 2 f = v 2 i + 2as risolvendo, sostituendo i valori dati, si ha LAVORO ED ENERGIA Esercizi svolti e discussi dal prof. Gianluigi Trivia (scritto con Lyx - www.lyx.org) 1. ENERGIA CINETICA Exercise 1. Determinare l'energia cinetica posseduta da un razzo, completo del

Dettagli

Introduzione. Margine di ampiezza... 2 Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di Bode... 6

Introduzione. Margine di ampiezza... 2 Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di Bode... 6 ppunti di Controlli utomatici Capitolo 7 parte II Margini di stabilità Introduzione... Margine di ampiezza... Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di ode... 6 Introduzione

Dettagli

Coordinate 3D. Coordinate cartesiane. Coordinate 3D. Coordinate cartesiane. Coordinate cartesiane. Sinistrorsa. Destrorsa

Coordinate 3D. Coordinate cartesiane. Coordinate 3D. Coordinate cartesiane. Coordinate cartesiane. Sinistrorsa. Destrorsa 200 Coordinate D Anche nella grafica D gli oggetti da visualiare vengono codificati a partire da primitive che collegano punti. I punti appartengono ad uno spaio tridimensionale. Vengono memoriati utiliando

Dettagli

PROGRAMMA di MATEMATICA

PROGRAMMA di MATEMATICA Liceo Scientifico F. Lussana - Bergamo PROGRAMMA di MATEMATICA Classe 3^ I a.s. 2014/15 - Docente: Marcella Cotroneo Libro di testo : Leonardo Sasso "Nuova Matematica a colori 3" - Petrini Ore settimanali

Dettagli

09 - Funzioni reali di due variabili reali

09 - Funzioni reali di due variabili reali Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 09 - Funzioni reali di due variabili reali Anno Accademico 2013/2014

Dettagli

CORSO DI FORMAZIONE MODELLAZIONE 3D RENDERING ANIMAZIONE

CORSO DI FORMAZIONE MODELLAZIONE 3D RENDERING ANIMAZIONE RHINOCEROS FLAMINGO PENGUIN BONGO CORSO DI FORMAZIONE MODELLAZIONE 3D RENDERING ANIMAZIONE Gabriele Verducci RHINOCEROS FLAMINGO PENGUIN BONGO INDICE:.01 cenni di informatica differenza tra files bitmap

Dettagli

4. Proiezioni del piano e dello spazio

4. Proiezioni del piano e dello spazio 4. Proiezioni del piano e dello spazio La visualizzazione di oggetti tridimensionali richiede di ottenere una vista piana dell'oggetto. Questo avviene mediante una sequenza di operazioni. Innanzitutto,

Dettagli

Dinamica del corpo rigido: Appunti.

Dinamica del corpo rigido: Appunti. Dinamica del corpo rigido: Appunti. I corpi rigidi sono sistemi di punti materiali, discreti o continui, che hanno come proprietà peculiare quella di conservare la loro forma, oltre che il loro volume,

Dettagli

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici. a Corrente Alternata. Sergio Benenti 7 settembre 2013

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici. a Corrente Alternata. Sergio Benenti 7 settembre 2013 Complementi di Analisi per nformatica *** Capitolo 2 Numeri Complessi e Circuiti Elettrici a Corrente Alternata Sergio Benenti 7 settembre 2013? ndice 2 Circuiti elettrici a corrente alternata 1 21 Circuito

Dettagli

FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE. a cura di G. SIMONELLI

FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE. a cura di G. SIMONELLI FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE a cura di G. SIMONELLI Nel motore a corrente continua si distinguono un sistema di eccitazione o sistema induttore che è fisicamente

Dettagli

4 La Polarizzazione della Luce

4 La Polarizzazione della Luce 4 La Polarizzazione della Luce Per comprendere il fenomeno della polarizzazione è necessario tenere conto del fatto che il campo elettromagnetico, la cui variazione nel tempo e nello spazio provoca le

Dettagli

A.1 Definizione e rappresentazione di un numero complesso

A.1 Definizione e rappresentazione di un numero complesso 441 APPENDICE A4 NUMERI COMPLESSI A.1 Definizione e rappresentazione di un numero complesso Si riepilogano i concetti e le operazioni elementari relativi ai numeri complessi. Sia z un numero complesso;

Dettagli

Dinamica: Forze e Moto, Leggi di Newton

Dinamica: Forze e Moto, Leggi di Newton Dinamica: Forze e Moto, Leggi di Newton La Dinamica studia il moto dei corpi in relazione il moto con le sue cause: perché e come gli oggetti si muovono. La causa del moto è individuata nella presenza

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE

ISTITUTO ISTRUZIONE SUPERIORE ISTITUTO ISTRUZIONE SUPERIORE Federico II di Svevia Indirizzi: Liceo Scientifico Classico Linguistico Artistico e Scienze Applicate Via G. Verdi, 1 85025 MELFI (PZ) Tel. 097224434/35 Cod. Min.: PZIS02700B

Dettagli

ISTITUZIONE SCOLASTICA Via Tuscolana, 208 - Roma Sede associata Liceo-Ginnasio ''B.Russell" Verifica sommativa di Fisica

ISTITUZIONE SCOLASTICA Via Tuscolana, 208 - Roma Sede associata Liceo-Ginnasio ''B.Russell Verifica sommativa di Fisica ISTITUZIONE SCOLASTICA Via Tuscolana, 208 - Roma Sede associata Liceo-Ginnasio ''B.Russell" Verifica sommativa di Fisica Questionario a risposta multipla Prova di uscita di Fisica relativa al modulo DESCRIZIONE

Dettagli

geometriche. Parte Sesta Trasformazioni isometriche

geometriche. Parte Sesta Trasformazioni isometriche Parte Sesta Trasformazioni isometriche In questa sezione di programma di matematica parliamo della geometria delle trasformazioni che studia le figure geometriche soggette a movimenti. Tali movimenti,

Dettagli

MACCHINE SINCRONE: POTENZA COMPLESSA, COPPIA ED ANGOLO DI CARICO 1

MACCHINE SINCRONE: POTENZA COMPLESSA, COPPIA ED ANGOLO DI CARICO 1 Zeno Martini (admin) MACCHINE SINCRONE: POTENZA COMPLESSA, COPPIA ED ANGOLO DI CARICO 9 May 2014 Abstract La macchina sincrona è completamente reversibile e può funzionare sia come generatore che come

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2011

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2011 ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Si considerino le funzioni f e g definite, per tutti

Dettagli

I NUMERI DECIMALI. che cosa sono, come si rappresentano

I NUMERI DECIMALI. che cosa sono, come si rappresentano I NUMERI DECIMALI che cosa sono, come si rappresentano NUMERI NATURALI per contare bastano i numeri naturali N i numeri naturali cominciano con il numero uno e vanno avanti con la regola del +1 fino all

Dettagli

ed é dato, per P (t) una qualsiasi parametrizzazione di cui sopra, da

ed é dato, per P (t) una qualsiasi parametrizzazione di cui sopra, da 1 Integrali su una curva regolare Sia C R N una curva regolare, ossia: (1) C é l immagine di una funzione P (t) definita in un intervallo [a, b] (qui preso chiuso e limitato), tipicamente chiuso e limitato,

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (0/07/03) Università di Verona - Laurea in Biotecnologie - A.A. 0/3 Matematica e Statistica Prova di MATEMATICA (0/07/03) Università di Verona - Laurea in Biotecnologie

Dettagli

I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica

I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica Negli esercizi che seguono si suppone fissato nello spazio

Dettagli

DOMINIO = R INTERSEZIONI CON ASSI

DOMINIO = R INTERSEZIONI CON ASSI STUDIO DELLA FUNZIONE CUBICA a cura di Maria Teresa Bianchi La funzione è razionale intera ed è espressa in forma normale da: #1: y = a x + b x + c x + d I coefficienti del polinomio di grado a secondo

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A

LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 2006/2007 SIMULAZIONE DI II PROVA - A LICEO SCIENTIFICO STATALE G.GALILEI CATANIA A.S. 6/7 SIMULAZIONE DI II PROVA - A Tempo a disposizione: cinque ore E consentito l uso della calcolatrice non programmabile. Non è consentito uscire dall aula

Dettagli

Fondamenti sui sistemi di Attuazione nella Robotica. Corso di Robotica Prof. Gini Giuseppina 2006/2007

Fondamenti sui sistemi di Attuazione nella Robotica. Corso di Robotica Prof. Gini Giuseppina 2006/2007 Fondamenti sui sistemi di Attuazione nella Robotica PhD. Ing. Folgheraiter Michele Corso di Robotica Prof. Gini Giuseppina 2006/2007 1 Definizione di Attuatore (Robotica) Si definisce attuatore, quella

Dettagli

UNIVERSITÀ DEGLI STUDI DI PADOVA Facoltà di Ingegneria sede di Vicenza A.A. 2007/08

UNIVERSITÀ DEGLI STUDI DI PADOVA Facoltà di Ingegneria sede di Vicenza A.A. 2007/08 UNIVERSITÀ DEGLI STUDI DI PADOVA Facoltà di Ingegneria sede di Vicenza Corso di Disegno Tecnico Industriale per il Corso di Laurea triennale in Ingegneria Meccanica e in Ingegneria Meccatronica Tolleranze

Dettagli

LE CURVE FOTOMETRICHE

LE CURVE FOTOMETRICHE LE CURVE FOTOMETRICHE E' noto che l' intensità luminosa è una grandezza che deve essere associata ad una direzione. Non avrebbe molto significato parlare della intensità di un corpo illuminante in una

Dettagli

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO LE TRASFORMAZIONI GEOMETRICHE NEL PIANO Una trasformazione geometrica è una funzione che fa corrispondere a ogni punto del piano un altro punto del piano stesso Si può pensare come MOVIMENTO di punti e

Dettagli

In laboratorio si useranno fogli di carta millimetrata con scale lineari oppure logaritmiche.

In laboratorio si useranno fogli di carta millimetrata con scale lineari oppure logaritmiche. GRAFICI Servono per dare immediatamente e completamente le informazioni, che riguardano l andamento di una variabile in funzione dell altra. La Geometria Analitica c insegna che c è una corrispondenza

Dettagli

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA

Corso di ordinamento Sessione straordinaria - a.s. 2009-2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Sessione straordinaria - a.s. 9- ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE STRAORDINARIA Tema di: MATEMATICA a.s. 9- Svolgimento a cura di Nicola De Rosa Il candidato risolva uno

Dettagli

1 Introduzione alla Meccanica Razionale 1 1.1 Che cos è la Meccanica Razionale... 1 1.2 Un esempio... 2

1 Introduzione alla Meccanica Razionale 1 1.1 Che cos è la Meccanica Razionale... 1 1.2 Un esempio... 2 Indice 1 Introduzione alla Meccanica Razionale 1 1.1 Che cos è la Meccanica Razionale..................... 1 1.2 Un esempio................................. 2 2 Spazi Vettoriali, Spazio e Tempo 7 2.1 Cos

Dettagli

Matteo Moda Geometria e algebra lineare Fasci. Fasci. N.B.: Questo argomento si trova sull eserciziario. Fasci di rette nel piano

Matteo Moda Geometria e algebra lineare Fasci. Fasci. N.B.: Questo argomento si trova sull eserciziario. Fasci di rette nel piano Fasci N.B.: Questo argomento si trova sull eserciziario Fasci di rette nel piano 1 Fasci di piani nello spazio 2 Matteo Moda Geometria e algebra lineare Fasci Date due rette r ed r di equazione: : 0 :

Dettagli

LAVORO. L= F x S L= F. S L= F. S cos ϑ. L= F. S Se F ed S hanno stessa direzione e verso. L= -F. S Se F ed S hanno stessa direzione e verso opposto

LAVORO. L= F x S L= F. S L= F. S cos ϑ. L= F. S Se F ed S hanno stessa direzione e verso. L= -F. S Se F ed S hanno stessa direzione e verso opposto LAVORO L= F x S L= F. S L= F. S cos ϑ CASI PARTICOLARI L= F. S Se F ed S hanno stessa direzione e verso L= -F. S Se F ed S hanno stessa direzione e verso opposto L= 0 Se F ed S sono perpendicolari L >0

Dettagli

ASTRONOMIA SISTEMI DI RIFERIMENTO

ASTRONOMIA SISTEMI DI RIFERIMENTO Sfera celeste ASTRONOMIA Il cielo considerato come l'interno di una sfera cava al fine di descrivere le posizioni e i movimenti degli oggetti astronomici. Ogni particolare osservatore è situato al centro

Dettagli

LA FUNZIONE DI TRASFERIMENTO

LA FUNZIONE DI TRASFERIMENTO LA FUNZIONE DI TRASFERIMENTO Può essere espressa sia nel dominio della s che nel dominio della j Definizione nel dominio della s. è riferita ai soli sistemi con un ingresso ed un uscita 2. ha per oggetto

Dettagli

Esercizi di Algebra Lineare. Claretta Carrara

Esercizi di Algebra Lineare. Claretta Carrara Esercizi di Algebra Lineare Claretta Carrara Indice Capitolo 1. Operazioni tra matrici e n-uple 1 1. Soluzioni 3 Capitolo. Rette e piani 15 1. Suggerimenti 19. Soluzioni 1 Capitolo 3. Gruppi, spazi e

Dettagli

LICEO SCIENTIFICO STATALE MARIE CURIE Savignano s. R. (FC) CLASSE 3C ESERCIZI SU MOMENTO ANGOLARE-ROTOLAMENTO. Esercizio.

LICEO SCIENTIFICO STATALE MARIE CURIE Savignano s. R. (FC) CLASSE 3C ESERCIZI SU MOMENTO ANGOLARE-ROTOLAMENTO. Esercizio. LICEO SCIENTIFICO STATALE MARIE CURIE Savignano s. R. (FC) CLASSE 3C ESERCIZI SU MOMENTO ANGOLARE-ROTOLAMENTO Esercizio Esercizio Esercizio Dati esercizio: I 1 =5,0 Kg m 2 I 2 =10 Kg m 2 ω i =10giri/sec

Dettagli

1. calcolare l accelerazione del sistema e stabilire se la ruota sale o scende [6 punti];

1. calcolare l accelerazione del sistema e stabilire se la ruota sale o scende [6 punti]; 1 Esercizio Una ruota di raggio R = 15 cm e di massa M = 8 Kg può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2 = 30 0, ed è collegato tramite un filo inestensibile ad un blocco di

Dettagli