Data warehousing con SQL Server

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Data warehousing con SQL Server"

Transcript

1 Data warehousing con SQL Server! SQL Server è un RDBMS (Relational DataBase Management System)! Analysis Services è un componente di SQL Server che offre un insieme di funzionalità di supporto al data warehousing! Componenti per il data warehousing " OLAP Server: è il server analitico dei dati rappresenta i dati analitici del DW in forma multidimensionale, usando i concetti di cubo, dimensione e misura " OLAP Manager : strumento di amministrazione dei dati analitici 1 Analysis Services (AS)! Punto di partenza : " DW relazionale organizzato secondo uno schema dimensionale (star schema, snowflake schema) " Il DW relazionale non deve essere necessariamente un DB gestito con SQL Server! Obiettivo : " I dati del DW relazionale vengono rappresentati ed analizzati in forma multidimensionale usando la nozione di cubo (data cube)! I cubi sono contenuti in un OLAP database gestiti dall OLAP Server! Un cubo recupera i dati dal DW relazionale che è definito come sorgente dati (data source) all interno dell OLAP Database! Un OLAP database può avere varie data source! Un cubo può recuperare dati da una singola data source! Diversi cubi (di uno stesso OLAP database) possono recuperare dati da data source differenti 2

2 Strumenti OLAP nell architettura di un DW # Architettura a 2 livelli (situazione simile a quella a 3 livelli ) Livello delle! sorgenti! Dati operazionali" Dati esterni" Strumenti ETL" Livello di! alimentazione! Data Warehouse! Livello del! warehouse! Strumenti" OLAP" Livello di analisi CUBO Schema Multidimensionale! Lo strumento OLAP analizza i dati del DW, ovvero dati che hanno già una struttura multidimensionale (schema a stella/snowflake)! Ha una connessione dati con il DW! Non ha nessuna connessione con i Dati Operazionali 3 Cubi nelle architetture a 2 e 3 livelli! Dato uno schema di fatto ed il corrispondente schema logico (stella/snowflake) si costruisce il cubo corrispondente, che è praticamente definito in modo univoco essendo le scelte di progettazione già state realizzate! Nel cubo 1. Si aggiungono eventuali misure derivate e calcolate. In particolare, per uno schema di fatto vuoto si introduce la misura di conteggio degli eventi 2. Si definiscono gli operatori di aggregazione 3. Si definiscono alcuni aspetti specifici, quali il membro ALL per le dimensioni! Dal punto di vista concettuale la definizione del cubo non richiede altro; tuttavia nel costruire un cubo si possono gestire una serie di altri concetti, in particolare quelli legati all efficienza del sistema 4

3 Architetture ad 1 livello! Questa architettura è caratterizzata dal fatto che al DW non corrisponde un nuovo DB, ma lo schema logico del DW è implementato attraverso delle viste nel DB Operazionale! Per la Fact Table si definirà sicuramente una vista in quanto occorre definire gli eventi primari e le misure Dati operazionali" Livello delle sorgenti! Per le Dimension Table 1. si può definire una vista 2. si può usare una table del DB Operazionale con struttura simile 3. Si può definire e costruire direttamente nello strumento OLAP Middleware" Strumenti" OLAP" Livello del warehouse Livello di analisi! Lo strumento OLAP ha una connessione con il DB Operazionale 5 Architetture ad 1 livello! Problemi di efficienza " È ora evidente che le operazioni sul DB operazionali (OLTP, On-Line Transactional Processing) e siano mischiate con quelle di tipo analitico OLAP (OLAP, On-Line Analytical Processing)! Se si prescinde da questi aspetti di efficienza, un architettura ad un livello può essere utile per effettuare analisi semplici in modo immediato, senza passare attraverso la realizzazione di un nuovo DB. " Ad esempio, uno schema di fatto transazionale contenente solo una dimensione data ed una o più dimensioni degenere può essere implementato in modo immediata e semplice 6

4 Analysis Services : Editor del Cubo! Il sistema OLAP di Analysis Services, così come un qualsiasi altro sistema OLAP, ha concetti e strumenti propri per definire uno schema multidimensionale (un cubo), concetti e strumenti più o meno sofisticati e spesso proprietari (cioè propri del particolare sistema OLAP e differenti da sistema a sistema)! Ad esempio in Analysis Services lo strumento (automatico) per definire le dimensioni consente di scegliere se usare uno schema a stella oppure a fiocco di neve o altro, quale attributo o espressione usare come nome di un livello e così via.! Vedere esempio DimensioneDistretto $ In un architettura a 2 o 3 livelli, dove è già stato progettato lo schema di fatto e lo schema logico, di Analysis Services sono sufficienti solo quei concetti/strumenti che ci consentono di 1. Definire gli operatori di aggregazione per le misure 2. Definire Misure Derivate e Calcolate 3. Visualizzare i dati del fatto in modo multidimensionale, effettuando operazioni di roll-up e drill-down 7 Schemi multi-dimensionali in AS!! Dimensioni e attributi dimensionali si chiamano livelli! I valori delle dimensioni e degli attributi dimensionali si dicono membri dimensione STORE livelli (ALL) membri STORE CITY STATE COUNTRY (ALL) Ditutto RE EmiliaR Italia ALL NonSoloX RE EmiliaR Italia ALL NonSoloY MO EmiliaR Italia ALL NonSoloZ RM Lazio Italia ALL ALL 8

5 Schemi multi-dimensionali in AS! Membri e Livelli:! le dimensioni contengono solitamente il livello speciale (ALL) che contiene il solo membro All che denota tutti i membri della dimensione Organizzazione in Livelli:! Nel modello DFM la gerarchia degli attributi dimensionali di una dimensione è un albero: un nodo può avere più figli! In AS la gerarchia degli livelli di una dimensione è un cammino dell albero : un nodo può avere al massimo un figlio! In AS L organizzazione in livelli corrisponde alla definizione di una relazione padre-figlio tra i membri di livelli successivi (ogni membro di un livello si raggruppa nel membro padre) " il membro All è padre dei membri Italia, Francia,... " il membro Italia è padre dei membri EmiliaR, Lazio,.. "! Misure : Le misure sono considerate come membri di una dimensione speciale chiamata Measures (presente in tutti i cubi) 9 DFM e AS : terminologie a confronto!! Negli schemi DFM, per gli attributi dimensionale si usa la terminologia degli alberi: CITY è il padre di STATE $ Un cammino dalla radice ad una foglia dell albero individua un percorso di navigazione sul quale effettuare roll-up e drill-down! In AS la relazione padre-figlio è riferita ai membri, e risulta invertita : il membro EmiliaR (di STATE) è padre del membro RE (di CITY) $ Nel linguaggio MDX sono definite diverse funzioni sulla relazione padre-figlio : CHILDREN, DESCENDANT,!! I livelli descrivono la struttura gerarchica della dimensione dal livello più alto detto anche livello padre - (più aggregato) al livello più basso detto anche livello figlio - (più dettagliato) dei dati.

6 Dalle Gerarchie del DFM ai Livelli di AS! Le dimensioni/livelli del cubo sono univocamente definite dalle dimensioni/gerarchie dello schema di fatto! Data una gerarchia, per ogni cammino dalla dimensione (radice) alle foglie si deve definire un dimensione nel cubo con un numero di livelli pari alla lunghezza del cammino " Se la gerarchia è un albero puro (no condivisioni/convergenze, no attributi cross-dimensionali, no attributi multipli) nel cubo ci saranno un numero di dimensioni pari al numero di foglie dell albero Dimensione VOLO-ORADIPARTENZA Con livelli VOLO ORA_DI_PARTENZA 11 Dalle Gerarchie del DFM ai Livelli di AS! an no rimestre mese gio rno vacanz a settimana da ta gruppo di mark eting pr odotto tipo VENDITA quantità v enduta inca sso num. client i prezzo un itario categoria re parto città della marca marca attributo dimensionale responsa bile d elle vendite dist ret to d i ven dita negozio gerarchia città del sta to negozio regione! Dimensione prodotto, con tre cammini 1. Prodotto % Tipo % GruppoDiMarketing 2. Prodotto % Tipo % Categoria % Reparto 3. Prodotto % Marca % CittaDellaMarca! Alla dimensione Prodotto corrispondono tre dimensioni di AS (ovvero nel cubo VENDITA di AS si definiscono tre dimensioni) 1. [Prodotto-GruppoDiMarketing] o [GruppoDiMarketing] Prodotto % Tipo % GruppoDiMarketing 2. [Prodotto-Reparto] o [Reparto] Prodotto % Tipo % Categoria % Reparto 3. [Prodotto-CittaDellaMarca] o [CittaDellaMarca] Prodotto % Marca % CittaDellaMarca 12

7 DFM e AS : terminologie a confronto!! Schema di Fatto DFM: relazione padre-figlio Prodotto % Tipo % GruppoDiMarketing Prodotto è padre di Tipo, Tipo è padre di GruppoDiMarketing! Cubo AS : relazione padre-figlio [Prodotto-GruppoDiMarketing] o [GruppoDiMarketing] Prodotto % Tipo % GruppoDiMarketing GruppoDiMarketing è padre di Tipo, Tipo è padre di Prodotto rappresentazione in AS! GruppoDiMarketing!!Tipo!!!Prodotto 13 Dimensioni: livello (ALL) e membro ALL! Dimensione CITTA_ARRIVO con due livelli : Citta % Statto CITTA STATO (ALL) MARSIGLIA FRANCIA ALL PARIGI FRANCIA ALL LONDRA INGHIL ALL......! livelli membri! Nella visualizzazione della dimensione, il livello (ALL) è chiamato (Totale) ed il membro ALL è totale CITTA_ARRIVO! Nelle proprietà della dimensione si può eliminare il livello (ALL) (All level = No) e cambiare il nome del membro ALL: 14

8 Dimensioni: livello (ALL) e membro ALL! Per definizione, il membro ALL (e di conseguenza il livello (ALL) che lo contiene) deve essere presente in ogni dimensione in quanto consente di avere i totali per quella dimensione, ovvero di visualizzare pattern senza la dimensione in questione! Non introdurre il membro ALL per una dimensione può comportare dei vantaggi dal punto di vista dell efficienza: intuitivamente, si evita di pre-calcolare i valori corrispondenti ad ALL! Se non si introduce il membro ALL, i totali per quella dimensioni possono essere comunque calcolati attraverso espressioni MDX.! Nelle nostre dimensioni definiremo sempre il membro ALL!! Ricordiamo che è possibile ottenere il membro ALL in SQL-OLAP, attraverso group by with ROLLUP Vendite SELECT case when(grouping(citta)=1) then 'TOTALE' else Libro as Libro, sum(numero) as numero, sum(incasso) as incasso FROM Vendite group by Libro with ROLLUP 15 Dimensioni e livelli in AS!! Regola : Il numero dei membri di ogni livello deve essere sempre maggiore o uguale al numero dei membri del livello padre superiore. $ ogni livello deve determinare funzionalmente il livello padre superiore! La regola può essere violata (genera un warning e non un errore) Violare la regola significa realizzare una dimensione dove un livello (esempio: Stato) non determina funzionalmente il livello padre (esempio: Citta)

9 Dimensioni e livelli in AS! PARTENZA CodVolo% Da% Citta % Stato Implementazione corretta Implementazione errata 17 Nota!! Perché un warning e non un errore? Ha senso violare la regola?! Ha senso realizzare una dimensione dove un livello non determinare funzionalmente il livello padre? genere VENDITA autore libro numero incasso data mese anno arco multiplo (AM)! Archi multipli: ha senso realizzare una dimensione dove un livello (Libro) non determinare funzionalmente il livello padre (Autore)!! Ho più autori che libri Il numero dei membri di Libro minore del numero dei membri del livello padre autore % warning altrimenti nessun warning! 18

10 Dalle Gerarchie del DFM ai Livelli di AS! Per costruire una dimensione/livelli di AS 1. Si considera lo schema logico 2. Si seleziona la Dimension table corrispodente ; nel caso di snowflake schema si selezionano le dimension table corrispondente e si verifica che siano correttamente legate tramite join 3. Si definiscono i livelli (vedere esempi di dettaglio) 4. Si decide se tenere o meno un membro ALL 5. Si definiscono gli eventuali operatori di aggregazione particolari per questa dimensione! Oltre alla struttura della dimensione si devono decidere altri aspetti, in particolare se la dimensione può essere condivisa da più dimensioni 19 Esempio : DimensioneDistretto! L esempio vuole evidenziare come l uso di AS su un DM già ben progettato è molto semplice ed evita di dover utilizzare strumenti propri di AS! Consideriamo un caso frequente, ovvero quello di un attributo dimensionale derivante dalla composizione di più attributi Esempio: Nella Tabella Negozio, il distretto di vendita è STATO_DISTRETTO+NDISTRETTO! I valori di tale attributo dimensionale vengono ricavati tramite una vista e quindi riportati in una Dimension_Table del DM con struttura DT_NEGOZIO(NOME, NOMEDISTRETTO, STATO_DISTRETTO) 20

11 Esempio : DimensioneDistretto! Realizzare tale dimensione in AS, partendo dalla DT_NEGOZIO è immediato: 1) si seleziona DT_NEGOZIO 2) si definiscono i tre livelli iniziando da StatoDistretto (2.a) 1) 2.a) 2.b) 2.c)! Visualizzazione della dimensione ottenuta: 21 Esempio : DimensioneDistretto! Realizzare tale dimensione in AS, senza usare DT_NEGOZIO ma direttamente su NEGOZIO non è immediato in quanto occorre effettuare in AS quelle le manipolazioni (ricavare il valore di NomeDistretto) effettuate invece in fase di alimentazione del DM! In definitiva, molti strumenti propri di AS non sono indispensabili quando si parte da un DM già ben progettato! 22

12 Operatore di aggregazione AVG in AS! CostoMedioBiglietto (CMB) aggregato tramite AVG CodVolo DATA INCASSO NUM_BIG CMB ALIT1 GEN ALIT1 GEN ALIT2 GEN SUM SUM AVG Compagnia DATA INCASSO NUM_BIG CMB ALITALIA GEN ALITALIA GEN ,5 Compagnia Mese INCASSO NUM_BIG CMB ALITALIA GEN ,33! In Analysis Services una misura con operatore di aggregazione algebrico deve essere definito tramite una misura calcolata! Nel caso della media, essendo AVG(CM)=SUM(CMB)/count(*): 1. Si definisce la misura CMB_Base con oper. di aggregazione SUM 2. Si definisce la misura di supporto Conteggio, aggregata con COUNT 3. Si definisce CMB calcolata come CMB_Base/Conteggio! CMB_Base e Conteggio possono non essere visualizzate 23 Esempio di cubo: Ritardi_NEW!! Schema di Fatto Ritardi_New! Schema Logico snowflake: FACT TABLE RITARDINEW(CODVOLO:VOLO, ANNO,INIZIOMESE, CITTAARRIVO:CITTA, RITARDO,NUMRITARDI) DIMENSION TABLEs VOLO(CODVOLO,COMPAGNIA, AEROP_PART:AEROPORTO) AEROPORTO(SIGLA, CITTA_PART:CITTA) CITTA (CITTA,STATO)! In AS si definiscono 3 Dimensioni condivise (ad una gerarchia corrispondono più dimensioni in AS, quindi il nome spesso contiene il nome della foglia che si raggiunge) 1) STATO_PARTENZA 2) STATO_ARRIVO oppure CITTA_ARRIVO (infatti c è solo un cammino) 3) COMPAGNIA 24

13 Database OLAP: Ritardi! Si crea un nuovo DB OLAP che conterrà tutti gli oggetti multidimensionali (cubo, dimensioni condivise) 1) Si definisce l origine dei dati, ovvero il collegamento al DM 2) Si seleziona la voce relativa a SQL Server e quindi - dall elenco dei DB disponibili - si seleziona il DM! Se si apportano modifiche al DM, per renderle visibili anche nel DB OLAP può essere necessario aggiornare l origine dati 25 Dimensione: STATO_PARTENZA 1) Si seleziona la tabella contenente la radice della dimensione 2) Si aggiungono le altre tabelle che contengono gli attributi dimensionale, controllando le relazioni di join 26

14 Dimensione: STATO_PARTENZA 1) Si seleziona la tabella contenente la radice della dimensione 2) Si aggiungono le altre tabelle che contengono gli attributi dimensionale, controllando le relazioni di join 27 Cubo Ritardi! Dopo aver generato tutte le dimensioni condivise, si passa alla generazione del cubo 1) Si userà l editor (la procedura guidata infatti è basata su concetti propri di AS!) 2) Si seleziona la fact table; un cubo è basato su una ed una sola fact table 3) Se la Fact Table è vuota si ha un warning del tipo: 28

15 Cubo Ritardi! Dopo aver generato tutte le dimensioni condivise, si passa alla generazione del cubo 4) Si definiscono le dimensioni degenerei ANNO e INIZIOMESE 5) Si inseriscono le dimensioni condivise definite in precedenza, una alla volta. 6) Inserimento CITTA_ARRIVO: il join con la fact table viene automaticamente definito considerando il nome, quindi essendo nomi diversi non viene automaticamente generato In ogni caso, meglio generare manualmente i Join! 29 Cubo Ritardi 7) Si genera il join. A questo punto la dimensione CITTA_ARRIVO per il cubo è definita. 8) Inserimento STATO_PARTENZA. Il sistema introduce tutte le tabelle che servono per definire la dimensione. PROBLEMA: la tabella CITTA viene usata due volte, in due dimensioni. Questo non è corretto, è come se si stesse definendo una convergenza. Il sistema non consente questo ciclo: 30

16 Cubo Ritardi! Per evitare il problema precedente, ogni qualvolta c è una tabella che viene usata in più dimensioni tramite condivisione, si assegna un alias a ciascuna occorrenza 9) Inserimento dimensione COMPAGNIA: in questo caso COMPAGNIA è nella stessa tabella VOLO, quindi non è necessario introdurre un alias per volo 31 Cubo Ritardi! Per evitare il problema precedente, ogni qualvolta c è una tabella che viene usata in più dimensioni tramite condivisione, si assegna un alias a ciascuna occorrenza 9) Inserimento dimensione COMPAGNIA: in questo caso COMPAGNIA è nella stessa tabella VOLO, quindi non è necessario introdurre un alias per volo! Tutte le dimensioni sono state inserite: si noti il differente simbolo per quelle condivise 32

17 Cubo Ritardi : misure! Misura addittiva NUMRITARDI, la definizione è immediata! Per la misura Misura RITARDO, aggregata tramite AVG, si deve usare una misura calcolata come spiegato a pagina 17. Il procedimento è mostrato nella slide che segue 33 Cubo Ritardi : Misura Ritardo con AVG 34

18 Esempio : DimensioneDistretto! Consideriamo il pattern STATO_PARTENZA.CITTA, CITTA_ARRIVO.STATO e visualizziamo limitandoci a CITTA_ARRIVO.STATO = ITALIA ) 35 Esempio : DimensioneDistretto! Verifica dei risultati, calcolando le misure direttamente sugli eventi primari tramite SQL: 36

19 Calcolo delle misure: ottimizzazione! Un significativo aumento delle prestazioni può essere ottenuto precalcolando i dati aggregati di uso più comune! Misure definite con operatori Distributivi ed Algebrici permettono di calcolare dati aggregati a partire direttamente da dati parzialmente aggregati! L ottimizzazione usa il concetto di vista materializzata: " Ogni pattern secondario corrisponde ad una vista sul pattern primario " Vengono materializzate le viste (ovvero pre-calcolate e memorizzate in tabelle) corrispondenti ad alcuni pattern secondari " La scelta delle viste da materializzare è basata sul compromesso tra diversi vincoli, i principali dei quali sono Tempo di costruzione ed aggiornamento delle viste materializzate Spazio a disposizione $ Varie tecniche di ottimizzazione sono generalmente già implementate nei sistemi OLAP e l utente può configurare alcuni parametri, quali lo spazio a disposizione per memorizzare i dati aggregati $ Nel seguito vedremo velocemente questi concetti in AS 37 Archiviazione del cubo! Il calcolo delle viste materializzate avviene in fase di archiviazione del cubo! Noi abbiamo già scelto come modello di progettazione logica il modello ROLAP, infatti stiamo considerando un DM implementato in un DB relazionale! Con ROLAP i dati restano nello star/snowflake schema e anche le aggregazioni verranno messe in tabelle.. 38

20 Archiviazione del cubo! Questa interfaccia consente di calcolare le a! Trascurare eventuali warning 39 Archiviazione del cubo! Le aggregazioni vengono salvate in tabelle nel DM! Prendiamo una di queste tabelle! CON MOLAP le tabelle non vengono generate 40

Data warehousing con SQL Server

Data warehousing con SQL Server Data warehousing con SQL Server SQL Server è un RDBMS (Relational DataBase Management System) Analysis Services è un componente di SQL Server che offre un insieme di funzionalità di supporto al data warehousing

Dettagli

Data warehousing con SQL Server

Data warehousing con SQL Server Data warehousing con SQL Server SQL Server è un RDBMS (Relational DataBase Management System) Analysis Services è un componente di SQL Server che offre un insieme di funzionalità di supporto al data warehousing

Dettagli

Data warehousing con SQL Server

Data warehousing con SQL Server Data warehousing con SQL Server! SQL Server è un RDBMS (Relational DataBase Management System)! Analysis Services è un componente di SQL Server che offre un insieme di funzionalità di supporto al data

Dettagli

ESEMPIO: RITARDI & BIGLIETTI

ESEMPIO: RITARDI & BIGLIETTI ESEMPIO: RITARDI & BIGLIETTI Fatto Ritardi: l analisi a livello volo giornaliero, considerando l aeroporto di partenza, la città e lo stato di arrivo e la compagnia Fatto Biglietti: l analisi deve considerare

Dettagli

Progettazione Logica. Sviluppo di un Database/DataWarehouse

Progettazione Logica. Sviluppo di un Database/DataWarehouse Sistemi Informativi Avanzati Anno Accademico 2013/2014 Prof. Domenico Beneventano Progettazione Logica Dal Capitolo 8 e 9 del libro Data Warehouse - teoria e pratica della Progettazione Autori: Matteo

Dettagli

Estensioni del linguaggio SQL per interrogazioni OLAP

Estensioni del linguaggio SQL per interrogazioni OLAP Sistemi Informativi Avanzati Anno Accademico 2013/2014 Prof. Domenico Beneventano Estensioni del linguaggio SQL per interrogazioni OLAP Outline! Esempio introduttivo e motivazioni! Introduzione al modello

Dettagli

Introduzione data warehose. Gian Luigi Ferrari Dipartimento di Informatica Università di Pisa. Data Warehouse

Introduzione data warehose. Gian Luigi Ferrari Dipartimento di Informatica Università di Pisa. Data Warehouse Introduzione data warehose Gian Luigi Ferrari Dipartimento di Informatica Università di Pisa Data Warehouse Che cosa e un data warehouse? Quali sono i modelli dei dati per data warehouse Come si progetta

Dettagli

Sistemi Informativi La Modellazione Dimensionale dei Fatti. Obiettivi Concetti Base Operazioni OLAP DFM Casi Modellazione Logica Esercizi

Sistemi Informativi La Modellazione Dimensionale dei Fatti. Obiettivi Concetti Base Operazioni OLAP DFM Casi Modellazione Logica Esercizi Sistemi Informativi La Modellazione Dimensionale dei Fatti Obiettivi Concetti Base Operazioni OLAP DFM Casi Modellazione Logica Esercizi Obiettivi Nelle lezioni precedenti abbiamo modellato i processi

Dettagli

SQL/OLAP. Estensioni OLAP in SQL

SQL/OLAP. Estensioni OLAP in SQL SQL/OLAP Estensioni OLAP in SQL 1 Definizione e calcolo delle misure Definire una misura significa specificare gli operatori di aggregazione rispetto a tutte le dimensioni del fatto Ipotesi: per ogni misura,

Dettagli

Lezione 9. Microsoft Analysis Services: Principi e Funzionalità

Lezione 9. Microsoft Analysis Services: Principi e Funzionalità Lezione 9 Microsoft Analysis Services: Principi e Funzionalità MS Analysis Services (OLAP Server) E l implementazione Microsoft di OLAP Server Offre buone prestazione per realtà aziendali medie/grandi

Dettagli

Basi di Dati Complementi Esercitazione su Data Warehouse

Basi di Dati Complementi Esercitazione su Data Warehouse Sommario Basi di Dati Complementi Esercitazione su Data Warehouse 1. Riassunto concetti principali dalle slide della lezione di teoria 2.Studio di caso : progettazione di un Data Warehouse di una catena

Dettagli

Data Warehousing (DW)

Data Warehousing (DW) Data Warehousing (DW) Il Data Warehousing è un processo per estrarre e integrare dati storici da sistemi transazionali (OLTP) diversi e disomogenei, e da usare come supporto al sistema di decisione aziendale

Dettagli

Ambienti Operativi per OLAP. Casi di Studio

Ambienti Operativi per OLAP. Casi di Studio Ambienti Operativi per OLAP. Casi di Studio Alfredo Cuzzocrea DEIS Dipartimento di Elettronica, Informatica e Sistemistica Università della Calabria cuzzocrea@deis.unical.it Sommario Installazione e Configurazione

Dettagli

Introduzione al Data Warehousing

Introduzione al Data Warehousing Sistemi Informativi Avanzati Anno Accademico 2013/2014 Prof. Domenico Beneventano Introduzione al Data Warehousing Molte di queste slide sono state realizzate dal Prof. Stefano Rizzi (http://www-db.deis.unibo.it/~srizzi/)

Dettagli

SQL Server BI Development Studio

SQL Server BI Development Studio Il Data warehouse SQL Server Business Intelligence Development Studio Analysis Service Sorgenti dati operazionali DB relazionali Fogli excel Data warehouse Staging Area e dati riconciliati Cubi Report

Dettagli

SQL Server. Applicazioni principali

SQL Server. Applicazioni principali SQL Server Introduzione all uso di SQL Server e utilizzo delle opzioni OLAP Applicazioni principali SQL Server Enterprise Manager Gestione generale di SQL Server Gestione utenti Creazione e gestione dei

Dettagli

Applicazioni OLAP in ambiente Analysis Service

Applicazioni OLAP in ambiente Analysis Service Applicazioni OLAP in ambiente Analysis Service Pasquale De Meo DIMET Università Mediterranea di Reggio Calabria Via Graziella, Località Feo di Vito demeo@unirc.it Corso di Sistemi Informativi- A.A. 2004-2005

Dettagli

Data warehousing e OLAP

Data warehousing e OLAP Data warehousing e OLAP Introduzione Il contesto, processi aziendali Decision Support Systems Sistemi di Data Warehousing Data mart Architettura Modellazione Concettuale Star Schema, Dimensioni, Livelli

Dettagli

13. Datawarehouse (parte 2) Analisi e riconciliazione delle fonti dati progettista amministratori dei database modello a tre livelli

13. Datawarehouse (parte 2) Analisi e riconciliazione delle fonti dati progettista amministratori dei database modello a tre livelli 13. Datawarehouse (parte 2) Analisi e riconciliazione delle fonti dati Questa fase richiede di definire e documentare lo schema del livello dei dati operazionali, a partire dal quale verrà alimentato il

Dettagli

DATA WAREHOUSING CON JASPERSOFT BI SUITE

DATA WAREHOUSING CON JASPERSOFT BI SUITE UNIVERSITÁ DEGLI STUDI DI MODENA E REGGIO EMILIA Dipartimento di Ingegneria di Enzo Ferrari Corso di Laurea Magistrale in Ingegneria Informatica (270/04) DATA WAREHOUSING CON JASPERSOFT BI SUITE Relatore

Dettagli

Introduzione ad OLAP (On-Line Analytical Processing)

Introduzione ad OLAP (On-Line Analytical Processing) Introduzione ad OLAP (On-Line Analytical Processing) Metodi e Modelli per il Supporto alle Decisioni 2002 Dipartimento di Informatica Sistemistica e Telematica (Dist) Il termine OLAP e l acronimo di On-Line

Dettagli

SISTEMI INFORMATIVI AZIENDALI

SISTEMI INFORMATIVI AZIENDALI SISTEMI INFORMATIVI AZIENDALI Prof. Andrea Borghesan venus.unive.it/borg borg@unive.it Ricevimento: Alla fine di ogni lezione Modalità esame: scritto 1 Data Warehousing. Introduzione 1/2 I data warehousing

Dettagli

Lorenzo Braidi. Database design. Libro_datadesign.indb 1 23-11-2004 10:06:17

Lorenzo Braidi. Database design. Libro_datadesign.indb 1 23-11-2004 10:06:17 Lorenzo Braidi Database design Libro_datadesign.indb 1 23-11-2004 10:06:17 Sommario Introduzione...XI Capitolo 1 Le basi di dati relazionali... 1 Le basi di dati... 1 Un po di storia... 2 I database gerarchici...

Dettagli

Data warehouse Introduzione

Data warehouse Introduzione Database and data mining group, Data warehouse Introduzione INTRODUZIONE - 1 Pag. 1 Database and data mining group, Supporto alle decisioni aziendali La maggior parte delle aziende dispone di enormi basi

Dettagli

Sistema informativo. Combinazione di risorse umane, materiali e procedure per la gestione. (raccolta, archiviazione, elaborazione, scambio )

Sistema informativo. Combinazione di risorse umane, materiali e procedure per la gestione. (raccolta, archiviazione, elaborazione, scambio ) Data Warehousing 1 Ripasso 2 Sistema informativo Combinazione di risorse umane, materiali e procedure per la gestione (raccolta, archiviazione, elaborazione, scambio ) delle informazioni necessarie per

Dettagli

Data warehousing Mario Guarracino Data Mining a.a. 2010/2011

Data warehousing Mario Guarracino Data Mining a.a. 2010/2011 Data warehousing Introduzione A partire dagli anni novanta è risultato chiaro che i database per i DSS e le analisi di business intelligence vanno separati da quelli operazionali. In questa lezione vedremo

Dettagli

Introduzione a data warehousing e OLAP

Introduzione a data warehousing e OLAP Corso di informatica Introduzione a data warehousing e OLAP La Value chain Information X vive in Z S ha Y anni X ed S hanno traslocato Data W ha del denaro in Z Stile di vita Punto di vendita Dati demografici

Dettagli

Data warehousing Mario Guarracino Laboratorio di Sistemi Informativi Aziendali a.a. 2006/2007

Data warehousing Mario Guarracino Laboratorio di Sistemi Informativi Aziendali a.a. 2006/2007 Data warehousing Introduzione A partire dalla metà degli anni novanta è risultato chiaro che i database per i DSS e le analisi di business intelligence vanno separati da quelli operazionali. In questa

Dettagli

Thematica Software Technologies

Thematica Software Technologies Sperimentazione di Servizi Innovativi alle Imprese Produttrici di Software Università della Calabria 21-10-2004 Giovanni Laboccetta Thematica s.r.l. www.thematica.it glaboccetta@thematica.it Perché i data

Dettagli

MODELLI DEI DATI PER DW DAI DATI ALLE DECISIONI. Per definire la struttura di un DW si usano i seguenti formalismi, detti modelli dei dati:

MODELLI DEI DATI PER DW DAI DATI ALLE DECISIONI. Per definire la struttura di un DW si usano i seguenti formalismi, detti modelli dei dati: DAI DATI ALLE DECISIONI MODELLI DEI DATI PER DW Le aziende per competere devono usare metodi di analisi, con tecniche di Business Intelligence, dei dati interni, accumulati nel tempo, e di dati esterni,

Dettagli

Data Warehousing e Data Mining

Data Warehousing e Data Mining Università degli Studi di Firenze Dipartimento di Sistemi e Informatica A.A. 2011-2012 I primi passi Data Warehousing e Data Mining Parte 2 Docente: Alessandro Gori a.gori@unifi.it OLTP vs. OLAP OLTP vs.

Dettagli

Introduzione al Data Warehousing

Introduzione al Data Warehousing Il problema - dati IPERVENDO Via Vai 111 P.I.11223344 Vendite II Trim. (Milioni!) Introduzione al Data Warehousing tecnologia abilitante per il data mining ACQUA MIN 0.40 LATTE INTERO 1.23 SPAZZ.DENTI

Dettagli

DATA WAREHOUSE E CRUSCOTTO DIREZIONALE PER L ANALISI DEL PERSONALE IN UN AZIENDA DI SERVIZI

DATA WAREHOUSE E CRUSCOTTO DIREZIONALE PER L ANALISI DEL PERSONALE IN UN AZIENDA DI SERVIZI Alma Mater Studiorum Università di Bologna SCUOLA DI INGEGNERIA E ARCHITETTURA Corso di Laurea Magistrale in Ingegneria e Scienze Informatiche DATA WAREHOUSE E CRUSCOTTO DIREZIONALE PER L ANALISI DEL PERSONALE

Dettagli

Il BACKUP è disponibile in http://www.dbgroup.unimo.it/sia/esercizio_21_novembre_2013/esercizio_21_novembre_2013.bak

Il BACKUP è disponibile in http://www.dbgroup.unimo.it/sia/esercizio_21_novembre_2013/esercizio_21_novembre_2013.bak ESEMPIO DELLE VENDITE: MISURE ED AGGREGABILITA E l esempio discusso nelle dispense è Dispense : http://www.dbgroup.unimo.it/sia/sia_2014_progettazionediundw_misure.pdf esteso e dettagliato. Il BACKUP è

Dettagli

I data warehouse e la loro progettazione

I data warehouse e la loro progettazione Tecnologie per i sistemi informativi I data warehouse e la loro progettazione Docente: Letizia Tanca Politecnico di Milano tanca@elet.polimi.it 1 Processi processi direzionali processi gestionali processi

Dettagli

Introduzione. La misurazione dei sistemi di Data Warehouse. Definizioni & Modelli. Sommario. Data Warehousing. Introduzione. Luca Santillo (CFPS)

Introduzione. La misurazione dei sistemi di Data Warehouse. Definizioni & Modelli. Sommario. Data Warehousing. Introduzione. Luca Santillo (CFPS) Introduzione La misurazione dei sistemi di Data Warehouse Luca Santillo (CFPS) AIPA, 17/5/01 In pratica I concetti generali, le definizioni e le regole di conteggio possono essere difficili da applicare

Dettagli

Introduzione al Data Warehousing per Sistemi Informativi Aziendali

Introduzione al Data Warehousing per Sistemi Informativi Aziendali Università La Sapienza di Roma AA 2009-2010 Prof. Introduzione al Data Warehousing per Cos è il Data Warehousing Collezione di metodi, tecnologie e strumenti di ausilio al lavoratore della conoscenza (manager,

Dettagli

Data Warehouse Architettura e Progettazione

Data Warehouse Architettura e Progettazione Introduzione Data Warehouse Architettura! Nei seguenti lucidi verrà fornita una panoramica del mondo dei Data Warehouse.! Verranno riportate diverse definizioni per identificare i molteplici aspetti che

Dettagli

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI SCIENZE MATEMATICHE FISICHE E NATURALI CORSO DI LAUREA MAGISTRALE IN INFORMATICA Riscrittura di interrogazioni con viste in sistemi per la gestione

Dettagli

Informazioni generali sul corso

Informazioni generali sul corso Informazioni generali sul corso Principi di Datawarehouse 1 Obiettivi del corso Conoscere i Datawarehouse 2 1 Argomenti Il contesto I sistemi DSS Architettura DW Proprietà DW Utilizzo DW Elementi OLAP:

Dettagli

Data warehouse. Architettura complessiva con OLTP e OLAP OLTP. Sistemi di supporto alle decisioni

Data warehouse. Architettura complessiva con OLTP e OLAP OLTP. Sistemi di supporto alle decisioni Data warehouse Data warehouse La crescita dell importanza dell analisi dei dati ha portato ad una separazione architetturale dell ambiente transazionale (OLTP on-line transaction processing) da quello

Dettagli

Introduzione al data warehousing

Introduzione al data warehousing Introduzione al data warehousing, Riccardo Torlone aprile 2012 1 Motivazioni I sistemi informatici permettono di aumentare la produttività delle organizzazioni automatizzandone la gestione quotidiana dei

Dettagli

Microsoft SQL Server 2000 Analysis Services

Microsoft SQL Server 2000 Analysis Services Microsoft SQL Server 2000 Analysis Services In questa esercitazione verranno descritte le nozioni fondamentali relative all'utilizzo di un modello multidimensionale finalizzato all'analisi dei dati aziendali.

Dettagli

INFORMATICA. Applicazioni WEB a tre livelli con approfondimento della loro manutenzione e memorizzazione dati e del DATABASE.

INFORMATICA. Applicazioni WEB a tre livelli con approfondimento della loro manutenzione e memorizzazione dati e del DATABASE. INFORMATICA Applicazioni WEB a tre livelli con approfondimento della loro manutenzione e memorizzazione dati e del DATABASE. APPLICAZIONI WEB L architettura di riferimento è quella ampiamente diffusa ed

Dettagli

Appunti per il Corso di Data Warehousing

Appunti per il Corso di Data Warehousing Università degli Studi Mediterranea di Reggio Calabria Corsi per il Personale Tecnico Amministrativo Appunti per il Corso di Data Warehousing Autori: Ing. Giovanni Quattrone, Prof. Domenico Ursino Anno

Dettagli

Sviluppo Applicazione di BI/DWH. con tecnologia Microsoft. per il supporto della catena logistica

Sviluppo Applicazione di BI/DWH. con tecnologia Microsoft. per il supporto della catena logistica UNIVERSITÀ DEGLI STUDI DI MODENA E REGGIO EMILIA Dipartimento di Ingegneria Enzo Ferrari di Modena Corso di Laurea Magistrale in Ingegneria Informatica (270/04) Sviluppo Applicazione di BI/DWH con tecnologia

Dettagli

On Line Analytical Processing

On Line Analytical Processing On Line Analytical Processing Data integra solitamente Warehouse(magazzino dati) èun sorgenti un unico schema globalel informazione estratta da piu puo replicazioneai puo essere èinterrogabile, non modificabile

Dettagli

Sistemi per le decisioni Dai sistemi gestionali ai sistemi di governo

Sistemi per le decisioni Dai sistemi gestionali ai sistemi di governo Sistemi per le decisioni Dai sistemi gestionali ai sistemi di governo Obiettivi. Presentare l evoluzione dei sistemi informativi: da supporto alla operatività a supporto al momento decisionale Definire

Dettagli

4 Introduzione al data warehousing

4 Introduzione al data warehousing Che cosa è un data warehouse? Introduzione al data warehousing 22 maggio 2001 Un data warehouse è una base di dati collezione di dati di grandi dimensioni, persistente e condivisa gestita in maniera efficace,

Dettagli

Convergenza. Schema di fatto

Convergenza. Schema di fatto Convergenza Quando due attributi dimensionali possono essere connessi da due o più cammini direzionali distinti pur mantenendo le dipendenze funzionali di tutte le direzioni. 451 Schema di fatto 452 1

Dettagli

Sistemi Informativi Aziendali. Sistemi Informativi Aziendali. Sistemi Informativi Aziendali

Sistemi Informativi Aziendali. Sistemi Informativi Aziendali. Sistemi Informativi Aziendali DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI Introduzione al Data Warehousing per a. Modello Multidimensionale & OLAP 1 Cos è il Data Warehousing Collezione di metodi,

Dettagli

InfoTecna ITCube Web

InfoTecna ITCube Web InfoTecna ITCubeWeb ITCubeWeb è un software avanzato per la consultazione tramite interfaccia Web di dati analitici organizzati in forma multidimensionale. L analisi multidimensionale è il sistema più

Dettagli

Azione Formativa B2.1 - "Data Warehousing e OLAP"

Azione Formativa B2.1 - Data Warehousing e OLAP Azione formazione OpenKnowTech, Laboratorio di Tecnologie Open Source per la Integrazione, Gestione e Distribuzione di Dati, Processi e Conoscenze Azione Formativa B2.1 - "Data Warehousing e OLAP" Gestione

Dettagli

Riccardo Dutto, Paolo Garza Politecnico di Torino. Riccardo Dutto, Paolo Garza Politecnico di Torino

Riccardo Dutto, Paolo Garza Politecnico di Torino. Riccardo Dutto, Paolo Garza Politecnico di Torino Integration Services Project SQL Server 2005 Integration Services Permette di gestire tutti i processi di ETL Basato sui progetti di Business Intelligence di tipo Integration services Project SQL Server

Dettagli

Università degli Studi di Salerno Facoltà di Scienze Matematiche Fisiche e Naturali

Università degli Studi di Salerno Facoltà di Scienze Matematiche Fisiche e Naturali Università degli Studi di Salerno Facoltà di Scienze Matematiche Fisiche e Naturali Base Di Dati II Anno accademico 2011/2012 Progettazione di un Data mart per l'analisi dei servizi bibliotecari universitari

Dettagli

Esercitazione query in SQL L esercitazione viene effettuata sul database viaggi e vacanze che prevede il seguente modello E/R:

Esercitazione query in SQL L esercitazione viene effettuata sul database viaggi e vacanze che prevede il seguente modello E/R: Esercitazione query in SQL L esercitazione viene effettuata sul database viaggi e vacanze che prevede il seguente modello E/R: Si consiglia di creare il data base, inserire i dati nelle tabelle, provare

Dettagli

Corso di Informatica Generale 1 IN1. Linguaggio SQL

Corso di Informatica Generale 1 IN1. Linguaggio SQL Università Roma Tre Facoltà di Scienze M.F.N. di Laurea in Matematica di Informatica Generale 1 Linguaggio SQL Marco (liverani@mat.uniroma3.it) Sommario Prima parte: le basi dati relazionali Basi di dati:

Dettagli

Il Data Warehousing. Prof. Stefano Rizzi Alma Mater Studiorum - Università di Bologna

Il Data Warehousing. Prof. Stefano Rizzi Alma Mater Studiorum - Università di Bologna Il Data Warehousing Prof. Stefano Rizzi Alma Mater Studiorum - Università di Bologna 1 Sommario Il ruolo della business intelligence e del sistema informativo 9 Il ruolo dell informatica in azienda 9 La

Dettagli

Indice. Introduzione Scopi del libro Lavorare con il database di esempio Organizzazione del libro Convenzioni utilizzate in questo libro

Indice. Introduzione Scopi del libro Lavorare con il database di esempio Organizzazione del libro Convenzioni utilizzate in questo libro Indice Introduzione Scopi del libro Lavorare con il database di esempio Organizzazione del libro Convenzioni utilizzate in questo libro XVII XVII XVIII XIX XXIII PARTE PRIMA SQL Server: Concetti di base

Dettagli

Progettazione del Data Warehouse

Progettazione del Data Warehouse Progettazione del Data Warehouse Queste dispense sono state estratte dalle dispense originali del Prof. Stefano Rizzi, disponibili in http://www-db.deis.unibo.it/~srizzi/) e sono state tratte dal libro

Dettagli

Sistemi direzionali e modello multidimensionale. Prof. Piercarlo Giolito

Sistemi direzionali e modello multidimensionale. Prof. Piercarlo Giolito Sistemi direzionali e modello multidimensionale Prof. Piercarlo Giolito 1 Data warehousing e tecnologia OLAP Argomenti trattati. Evoluzione dei Sistemi Informativi Decisionali Il modello dei dati multidimensionale

Dettagli

Pianificazione del data warehouse

Pianificazione del data warehouse Pianificazione del data warehouse Dalla pianificazione emergono due principali aree d interesse: area commerciale focalizzata sulle agenzie di vendita e area marketing concentrata sulle vendite dei prodotti.

Dettagli

Misura delle prestazioni dei processi aziendali con sistemi di integrazione dati open source

Misura delle prestazioni dei processi aziendali con sistemi di integrazione dati open source Università degli Studi di Modena e Reggio Emilia Facoltà di Ingegneria Enzo Ferrari di Modena Corso di Laurea in Ingegneria Informatica (509/99) Misura delle prestazioni dei processi aziendali con sistemi

Dettagli

ht://miner Un sistema open-source di data mining e data warehousing per lo studio dei comportamenti degli utenti su Internet

ht://miner Un sistema open-source di data mining e data warehousing per lo studio dei comportamenti degli utenti su Internet ht://miner Un sistema open-source di data mining e data warehousing per lo studio dei comportamenti degli utenti su Internet Gabriele Bartolini Comune di Prato Sistema Informativo Servizi di E-government

Dettagli

Miriam Gotti m.gotti@cineca.it

Miriam Gotti m.gotti@cineca.it Cenni sul Dat a Warehouse Ravenna 5 Novembre 2007 Miriam Gotti m.gotti@cineca.it www. cineca.it Agenda Fondamenti di Data Warehouse Modello Multidimensionale Analisi OLAP Introduzione a Statportal www.cineca.it

Dettagli

Approfondimento: i sistemi di gestione delle basi di dati (DBMS)

Approfondimento: i sistemi di gestione delle basi di dati (DBMS) Approfondimento: i sistemi di gestione delle basi di dati (DBMS) Prerequisito essenziale della funzionalità delle basi di dati è il controllo e la fruibilità dell informazione in esse contenuta: a tale

Dettagli

Che cosa è SADAS INFOMANAGER (1982) Gestione Archivi Storici (1992) SADAS (2005) Ambiente MVS OVERMILLION (1990) Client-Server e multipiattaforma

Che cosa è SADAS INFOMANAGER (1982) Gestione Archivi Storici (1992) SADAS (2005) Ambiente MVS OVERMILLION (1990) Client-Server e multipiattaforma 1 Che cosa è SADAS SADAS è un DBMS column-based progettato in modo specifico per ottenere grandi performance nell interrogazione di archivi statici di grandi dimensioni (analisi data warehouse, OLAP).

Dettagli

Istituto Angioy Informatica BASI DI DATI. Prof. Ciaschetti

Istituto Angioy Informatica BASI DI DATI. Prof. Ciaschetti Istituto Angioy Informatica BASI DI DATI Prof. Ciaschetti Introduzione e prime definizioni Una Base di dati o Database è un archivio elettronico opportunamente organizzato per reperire in modo efficiente

Dettagli

Basi di dati (3) Ing. Integrazione di Impresa A.A. 2007/08

Basi di dati (3) Ing. Integrazione di Impresa A.A. 2007/08 Università di Modena e Reggio Emilia Panoramica Basi di dati (3) Ing. Integrazione di Impresa A.A. 2007/08 Docente: andrea.bulgarelli@gmail.com Argomento: struttura SQL Server (1.0)! Componenti! Edizioni!

Dettagli

IT FOR BUSINESS AND FINANCE

IT FOR BUSINESS AND FINANCE IT FOR BUSINESS AND FINANCE Business Intelligence Siena 14 aprile 2011 AGENDA Cos è la Business Intelligence Terminologia Perché la Business Intelligence La Piramide Informativa Macro Architettura Obiettivi

Dettagli

PIANO DI LAVORO. a.s. 2014 / 2015

PIANO DI LAVORO. a.s. 2014 / 2015 PIANO DI LAVORO a.s. 2014 / 2015 Materia: INFORMATICA Classe: quinta A Data di presentazione: 7/10/2014 DOCENTI FIRMA Cerri Marta Bergamasco Alessandra Posta elettronica: itisleon@tin.it - Url: www.itdavinci.it

Dettagli

Indice Prefazione... 1 1 SQL Procedurale/SQL-PSM (Persistent Stored Modules)... 3 Vincoli e Trigger... 9

Indice Prefazione... 1 1 SQL Procedurale/SQL-PSM (Persistent Stored Modules)... 3 Vincoli e Trigger... 9 Prefazione... 1 Contenuti... 1 Ringraziamenti... 2 1 SQL Procedurale/SQL-PSM (Persistent Stored Modules)... 3 1.1 Dichiarazione di funzioni e procedure... 3 1.2 Istruzioni PSM... 4 2 Vincoli e Trigger...

Dettagli

UN APPLICAZIONE O.L.A.P. CON MONDRIAN E JPIVOT

UN APPLICAZIONE O.L.A.P. CON MONDRIAN E JPIVOT UN APPLICAZIONE O.L.A.P. CON MONDRIAN E JPIVOT Dott.sa Vincenza Anna Leano vincenzaanna.leano@unina.it Basi di Dati II mod. B Prof. F. Cutugno A.A. 2010/2011 ARCHITETTURA APPLICAZIONI O.L.A.P. Visualization

Dettagli

DBMS (Data Base Management System)

DBMS (Data Base Management System) Cos'è un Database I database o banche dati o base dati sono collezioni di dati, tra loro correlati, utilizzati per rappresentare una porzione del mondo reale. Sono strutturati in modo tale da consentire

Dettagli

POLLOSKY.IT - 2009 INTRODUZIONE

POLLOSKY.IT - 2009 INTRODUZIONE INTRODUZIONE Questa tesi illustra l intero svolgimento di un progetto studiato per sviluppare una soluzione dalle caratteristiche innovative ed il cui scopo sia supportare l attività di monitoraggio di

Dettagli

Business Intelligence per le imprese: progetto e realizzazione di reportistica a supporto delle decisioni aziendali

Business Intelligence per le imprese: progetto e realizzazione di reportistica a supporto delle decisioni aziendali Università degli Studi di Modena e Reggio Emilia Facoltà di Ingegneria - Sede di Modena Corso di Laurea Specialistica in Ingegneria Informatica Business Intelligence per le imprese: progetto e realizzazione

Dettagli

EXPLOit Content Management Data Base per documenti SGML/XML

EXPLOit Content Management Data Base per documenti SGML/XML EXPLOit Content Management Data Base per documenti SGML/XML Introduzione L applicazione EXPLOit gestisce i contenuti dei documenti strutturati in SGML o XML, utilizzando il prodotto Adobe FrameMaker per

Dettagli

Informatica Documentale

Informatica Documentale Informatica Documentale Ivan Scagnetto (scagnett@dimi.uniud.it) Stanza 3, Nodo Sud Dipartimento di Matematica e Informatica Via delle Scienze, n. 206 33100 Udine Tel. 0432 558451 Ricevimento: giovedì,

Dettagli

SQL prima parte D O C E N T E P R O F. A L B E R T O B E L U S S I. Anno accademico 2011/12

SQL prima parte D O C E N T E P R O F. A L B E R T O B E L U S S I. Anno accademico 2011/12 SQL prima parte D O C E N T E P R O F. A L B E R T O B E L U S S I Anno accademico 2011/12 DEFINIZIONE Il concetto di vista 2 È una relazione derivata. Si specifica l espressione che genera il suo contenuto.

Dettagli

ITI M. FARADAY Programmazione modulare a.s. 2014-2015

ITI M. FARADAY Programmazione modulare a.s. 2014-2015 Indirizzo: INFORMATICA E TELECOMUNICAZIONI Disciplina: Informatica Docente:Maria Teresa Niro Classe: Quinta B Ore settimanali previste: 6 (3 ore Teoria - 3 ore Laboratorio) ITI M. FARADAY Programmazione

Dettagli

PREMESSA 2 CAPITOLO 1 VERSO IL DATA WAREHOUSE 7

PREMESSA 2 CAPITOLO 1 VERSO IL DATA WAREHOUSE 7 Sommario PREMESSA 2 CAPITOLO 1 VERSO IL DATA WAREHOUSE 7 1. NOZIONI DI BASE 8 2. I DATABASE 8 3. MODELLI PER IL DATABASE 11 3.1 MODELLO GERARCHICO 11 3. 2 MODELLO RETICOLARE 12 3.3 MODELLO RELAZIONALE

Dettagli

Le Basi di dati: generalità. Unità di Apprendimento A1 1

Le Basi di dati: generalità. Unità di Apprendimento A1 1 Le Basi di dati: generalità Unità di Apprendimento A1 1 1 Cosa è una base di dati In ogni modello di organizzazione della vita dell uomo vengono trattate informazioni Una volta individuate e raccolte devono

Dettagli

Relazione finale del docente A.S. 2012-2013

Relazione finale del docente A.S. 2012-2013 Relazione finale del docente A.S. 2012-2013 Classe/sez. Indirizzo Docente Materia Ore di lezione svolte Ambito Maria Caterina V E Mercurio Informatica 165 teorico pratico Cassetti Svolgimento dei programmi

Dettagli

Sistemi per la Gestione delle Basi di Dati

Sistemi per la Gestione delle Basi di Dati Sistemi per la Gestione delle Basi di Dati Esercitazione di Laboratorio N. 4 L esercitazione consiste nel progettare un data warehouse che permetta di gestire la problematica illustrata nei punti seguenti,

Dettagli

LABORATORIO. 2 Lezioni su Basi di Dati Contatti:

LABORATORIO. 2 Lezioni su Basi di Dati Contatti: PRINCIPI DI INFORMATICA CORSO DI LAUREA IN SCIENZE BIOLOGICHE Gennaro Cordasco e Rosario De Chiara {cordasco,dechiara}@dia.unisa.it Dipartimento di Informatica ed Applicazioni R.M. Capocelli Laboratorio

Dettagli

Business Intelligence

Business Intelligence aggregazione dati Business Intelligence analytic applications query d a t a w a r e h o u s e aggregazione budget sales inquiry data mining Decision Support Systems MIS ERP data management Data Modeling

Dettagli

Anno Scolastico: 2014/2015. Indirizzo: Sistemi informativi aziendali. Classe quarta AS. Disciplina: Informatica. prof.

Anno Scolastico: 2014/2015. Indirizzo: Sistemi informativi aziendali. Classe quarta AS. Disciplina: Informatica. prof. Anno Scolastico: 2014/2015 Indirizzo: Sistemi informativi aziendali Classe quarta AS Disciplina: Informatica prof. Competenze disciplinari: Secondo biennio 1. Identificare e applicare le metodologie e

Dettagli

Data warehouse in Oracle

Data warehouse in Oracle Data warehouse in Oracle Viste materializzate ed estensioni al linguaggio i SQL per l analisi li i dei dati presenti nei data warehouse Estensioni al linguaggio SQL per l analisi dei dati presenti nei

Dettagli

OLAP On Line Analytical Processing

OLAP On Line Analytical Processing OLAP On Line Analytical Processing Alfredo Cuzzocrea DEIS Dipartimento di Elettronica, Informatica e Sistemistica Università della Calabria cuzzocrea@si.deis.unical.it Testo di Riferimento: J. Han, M.

Dettagli

Basi di dati. Informatica. Prof. Pierpaolo Vittorini pierpaolo.vittorini@cc.univaq.it

Basi di dati. Informatica. Prof. Pierpaolo Vittorini pierpaolo.vittorini@cc.univaq.it pierpaolo.vittorini@cc.univaq.it Università degli Studi dell Aquila Facoltà di Medicina e Chirurgia 18 marzo 2010 Un esempio di (semplice) database Quando si pensa ad un database, generalmente si immagina

Dettagli

Architettura dei sistemi di database

Architettura dei sistemi di database 2 Architettura dei sistemi di database 1 Introduzione Come si potrà ben capire, l architettura perfetta non esiste, così come non è sensato credere che esista una sola architettura in grado di risolvere

Dettagli

70555 Informatica 3 70777 Sicurezza 2. 70555 Mario Rossi 70777 Anna Bianchi. Esempio istanza:

70555 Informatica 3 70777 Sicurezza 2. 70555 Mario Rossi 70777 Anna Bianchi. Esempio istanza: DOMANDE 1) Definire i concetti di schema e istanza di una base di dati, fornendo anche un esempio. Si definisce schema di una base di dati, quella parte della base di dati stessa che resta sostanzialmente

Dettagli

Progettaz. e sviluppo Data Base

Progettaz. e sviluppo Data Base Progettaz. e sviluppo Data Base! Introduzione ai Database! Tipologie di DB (gerarchici, reticolari, relazionali, oodb) Introduzione ai database Cos è un Database Cos e un Data Base Management System (DBMS)

Dettagli

DATABASE RELAZIONALI

DATABASE RELAZIONALI 1 di 54 UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II DIPARTIMENTO DI DISCIPLINE STORICHE ETTORE LEPORE DATABASE RELAZIONALI Dott. Simone Sammartino Istituto per l Ambiente l Marino Costiero I.A.M.C. C.N.R.

Dettagli

I N G E G N E R E G I A N L U C A D I T O M A S S I

I N G E G N E R E G I A N L U C A D I T O M A S S I PACCHETTI FORMATIVI Corso Documento Programmatico sulla Sicurezza (DPS): linee guida e misure attuative Il codice sulla privacy Adempimenti ed opportunità La cultura della sicurezza come vantaggio competitivo

Dettagli

Basi di Dati Relazionali

Basi di Dati Relazionali Corso di Laurea in Informatica Basi di Dati Relazionali a.a. 2009-2010 PROGETTAZIONE DI UNA BASE DI DATI Raccolta e Analisi dei requisiti Progettazione concettuale Schema concettuale Progettazione logica

Dettagli

ESEMPI DI QUERY SQL. Esempi di Query SQL Michele Batocchi AS 2012/2013 Pagina 1 di 7

ESEMPI DI QUERY SQL. Esempi di Query SQL Michele Batocchi AS 2012/2013 Pagina 1 di 7 ESEMPI DI QUERY SQL Dati di esempio... 2 Query su una sola tabella... 2 Esempio 1 (Ordinamento)... 2 Esempio 2 (Scelta di alcune colonne)... 3 Esempio 3 (Condizioni sui dati)... 3 Esempio 4 (Condizioni

Dettagli

Lezione 7. Data Warehouse & OLAP

Lezione 7. Data Warehouse & OLAP Lezione 7 Data Warehouse & OLAP Che cos'è un Data Warehouse? Termine inventato da Bill Inmon alla fine degli anni 1980. È una base di dati contenente dati provenienti da uno o più basi di dati operative

Dettagli

E-Mail. Scheduling. Modalità d invio. E-Mail

E-Mail. Scheduling. Modalità d invio. E-Mail BI BI Terranova, azienda leader in Italia per le soluzioni Software rivolte al mercato delle Utilities, propone la soluzione Software di Business Intelligence RETIBI, sviluppata per offrire un maggiore

Dettagli

MICHAEL SCHMITZ. ETL per il ROMA 21-23 APRILE 2008 ROMA 24 APRILE 2008 RESIDENZA DI RIPETTA - VIA DI RIPETTA, 231

MICHAEL SCHMITZ. ETL per il ROMA 21-23 APRILE 2008 ROMA 24 APRILE 2008 RESIDENZA DI RIPETTA - VIA DI RIPETTA, 231 LA TECHNOLOGY TRANSFER PRESENTA MICHAEL SCHMITZ Tecniche avanzate di Database Design per Sistemi di Business Intelligence e Data Warehouse ETL per il Data Warehouse: un approccio Template-Driven ROMA 21-23

Dettagli