Codifica di sorgente. esempio di sorgente con memoria

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Codifica di sorgente. esempio di sorgente con memoria"

Transcript

1 Codifica di sorgente esercitazione su sorgenti markoviane 1 esempio di sorgente con memoria Esempio di sorgente con memoria markoviana a due stati NB: per la simmetria del sistema, i simboli sono equiprobabili p ab =0.1 p aa =0.9 "a" "b " p bb =0.9 p ba =

2 esempi di sorgenti consideriamo tre semplici sorgenti binarie S1: sorgente binaria senza memoria a simboli equiprobabili p{x(k)=a}=p{x(k)=b}=0.5 S2: sorgente binaria senza memoria, con simboli NON equiprobabili p{x(k)=a}=0.1, p{x(k)=b}=0.9 S3: sorgente binaria CON memoria di tipo markoviano ad un passo p{x(k)=x(k-1)}=0.9, p{x(k) x(k-1)}=0.1 NB: per la simmetria del sistema, entrambi i simboli hanno la stessa frequenza : p{x(k)=a}=p{x(k)=b}=0.5 3 esempi di sorgenti binarie S1: senza memoria simboli equiproabili p{x(k)=a}=0.5 p{x(k)=b}=0.5 a b H(X)=1 S2: senza memoria p{x(k)=a}=0.1 p{x(k)=b}=0.9 a b H(X) 0.47 S3: markoviana ad 1 passo p{x(k)=x(k-1)}=0.9 p{x(k) x(k-1)}=0.1 a b H(X)=...? 4 2

3 Funzione di Autocorrelazione (ACF) S1: senza memoria simboli equiproabili p{x(k)=a}=0.5 p{x(k)=b}=0.5 S2: senza memoria p{x(k)=a}=0.9 p{x(k)=b}=0.1 S3: markoviana ad 1 passo p{x(k)=x(k-1)}=0.9 p{x(k) x(k-1)}=0.1 lag 5 Calcolo della Entropia della sorgente S2 Entropia della sorgente S1 (senza memoria, simboli equiprob.) Entropia della sorgente S2 (senza memoria) 6 3

4 Calcolo della Entropia della sorgente S3 Per sorgenti markoviane e stazionarie l'entropia di sorgente é uguale al limite dell entropia condizionata: H (X) = lim k H X k ( ( ) X( k 1), X( k 2),...X( 0) ) = [per sorgenti markoviane e stazionarie...] ( ( ) X( k 1) ) = H X k M M ( ) = P X(k) = x i, X(k 1) = x j i=1 j=1 H ( X) = H X k ( ( ) X( k 1) ) (NB: questa è l'entropia condizionata) 1 log P X(k) = x i X(k 1) = x j ( ) 7 Calcolo della Entropia della sorgente S3 sviluppando la definizione di entropia condizionata... ( ) = H X( k) X( k 1) H X M M ( ) = ( ) = P X(k) = x i,x(k 1) = x j i=1 j=1 1 log P X(k) = x i X(k 1) = x j ( ) prob. congiunta fattorizziamo... prob. condizionata (è nota dal modello markoviano) statistica del primo ordine, per la stazionaritá: 8 4

5 Entropia di simbolo e di sorgente In generale l entropia di sorgente è sempre minore o uguale all entropia di un generico simbolo ( ) H (X) H X L Entropia di sorgente si deriva dalla prob. condizionate ( ) H( X(k) X(k 1),...X(0) ) H (X) P X(k) X(k 1),...X(0) L Entropia di simbolo dalle prob. NON condizionate P( X(k) ) H( X(k) ) H(X) Le due quantità coincidono solo per sorgenti SENZA MEMORIA 9 Calcolo della Entropia della sorgente S3 nel caso specifico della sorgente S3 inoltre per la stazionarietá ( ) = 0.9 i = j P X(k) = x i X(k 1) = x j 0.1 i j per la simmetria del sistema di sorgente è evidente che i simboli sono equiprobabili (NB: come in S1) 10 5

6 Calcolo della Entropia della sorgente S3 tornando la definizione di entropia condizionata, possiamo espandere la doppia sommatoria... questa è proprio la formula della Entropia di S2!! non è una coincidenza Modelli delle sorgenti BMS p 0 /p 1 = Binary Memoryless Source with probabilities p 0,p 1 S1 S2 S3 BMS 0.5/0.5 BMS 0.9/0.1 BMS 0.9/0.1 componente stocastica 0/1 0/1 0/1 x(k) x(k) T + componente deterministica modello a stati di S3 p ab =0.9 p bb =0.1 x(k) "a " "b " p aa =0. 1 p ba =

7 Esercizi su codifica di sorgente esercizi 13 ENTROPIA = Quantitá di INFORMAZIONE = Quantitá di INCERTEZZA 14 7

8 Esercizio 1 Si calcoli l entropia di una sorgente S1 di tipo DMS con M=3 simboli con le seguenti probabilitá: S1: p 1 =p 2 =0.2, p 3 =0.6 per tale sorgente si considerino le seguenti classi di codice I. codifica simbolo-a-simbolo con parole di codice a lunghezza costante II. codifica simbolo-a-simbolo con parole di codice a lunghezza variabili III. codifica a blocchi di dimensione L=2 con parole di codice a lunghezza costante IV. codifica a blocchi di dimensione L=2 con parole di codice a lunghezza variabile per ognuna di queste classi, si fornisca un esempio di codice ottimo, e se ne calcoli la efficienza e ridondanza Si assuma ora che i codici ottimi definiti per la sorgente S1 vengano usati per la codifica di un messaggio generato da una sorgente differente S2, con M=3 e probabilitá S2: p' 1 =0.7, p' 2 =0.2, p' 3 =0.1. Si calcoli il valore di efficienza e ridondanza di ciascun codice in questo nuovo scenario. 15 Esercizio 2 Si calcoli l entropia di una sorgente binaria S senza memoria simboli con le seguenti probabilitá: p a =0.9, p b =0.1. per tale sorgente si considerino le seguenti classi di codice I. codifica simbolo-a-simbolo con parole di codice a lunghezza costante II. codifica simbolo-a-simbolo con parole di codide a lunghezza variabile III. codifica a blocchi di dimensione L=2 con parole di codice a lunghezza costante IV. codifica a blocchi di dimensione L=2 con parole di codice a lunghezza variabile V. codifica a blocchi di dimensione L=3 con parole di codice a lunghezza variabile per ognuna di queste classi, si fornisca un esempio di codice ottimo, e se ne calcoli la efficienza e ridondanza. Si assuma di trasmettere la sequenza di simboli generata da S attraverso un link di collegamento a capacitá C=100 kbit/sec posto tra la sorgente S e un hard disk a capacitá B=10 6 bytes. Per ciascuna tecnica di codifica si dica: Quanti simboli posso memorizzare nell hard disk? Quanto tempo ci vuole per riempire l hard disk? 16 8

9 Esercizio 3 Si calcoli l entropia di una sorgente S1 di tipo DMS con M=6 simboli con le seguenti probabilitá: S1: p 1 =p 2 =0.2, p 3 =0.1, p 4 =p 5 =0.15, p 6 =0.3 per tale sorgente si considerino le seguenti classi di codice I. codifica simbolo-a-simbolo con parole di codice a lunghezza costante II. codifica simbolo-a-simbolo con parole di codide a lunghezza variabili per ognuna di queste classi, si fornisca un esempio di codice ottimo, e se ne calcoli la efficienza e ridondanza. avendo a disposizione un canale a capacitá C=256 kbps, quanto vale il ritmo massimo di simbolo che puó essere trasmesso sul canale, per ciascuna delle due tecniche di codifica? quanto varrebbe nel caso ideale di codifica a massima efficienza? Si assuma ora che i codici definiti per la sorgente S1 vengano usati per la codifica di un messaggio generato da una sorgente differente S2, in cui M=6 simboli sono tutti equiprobabili. Si calcoli il valore di efficienza e ridondanza per entrambi i codici. Quale è il ritmo massimo di simbolo che posso trasmettere in questo caso (codici ottimizzati per S1 applicati a S2) sul canale C? 17 Esercizi con i dadi 1/2 a. Si consideri una successione infinita di lanci di un dado standard. La variabile aleatoria X(k) rappresenta il risultato del lancio k-esimo. Si calcoli l entropia della v.a. X(k). Quale è la ridondanza della codifica simbolo-a-simbolo ottima della v.a. X(k)? Quanto è il guadagno di efficienza di una codifica di Huffman rispetto ad una codifica a parole di codice di lunghezza costante? b. Si consideri una successione infinita di lanci di una coppia di dadi. Ad ogni lancio k- esimo vengono registrati i risultati di entrambi i dadi (R1,R2). (NB: entrambi i dadi vengono lanciati insieme in un singolo lancio). I dadi sono distinguibili (es. sono di colore diverso), per cui occorre il risultato (R1=3,R2=4) viene distinto dal risultato (R1=4,R2=3). La variabile aleatoria Y(k) deve codificare il risultato di ciascun lancio (di coppia di dadi). a. Si calcoli l entropia della v.a. Y(k). b. Quale è la ridondanza della codifica simbolo-a-simbolo ottima della v.a. Y(k)? c. Quanto è il guadagno di efficienza di una codifica di Huffman rispetto ad una codifica a parole di codice di lunghezza costante? 18 9

10 Esercizi con i dadi 2/2 c. Si consideri uno scenario simile a quello dell esercizio precedente, con la differenza che in questo caso i due dadi si considerano indistinguibili (es. stesso colore). Quindi i risultati (R1=3,R2=4) e (R2=4,R1=2) sono considerati equivalenti e sono codificati nello stesso simbolo. La variabile aleatoria W(k) deve codificare il risultato di ciascun lancio in questo nuovo scenario. a. Si calcoli l entropia della v.a. W(k). b. Quale è la ridondanza della codifica simbolo-a-simbolo ottima della v.a. W(k)? d. Si consideri lo stesso scenario dell esercizio precedente. La variabile aleatoria Z(k) rappresenta la somma dei punti dei due dadi. a. Si calcoli l entropia della v.a. Z(k). b. Quale è la ridondanza della codifica simbolo-a-simbolo ottima della v.a. Z(k)? e. Si consideri lo stesso scenario dell esercizio precedente. La variabile aleatoria binaria D(k) rappresenta la paritá dei punti ottenuti nel lancio dei due dadi ( D(k)=1 se Z(k) è pari, D(k)=0 se Z(k) è dispari). a. Si calcoli l entropia della v.a. D(k). b. Quale è la ridondanza della codifica simbolo-a-simbolo ottima della v.a. D(k)? 19 note sull esercizio si noti che H(X) = log 2 (6)=2.585 H(Y)=2*H(X)=5.17 H(W)=4.33 H(Z)=3.27 perchè H(D)<H(Z)<H(W)<H(Y)...? si poteva prevederlo intuitivamente? da questo esercizio impariamo che passando da Y a W a Z stiamo aggregando i risultati possibili in alfabeti di dimensione sempre minore perdo la capacitá di discriminare tra eventi diversi stiamo quindi passando verso variabili che contengono una minore quantitá informazione, le quali descrivono in maniera meno accurata l esito degli esperimenti quindi perdo "informazione", l entropia media diminiuisce 20 10

11 Esercizio 4 (es dal libro) Si considera un modulo di visualizzazione costituito da una griglia di 6x4 pixel, sul quale possono essere visualizzate le dieci cifre decimali "0","1"..."9" a titolo di esempio sono riportate sotto le configurazioni per le cifre "0", "4" e "9" si calcoli la ridondanza di questo codice, nell ipotesi che tutte le cifre siano equiprobabili. si ha un tabellone costituito da 9 moduli del tipo illustrato sopra, e si aggiorna l intero tabellone con una nuovo insieme di cifre ogni periodo T. Per ogni aggiornamento, i simboli inviati sono indipendenti tra loro e dai simboli precedenti. Il canale di comunicazione verso il tabellone è di C b =10 bit/sec. Quale è il valore massimo teorico della frequenza di aggiornamento F=1/T, nell ipotesi di codifica a ridondanza nulla? 21 Esercizio 5 Si consideri la seguente sequenza di N=30 simboli generata dalla sorgente S... A B A A A B C A B B A B A C A A B B A A A B A B A A A B A... si assuma che tale sequenza sia una realizzazione di un processo discreto ergodico a simboli indipendenti (senza memoria), per il quale è possibile stimare le probabilitá di simbolo dalle frequenze medie temporali si fornisca un codice ottimo di codifica simbolo-a-simbolo si assuma poi di ottenere dalla stessa sorgente S un messaggio di dimensione N'=10 4 simboli, e si indichi con B il numero di bit (cifre binarie) necessarie per codificare tale messaggio. Calcolare il valore atteso di B

12 Esercizio 6 pseudo-testo Un testo si compone di una sequenza di caratteri, ciascuno estratto da un alfabeto di 22 simboli (21 lettere + il carattere di spaziatura "<spazio>"). Si assuma che i caratteri siano tra loro statisticamente indipendenti. Ciascun simbolo è codificato con una stringa di 8 bit. Calcolare l entropia di questa sorgente, e la ridondanza del codice descritto nella traccia. Si consideri ora il caso in cui il testo sia costituito da parole di lunghezza costante W=6 lettere, separate dal carattere "<spazio>. Ogni parola è costituita da una alternanza di consonanti e vocali e comincia con una consonante (es. PILONE). Tutte le vocali (5) si suppongono equiprobabili nelle posizioni 2,4,6 in ciascuna parola. Analogamente, le consonanti (16) si suppongono equiprobabili nelle posizioni 1,3,5. Ciascun simbolo (compreso lo <spazio> ) è codificato con una stringa di 8 bit. Calcolare l entropia di questa sorgente, e la ridondanza del codice descritto nella traccia. [da questo esercizio impariamo che introdurre "struttura" (= vincoli) nel messaggio significa diminuire la quantitá di incertezza media della sorgente diminuisce l informazione necessaria a descrivere una realizzazione diminiuisce l entropia. Quindi a paritá di codice, introduco ridondanza] 23 Esercizio 7 sorgente composta (1/2) Si consideri la sorgente discreta S III mostrata in figura, che genera una sequenza di simboli {X(k)} costituita alternativamente da simboli generati dalla sottosorgente S I (per k pari) e S II (per k dispari). Lo switch di figura è quindi di tipo deterministico (round robin) Le sottosorgenti S I e S II sono binarie, senza memoria e sono tra loro statisticamente indipendenti. La sottosorgente S I genera i simboli {a,b} con probabilitá p a =1-p b =0.8. La sotto sorgente S II genera simboli {g,h} con probabilitá p g =1-p h =0.4. Il ritmo di emissione della sorgente S III è di R s =400 simboli/secondo. La sequenza {X(k)} è con o senza memoria? È stazionaria oppure no? Giustificare le risposte. S III S I S II a,b g,h switch...a,g,a,h,b,g,a,h,a,h,b,g,a,h,a,g... {X(k)} 24 12

13 Esercizio 7 sorgente composta (2/2) Si vuole ora codificare la sequenza {X(k)} generata da S III a blocchi di L=2 caratteri, mappando ciascun blocco nel simbolo di un nuovo alfabeto a M Y caratteri (es. {1,2,...M Y }). Si ottiene in questo modo la nuova sequenza {Y(k)}. La sequenza {Y(k)} è con o senza memoria? È stazionaria oppure no? Quanto vale M Y? Quale è l entropia della sequenza {Y(k)}? Si codifichi la sequenza {Y(k)} con un codice di Huffmann, e si fornisca il valore di efficienza di questa codifica. Si ha a disposizione uno spazio di memoria pari a B=10 6 bytes nel quale memorizzare l informazione generata dalla sorgente S III, codificata con la modalitá appena indicata. Calcolare il tempo di riempimento della memoria B. S I S II S III a,b switch g,h...a,g,a,h,b,g,a,h,a,h,b,g,a,h,b,h... {X(k)} aggregatore (a,g)1 (a,h) ,2,3,2,2,3,2,4... {Y(k)} 25 Esercizio 7bis Ripetere l esercizio precedente (esercizio 7) in tutte le sue parti, assumendo che lo switch interno alla sorgente S III sia di tipo stocastico (anziché deterministico), ovvero la selezione ad ogni passo della sottosorgente (S I e S II ) avviene in modo casuale, indipendente dalle selezioni precedenti, ed equiprobabile tra le due opzioni. Si risponda a tutte le domande dell esercizio precedente. [NB: Attenzione all aggregatore! Posso usare quello dell esercizio precedente? Perchè?) Si confrontino i due sistemi con switch deterministico e statistico: quali quantitá sono cambiate? Perchè? S I S II a,b switch random g,h S III...a,g,a,b,h,g,g,h,a,b,a,g,a,a,b,h... {X'(k)} aggregatore...1,2,5,... {Y'(k)} 26 13

14 note sull esercizio si nota che H(Y')=H(Y)+2 perchè? si poteva prevederlo intuitivamente? [da questo esercizio impariamo che introdurre "casualitá" (= randomizzazione) nella sorgente significa aumentare la quantitá di incertezza aumenta l informazione necessaria a descrivere una realizzazione aumenta l entropia.] 27 Un esempio (non cosi) strano Esempio di sorgente X(k) con memoria avente: entropia di simbolo H(X) = log 2 M (massima possibile) entropia di sorgente H (X)=0 (minima possibile) Si considera un sistema in cui M soggetti competono per ottenere dei gettoni che vengono assegnati con periodo T. Indichiamo con p i (k) (i=1,..m) la probabilità che il gettone k- esimo venga assegnato al soggetto i. la v.a. X(k) indica il soggetto che acquisisce il gettone k-esimo inoltre indichiamo con δ i (k) la variabile indicatore δ i (k) = 1 se X(k)=i δ i (k) = 0 se X(k) i 28 14

15 Un esempio (non cosi) strano Inizialmente tutti i soggetti hanno pari prob. di assegnazione, ovvero p i (0) = 1/M Ad ogni passo le prob. di assegnazione variano dinamicamente, in modo da favorire chi ha accumulato più gettoni p i (k) = (p i (k-1) + a*δ i (k-1) ) / costante. dove 0<a<1 è un parametro di sistema e al denominatore è presente una costante di rinormalizzazione che assicura la condizione Σ i p i (k)=1 In altre parole, il sistema è governato da un meccanismo di assegnazione preferenziale (preferential assignment): la prob. di assegnazione dei gettoni futuri aumenta con la quantità di gettoni già accumulati 29 Un esempio (non cosi) strano Si può facilmente dimostrare che al limite per T emergera un unico soggetto prevalente (monopolista), che da un certo punto in poi sara cosi ricco da assicurarsi con certezza l assegnazione di tutti i gettoni successivi. Ovvero la pmf degenera in una distribuzione deterministica, e quindi H (X)=0. Ma non è possibile prevedere a priori quale soggetto diventera prevalente, in altre parole : tutti i soggetti hanno la stessa probabilità di diventare prevalenti. ovvero le prob. non condizionate restano stazionarie: p i (k) = 1/M, quindi H(X) = log 2 M 30 15

16 Un esempio (non cosi) strano esempi di realizzazioni M=4, a= per chiarimenti: 32 16

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,...

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... Entropia Motivazione Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... ) s,s 2,s 3,... ognuno dei quali appartiene ad un alfabeto A di M elementi.? Quant è l informazione portata

Dettagli

2) Codici univocamente decifrabili e codici a prefisso.

2) Codici univocamente decifrabili e codici a prefisso. Argomenti della Lezione ) Codici di sorgente 2) Codici univocamente decifrabili e codici a prefisso. 3) Disuguaglianza di Kraft 4) Primo Teorema di Shannon 5) Codifica di Huffman Codifica di sorgente Il

Dettagli

Codifiche a lunghezza variabile

Codifiche a lunghezza variabile Sistemi Multimediali Codifiche a lunghezza variabile Marco Gribaudo marcog@di.unito.it, gribaudo@elet.polimi.it Assegnazione del codice Come visto in precedenza, per poter memorizzare o trasmettere un

Dettagli

Introduzione alla scienza della comunicazione (E. T. Jaynes)

Introduzione alla scienza della comunicazione (E. T. Jaynes) Introduzione alla scienza della comunicazione (E T Jaynes) S Bonaccorsi Department of Mathematics University of Trento Corso di Mathematical model for the Physical, Natural and Social Sciences Outline

Dettagli

Teoria della probabilità Assiomi e teoremi

Teoria della probabilità Assiomi e teoremi Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Teoria della probabilità Assiomi e teoremi A.A. 2008-09 Alberto Perotti DELEN-DAUIN Esperimento casuale Esperimento

Dettagli

CORSO DI CALCOLATORI ELETTRONICI I CdL Ingegneria Biomedica (A-I)

CORSO DI CALCOLATORI ELETTRONICI I CdL Ingegneria Biomedica (A-I) CORSO DI CALCOLATORI ELETTRONICI I CdL Ingegneria Biomedica (A-I) DIS - Università degli Studi di Napoli Federico II Codifica delle Informazioni T insieme delle informazioni da rappresentare E insieme

Dettagli

3. TEORIA DELL INFORMAZIONE

3. TEORIA DELL INFORMAZIONE 3. TEORIA DELL INFORMAZIONE INTRODUZIONE MISURA DI INFORMAZIONE SORGENTE DISCRETA SENZA MEMORIA ENTROPIA DI UNA SORGENTE NUMERICA CODIFICA DI SORGENTE 1 TEOREMA DI SHANNON CODICI UNIVOCAMENTE DECIFRABILI

Dettagli

ESAME SCRITTO DI ELEMENTI DI INFORMATICA E PROGRAMMAZIONE. 10 Settembre 2013

ESAME SCRITTO DI ELEMENTI DI INFORMATICA E PROGRAMMAZIONE. 10 Settembre 2013 COGNOME E NOME: MATRICOLA: Civile Ambiente e Territorio Non si possono consultare manuali, appunti e calcolatrici. Esercizio 1: Rappresentare i numeri 37 e 90 (in base 10) in notazione binaria in complemento

Dettagli

TECNICHE DI COMPRESSIONE DATI

TECNICHE DI COMPRESSIONE DATI TECNICHE DI COMPRESSIONE DATI COMPRESSIONE DATI La compressione produce una rappresentazione più compatta delle informazioni è come se si usassero meno parole per dire la stessa cosa in modo diverso. Esistono

Dettagli

Informazione analogica e digitale

Informazione analogica e digitale L informazione L informazione si può: rappresentare elaborare gestire trasmettere reperire L informatica offre la possibilità di effettuare queste operazioni in modo automatico. Informazione analogica

Dettagli

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 17/2/215 NOME: COGNOME: MATRICOLA: Esercizio 1 Un sistema di

Dettagli

CODIFICA DELL INFORMAZIONE E CODICI BINARI

CODIFICA DELL INFORMAZIONE E CODICI BINARI Codifica dell informazione 1 CODIFICA DELL INFORMAZIONE E CODICI BINARI Andrea Bobbio Anno Accademico 2001-2002 Codifica dell informazione 2 La codifica dell informazione I sistemi di elaborazione operano

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08 Alberto Perotti, Roberto Garello DELEN-DAUIN Processi casuali Sono modelli probabilistici

Dettagli

Operazioni Aritmetiche e Codici in Binario Giuseppe Talarico 23/01/2013

Operazioni Aritmetiche e Codici in Binario Giuseppe Talarico 23/01/2013 Operazioni Aritmetiche e Codici in Binario Giuseppe Talarico 23/01/2013 In questo documento vengono illustrate brevemente le operazioni aritmetiche salienti e quelle logiche ad esse strettamente collegate.

Dettagli

Elementi di Statistica descrittiva Parte I

Elementi di Statistica descrittiva Parte I Elementi di Statistica descrittiva Parte I Che cos è la statistica Metodo di studio di caratteri variabili, rilevabili su collettività. La statistica si occupa di caratteri (ossia aspetti osservabili)

Dettagli

TEORIA DELL INFORMAZIONE ED ENTROPIA FEDERICO MARINI

TEORIA DELL INFORMAZIONE ED ENTROPIA FEDERICO MARINI TEORIA DELL INFORMAZIONE ED ENTROPIA DI FEDERICO MARINI 1 OBIETTIVO DELLA TEORIA DELL INFORMAZIONE Dato un messaggio prodotto da una sorgente, l OBIETTIVO è capire come si deve rappresentare tale messaggio

Dettagli

Probabilità discreta

Probabilità discreta Probabilità discreta Daniele A. Gewurz 1 Che probabilità c è che succeda...? Una delle applicazioni della combinatoria è nel calcolo di probabilità discrete. Quando abbiamo a che fare con un fenomeno che

Dettagli

Elementi di Informatica e Programmazione

Elementi di Informatica e Programmazione Elementi di Informatica e Programmazione La Codifica dell informazione (parte 1) Corsi di Laurea in: Ingegneria Civile Ingegneria per l Ambiente e il Territorio Università degli Studi di Brescia Docente:

Dettagli

= variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del 2000 = 500; PIL del 2001 = 520:

= variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del 2000 = 500; PIL del 2001 = 520: Fig. 10.bis.1 Variazioni percentuali Variazione percentuale di x dalla data zero alla data uno: x1 x 0 %x = 100% x 0 = variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosidette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

Un ripasso di aritmetica: Conversione dalla base 10 alla base 16

Un ripasso di aritmetica: Conversione dalla base 10 alla base 16 Un ripasso di aritmetica: Conversione dalla base 1 alla base 16 Dato un numero N rappresentato in base dieci, la sua rappresentazione in base sedici sarà del tipo: c m c m-1... c 1 c (le c i sono cifre

Dettagli

COMUNICAZIONI ELETTRICHE + TRASMISSIONE NUMERICA COMPITO 13/7/2005

COMUNICAZIONI ELETTRICHE + TRASMISSIONE NUMERICA COMPITO 13/7/2005 COMUNICAZIONI ELETTRICHE + TRASMISSIONE NUMERICA COMPITO 13/7/005 1. Gli esercizi devono essere risolti su fogli separati: uno per la prima parte del compito (esercizi 1/4), uno per la seconda parte (esercizi

Dettagli

Sommario. 1 Codifica binaria delle informazioni. 2 Codifica binaria di informazioni di tipo numerico e aritmetica binaria

Sommario. 1 Codifica binaria delle informazioni. 2 Codifica binaria di informazioni di tipo numerico e aritmetica binaria Sommario Codifica delle informazioni 1 Codifica delle informazioni M. Favalli 2 Codifica di informazioni di tipo numerico e aritmetica Engineering Department in Ferrara 3 M. Favalli (ENDIF) Codici Reti

Dettagli

2. SINCRONIZZAZIONE (CENNI)

2. SINCRONIZZAZIONE (CENNI) 2. SINCRONIZZAZIONE (CENNI) INTRODUZIONE AL PROBLEMA DELLA SINCRONIZZAZIONE SINCRONISMO DI BIT SCRAMBLING SINCRONISMO DI FRAME INTRODUZIONE Abbiamo visto diverse tecniche in grado di convertire e di trasmettere

Dettagli

La quantità. Rappresentazione dei numeri I numeri rappresentano quantità. Il sistema Binario. Binario

La quantità. Rappresentazione dei numeri I numeri rappresentano quantità. Il sistema Binario. Binario Corso Integrato di Statistica Informatica e Analisi dei dati Informatica - a Dr Carlo Meneghini Dip. di Fisica E. Amaldi via della Vasca Navale 8 meneghini@fis.uniroma.it st. 8 - tel.: 6 777 Home page

Dettagli

Elementi di teoria dei segnali /b

Elementi di teoria dei segnali /b Elementi di teoria dei segnali /b VERSIONE 29.4.01 Filtri e larghezza di banda dei canali Digitalizzazione e teorema del campionamento Capacità di canale e larghezza di banda Multiplexing e modulazioni

Dettagli

I SISTEMI DI NUMERAZIONE

I SISTEMI DI NUMERAZIONE Istituto di Istruzione Superiore G. Curcio Ispica I SISTEMI DI NUMERAZIONE Prof. Angelo Carpenzano Dispensa di Informatica per il Liceo Scientifico opzione Scienze Applicate Sommario Sommario... I numeri...

Dettagli

Rappresentazione di informazioni con un alfabeto finito

Rappresentazione di informazioni con un alfabeto finito Rappresentazione di informazioni con un alfabeto finito Sia A = { a 1,, a k } un insieme (alfabeto) di k simboli, detti anche lettere. Quante sono le sequenze composte da n simboli (anche ripetuti) di

Dettagli

..., x M. : codice o sequenza di bit che rappresentano il messaggio x i ; n i : lunghezza in bit del codice C X i

..., x M. : codice o sequenza di bit che rappresentano il messaggio x i ; n i : lunghezza in bit del codice C X i Definizioni X : sorgente di informazione discreta; X k : messaggi prodotti da X ; ogni messaggio è una v.c.d., k è l'indice temporale; alfabeto di X : insieme {x,..., x } degli messaggi che la sorgente

Dettagli

I sistemi di numerazione

I sistemi di numerazione I sistemi di numerazione 01-INFORMAZIONE E SUA RAPPRESENTAZIONE Sia dato un insieme finito di caratteri distinti, che chiameremo alfabeto. Utilizzando anche ripetutamente caratteri di un alfabeto, si possono

Dettagli

Fondamenti di Informatica Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio

Fondamenti di Informatica Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio Dipartimento di Ingegneria dell Informazione Università degli Studi di Parma Fondamenti di Informatica Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio Rappresentazione dell Informazione

Dettagli

INTRODUZIONE Codici correttori di errori Codici rivelatori di errori

INTRODUZIONE Codici correttori di errori Codici rivelatori di errori IL CODICE EN INTRODUZIONE... 2 CODICI RIVELTORI DI ERRORI... 3 IL CODICE RRE... 5 Struttura di un simbolo... 5 IL CODICE EN... 7 Codifica dei Caratteri... 7 Struttura di un simbolo EN 13... 8 Struttura

Dettagli

Codifica binaria dei numeri relativi

Codifica binaria dei numeri relativi Codifica binaria dei numeri relativi Introduzione All interno di un calcolatore, è possibile utilizzare solo 0 e 1 per codificare qualsiasi informazione. Nel caso dei numeri, non solo il modulo ma anche

Dettagli

Altri metodi di indicizzazione

Altri metodi di indicizzazione Organizzazione a indici su più livelli Altri metodi di indicizzazione Al crescere della dimensione del file l organizzazione sequenziale a indice diventa inefficiente: in lettura a causa del crescere del

Dettagli

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ -

Dettagli

Corso di Laurea in Ingegneria Biomedica Corso di Trasmissione Numerica (6 crediti) Prova scritta 16.02.2006

Corso di Laurea in Ingegneria Biomedica Corso di Trasmissione Numerica (6 crediti) Prova scritta 16.02.2006 Prova scritta 16.02.2006 D. 1 Si derivi l espressione dei legami ingresso-uscita, nel dominio del tempo per le funzioni di correlazione nel caso di sistemi LTI e di segnali d ingresso SSL. Si utilizzi

Dettagli

ESERCIZI DI PROBLEM SOLVING E COMPOSIZIONE DEI DIAGRAMMI DI FLUSSO per le classi terza

ESERCIZI DI PROBLEM SOLVING E COMPOSIZIONE DEI DIAGRAMMI DI FLUSSO per le classi terza ESERCIZI DI PROBLEM SOLVING E COMPOSIZIONE DEI DIAGRAMMI DI FLUSSO per le classi terza vers.3 in lavorazione Docente SAFFI FABIO Contenuti 01.Esercizi generici sul diagramma di flusso - flow chart... 2

Dettagli

Informatica. Rappresentazione binaria Per esempio +101010000 diventa +0.10101 10 18/10/2007. Introduzione ai sistemi informatici 1

Informatica. Rappresentazione binaria Per esempio +101010000 diventa +0.10101 10 18/10/2007. Introduzione ai sistemi informatici 1 Informatica Pietro Storniolo storniolo@csai.unipa.it http://www.pa.icar.cnr.it/storniolo/info200708 Numeri razionali Cifre più significative: : sono le cifre associate ai pesi maggiori per i numeri maggiori

Dettagli

Teoria dell informazione

Teoria dell informazione Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Teoria dell informazione A.A. 2008-09 Alberto Perotti DELEN-DAUIN Modello di sistema di comunicazione Il modello di

Dettagli

Unione Europea Repubblica Italiana Regione Calabria Cooperativa sociale

Unione Europea Repubblica Italiana Regione Calabria Cooperativa sociale INFORMATICA Lezione 1 Docente Ferrante Francesco fracco2004@alice.it Sito web: http://luis7.altervista.org Obiettivi del corso Una parte generale sull'introduzione dei concetti di base dell'informatica

Dettagli

Un ripasso di aritmetica: Rappresentazione binaria - operazioni. riporti

Un ripasso di aritmetica: Rappresentazione binaria - operazioni. riporti Un ripasso di aritmetica: Rappresentazione binaria - operazioni A queste rappresentazioni si possono applicare le operazioni aritmetiche: riporti 1 1 0 + 1 0 = 1 0 0 24 Un ripasso di aritmetica: Rappresentazione

Dettagli

(71,1), (35,1), (17,1), (8,1), (4,0), (2,0), (1,0), (0,1) 0, 7155 2 = 1, 431 0, 431 2 = 0, 862 0, 896 2 = 1, 792 0, 724 2 = 1, 448 0, 448 2 = 0, 896

(71,1), (35,1), (17,1), (8,1), (4,0), (2,0), (1,0), (0,1) 0, 7155 2 = 1, 431 0, 431 2 = 0, 862 0, 896 2 = 1, 792 0, 724 2 = 1, 448 0, 448 2 = 0, 896 2 Esercizio 2.2 La rappresentazione esadecimale prevede 16 configurazioni corrispondenti a 4 bit. Il contenuto di una parola di 16 bit può essere rappresentato direttamente con 4 digit esadecimali, sostituendo

Dettagli

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi su eventi, previsioni e probabilità condizionate Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability

Dettagli

MATEMATICA. Classe I Classe II Classe III Classe IV Classe V Traguardo 1

MATEMATICA. Classe I Classe II Classe III Classe IV Classe V Traguardo 1 MATEMATICA COMPETENZE Dimostra conoscenze matematiche che gli consentono di analizzare dati e fatti della realtà e di verificare l'attendibilità delle analisi quantitative e statistiche proposte da altri.

Dettagli

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri.

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. A partire da questa lezione, ci occuperemo di come si riescono a codificare con sequenze binarie, quindi con sequenze di 0 e 1,

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

Rappresentazione dei numeri in un calcolatore

Rappresentazione dei numeri in un calcolatore Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri in un calcolatore Lezione 2 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione dei numeri

Dettagli

Mete e coerenze formative. Dalla scuola dell infanzia al biennio della scuola secondaria di II grado

Mete e coerenze formative. Dalla scuola dell infanzia al biennio della scuola secondaria di II grado Mete e coerenze formative Dalla scuola dell infanzia al biennio della scuola secondaria di II grado Area disciplinare: Area Matematica Finalità Educativa Acquisire gli alfabeti di base della cultura Disciplina

Dettagli

Il confronto fra proporzioni

Il confronto fra proporzioni L. Boni Il rapporto Un rapporto (ratio), attribuendo un ampio significato al termine, è il risultato della divisione di una certa quantità a per un altra quantità b Il rapporto Spesso, in maniera più specifica,

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

Algoritmi e strutture dati. Codici di Huffman

Algoritmi e strutture dati. Codici di Huffman Algoritmi e strutture dati Codici di Huffman Memorizzazione dei dati Quando un file viene memorizzato, esso va memorizzato in qualche formato binario Modo più semplice: memorizzare il codice ASCII per

Dettagli

Aprire WEKA Explorer Caricare il file circletrain.arff Selezionare random split al 66% come modalità di test Selezionare J48 come classificatore e

Aprire WEKA Explorer Caricare il file circletrain.arff Selezionare random split al 66% come modalità di test Selezionare J48 come classificatore e Alberi di decisione Aprire WEKA Explorer Caricare il file circletrain.arff Selezionare random split al 66% come modalità di test Selezionare J48 come classificatore e lanciarlo con i parametri di default.

Dettagli

Il Concetto di Informazione FORMALIZZAZIONE DELL INFORMAZIONE. Informazione e Codifica. Informazione e Codifica. Regole. Principio di Composizione

Il Concetto di Informazione FORMALIZZAZIONE DELL INFORMAZIONE. Informazione e Codifica. Informazione e Codifica. Regole. Principio di Composizione 2 Il Concetto di Informazione FORMALIZZAZIONE DELL INFORMAZIONE Informatica per le Discipline Umanistiche Informazione e Codifica Informazione e Codifica 3 4 il numero dieci I0 10 de il numero dieci de

Dettagli

la scienza della rappresentazione e della elaborazione dell informazione

la scienza della rappresentazione e della elaborazione dell informazione Sistema binario Sommario informatica rappresentare informazioni la differenza Analogico/Digitale i sistemi di numerazione posizionali il sistema binario Informatica Definizione la scienza della rappresentazione

Dettagli

Per essere inviato il dato deve essere opportunamente codificato in modo da poter essere trasformato in SEGNALE, elettrico oppure onda luminosa.

Per essere inviato il dato deve essere opportunamente codificato in modo da poter essere trasformato in SEGNALE, elettrico oppure onda luminosa. La trasmissione dell informazione N.R2 La comunicazione tra due calcolatori si realizza tramite lo scambio di dati su un canale di comunicazione, esiste quindi un TRASMETTITORE che invia dei dati e un

Dettagli

Corso di Matematica. Corso di Laurea in Farmacia, Facoltà di Farmacia. Università degli Studi di Pisa. Maria Luisa Chiofalo.

Corso di Matematica. Corso di Laurea in Farmacia, Facoltà di Farmacia. Università degli Studi di Pisa. Maria Luisa Chiofalo. Corso di Matematica Corso di Laurea in Farmacia, Facoltà di Farmacia Università degli Studi di Pisa Maria Luisa Chiofalo Scheda 18 Esercizi svolti sul calcolo delle probabilità I testi degli esercizi sono

Dettagli

Laboratorio di Informatica

Laboratorio di Informatica per chimica industriale e chimica applicata e ambientale LEZIONE 2 Rappresentazione delle informazioni: numeri e caratteri 1 Codice La relazione che associa ad ogni successione ben formata di simboli di

Dettagli

Decisioni in condizioni di rischio. Roberto Cordone

Decisioni in condizioni di rischio. Roberto Cordone Decisioni in condizioni di rischio Roberto Cordone Decisioni in condizioni di rischio Rispetto ai problemi in condizioni di ignoranza, oltre all insieme Ω dei possibili scenari, è nota una funzione di

Dettagli

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a) Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B Eventi indipendenti: un evento non influenza l altro Eventi disgiunti: il verificarsi di un evento esclude l altro Evento prodotto:

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

13. Campi vettoriali

13. Campi vettoriali 13. Campi vettoriali 1 Il campo di velocità di un fluido Il concetto di campo in fisica non è limitato ai fenomeni elettrici. In generale il valore di una grandezza fisica assegnato per ogni punto dello

Dettagli

ELEMENTI DI CALCOLO DELLE PROBABILITA

ELEMENTI DI CALCOLO DELLE PROBABILITA Statistica, CLEA p. 1/55 ELEMENTI DI CALCOLO DELLE PROBABILITA Premessa importante: il comportamento della popolazione rispetto una variabile casuale X viene descritto attraverso una funzione parametrica

Dettagli

Caratteri e stringhe Esercizi risolti

Caratteri e stringhe Esercizi risolti Esercizi risolti 1 Esercizio: Conta vocali e consonanti Scrivere un programma in linguaggio C che legga una frase introdotta da tastiera. La frase è terminata dall introduzione del carattere di invio.

Dettagli

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Dispensa 05 La rappresentazione dell informazione Carla Limongelli Ottobre 2011 http://www.dia.uniroma3.it/~java/fondinf/ La rappresentazione

Dettagli

Introduzione alla Simulazione Numerica

Introduzione alla Simulazione Numerica Introduzione alla Simulazione Numerica Daniele Vigo D.E.I.S. - Università di Bologna dvigo@deis.unibo.it rev. 1.0 - Novembre 2001 Simulazione numerica Tecnica che permette di eseguire esperimenti su un

Dettagli

Elementi di Informatica. ( Lezione II, parte I ) Sistemi di numerazione: binario, ottale ed esadecimale

Elementi di Informatica. ( Lezione II, parte I ) Sistemi di numerazione: binario, ottale ed esadecimale Elementi di Informatica ( Lezione II, parte I ) Sistemi di numerazione: binario, ottale ed esadecimale Il sistema di numerazione posizionale decimale Nella numerazione posizionale ogni cifra del numero

Dettagli

Tipologie di macchine di Turing

Tipologie di macchine di Turing Tipologie di macchine di Turing - Macchina di Turing standard - Macchina di Turing con un nastro illimitato in una sola direzione - Macchina di Turing multinastro - Macchina di Turing non deterministica

Dettagli

metodi matematici per l ingegneria prove scritte d esame 1 Indice

metodi matematici per l ingegneria prove scritte d esame 1 Indice metodi matematici per l ingegneria prove scritte d esame Indice. Novembre 4 - Prova in itinere. Luglio 5.. Febbraio 6 4 4. Giugno 6. 5 5. Luglio 6 6 . Novembre 4 - Prova in itinere Esercizio. Una scatola

Dettagli

Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro

Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro Segnali e Sistemi Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici Gianni Borghesan e Giovanni Marro Indice Introduzione 2. Notazione............................. 2 2 Classificazione

Dettagli

Quanto può essere veloce un upload e un download?

Quanto può essere veloce un upload e un download? Quanto può essere veloce un upload e un download? Download trasferimento di dati da un computer remoto al computer locale Upload trasferimento dei dati da un computer locale a un computer remoto Velocità

Dettagli

Matematica Applicata. Probabilità e statistica

Matematica Applicata. Probabilità e statistica Matematica Applicata Probabilità e statistica Fenomeni casuali Fenomeni che si verificano in modi non prevedibili a priori 1. Lancio di una moneta: non sono in grado di prevedere con certezza se il risultato

Dettagli

INDICATORI OBIETTIVI DI APPRENDIMENTO classe prima

INDICATORI OBIETTIVI DI APPRENDIMENTO classe prima INDICATORI OBIETTIVI DI APPRENDIMENTO classe prima NUMERI Descrivere e simbolizzare la realtà utilizzando il linguaggio e gli strumenti matematici Imparare ad usare il numero naturale per contare, confrontare,

Dettagli

Dispense di Informatica per l ITG Valadier

Dispense di Informatica per l ITG Valadier La notazione binaria Dispense di Informatica per l ITG Valadier Le informazioni dentro il computer All interno di un calcolatore tutte le informazioni sono memorizzate sottoforma di lunghe sequenze di

Dettagli

Obiettivi dell Analisi Numerica. Avviso. Risoluzione numerica di un modello. Analisi Numerica e Calcolo Scientifico

Obiettivi dell Analisi Numerica. Avviso. Risoluzione numerica di un modello. Analisi Numerica e Calcolo Scientifico M. Annunziato, DIPMAT Università di Salerno - Queste note non sono esaustive ai fini del corso p. 3/43 M. Annunziato, DIPMAT Università di Salerno - Queste note non sono esaustive ai fini del corso p.

Dettagli

Capitolo 1 - Numerazione binaria

Capitolo 1 - Numerazione binaria Appunti di Elettronica Digitale Capitolo - Numerazione binaria Numerazione binaria... Addizione binaria... Sottrazione binaria... Moltiplicazione binaria... Divisione binaria... Complementazione... Numeri

Dettagli

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ

LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ LA STATISTICA E IL CALCOLO DELLE PROBABILITÀ Prof. Francesco Tottoli Versione 3 del 20 febbraio 2012 DEFINIZIONE È una scienza giovane e rappresenta uno strumento essenziale per la scoperta di leggi e

Dettagli

Codifica delle Informazioni

Codifica delle Informazioni Codifica delle Informazioni Luca Bortolussi Dipartimento di Matematica e Informatica Università degli studi di Trieste Panoramica Le informazioni gestite dai sistemi di elaborazione devono essere codificate

Dettagli

Modulazione di fase PSK

Modulazione di fase PSK LA MODULAZIONE DI SEGNALI DIGITALI Un canale di tipo passa banda, come per esempio l etere, non permette la trasmissione di segnali digitali in banda base, cioè non modulati. E cioè necessario introdurre

Dettagli

Macchine a stati finiti. Sommario. Sommario. M. Favalli. 5th June 2007

Macchine a stati finiti. Sommario. Sommario. M. Favalli. 5th June 2007 Sommario Macchine a stati finiti M. Favalli 5th June 27 4 Sommario () 5th June 27 / 35 () 5th June 27 2 / 35 4 Le macchine a stati si utilizzano per modellare di sistemi fisici caratterizzabili mediante:

Dettagli

Lez. 3 L elaborazione (II parte) Prof. Pasquale De Michele Gruppo 2

Lez. 3 L elaborazione (II parte) Prof. Pasquale De Michele Gruppo 2 Lez. 3 L elaborazione (II parte) Prof. Pasquale De Michele Gruppo 2 1 Dott. Pasquale De Michele Dipartimento di Matematica e Applicazioni Università di Napoli Federico II Compl. Univ. Monte S.Angelo Via

Dettagli

Lezione 28 Maggio I Parte

Lezione 28 Maggio I Parte Lezione 28 Maggio I Parte La volta scorsa abbiamo fatto un analisi dei fenomeni di diafonia e avevamo trovato che per la diafonia vicina il valore medio del quadrato del segnale indotto dalla diafonia

Dettagli

la scienza della rappresentazione e della elaborazione dell informazione

la scienza della rappresentazione e della elaborazione dell informazione Sistema binario Sommario informatica rappresentare informazioni la differenza Analogico/Digitale i sistemi di numerazione posizionali il sistema binario Informatica Definizione la scienza della rappresentazione

Dettagli

L'informazione e la sua codifica

L'informazione e la sua codifica L'informazione e la sua codifica Corso di Informatica CdL: Chimica Claudia d'amato claudia.damato@di.uniba.it Informatica e telecomunicazione Cos è l informatica informatica? lo studio sistematico degli

Dettagli

Appunti ed esercizi di combinatoria. Alberto Carraro

Appunti ed esercizi di combinatoria. Alberto Carraro Appunti ed esercizi di combinatoria Alberto Carraro December 2, 2009 01 Le formule principali per contare Disposizioni Sia A un insieme di n 1 elementi distinti Le sequenze di 1 k n elementi scelti senza

Dettagli

Tasso di interesse e capitalizzazione

Tasso di interesse e capitalizzazione Tasso di interesse e capitalizzazione Tasso di interesse = i = somma che devo restituire dopo un anno per aver preso a prestito un euro, in aggiunta alla restituzione dell euro iniziale Quindi: prendo

Dettagli

Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita?

Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita? Viene lanciata una moneta. Se esce testa vinco 00 euro, se esce croce non vinco niente. Quale è il valore della mia vincita? Osserviamo che il valore della vincita dipende dal risultato dell esperimento

Dettagli

Macchine a stati finiti. Sommario. Sommario. M. Favalli. Le macchine a stati si utilizzano per modellare di sistemi fisici caratterizzabili mediante:

Macchine a stati finiti. Sommario. Sommario. M. Favalli. Le macchine a stati si utilizzano per modellare di sistemi fisici caratterizzabili mediante: Sommario Macchine a stati finiti M. Favalli Engineering Department in Ferrara 4 Sommario (ENDIF) Analisiesintesideicircuitidigitali / 35 (ENDIF) Analisiesintesideicircuitidigitali 2 / 35 4 Le macchine

Dettagli

INFORMATICA. Automa TRATTAMENTO AUTOMATICO DELLE INFORMAZIONI

INFORMATICA. Automa TRATTAMENTO AUTOMATICO DELLE INFORMAZIONI Automa L automa è un sistema, che imita il comportamento umano, in grado di ricevere informazioni dall'esterno (input), reagire alle stesse elaborandole (processing), e inviare informazioni di nuovo all'esterno

Dettagli

Internet e il World Wide Web. Informatica di Base A -- Rossano Gaeta 1

Internet e il World Wide Web. Informatica di Base A -- Rossano Gaeta 1 Internet e il World Wide Web 1 Domande chiave 2.1 Quali sono i mezzi di connessione a Internet e qual è la loro velocità? 2.2 Quali sono i tre tipi di provider Internet e quali tipi di servizi offrono?

Dettagli

La codifica delle immagini

La codifica delle immagini Lettere e numeri non costituiscono le uniche informazioni utilizzate dagli elaboratori ma si stanno diffondendo sempre di più applicazioni che utilizzano ed elaborano anche altri tipi di informazione:

Dettagli

Sistemi di Numerazione

Sistemi di Numerazione Fondamenti di Informatica per Meccanici Energetici - Biomedici 1 Sistemi di Numerazione Sistemi di Numerazione I sistemi di numerazione sono abitualmente posizionali. Gli elementi costitutivi di un sistema

Dettagli

CODIFICA BINARIA. ... sono rappresentati ricorrendo a simboli che sintezzano il concetto di numerosità.

CODIFICA BINARIA. ... sono rappresentati ricorrendo a simboli che sintezzano il concetto di numerosità. I METODI DI NUMERAZIONE I numeri naturali... sono rappresentati ricorrendo a simboli che sintezzano il concetto di numerosità. Il numero dei simboli usati per valutare la numerosità costituisce la base

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea in Economia e Finanza Statistica 1 A.A. 2015/2016 (8 CFU, corrispondenti a 48 ore di lezione frontale e 24 ore di esercitazione) Prof. Luigi Augugliaro 1 / 39 Introduzione Come si è detto,

Dettagli

SISTEMI E RETI. Crittografia. Sistemi distribuiti e configurazione architetturale delle applicazioni WEB.

SISTEMI E RETI. Crittografia. Sistemi distribuiti e configurazione architetturale delle applicazioni WEB. SISTEMI E RETI Crittografia. Sistemi distribuiti e configurazione architetturale delle applicazioni WEB. CRITTOGRAFIA La crittografia è una tecnica che si occupa della scrittura segreta in codice o cifrata

Dettagli

PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado)

PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado) L esito della prossima estrazione del lotto L esito del lancio di una moneta o di un dado Il sesso di un nascituro, così come il suo peso alla nascita o la sua altezza.. Il tempo di attesa ad uno sportello

Dettagli

Se si insiste non si vince

Se si insiste non si vince Se si insiste non si vince Livello scolare: 2 biennio Abilità interessate Valutare la probabilità in diversi contesti problematici. Distinguere tra eventi indipendenti e non. Valutare criticamente le informazioni

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione dell informazione negli elaboratori

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione dell informazione negli elaboratori Informazione e computer Si può rappresentare l informazione attraverso varie forme: Numeri Testi Suoni Immagini 0001010010100101010 Computer Cerchiamo di capire come tutte queste informazioni possano essere

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2006/2007

Probabilità e Statistica Esercitazioni. a.a. 2006/2007 Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2006/2007

Probabilità e Statistica Esercitazioni. a.a. 2006/2007 Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli