Programma lezione IX. Lezione IX 1/22

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Programma lezione IX. Lezione IX 1/22"

Transcript

1 ezione X Programma lezione X /. Sira di corrente in B: Motori e alternatori. isarmio energetico 3. induttanza definizione 4. l trasformatore ideale 5. Energia del solenoide e del camo B 6. induttanza come elemento circuitale 7. Transienti nel circuiti 8. Un circuito in regime alternato : il fattore di otenza 9. a raresentazione olare di voltaggio e corrente.

2 ezione X Sira rotante in B k / B T t t E b n v Calcolo f.e.m. secondo Faraday v E a z y x ( B) Calcolo f.e.m. secondo orentz v b abb cos abb cos t d( B) d f.e.m. abbsin abb sin E v B sin j bb cosk sin i f. e. m. ae abb sin

3 ezione X Sira in B con variabile 3/ s + s n B M a sira ruota uniformemente con = t ed è sin t ercorsa da corrente l momento delle forze elettriche sulla sira M M x abbsin mediato su un eriodo T vale x t T abb sin abb sin T t sin T t cos T t T T abb cos lavoro meccanico temo M x angolo temo abb cos

4 ezione X nduzione magnetica 4/ Motore il lavoro meccanico delle forze elettriche è in media ositivo e 9 <<8. Questo lavoro è seso er vincere un momento resistente uguale e oosto M = <M x >. Sino a che < M < ab/, l'angolo di sfasamento "si adatta" er fornire esattamente il lavoro elettrico richiesto er vincere il momento resistente. Alternatore il lavoro meccanico delle forze elettriche è in media negativo e <<9. Tale lavoro è fornito da un momento torcente M T =<M x > n ambedue i casi il lavoro meccanico è scambiato con il generatore elettrico dove la otenza elettrica erogata () o assorbita (+) vale f.e.m. abb sin t sin abb t cos

5 ezione X isarmio energetico 5/ motore/alternatore = conversione energie meccanica elettrica (>9%) Per scaldare una casa a Milano occorrono ~5kWh/m anno; er un aartamento da m, occorre un bruciatore da 5 kw che trasferisce all abitazione il ~75% del calore di combustione e richiede l equivalente di 75 kg gasolio /anno ari a ~ kwh ther /anno. motore/ alternatore contatore Diesel alternatore radiatore l calore richiesto uò essere rodotto da un iccolo diesel che genera circa 8kW el e kw ther e brucia circa la stessa quantità di gasolio del bruciatore. a otenza elettrica eccedente l uso della casa (~3kW max ) otrebbe andare in rete o usata er omare acqua in un bacino idroelettrico. Si scalda la casa e si roducono ~53 kwh el /anno (consumo di ~3 case) che richiederebbero (5kWh ther ~3 kg gasolio )/anno. l guadagno è ari al 75% del gasolio er riscaldamento!!!

6 ezione X nduttanza 6/ Una sira ercorsa da corrente genera un flusso di B autoconcatenato roorzionale ad : S B con = induttanza, rorietà geometrica della sira (o circuito chiuso) B Per la legge di Faraday e sira indeformabile d S ( B) d f.e.m.(si ra) ha le dimensioni di resistenzatemo e si misura in henry (H) henry = s

7 ezione X l trasformatore ideale 7/ B s ~ s s l trasformatore è un disositivo formato da due avvolgimenti accoiati in cui l'uno concatena nell'altro il flusso di B rodotto dalla sua corrente e viceversa. Questo si realizza in ratica avvolgendo le due bobine su un rofilato di ferro dolce lungo il quale si incanalano le linee di flusso magnetico. ndicato con (B) il flusso nel ferro si ha = d(b). s = s d(b) s = s

8 ezione X l trasformatore ideale 8/ flussi magnetici concatenati nel rimario e nel secondario, (B) e s (B) diendono sia dalla corrente del rimario,, che da quella del secondario, s. a corrente roduce nel rimario un flusso roorzionale alla induttanza del rimario stesso; questa induttanza è roorzionale al quadrato del numero delle sire del rimario l camo all'interno dell'avvolgimento è roorzionale al numero di sire e ogni sira concatena un flusso ari alla sua area moltilicata er il camo magnetico. a corrente contribuisce al flusso concatenato col secondario s

9 ezione X l trasformatore ideale 9/ Per un trasformatore ideale (senza erdite) ognuna delle s sire del secondario concatena lo stesso flusso magnetico di una sira del rimario che, er s =, è ari al flusso concatenato col rimario,, diviso il numero di sire. Gli stessi ragionamenti valgono er l'induttanza del secondario s e er i flussi rodotti da s. a situazione dei flussi concatenati con rimario e secondario è riassunta in tabella (B) s (B) s s s s s s s

10 l trasformatore ideale ezione X / Per correnti di secondario non nulle, la otenza nel rimario e nel secondario sono uguali W = = s s s = s = s imedenza Z vista dal rimario ( / ) quando il secondario è chiuso su una resistenza ( s = s ) si ottiene dividendo er la rima uguaglianza s s Z Sia un trasformatore da 4 ( ) a ( s ) (ossia = s ) con una resistenza = sul secondario ( s =A). a corrente sul rimario è = s /=.6A e il rimario «vede» una resistenza di 4 (x ) s s s W

11 ezione X Energia dell induttanza / avoro er ortare la corrente della induttanza da ()= a (t) calcolato artendo dalla esressione della otenza elettrica W W W lavoro f.e.m d W d Come er la carica del condensatore, il lavoro è negativo erché comiuto sull induttanza e non fatto sontaneamente dal camo d ( t) t

12 ezione X nduttanza del solenoide / B ( B) l r B r l l flusso autoconcatenato di B è dato dal numero delle sire er il flusso attraverso la sezione r ( B) r l En( ) r l l r l B ol energia densità di energia B volume Per un solenoide molto lungo, l energia di B è concentrata quasi tutta all interno del solenoide; la formula della densità di energia vale semre

13 ezione X nduttanza nei circuiti 3/ d d serie d ( ) induttanza comlessiva di due induttanze in serie (cioè ercorse dalla stessa corrente) è ari alla somma delle induttanze

14 ezione X nduttanza nei circuiti 4/ d d d( arallelo ) induttanza comlessiva di due induttanze in arallelo, cioè con uguale differenza di otenziale, è uguale al reciroco della somma dei reciroci delle induttanze

15 ezione X Transiente in circuito 5/ G (t) d t t t ( t ) G ( ) ( ) G ( ) d(t) (t) G (t)/ t/(/) Equazione della maglia; interruttore chiuso a t= ( t) G e t a corrente aumenta e tende asintoticamente al valore G / che si avrebbe in assenza di a costante di temo della crescita della corrente è /

16 ezione X nduttanza 6/ a costante di temo della crescita della corrente è =/ energia che si immagazzina nella induttanza è E t t ( t) d( t) ( ) () d

17 ezione X Circuiti in corrente alternata 7/ (t) ( t) cos t (t) Equazione della maglia Soluzione di tentativo = corrente sfasata risetto alla tensione d cos ( t) cost d t cos t cos sint sin sint cos cost sin Si inserisce la soluzione di tentativo nella equazione di maglia e si eguagliano nei due membri i coefficienti di cost e sint cos sin sin cos

18 Circuiti in corrente alternata ezione X 8/ tan sin cos 45 9 / / /

19 Circuiti in corrente alternata ezione X 9/ G cos t t a otenza erogata dal generatore è roorzionale a cos, detto fattore di otenza l comortamento del circuito diende dal raorto adimensionale /; er = si ha la otenza massima, ari a quella che G (t) dissierebbe sulla resistenza ; er >>/ e all aumentare di la otenza decresce con l inverso del quadrato della frequenza.

20 ezione X Circuiti in corrente alternata / a otenza media erogata dal generatore t t cos è roorzionale a cos, detto fattore di otenza l comortamento del circuito diende dal raorto adimensionale / l circuito si comorta come una ura resistenza: lo sfasamento tensione-corrente tende a zero l circuito si comorta come una ura induttanza; la corrente è in ritardo di un quarto di eriodo risetto alla tensione e l assorbimento di otenza tende a zero

21 ezione X aresentazione olare / ttan / t a corrente nel circuito è in ritardo risetto al voltaggio Grazie alla raresentazione di Eulero del numero comlesso, le relazioni trigonometriche diventano semlici relazioni algebriche. Anziché trovare direttamente la soluzione reale conviene il ercorso Equazione reale Trasformazione nel camo comlesso Soluzione nel camo comlesso Proiezione sull asse reale

22 ezione X Circuiti in corrente alternata / l voltaggio (noto) e la corrente (da trovare) si interretano come roiezione sull asse reale di vettori rotanti con velocità angolare nel iano comlesso. equazione della maglia ( t) cost messa in forma comlessa diventa, doo aver semlificato il termine oscillante ex(it), una relazione algebrica nelle incognite e d (t) (t) t ex it t ex it ex i d i ex it ex i / i ex i tan

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G.

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G. L INDUZIONE ELETTROMAGNETICA V Scientifico Prof.ssa Delfino M. G. INDUZIONE E ONDE ELETTROMAGNETICHE 1. Il flusso del vettore B 2. La legge di Faraday-Neumann-Lenz 3. Induttanza e autoinduzione 4. I circuiti

Dettagli

LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA

LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA Se un magnete è posto vicino ad un circuito conduttore chiuso, nel circuito si manifesta una f.e.m. quando il magnete è messo in movimento. Tale

Dettagli

IIASS International Institute for Advanced Scientific Studies

IIASS International Institute for Advanced Scientific Studies IIASS International Institute for Advanced Scientific Studies Eduardo R. Caianiello Circolo di Matematica e Fisica Diartimento di Fisica E.R. Caianiello Università di Salerno Premio Eduardo R. Caianiello

Dettagli

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 6 INDUZIONE ELETTROMAGNETICA

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica - Edile - Informatica Esercitazione 6 INDUZIONE ELETTROMAGNETICA Fisica enerale Modulo di Fisica II A.A. 05-6 INDUZIONE EETTOMANETIA Eb. Una spira rettangolare di altezza l 0 cm è 0. T completata da un contatto mobile che viene spostato verso destra alla velocità costante

Dettagli

Esercizi proposti - Gruppo 7

Esercizi proposti - Gruppo 7 Argomenti di Matematica er l Ingegneria - Volume I - Esercizi roosti Esercizi roosti - Gruo 7 1) Verificare che ognuina delle seguenti coie di numeri razionali ( ) r + 1, r + 1, r Q {0} r ha la rorietà

Dettagli

approfondimenti Lavoro meccanico ed energia elettrica Autoinduzione e induttanza Circuiti RL Trasformatori e trasporto di energia elettrica

approfondimenti Lavoro meccanico ed energia elettrica Autoinduzione e induttanza Circuiti RL Trasformatori e trasporto di energia elettrica approfondimenti Lavoro meccanico ed energia elettrica Autoinduzione e induttanza Circuiti RL Trasformatori e trasporto di energia elettrica Lavoro meccanico ed energia elettrica -trattazione qualitativa

Dettagli

L'intensità del campo magnetico nell'aria (o nel vuoto) H0 misurato in amperspire/m, può avere in alcuni casi espressioni particolarmente semplici:

L'intensità del campo magnetico nell'aria (o nel vuoto) H0 misurato in amperspire/m, può avere in alcuni casi espressioni particolarmente semplici: C A M P O M A G N E T I C O N E L L ' A R I A L'intensità del campo magnetico nell'aria (o nel vuoto) H0 misurato in amperspire/m, può avere in alcuni casi espressioni particolarmente semplici: 1] Intensità

Dettagli

Generatori di tensione

Generatori di tensione Correnti alternate Generatori di tensione Sinora come generatore di forza elettromotrice abbiamo preso in considerazione soltanto la pila elettrica. Questo generatore ha la caratteristica di fornire sempre

Dettagli

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 1. Il campo elettrico e legge di Coulomb: esempio del calcolo generato da alcune semplici distribuzioni. 2. Il campo

Dettagli

Componenti di un circuito elettrico in regime sinusoidale

Componenti di un circuito elettrico in regime sinusoidale omponenti di un circuito elettrico in regime sinusoidale omponenti di un circuito elettrico in regime sinusoidale Introduzione: a corrente elettrica, nel suo passaggio all interno di un conduttore, produce

Dettagli

Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B.

Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B. Φ ε ds ds dφ = dt Legge di Faraday E x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x 1 x x x x x x x x x x E x x x x x x x x x x E Schema Generale Elettrostatica moto di q in un campo E

Dettagli

EFFETTO MAGNETICO DELLA CORRENTE

EFFETTO MAGNETICO DELLA CORRENTE IL CAMPO MAGNETICO E GLI EFFETTI MAGNETICI DELLA CORRENTE 1 EFFETTO MAGNETICO DELLA CORRENTE Ogni conduttore percorso da corrente crea intorno a sé un campo magnetico (H), cioè una perturbazione di tipo

Dettagli

R e R L. La soluzione per i(t) é quindi identica alla soluzione per Q(t) nel caso di un circuito RC, a meno delle dette sostituzioni:

R e R L. La soluzione per i(t) é quindi identica alla soluzione per Q(t) nel caso di un circuito RC, a meno delle dette sostituzioni: Circuiti L/LC Circuiti L La trattazione di un circuito L nel caso in cui venga utilizzato un generatore di tensione indipendente dal tempo é del tutto analoga alla trattazione di un circuito C, nelle stesse

Dettagli

CORRENTI ALTERNATE. Dopo che la spira è ruotata di in certo angolo in un tempo t si ha

CORRENTI ALTERNATE. Dopo che la spira è ruotata di in certo angolo in un tempo t si ha 1 easy matematica CORRENI ALERNAE Consideriamo una bobina ruotante, con velocità angolare ω costante all'interno di un campo magnetico uniforme B. Gli estremi della spira sono collegati a due anelli chiamati

Dettagli

Formulario Elettromagnetismo

Formulario Elettromagnetismo Formulario Elettromagnetismo. Elettrostatica Legge di Coulomb: F = q q 2 u 4 0 r 2 Forza elettrostatica tra due cariche puntiformi; ε 0 = costante dielettrica del vuoto; q = cariche (in C); r = distanza

Dettagli

in forma matriciale: X = A X + B, cioè Se il det A = ad - bc è diverso da zero, la trasformazione è invertibile e quindi biunivoca; in tal caso la

in forma matriciale: X = A X + B, cioè Se il det A = ad - bc è diverso da zero, la trasformazione è invertibile e quindi biunivoca; in tal caso la TRASFORMAZIONI LINEARI SUL PIANO Sono trasformazioni lineari tutte le trasformazioni del tio: a b c d q in forma matriciale: X A X B, cioè a c b d q Dove a A c b d è la matrice della trasformazione. Se

Dettagli

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Esercizio 1 (7 punti): Nella regione di spazio compresa tra due cilindri coassiali

Dettagli

FISICA SPERIMENTALE II! Corso di laurea in Chimica (6CFU, 48 ORE)!

FISICA SPERIMENTALE II! Corso di laurea in Chimica (6CFU, 48 ORE)! FISICA SPERIMENTALE II! Corso di laurea in Chimica (6CFU, 48 ORE)! ì Docente: Claudio Melis, Ricercatore a tempo determinato presso il Dipartimento di Fisica! Email: claudio.melis@dsf.unica.it!! Telefono

Dettagli

CIRCUITI IN REGIME SINUSOIDALE

CIRCUITI IN REGIME SINUSOIDALE IUITI IN EGIME SINUSOIDALE 9.1. Nel circuito della figura il voltaggio alternato è V = V 0 cost con = 314 rad/s, V 0 = 311 V, L = 0.9 H, = 6.96 F. Se il fattore di potenza del circuito è pari a 0.98, la

Dettagli

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11. Prova di esame del 14/11/ NOME

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11. Prova di esame del 14/11/ NOME Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11 Prova di esame del 14/11/2011 - NOME 1) a) Quanto calore è necessario per aumentare la temperatura di una pentola di ferro

Dettagli

Induzione elettromagnetica

Induzione elettromagnetica Induzione elettromagnetica Una corrente elettrica produce un campo magnetico Un campo magnetico esercita una forza sui circuiti percorsi da corrente È possibile generare correnti per mezzo di campi magnetici?

Dettagli

I magneti comunemente usati in esperimenti a bersaglio fisso sono i magneti dipolari.

I magneti comunemente usati in esperimenti a bersaglio fisso sono i magneti dipolari. Misure d imulso Un aarato che ermette una misura di tracce ( insieme di camere MWPC o a deriva o silici) osto in un camo magnetico (ossibilmente uniforme) fornisce una misura dell imulso delle articelle

Dettagli

GENERATORI MECCANICI DI CORRENTE

GENERATORI MECCANICI DI CORRENTE GENERATORI MECCANICI DI CORRENTE IL MAGNETISMO Il termine deriva da un minerale del ferro: la magnetite (o calamita naturale), che ha la proprietà di attrarre alcuni metalli. Il campo magnetico è lo spazio

Dettagli

ESAME DI AMMISSIONE ALLA TERZA LICEO SCIENZE SPERIMENTALI: FISICA

ESAME DI AMMISSIONE ALLA TERZA LICEO SCIENZE SPERIMENTALI: FISICA LICO CANTONAL DI LUGANO 2 SAM DI AMMISSION ALLA TRZA LICO SCINZ SRIMNTALI: FISICA COGNOM: NOM:...... RONINZA SCOLASTICA:. unti esercizi 1 2 3 TOT 18 4 3 25 unti fatti Nota SRCIZIO 1 Annerire o crociare

Dettagli

Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia

Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia Prof. Dino Zardi Dipartimento di Ingegneria Civile, Ambientale e Meccanica Fisica Componenti elementari

Dettagli

TRASFORMAZIONI LINEARI SUL PIANO

TRASFORMAZIONI LINEARI SUL PIANO TRASFORMAZIONI LINEARI SUL PIANO Sono trasformazioni lineari tutte le trasformazioni del tio: a b c d in forma matriciale: X A X B, cioè a c b d Dove a A c b d è la matrice della trasformazione. Se il

Dettagli

Fisica II. 5 Esercitazioni

Fisica II. 5 Esercitazioni Esercizi solti Esercizio 5.1 Una articella, di carica q e (e-1.6 10-19 C è la carica dell elettrone) e massa m6.68 10-7 Kg, è in moto in un camo magnetico di intensità B1 T con elocità ari a 1/15 della

Dettagli

MACCHINE ELETTRICHE 23 giugno 2005 Elettrotecnica _ Energetica _

MACCHINE ELETTRICHE 23 giugno 2005 Elettrotecnica _ Energetica _ MACCHINE ELETTRICHE 23 giugno 2005 Elettrotecnica _ Energetica _ DOMANDE DI TEORIA 1) Circuiti equivalenti di un trasformatore monofase e considerazioni relative ai vari parametri. 2) Diagramma polare

Dettagli

Trasformatore monofase

Trasformatore monofase Trasformatore ideale l trasformatore ideale è un sistema lineare e non dissipativo potesi: P 0 ρ cu 0 (P cu 0) μ η u i u i l 0 μ S Tutto il flusso viene incanalato nel nucleo che si comporta come un unico

Dettagli

Esercizi di magnetismo

Esercizi di magnetismo Esercizi di magnetismo Fisica II a.a. 2003-2004 Lezione 16 Giugno 2004 1 Un riassunto sulle dimensioni fisiche e unità di misura l unità di misura di B è il Tesla : definisce le dimensioni [ B ] = [m]

Dettagli

Azionamenti Elettrici Parte 1 Generazione del moto mediante motori elettrici

Azionamenti Elettrici Parte 1 Generazione del moto mediante motori elettrici Azionamenti Elettrici Parte Generazione del moto mediante motori elettrici Prof. Alberto Tonielli DEIS - Università di Bologna Tel. 05-6443024 E-mail mail: atonielli@deis deis.unibo.itit Collocazione del

Dettagli

ESERCIZI SULLA DINAMICA DI CORPI RIGIDI.

ESERCIZI SULLA DINAMICA DI CORPI RIGIDI. ESERCIZI SULL DINMIC DI CRPI RIIDI. Risoluzione mediante equazioni di Lagrange, equilibrio relativo (forze aarenti), stazionarietà del otenziale U; stabilità dell equilibrio e analisi delle iccole oscillazioni.

Dettagli

TASFORMATORI. I trasformatori sono macchine elettriche:

TASFORMATORI. I trasformatori sono macchine elettriche: TASFORMATORI Trasformatori I trasformatori sono macchine elettriche: 1. statiche, cioè non hanno parti in movimento; 2. funzionanti a corrente alternata sinusoidale; 3. Reversibili: l ingresso può diventare

Dettagli

ESERCITAZIONE 4: MONOPOLIO E CONCORRENZA PERFETTA

ESERCITAZIONE 4: MONOPOLIO E CONCORRENZA PERFETTA ESERCITAZIONE 4: MONOPOLIO E CONCORRENZA PERFETTA Esercizio : Scelta ottimale di un monoolista e imoste Si consideri un monoolista con la seguente funzione di costo totale: C ( ) = 400 + + 0 0 La domanda

Dettagli

La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti.

La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. 1 / 1 La forza di Lorentz è: una forza conservativa. una forza radiale. una forza

Dettagli

PRINCIPIO DI FUNZIONAMENTO DEL TRASFORMATORE

PRINCIPIO DI FUNZIONAMENTO DEL TRASFORMATORE PRINCIPIO DI FUNZIONAMENTO DEL TRASFORMATORE Il trasformatore è costituito essenzialmente da un nucleo di lamierini ferromagnetici su cui sono avvolti due avvolgimenti in rame con diverso numero di spire

Dettagli

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf.

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf. ESERCIZI 1) Due sfere conduttrici di raggio R 1 = 10 3 m e R 2 = 2 10 3 m sono distanti r >> R 1, R 2 e contengono rispettivamente cariche Q 1 = 10 8 C e Q 2 = 3 10 8 C. Le sfere vengono quindi poste in

Dettagli

Trasformatore monofase E =

Trasformatore monofase E = Circuito equivalente esatto del trasformatore monofase E V t = = = E V t = Rapporto di trasformazione V V = R I = R I + jx d jx I d + I E I + + E = I + I0 = I + Im Ip E E = jωλ = jω Φ = = R 0 E = I p E

Dettagli

1 TERMODINAMICA DELLE TURBINE A GAS 1.1 INTRODUZIONE

1 TERMODINAMICA DELLE TURBINE A GAS 1.1 INTRODUZIONE TERMODINAMICA DELLE TURBINE A GAS. INTRODUZIONE Il ciclo termodinamico su cui è imostato il funzionamento delle turbine a gas è il ciclo Bryton, la cui analisi orta alla determinazione di due arametri

Dettagli

La corrente alternata

La corrente alternata La corrente alternata Corrente continua e corrente alternata Le correnti continue sono dovute ad un generatore i cui poli hanno sempre lo stesso segno e pertanto esse percorrono un circuito sempre nello

Dettagli

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza Induzione magne-ca a legge di Faraday- Neumann- enz e l indu7anza egge di Faraday Un filo percorso da corrente crea un campo magnetico. Con un magnete si può creare una corrente? a risposta è naturalmente

Dettagli

Trasformatore monofase Da un punto di vista di trasformazioni di energia, si tratta di una macchina elettrica in grado di trasformare energia elettrica in altra energia elettrica. Il suo funzionamento

Dettagli

Il convertitore bidirezionale a commutazione forzata trova ampio impiego anche in versione trifase.

Il convertitore bidirezionale a commutazione forzata trova ampio impiego anche in versione trifase. Il convertitore bidirezionale a commutazione forzata trova ampio impiego anche in versione trifase. In questa versione, anzi, non è necessario impiegare il filtro risonante L 1 C 1, in quanto il trasferimento

Dettagli

Forze su cariche nei fili: il motore elettrico

Forze su cariche nei fili: il motore elettrico Forze su cariche nei fili: il motore elettrico In presenza di un campo magnetico B, un tratto di filo (d l) percorsa da una corrente i è soggetto ad una forza F = id l B. Un tratto rettilineo di filo di

Dettagli

R = 2.2 kω / 100 kω Tensione di alimentazione picco-picco ε = 2 V (R int = 600 Ω)

R = 2.2 kω / 100 kω Tensione di alimentazione picco-picco ε = 2 V (R int = 600 Ω) Strumentazione: oscilloscopio, generatore di forme d onda (utilizzato con onde sinusoidali), 2 sonde, basetta, componenti R,L,C Circuito da realizzare: L = 2 H (±10%) con resistenza in continua di R L

Dettagli

1. RELAZIONI TENSIONE-CORRENTE NEL DOMINIO DEL TEMPO. i(t) = v(t) / R = V M / R sen ωt i(t) = I M sen ωt I(t) = I M e jωt

1. RELAZIONI TENSIONE-CORRENTE NEL DOMINIO DEL TEMPO. i(t) = v(t) / R = V M / R sen ωt i(t) = I M sen ωt I(t) = I M e jωt 1. RELAZIONI TENSIONE-CORRENTE NEL DOMINIO DEL TEMPO i(t) Tensione applicata : v(t) v(t) = V M sen ωt V(t) = V M e jωt : vettore ruotante che genera la sinusoide RESISTORE i(t) = v(t) / R = V M / R sen

Dettagli

Rispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova: 55 minuti. 1

Rispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova: 55 minuti. 1 Liceo Scientifico L. Cremona - Milano. Classe: TEST DI FISICA. Magnetismo. Docente: M. Saita Cognome: Nome: Dicembre 2015 ispondere per iscritto ai seguenti quesiti sul foglio protocollo. Tempo della prova:

Dettagli

Potenze in regime sinusoidale. Lezione 4 1

Potenze in regime sinusoidale. Lezione 4 1 Potenze in regime sinusoidale Lezione 4 1 Definizione di Potenza disponibile Generatore di segnale Z g = Rg + j Xg Potenza disponibile P d V V = = 4R 8R oe om g g Standard industriale = R = 50 Ω Lezione

Dettagli

Principio di funzionamento del trasformatore ideale

Principio di funzionamento del trasformatore ideale IL TRASFORMATORE Gli impianti di generazione, trasporto e distribuzione dell'energia sono ampiamente dipendenti dall utilizzo dei trasformatoriin quanto:: i generatori installati nelle centrali generano

Dettagli

Principi di Economia - Microeconomia Esercitazione 2 Domanda, offerta ed equilibrio di mercato Soluzioni

Principi di Economia - Microeconomia Esercitazione 2 Domanda, offerta ed equilibrio di mercato Soluzioni Princii di Economia - Microeconomia Esercitazione 2 Domanda, offerta ed equilibrio di mercato Soluzioni Daria Vigani Febbraio 2014 1. Assumiamo la seguente funzione di domanda di mercato er il gelato:

Dettagli

RIFASAMENTO DEI CARICHI

RIFASAMENTO DEI CARICHI RIFASAMENTO DEI CARICHI GENERALITÀ Nei circuiti in corrente alternata la potenza assorbita da un carico può essere rappresentata da due componenti: la componente attiva P che è direttamente correlata al

Dettagli

RISONANZA. Fig.1 Circuito RLC serie

RISONANZA. Fig.1 Circuito RLC serie RISONANZA Risonanza serie Sia dato il circuito di fig. costituito da tre bipoli R, L, C collegati in serie, alimentati da un generatore sinusoidale a frequenza variabile. Fig. Circuito RLC serie L impedenza

Dettagli

Classe 3ael prof. Pollini Stefano

Classe 3ael prof. Pollini Stefano Classe 3ael prof. Pollini Stefano A vuoto V1 Fase 1 Il trasformatore è scollegato dal generatore V1 Im Fase 2 Viene chiuso l interruttore e comincia a circolare corrente Im (corrente magnetizzante). Essendo

Dettagli

Prova scritta del corso di Fisica con soluzioni. Prof. F. Ricci-Tersenghi 14/11/2014

Prova scritta del corso di Fisica con soluzioni. Prof. F. Ricci-Tersenghi 14/11/2014 Prova scritta del corso di Fisica con soluzioni Prof. F. icci-tersenghi 14/11/214 Quesiti 1. Si deve trascinare una cassa di massa m = 25 kg, tirandola con una fune e facendola scorrere su un piano scabro

Dettagli

CARICA E SCARICA DEL CONDENSATORE Studiare la scarica del condensatore della figura che è connesso

CARICA E SCARICA DEL CONDENSATORE Studiare la scarica del condensatore della figura che è connesso CARICA E SCARICA DEL CONDENSATORE 5.1. Studiare la scarica del condensatore della figura che è connesso I(t) alla resistenza al tempo t = 0 quando porta una carica Q(0) = Q 0. C R V(t) SOLUZIONE. A interruttore

Dettagli

L induzione elettromagnetica - Legge di Faraday-Lentz

L induzione elettromagnetica - Legge di Faraday-Lentz Ver. 1. del 7/1/9 L induzione elettromagnetica - Legge di Faraday-Lentz i osservano alcuni fatti sperimentali. 1 ) Consideriamo un filo metallico chiuso su se stesso (spira) tramite un misuratore di corrente

Dettagli

MOTORE ASINCRONO. Rotore ROTORE 2 - avvolto - a gabbia di scoiattolo

MOTORE ASINCRONO. Rotore ROTORE 2 - avvolto - a gabbia di scoiattolo MOTORE ASINCRONO STATORE: pacco magnetico 1 laminato secondo piani ortogonali all asse Rotore ROTORE - avvolto - a gabbia di scoiattolo Statore Avvolgimento rotorico (avvolgimento trifase con uguale numero

Dettagli

Corso di Sistemi Prof. Aniello Celentano anno scolastico 2015/2016 ITIS G. Ferraris (NA)

Corso di Sistemi Prof. Aniello Celentano anno scolastico 2015/2016 ITIS G. Ferraris (NA) I Numeri complessi I numeri complessi sono costituiti da una coppia di numeri reali (a,b). Il numero reale a è la parte reale, mentre b è la parte immaginaria. La parte immaginaria è sempre accompagnata

Dettagli

Le lettere x, y, z rappresentano i segnali nei vari rami.

Le lettere x, y, z rappresentano i segnali nei vari rami. Regole per l elaborazione di schemi a blocchi Oltre alle tre fondamentali precedenti regole (cascata, parallelo, retroazione), ne esiste una serie ulteriore che consente di semplificare i sistemi complessi,

Dettagli

Fig. 1: rotore e statore di una dinamo

Fig. 1: rotore e statore di una dinamo La dinamo La dinamo è una macchina elettrica rotante per la trasformazione di lavoro meccanico in energia elettrica, sotto forma di corrente continua. Costruttivamente è costituita da un sistema induttore

Dettagli

Teoria dei circuiti reazionati

Teoria dei circuiti reazionati Teoria dei circuiti reazionati Differenze tra lo schema di reazione ideale e il circuito con retroazione: Ogni blocco dello schema a blocchi ha una direzione e un trasferimento che non dipende dai blocchi

Dettagli

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I ELETTOTECNICA (0 CFU) CS INGEGNEIA MATEMATICA I prova in itinere 20 Novembre 2009 SOLUZIONI - - D. (punti 4 ) ) Spiegare cosa si intende per DUALITA nello studio dei circuiti elettrici. 2) Scrivere per

Dettagli

POTENZA ATTIVA, REATTIVA, APPARENTE NEI CIRCUITI COMPLESSI. TEOREMA DI BOUCHEROT

POTENZA ATTIVA, REATTIVA, APPARENTE NEI CIRCUITI COMPLESSI. TEOREMA DI BOUCHEROT POTENZA ATTIVA, REATTIVA, APPARENTE NEI CIRCUITI COMPLESSI. TEOREMA DI BOUCHEROT In una rete complessa possono essere presenti contemporaneamente più resistori, induttori e condensatori. Il calcolo delle

Dettagli

Compito di Elettrotecnica, Ing. Gestionale, Pisa, 5 Giugno vista dai morsetti 1-2 del bipolo in figura (A da tabella)

Compito di Elettrotecnica, Ing. Gestionale, Pisa, 5 Giugno vista dai morsetti 1-2 del bipolo in figura (A da tabella) Compito di Elettrotecnica, Ing. Gestionale, Pisa, 5 Giugno 214 Allievo... 1) Calcolare la R eq vista dai morsetti 1-2 del bipolo in figura (A da tabella) 2) Calcolare la E th (tensione di Thevenin) ai

Dettagli

Grande rilevanza hanno in elettronica i segnali sinusoidali. Un. segnale sinusoidale è un segnale che varia nel tempo con una legge

Grande rilevanza hanno in elettronica i segnali sinusoidali. Un. segnale sinusoidale è un segnale che varia nel tempo con una legge I segnali sinusoidali Grande rilevanza hanno in elettronica i segnali sinusoidali. Un segnale sinusoidale è un segnale che varia nel tempo con una legge del seguente tipo u = U sen( ω t+ ϕ ) Figura A andamento

Dettagli

PROVA SCRITTA D ESAME DEL 09 GIUGNO 2008

PROVA SCRITTA D ESAME DEL 09 GIUGNO 2008 UNVERSTÀ D ROMA LA SAPENZA FACOLTÀ D NGEGNERA CORSO D LAUREA N NGEGNERA ENERGETCA DSCPLNA D MAHNE E CONVERTTOR D ENERGA ELETTRCA PROVA SCRTTA D ESAME DEL 9 GUGNO 8 Quesito 1 parametri del circuito equivalente

Dettagli

Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito

Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito quando: 1) il circuito è in presenza di un campo magnetico

Dettagli

I.T.I.S. TRASFORMATA DI LAPLACE DIAGRAMMI DI BODE

I.T.I.S. TRASFORMATA DI LAPLACE DIAGRAMMI DI BODE I.T.I.S. APPUNTI DI ELETTRONICA TRASFORMATA DI LAPLACE E DIAGRAMMI DI BODE PREMESSA Per lo studio dei sistemi di controllo si utilizzano modelli matematici dinamici lineari. L analisi o il progetto di

Dettagli

Elettrotecnica Esercizi di riepilogo

Elettrotecnica Esercizi di riepilogo Elettrotecnica Esercizi di riepilogo Esercizio 1 I 1 V R 1 3 V 2 = 1 kω, = 1 kω, R 3 = 2 kω, V 1 = 5 V, V 2 = 4 V, I 1 = 1 m. la potenza P R2 e P R3 dissipata, rispettivamente, sulle resistenze e R 3 ;

Dettagli

rapporto tra l'incremento della funzione e l' incremento corrispondente della

rapporto tra l'incremento della funzione e l' incremento corrispondente della DERIVATA Sia y f() una funzione reale definita in un intorno di. Si consideri un incremento (positivo o negativo) di : h; la funzione passerà allora dal valore f( ) a quello di f( +h), subendo così un

Dettagli

Tre tipi di Sistema Un richiamo

Tre tipi di Sistema Un richiamo Corso di Studi di Fisica Corso di Chimica Luigi Cerruti www.minerva.unito.it Programma: a che unto siamo? Lezioni 25-26 2010 re tii di Sistema Un richiamo Un aio di riferimenti matematici Sistema isolato:

Dettagli

5. Amplificatori. Corso di Fondamenti di Elettronica Fausto Fantini a.a

5. Amplificatori. Corso di Fondamenti di Elettronica Fausto Fantini a.a 5. Amplificatori Corso di Fondamenti di Elettronica Fausto Fantini a.a. 2010-2011 Amplificazione Amplificare un segnale significa produrre un segnale in uscita (output) con la stessa forma d onda del segnale

Dettagli

La centrale Termoelettrica

La centrale Termoelettrica 1 La centrale Termoelettrica L'energia elettrica prima di arrivare nelle nostre case subisce varie trasformazioni: esce dalla centrale a 380.000 volt e viene spedita attraverso i cavi ad alta tensione

Dettagli

1.11.3 Distribuzione di carica piana ed uniforme... 32

1.11.3 Distribuzione di carica piana ed uniforme... 32 Indice 1 Campo elettrico nel vuoto 1 1.1 Forza elettromagnetica............ 2 1.2 Carica elettrica................ 3 1.3 Fenomeni elettrostatici............ 6 1.4 Legge di Coulomb.............. 9 1.5 Campo

Dettagli

Potenza in regime sinusoidale

Potenza in regime sinusoidale 26 Con riferimento alla convenzione dell utilizzatore, la potenza istantanea p(t) assorbita da un bipolo è sempre definita come prodotto tra tensione v(t) e corrente i(t): p(t) = v(t) i(t) Considerando

Dettagli

È l elemento della catena dei controlli che attua il processo (motore asincrono trifase, motore in corrente continua, cilindro pneumatico).

È l elemento della catena dei controlli che attua il processo (motore asincrono trifase, motore in corrente continua, cilindro pneumatico). Pagina 1 di 10 Gli attuatori È l elemento della catena dei controlli che attua il processo (motore asincrono trifase, motore in corrente continua, cilindro pneumatico). Macchina in corrente continua Potenza

Dettagli

Risoluzione Assegno

Risoluzione Assegno hristian oola orso di Fenomeni di Trasorto I Ingegneria himica (N.O. isoluzione Assegno... Esercizio a La sinta sul tao uò essere scomosta in due arti. Una è la sinta esercitata dal fluido contenuto nel

Dettagli

Regime stazionario. Corso di Elettrotecnica NO. Angelo Baggini. Rappresentazione e analisi delle reti elettriche in regime stazionario.

Regime stazionario. Corso di Elettrotecnica NO. Angelo Baggini. Rappresentazione e analisi delle reti elettriche in regime stazionario. ver. 0000 Corso di lettrotecnica NO ngelo aggini potesi Regime stazionario Rappresentazione e analisi delle reti elettriche in regime stazionario Cariche libere di muoversi Tutte le derivate rispetto al

Dettagli

Il disegno spiega su una superficie piana un oggetto tridimensionale

Il disegno spiega su una superficie piana un oggetto tridimensionale Università degli Studi Laboratorio Di Disegno -- dl..e.g.a. Prof. A. Petino Annotazioni er gli studenti Il disegno siega su una suerficie iana un oggetto tridimensionale Differenti modi di raresentare

Dettagli

FUNZIONAMENTO TRANSITORIO DEL TRASFORMATORE TRANSITORIO DI INSERZIONE A VUOTO

FUNZIONAMENTO TRANSITORIO DEL TRASFORMATORE TRANSITORIO DI INSERZIONE A VUOTO FUNZIONAMENTO TRANSITORIO DEL TRASFORMATORE TRANSITORIO DI INSERZIONE A VUOTO t = 0 Z 1 Z 2 Z 0 CIRCUITO EQUIVALENTE DI UNA FASE 1 FUNZIONAMENTO TRANSITORIO DEL TRASFORMATORE A VUOTO Per lo studio del

Dettagli

Modello di Greitzer (1976) Simulazione del comportamento dinamico di compressori

Modello di Greitzer (1976) Simulazione del comportamento dinamico di compressori Modello di Greitzer (1976) Simulazione del comortamento dinamico di comressori Iotesi del modello. Si consideri un sistema fisico comosto, nell ordine, da un comressore, un lenum ed una valvola di strozzamento.

Dettagli

Metodo delle trasformate di Laplace. Lezione 12 1

Metodo delle trasformate di Laplace. Lezione 12 1 Metodo delle trasformate di Laplace Lezione Fasi del metodo Trasformazione della rete dal dominio del tempo al dominio di Laplace Calcolo della rete in Laplace con metodi circuitali Calcolo delle antitrasformate

Dettagli

ESERCIZI DI TERMODINAMICA

ESERCIZI DI TERMODINAMICA ESERCIZI DI TERMODINAMICA Un otore a cobustione eroga una otenza effettiva di k con un rendiento totale del 8% Il cobustibile utilizzato ha un otere calorifico inferiore di 000 k Calcolare la assa di cobustibile

Dettagli

Problemi Di Cinematica del Punto Materiale A cura del Prof. T.Papa. dx x = 8 m=s2 : dx 2 _x2 + dy A 2! 2 : A 2! 2 A 2 + 900 A 2!

Problemi Di Cinematica del Punto Materiale A cura del Prof. T.Papa. dx x = 8 m=s2 : dx 2 _x2 + dy A 2! 2 : A 2! 2 A 2 + 900 A 2! Problemi Di Cinematica del Punto Materiale A cura del Prof. T.Paa. Un unto materiale si muove luno la traiettoria di equazione y = x 2 e, luno x, ha comonente della velocita _x = 2 m=s, costante. Determinare

Dettagli

1 bar = 10 Pa = 10 barie PRESSIONE PRESSIONE. N 10 dyn dyn. m 10 cm cm. Solido. Liquido. Gassoso. (pascal) m. kg 1000.

1 bar = 10 Pa = 10 barie PRESSIONE PRESSIONE. N 10 dyn dyn. m 10 cm cm. Solido. Liquido. Gassoso. (pascal) m. kg 1000. STATI DI AGGREGAZIONE DELLA MATERIA Solido Liquido Gassoso Il coro ha volume e forma ben definiti Il coro ha volume ben definito, ma assume la forma del reciiente che lo contiene Il coro occua tutto lo

Dettagli

R u = R i. (48) e la potenza elettrica assorbita dal trasformatore ideale è uguale a zero) vale. R u /n 2 R i ( 1+ R u /n 2 R i ) 2 (49) R u.

R u = R i. (48) e la potenza elettrica assorbita dal trasformatore ideale è uguale a zero) vale. R u /n 2 R i ( 1+ R u /n 2 R i ) 2 (49) R u. 319 R u = R i. (48) Il generatore di tensione E in serie con il resistore di resistenza R i potrebbe rappresentare, ad esempio, il circuito equivalente secondo Thévenin (con tensione a vuoto E e resistenza

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2016/2017

ISTITUTO ISTRUZIONE SUPERIORE L. EINAUDI ALBA ANNO SCOLASTICO 2016/2017 ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2016/2017 CLASSE 4 I Disciplina: Elettrotecnica ed Elettronica PROGETTAZIONE DIDATTICA ANNUALE Elaborata dai docenti: Linguanti Vincenzo,

Dettagli

Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente?

Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente? Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente? Si abbia una molla verticale al cui estremo inferiore

Dettagli

6. CAMPO MAGNETICO ROTANTE.

6. CAMPO MAGNETICO ROTANTE. 6 CAMPO MAGNETICO ROTANTE Il camo magnetico monofase Il funzionamento delle macchine elettriche rotanti alimentate in corrente alternata si basa sul rinciio del camo magnetico rotante: il suo studio viene

Dettagli

CIRCUITI IN CORRENTE CONTINUA

CIRCUITI IN CORRENTE CONTINUA IUITI IN ONT ONTINUA Un induttanza e tre resistenze 2 J J 2 L Il circuito sta funzionando da t = con l interruttore aperto. Al tempo t = 0 l interruttore viene chiuso. alcolare le correnti. Per t 0 circola

Dettagli

Prova scritta del corso di Fisica e Fisica 1 con soluzioni

Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prof. F. Ricci-Tersenghi 17/02/2014 Quesiti 1. Un frutto si stacca da un albero e cade dentro una piscina. Sapendo che il ramo da cui si è staccato

Dettagli

Cosa è la dinamo? dinamo

Cosa è la dinamo? dinamo La dinamo Cosa è la dinamo? La dinamo è una macchina elettrica rotante per la trasformazione di lavoro meccanico in energia elettrica, sotto forma di corrente continua (DC, per gli inglesi, direct current).

Dettagli

CORSO di AGGIORNAMENTO di FISICA

CORSO di AGGIORNAMENTO di FISICA MATHESIS _ ROMA CORSO di AGGIORNAMENTO di FISICA ELETTROMAGNETISMO LEZIONE N. 2 RELATORE : SERGIO SAVARINO I.T:T. COLOMBO via Panisperna, 255 24 febbraio 2016 Campo magnetico Forza di Lorentz: F=i l B

Dettagli

QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff

QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff Esercizio Un conduttore cilindrico in rame avente sezione di area S = 4mm è percorso da una corrente

Dettagli

Trasformatore monofase

Trasformatore monofase Prova in corto circuito La prova in corto circuito permette di determinare il valore degli elementi circuitali connessi in serie al trasformatore ideale e cioè le reattanze di dispersione X 1d, X d e le

Dettagli

Appendice Il trasformatore monofase

Appendice Il trasformatore monofase Appendice l trasformatore monofase - Appendice l trasformatore monofase - Principio di funzionamento Schema generale l trasformatore è un dispositivo costituito da un nucleo in materiale ferromagnetico

Dettagli

Risposta temporale: esempi

Risposta temporale: esempi ...4 Risposta temporale: esempi Esempio. Calcolare la risposta al gradino unitario del seguente sistema: x(t) = u(t) s + 5 (s + )(s + ) y(t) Il calcolo della trasformata del segnale di uscita è immediato:

Dettagli

Modellistica di sistemi elettromeccanici

Modellistica di sistemi elettromeccanici Modellistica di sistemi elettromeccanici Legge di Lorentz: una carica elettrica q che si muove con velocità v(t) relativamente ad un campo magnetico di induzione B(t) è soggetta ad una forza v(t) q α B(t)

Dettagli

Generalità La verifica a taglio al I Stadio Il calcolo delle armature trasversali e la verifica al III Stadio

Generalità La verifica a taglio al I Stadio Il calcolo delle armature trasversali e la verifica al III Stadio LEZIONE N 13 IL CEMENTO ARMATO PRECOMPRESSO LA VERIFICA FLESSIONALE ALLO SLU DI TRAVI IN C.A.P. LE SOLLECITAZIONI TANGENZIALI NELLE TRAVI IN C.A.P Generalità La verifica a taglio al I Stadio Il calcolo

Dettagli

Corso di Principi e. Applicazioni di. Elettrotecnica. Teoria dei Circuiti. Corso di. Circuiti trifasi. Università degli Studi di Pavia

Corso di Principi e. Applicazioni di. Elettrotecnica. Teoria dei Circuiti. Corso di. Circuiti trifasi. Università degli Studi di Pavia Università degli Studi di Pavia Facoltà di Ingegneria Corso di Principi e Corso di pplicazioni di Teoria dei Circuiti Elettrotecnica Circuiti trifasi Nelle applicazioni di potenza è frequente trovare,

Dettagli