SCUOLA SECONDARIA DI SECONDO GRADO. Contenuti Attività Metodo Strumenti Durata (in ore)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "SCUOLA SECONDARIA DI SECONDO GRADO. Contenuti Attività Metodo Strumenti Durata (in ore)"

Transcript

1 SCUOLA SECONDARIA DI SECONDO GRADO Obiettivi di apprendimento Contenuti Attività Metodo Strumenti Durata (in ore) Valutazione degli obiettivi di apprendimento Valutazione della competenza Conoscere i poligoni regolari e non regolari Saper disegnare i poligoni regolari Costruzioni con riga e compasso dei poligoni regolari; disegno dei poligoni con il software Geogebra Lavoro individuale Riga e compasso; software Geogebra 4 Scheda da consegnare Richiesta di spiegare le costruzioni eseguite Conoscere le proprietà angolari dei poligoni Determinazione della formula per calcolare l ampiezza di un angolo di un poligono regolare di n lati Proposta del problema alla classe Lavoro in piccoli gruppi Carta e penna 1 Scheda da consegnare Richiesta di motivare la formula Fare e verificare congetture per risolvere il problema della tassellazione del piano con poligoni regolari e non regolari Tassellazioni del piano con poligoni regolari e uso delle isometrie per estendere la tassellazione Presentazione del problema: tassellazione con un solo tipo di poligono regolare; con due tipi di poligoni regolari; con tre tipi di poligoni regolari Lavoro in piccoli gruppi Prima con carta e penna, poi con riga e compasso ed infine con l uso di Geogebra 6 Scheda da consegnare Richiesta di motivare perché una certa tassellazione funziona Scheda di verifica Conoscere le isometrie del piano Tassellazioni del piano con poligoni non regolari e uso delle isometrie per estendere la tassellazione Tassellazioni a partire da un triangolo qualunque o da un quadrilatero qualunque Lavoro in piccoli gruppi 4 Schede da consegnare Scheda di verifica

2 Sintesi dell attività Scuola secondaria di secondo grado La sperimentazione relativa alla secondaria di secondo grado è stata effettuata nella classe 1B del liceo delle scienze applicate dell I.S.I.S B. Varchi di Montevarchi (composta da 31 studenti) nel periodo Febbraio-Marzo 2014 dalla prof.ssa Cecilia Magni (insegnante di matematica della classe) lavorando con cadenza settimanale. Inizialmente sono state riprese, insieme all insegnante di disegno e storia dell arte, le costruzioni con riga e compasso dei poligoni regolari e si è discusso su come determinare l ampiezza dell angolo di un poligono regolare di n lati. Successivamente nel laboratorio di informatica è stato introdotto l uso del software Geogebra per disegnare i poligoni ed applicare ad essi le principali isometrie. E stato poi posto alla classe, divisa in piccoli gruppi di lavoro, il seguente problema: Con quali poligoni regolari è possibile ricoprire esattamente il piano? Si è lasciato in un primo momento che i gruppi lavorassero come volevano (la maggior parte hanno fatto disegni a mano libera ): dalla discussione collettiva e dalla considerazione del fatto che in ogni vertice la somma degli angoli dovesse essere 360 è emerso che alcune delle tassellazioni trovate erano sicuramente corrette mentre altre erano errate. Per dare un po di ordine al lavoro l insegnante ha chiesto di concentrarsi prima sulle tassellazioni con un solo tipo di poligono regolare, poi su quelle con due tipi e infine con tre tipi di poligoni regolari, facendo inoltre in modo che tutti i vertici fossero dello stesso tipo cioè che vi convergesse lo stesso numero e tipo di poligoni (vedi attività n 1). Dopo aver provato a mano libera e poi con riga e compasso, gli studenti hanno utilizzato il software Geogebra e pian piano sono state scoperte tutte le tassellazioni (3 con un solo tipo di poligono, 6 con due tipi di poligoni e 2 con tre tipi di poligoni regolari diversi) (vedi lavori allegati). Alcuni studenti hanno anche colorato i poligoni per ottenere un effetto artistico.. Poi è stato posto il problema: Si può tassellare il piano con un triangolo qualunque? E con un quadrilatero qualunque? Per il triangolo la soluzione è stata trovata facilmente da tutti i gruppi mentre nel caso del quadrilatero solo alcuni gruppi sono riusciti a risolvere il problema (per guidare il lavoro, dopo la discussione, sono state proposte le schede di lavoro 2 e 3). Molto importante è stato anche rendersi conto (utilizzando la funzione muovi del software) che le tassellazioni con triangoli equilateri e quadrati si ottenevano come caso particolare. E stata anche asegnata una verifica riguardante la tassellazione con un particolare pentagono. Infine è stato proposta la realizzazione di tassellazioni artistiche (vedi allegati): partendo da un poligono con cui si può tassellare il piano (triangolo equilatero, quadrato, rettangolo ecc.) e su cui è stato aggiunto un piccolo disegno, si è chiesto agli studenti di costruire (utilizzando le isometrie) pavimenti diversi (abbiamo anche fatto una piccola ricerca sulle bellissime decorazioni presenti nell Alhambra di Granada). In conclusione direi che il problema proposto e il metodo di lavoro in piccoli gruppi è stato stimolante per gli studenti che hanno sempre partecipato con entusiasmo alle attività proposte. Inoltre gli obiettivi di apprendimento sono stati raggiunti per la maggior parte degli studenti e l aspetto sicuramente più formativo dell attività è stato senza dubbio quello di poter fare congetture e metterle alla prova con l uso di Geogebra.

3 ATTIVITA 1 Tassellazioni con poligoni regolari Con quali poligoni regolari possiamo ricoprire perfettamente il piano facendo coincidere lato con lato e vertice con vertice? Tassellazioni con un solo tipo di poligono regolare Se usiamo solo un tipo di poligono regolare quali sono quelli con cui posso tassellare il piano? Fai le tue congetture e verificale con Geogebra. Suggerimento: l angolo interno di un triangolo equilatero misura 60, l angolo interno di un quadrato misura 90. Stampa le tue tassellazioni con un solo tipo di poligono regolare. Nota Una volta capito quali poligoni regolari puoi usare, per ricoprire il piano puoi utilizzare traslazioni, rotazioni, simmetrie assiali. Indica quali isometrie hai utilizzato per estendere la tua tassellazione. Tassellazioni con due tipi di poligoni regolari Se possiamo usare come mattonelle della nostra pavimentazione due tipi di poligoni regolari quali sono le combinazioni che funzionano? Scrivi una tabella con il valore degli angoli interni dei vari poligoni regolari Suggerimento: quadrato con triangolo equilatero dovrebbe funzionare e forse ci sono anche più modi di sistemare le mattonelle intorno ad un vertice Ci sono altre combinazioni? Stampa le tassellazioni che sei riuscito a trovare con due tipi di poligoni regolari. Tassellazioni con tre tipi di poligoni regolari E se possiamo usare tre tipi diversi di poligoni regolari? Stampa le tassellazioni che sei riuscito a costruire.

4 ATTIVITA 2 Tassellazione con un triangolo qualunque Possiamo tassellare il piano partendo da un triangolo qualunque? Prova a fare così: disegna un triangolo qualunque con il comando poligono, costruisci il punto medio M di un suo lato e applica la simmetria centrale rispetto a M del triangolo. Hai ottenuto così un parallelogramma con cui puoi tassellare il piano (basta traslare secondo i lati del parallelogramma). Stampa la tua tassellazione. Per evitare che vengano messe tutte le etichette ai vertici puoi selezionare Opzioni etichettatura nessun nuovo oggetto. E interessante provare a muovere i vertici del triangolo per modificarlo: si può ritrovare in questo modo anche la tassellazione con i triangoli equilateri che avevamo già individuato. Possiamo anche divertirci a colorare i vari triangoli (tasto destro proprietà colore scelta del colore aumentare l opacità ) per avere un effetto artistico : possiamo per esempio colorare i primi due e oi applicare le traslazioni.

5 ATTIVITA 3 Tassellazione con un quadrilatero qualunque Possiamo tassellare il piano con un quadrilatero qualunque? Prova a fare così: disegna un quadrilatero qualunque con il comando poligono, costruisci il punto medio M di un lato, effettua la simmetria di centro M del quadrilatero. Hai ottenuto un esagono che tassella il piano con traslazioni corrispondenti alle diagonali del quadrilatero iniziale! Osservazione E interessante notare che in ogni vertice della tassellazione si ritrovano i quattro angoli del quadrilatero iniziale e che perciò la loro somma è proprio 360. Inoltre non è importante quale lato si sceglie per costruire il punto medio e fare la prima simmetria centrale: partendo da un altro lato si sarebbe ottenuto lo stesso risultato (i quadrilateri accostati risultano sempre simmetrici rispetto al punto medio del loro lato in comune).

6 ATTIVITA 4 Partendo da una mattonella pavimenti diversi! Partendo da un poligono che tassella il piano, per esempio un quadrato, e disegnandovi sopra un fregio (vedi figura) possiamo utilizzare le isometrie per ottenere pavimenti diversi! Per esempio se semplicemente trasliamo la mattonella otteniamo il primo pavimento, se facciamo una simmetria rispetto ad un lato e poi trasliamo otteniamo il secondo pavimento, se ruotiamo la mattonella intorno ad un vertice per 4 volte di 90 e poi trasliamo otteniamo il terzo pavimento. Prova a partire da una mattonella triangolo-equilatero e costruisci pavimenti diversi!

7 Scheda di verifica Abbiamo visto che non è possibile ricoprire il piano con pentagoni regolari poiché l angolo interno di un pentagono regolare misura 108 che non è divisore di 360. Ma ci sono pentagoni con cui è possibile ricoprire il piano? Prova a tassellare il piano con un pentagono irregolare con due lati uguali che formano un angolo di 60 e due lati uguali che formano un angolo di 120. Per prima cosa disegnalo: costruisci un segmento AB, costruisci un angolo di 60 di vertice A (il comando angolo di data misura costruisce automaticamente un punto B tale che AB=AB ); costruisci un segmento BC e fai un angolo BCB 1' =120 : attenzione poiché il comando angolo di data ampiezza costruisce l angolo in senso antiorario dobbiamo digitare 240 ; con il comando poligono riprendi i vari punti e chiudi il pentagono. A questo punto prova a tassellare il piano! Stampa la tua tassellazione.magari puoi anche colorarla... Quali isometrie hai usato per creare la tua tassellazione?

8 Esempi di elaborati degli studenti Attivita 1 Tassellazioni con un solo tipo di poligono regolare

9 Tassellazioni con due tipi di poligoni regolari

10 Tassellazioni con tre tipi di poligoni regolari

11 Tassellazioni in cui i vertici non sono tutti dello stesso tipo

12 Attivita 2

13 Attivita 3

14 Attivita 4

15 Scheda di verifica

Introduzione all uso di Geogebra

Introduzione all uso di Geogebra Curricolo verticale di Matematica - Progetto SIGMA (dare SIGnificato al fare MAtematica) Laboratorio di geometria a.s 2013/14 Quali poligoni tassellano il piano? Scuola secondaria di primo grado Introduzione

Dettagli

Tassellazioni del piano

Tassellazioni del piano Tassellazioni del piano Livello scolare: 1 biennio Abilità interessate Individuare e riconoscere proprietà di figure del piano e dello spazio. Individuare proprietà invarianti per isometrie nel piano.

Dettagli

LE TRASFORMAZIONI GEOMETRICHE

LE TRASFORMAZIONI GEOMETRICHE LE TRASFORMAZIONI GEOMETRICHE LA SIMMETRIA ASSIALE Definizione: il simmetrico P di un punto P, rispetto alla simmetria assiale di asse r gode delle seguenti proprietà: P e P sono equidistanti da r e il

Dettagli

Partiamo da un informazione comune a tutti gli alunni della scuola italiana: La somma degli angoli interni di un triangolo è 180.

Partiamo da un informazione comune a tutti gli alunni della scuola italiana: La somma degli angoli interni di un triangolo è 180. 1 Partiamo da un informazione comune a tutti gli alunni della scuola italiana: La somma degli angoli interni di un triangolo è 180. Come giustificare questo fatto? Con delle prove sperimentali, ad esempio.

Dettagli

Laboratorio di informatica

Laboratorio di informatica Laboratorio di informatica GEOMETRIA DELLO SPAZIO Introduzione a Geogebra 3D La versione 5 di Geogebra prevede anche la possibilità di lavorare in ambiente 3D. Basta aprire Visualizza - Grafici 3D: sullo

Dettagli

1 La traslazione. 2 La composizione di traslazioni. 3 La rotazione

1 La traslazione. 2 La composizione di traslazioni. 3 La rotazione 1 La traslazione Per poter applicare una traslazione ad una generica figura geometrica si deve: ± creare il vettore di traslazione AB mediante il comando Vettore tra due punti; ± cliccare con il mouse

Dettagli

Costruzioni geometriche. (Teoria pag , esercizi )

Costruzioni geometriche. (Teoria pag , esercizi ) Costruzioni geometriche. (Teoria pag. 81-96, esercizi 141-153 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda: due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente

Dettagli

Laboratori per un curricolo verticale di matematica - ambito spazio e figure - poligoni regolari e tassellazione del piano

Laboratori per un curricolo verticale di matematica - ambito spazio e figure - poligoni regolari e tassellazione del piano Laboratori per un curricolo verticale di matematica - ambito spazio e figure - poligoni regolari e tassellazione del piano Scuole Infanzia Staccia Buratta e Il Giglio Anno/classe Contenuti Attività Metodo

Dettagli

6. Trimini per tassellare il piano

6. Trimini per tassellare il piano 6. Trimini per tassellare il piano Osservando il pavimento sotto i vostri piedi, noterete che la sua superficie è interamente ricoperta da piastrelle identiche, probabilmente di forma triangolare, quadrata

Dettagli

I criteri di similitudine introdotti a partire dalle trasformazioni

I criteri di similitudine introdotti a partire dalle trasformazioni I criteri di similitudine introdotti a partire dalle trasformazioni Cinzia Cerroni, Rosa Conforto, Leo Maggio Introduzione La scelta metodologica di introdurre i criteri di similitudine a partire dalle

Dettagli

GEOGEBRA. Nella scuola del Primo Ciclo

GEOGEBRA. Nella scuola del Primo Ciclo GEOGEBRA Nella scuola del Primo Ciclo GEOGEBRA GeoGebra è un software gratuito di matematica dinamica. In questi due incontri saranno utilizzati solo gli strumenti geometrici Con questo software è possibile

Dettagli

Equivalenza delle figure piane

Equivalenza delle figure piane Capitolo Equivalenza Poligoni equivalenti - erifica per la classe seconda Teoremi di Pitagora ed Euclide COGNOME............................... NOME............................. Classe....................................

Dettagli

Cosa puoi dire del quadrilatero ABCD? Come sono i lati, le diagonali, gli angoli?

Cosa puoi dire del quadrilatero ABCD? Come sono i lati, le diagonali, gli angoli? Dal parallelogramma al rombo (fase 1 e 2) Fase 1 Disegna due circonferenze concentriche c e c di centro O; disegna su c un punto A e su c un punto B; traccia la retta r passante per i punti A e O, chiama

Dettagli

1. costruzione di un TRIANGOLO ISOSCELE di assegnati lati

1. costruzione di un TRIANGOLO ISOSCELE di assegnati lati LABORATORIO DI GEOMETRIA COSTRUZIONI DI BASE DI POLIGONI 1. costruzione di un TRIANGOLO ISOSCELE di assegnati lati Si costruisce un segmento AB, base del triangolo, ed un segmento CD, lato obliquo. Si

Dettagli

Scuola Media Fermi Villasanta (MB) Classe I D Insegnante di riferimento: Prof.ssa marina Rossi Ricercatore: dott. Alexandro Redaelli Partecipanti:

Scuola Media Fermi Villasanta (MB) Classe I D Insegnante di riferimento: Prof.ssa marina Rossi Ricercatore: dott. Alexandro Redaelli Partecipanti: 11010 Scuola Media Fermi Villasanta (MB) Classe I D Insegnante di riferimento: Prof.ssa marina Rossi Ricercatore: dott. Alexandro Redaelli Partecipanti: Daniele Carnevale, Giulia Cervo, Martina De Maria,

Dettagli

1) Quale delle due figure ha maggior perimetro? Quali delle due figure ha maggior superficie? cm 8

1) Quale delle due figure ha maggior perimetro? Quali delle due figure ha maggior superficie? cm 8 1) Quale delle due figure ha maggior perimetro? Quali delle due figure ha maggior superficie? cm 8 cm 8 cm 10 cm 10 2) I quadrati della figura hanno lunghezza 1 cm., qual è l area del rettangolo inclinato?

Dettagli

1. IL CERCHIO COLORATO

1. IL CERCHIO COLORATO 1. IL CERCHIO COLORATO Utilizzare l icona per inserire un segmento di data lunghezza Cliccare sul punto (estremo) e scrivere quindi la lunghezza del segmento (10 per esempio) Cliccare col tasto destro

Dettagli

Presenta: I Poligoni e loro proprietà

Presenta: I Poligoni e loro proprietà Presenta: I Poligoni e loro proprietà Scuola secondaria di I grado: classe prima Ricordiamo: ü Le figure geometriche fondamentali: rette, semirette, segmenti, angoli. ü Il concetto di lunghezza e di ampiezza

Dettagli

LA GEOMETRIA EUCLIDEA. Seminario Cidi, Roma 13/05/ prof.ssa Dario Liliana 1

LA GEOMETRIA EUCLIDEA. Seminario Cidi, Roma 13/05/ prof.ssa Dario Liliana 1 LA GEOMETRIA EUCLIDEA Seminario Cidi, Roma 13/05/2013 - prof.ssa Dario Liliana 1 Le difficoltà degli studenti nell apprendere la geometria nel 1 anno della scuola secondaria Gli argomenti della geometria

Dettagli

Quadrilateri. Il Parallelogramma

Quadrilateri. Il Parallelogramma Il Parallelogramma 2. Fai clic su Ic3 e scegli Retta per due punti : disegna la retta a. 3. Fai clic su Ic2 e scegli Nuovo Punto : fai clic fuori dalla retta a 4. Fai clic su Ic4 e scegli Retta parallela

Dettagli

La composizione di isometrie

La composizione di isometrie La composizione di isometrie Quello che è più interessante in una trasformazione geometrica è studiare quali effetti ha sulle figure e soprattutto valutare quali proprietà delle figure di partenza si conservano

Dettagli

Costruzioni geometriche. ( Teoria pag , esercizi 141 )

Costruzioni geometriche. ( Teoria pag , esercizi 141 ) Costruzioni geometriche. ( Teoria pag. 81-96, esercizi 141 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda ; due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente

Dettagli

IL TEOREMA DI PITAGORA

IL TEOREMA DI PITAGORA IN CLASSE IL TEOREMA DI PITAGORA Preparazione Per questi esercizi con GeoGebra dovrai utilizzare i seguenti pulsanti. Leggi sempre le procedure di esecuzione nella zona in alto a destra, accanto alla barra

Dettagli

una tessera più grande con la stessa forma. Come avete fatto? Tenete traccia della soluzione nel disegno qui sotto.

una tessera più grande con la stessa forma. Come avete fatto? Tenete traccia della soluzione nel disegno qui sotto. SCHEDA E - PITAGORA E LA SIMILITUDINE Puzzle 1 a. Avete a disposizione quattro tessere di forma quadrata, usatele per ottenere una tessera più grande con la stessa forma. Come avete fatto? Tenete traccia

Dettagli

I TRIANGOLI. Geogebra l Triangoli COSTRUZIONE DEL TRIANGOLO ISOSCELE

I TRIANGOLI. Geogebra l Triangoli COSTRUZIONE DEL TRIANGOLO ISOSCELE I TRIANGOLI COSTRUZIONE DEL TRIANGOLO ISOSCELE Come sai il triangolo isoscele ha due lati della stessa lunghezza. Costruiamo il triangolo isoscele a partire dal lato disuguale. 1. Apri il programma Geogebra

Dettagli

Simmetrie nei poliedri

Simmetrie nei poliedri Simmetrie nei poliedri Livello scolare: 1 biennio Abilità interessate Individuare e riconoscere nel mondo reale le figure. geometriche note e descriverle con la terminologia specifica. Analizzare con strumenti

Dettagli

Geogebra classe 2 Media

Geogebra classe 2 Media Geogebra classe 2 Media A cura del Prof. Sergio Balsimelli s.balsimelli@tiscalinet.it GEOGEBRA CLASSE 2 Costruzione di figure piane Esercizio n 1: disegno del quadrato dato il lato Disegnare il segmento

Dettagli

POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA

POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA Poligoni Inscritti ad una circonferenza: Un poligono è inscritto in una circonferenza se tutti i suoi vertici appartengono alla circonferenza e gli

Dettagli

IL PIANO CARTESIANO. Preparazione. Esercizi

IL PIANO CARTESIANO. Preparazione. Esercizi IN CLASSE IL PIANO CARTESIANO Preparazione Per questi esercizi con GeoGebra dovrai utilizzare i seguenti pulsanti. Leggi le procedure di esecuzione nella zona in alto a destra, accanto alla barra degli

Dettagli

1 L'omotetia. 2 Il teorema del rapporto dei perimetri e delle aree di due triangoli simili

1 L'omotetia. 2 Il teorema del rapporto dei perimetri e delle aree di due triangoli simili 1 L'omotetia Per definire un'omotetia bisogna disegnare una generica figura nel piano (nel nostro caso utilizzeremo un triangolo), un punto (il centro dell'omotetia) e un numero (il rapporto k dell'omotetia).

Dettagli

quadrilatero generico parallelogramma rombo rettangolo quadrato

quadrilatero generico parallelogramma rombo rettangolo quadrato Pavimentare 1. Quali forme di quadrilateri puoi costruire? Schizza tutte le forme possibili e scrivi il loro nome. 2. Cosa rappresentano i piccoli punti rossi sui lati del quadrilatero? 3. a) Costruisci

Dettagli

Un approccio costruttivo alle trasformazioni geometriche del piano

Un approccio costruttivo alle trasformazioni geometriche del piano Un approccio costruttivo alle trasformazioni geometriche del piano Le cosiddette trasformazioni geometriche elementari del piano sono corrispondenze bigettive, del piano su se stesso, caratterizzate dalla

Dettagli

Giochi con due specchi. (Laboratorio sulla simmetria rotazionale)

Giochi con due specchi. (Laboratorio sulla simmetria rotazionale) Giochi con due specchi. (Laboratorio sulla simmetria rotazionale) Prima parte. Abbiamo a disposizione alcune coppie di specchi, dei piccoli oggetti (poligoni, matite, palline), alcuni disegni. Tra due

Dettagli

POTENZIAMENTO VISUO-SPAZIALE

POTENZIAMENTO VISUO-SPAZIALE POTENZIAMENTO VISUO-SPAZIALE Spunti ricavati dalla bozza (fornita da Marta) per potenziare le carenze visuo-spaziali di alunni di seconda media Docente Gisella Maculan Obiettivo : Con questa sezione si

Dettagli

POLIGONI REGOLARI. ( Libro : teoria pag ; esercizi pag )

POLIGONI REGOLARI. ( Libro : teoria pag ; esercizi pag ) POLIGONI REGOLARI. ( Libro : teoria pag. 52 61; esercizi pag. 120 128) Un poligono è detto regolare quando Possiamo costruire un poligono regolare partendo o dalla circonferenza circoscritta al poligono

Dettagli

Confrontare angoli Indica, colorando il quadratino, quali sono gli angoli retti tra quelli che vedi qui sotto.

Confrontare angoli Indica, colorando il quadratino, quali sono gli angoli retti tra quelli che vedi qui sotto. Confrontare angoli Indica, colorando il quadratino, quali sono gli angoli retti tra quelli che vedi qui sotto. R V T P S U Z Colora di verde le caselle corrispondenti agli angoli piatti e di rosso quelle

Dettagli

I POLIGONI. DEFINIZIONE: un poligono è una parte limitata di piano definita da una linea chiusa, spezzata, non intrecciata.

I POLIGONI. DEFINIZIONE: un poligono è una parte limitata di piano definita da una linea chiusa, spezzata, non intrecciata. I POLIGONI COS È UN POLIGONO? DEFINIZIONE: un poligono è una parte limitata di piano definita da una linea chiusa, spezzata, non intrecciata. Un poligono è fatto di: - SEGMENTI detti LATI - ESTREMI DEI

Dettagli

La geometria con il CABRI

La geometria con il CABRI La geometria con il CABRI Cabrì è un micromondo dove si "materializzano" gli enti astratti della geometria elementare del piano (punti, rette, angoli, figure) sotto forma di disegni, su "fogli virtuali"

Dettagli

Esercizio n 1: disegno del quadrato dato il lato Esercizio n 2: disegno del quadrato dato la diagonale Esercizio n 3: disegno del parallelogramma

Esercizio n 1: disegno del quadrato dato il lato Esercizio n 2: disegno del quadrato dato la diagonale Esercizio n 3: disegno del parallelogramma GEOGEBRA CLASSE 2 Esercizio n 1: disegno del quadrato dato il lato Disegnare il segmento AB con A(8,4) e B(13,7). Tracciare da A e da B le perpendicolari al segmento AB e con Ic5 Circonferenza di dato

Dettagli

Kangourou della Matematica 2006 finale nazionale italiana Mirabilandia, 8 maggio 2006

Kangourou della Matematica 2006 finale nazionale italiana Mirabilandia, 8 maggio 2006 LIVELLO ÉCOLIER E1. (5 punti ) Qual è il multiplo di 11 più vicino a 1000? E2. (7 punti ) Le lettere della parola ELA sono tutte distinte fra loro. Fa corrispondere ad ogni lettera di questa parola una

Dettagli

TASSELLATURA DEL PIANO

TASSELLATURA DEL PIANO MATh.en.JEANS TASSELLATURA DEL PIANO Liceo Scientifico Statale E. Curiel Caterina Alessi, Eleonora Filira, Matteo Forin, Lorenzo Gamba, Mircea Muntean, Stefano Pietrogrande, Emanuele Quaglio, Marco Venuti,

Dettagli

ˆ b, si usa la convenzione di prendere. come verso positivo quello antiorario e come verso negativo quello orario.

ˆ b, si usa la convenzione di prendere. come verso positivo quello antiorario e come verso negativo quello orario. Capitolo 4 Le rotazioni 4.1 Richiami di teoria E' opportuno ricordare che, dato un angolo orientato ao ˆ b, si usa la convenzione di prendere come verso positivo quello antiorario e come verso negativo

Dettagli

Introduzione. Nome. per la geometria. per le frazioni

Introduzione. Nome. per la geometria. per le frazioni Introduzione Questo volume contiene una serie di esercizi per gli alunni della scuola elementare dalla classe terza in poi, che mirano a consolidare i concetti matematici di base di geometria e di algebra

Dettagli

LA CAMERA DEGLI SPECCHI

LA CAMERA DEGLI SPECCHI LA CAMERA DEGLI SPECCHI Alunna: Prisca Iacovone (Classe 2B, a. s. 2013 2014, scuola secondaria di primo grado, G. Mezzanotte, Chieti, Ch) Referente: Prof.ssa Diana Cipressi Un architetto deve costruire

Dettagli

GEOMETRIA ANALITICA. Il Piano cartesiano

GEOMETRIA ANALITICA. Il Piano cartesiano GEOMETRIA ANALITICA La geometria analitica consente di studiare e rappresentare per via algebrica informazioni di tipo geometrico. Lo studio favorisce una più immediata visualizzazione di informazioni,

Dettagli

Una figura in due parti

Una figura in due parti Una figura in due parti Equiestensione per somma di parti congruenti: triangolo, trapezio Isoperimetria Trasformazioni: Rotazione Argomentazione Indicazioni e note da UMI 2001 - I numeri, - Lo spazio e

Dettagli

Si definisce poligono la parte di piano delimitata da una spezzata semplice chiusa. D contorno

Si definisce poligono la parte di piano delimitata da una spezzata semplice chiusa. D contorno I POLIGONI Si definisce poligono la parte di piano delimitata da una spezzata semplice chiusa. E D contorno La linea spezzata chiusa che delimita il F C poligono si chiama contorno I punti A, B, C, D,

Dettagli

LE TRASFORMAZIONI GEOMETRICHE

LE TRASFORMAZIONI GEOMETRICHE pag. 1 LE TRASFORMAZIONI GEOMETRICHE Trasformazione geometrica Movimento rigido Traslazione Simmetria Costruzione di due punti simmetrici rispetto ad una retta Poligoni aventi assi di simmetria Rotazione

Dettagli

GEOMETRIA CLASSE IV B A.S.

GEOMETRIA CLASSE IV B A.S. GEOMETRIA CLASSE IV B A.S. 2014/15 Insegnante: Stallone Raffaella RETTA, SEMIRETTA E SEGMANTO La retta è illimitata, non ha né inizio né fine. Si indica con una lettera minuscola. La semiretta è ciascuna

Dettagli

POLIGONI REGOLARI. ( Libro : teoria pag ; esercizi pag ) Un poligono è detto regolare quando.

POLIGONI REGOLARI. ( Libro : teoria pag ; esercizi pag ) Un poligono è detto regolare quando. POLIGONI REGOLARI. ( Libro : teoria pag. 54 61; esercizi pag. 120 128) Un poligono è detto regolare quando. Possiamo costruire un poligono regolare partendo o dalla circonferenza circoscritta al poligono

Dettagli

Si chiamano poligoni regolari quei poligoni che sono equilateri ed equiangoli.

Si chiamano poligoni regolari quei poligoni che sono equilateri ed equiangoli. 6.4 I poligoni regolari Si chiamano poligoni regolari quei poligoni che sono equilateri ed equiangoli. Poligoni regolari: triangolo equilatero; quadrato; pentagono regolare; esagono regolare; ettagono

Dettagli

Scheda 2 Percorsi didattici interni al progetto PTOF 2016/2019 (POF triennale)

Scheda 2 Percorsi didattici interni al progetto PTOF 2016/2019 (POF triennale) MINISTERO DELL ISTRUZIONE, DELL UNIVERSITA E DELLA RICERCA UFFICIO SCOLASTICO REGIONALE PER IL LAZIO I.C. PIAZZA FILATTIERA 84 Piazza Filattiera, 84-00139 ROMA Fax 06/88386385 Tel. 06/8102978 C.M. RMIC8EG00Q

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 12

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 12 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 12 PARTE SECONDA GEOMETRIA SOLIDA UNA PREMESSA Diversi esperti di Didattica della Matematica ritengono che l approccio migliore, per la

Dettagli

IL TANGRAM. Il quadrato della saggezza. Il tangram e un' antica invenzione cinese e forse il più antico puzzle di carattere geometrico.

IL TANGRAM. Il quadrato della saggezza. Il tangram e un' antica invenzione cinese e forse il più antico puzzle di carattere geometrico. IL TANGRAM. Il quadrato della saggezza. Il tangram e un' antica invenzione cinese e forse il più antico puzzle di carattere geometrico. Consiste in un quadrato diviso in 7 parti, chiamati tan, come indicate

Dettagli

g. Ferrari M. Cerini D. giallongo Piattaforma informatica geometria 3 trevisini EDITORE

g. Ferrari M. Cerini D. giallongo Piattaforma informatica geometria 3 trevisini EDITORE g. Ferrari M. Cerini D. giallongo Piattaforma Ma Pia a tematica informatica geometria 3 trevisini EDITORE unità 14 2 UNITÀ14 LE MISURE DI CIRCONFERENZA, CERCHIO E LORO PARTI 1. Relazione tra circonferenza

Dettagli

SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO

SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 013-014 ESERCIZI RELATIVI A SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO Esercizio 1: Fissato su una retta un sistema di riferimento

Dettagli

La misura della lunghezza della poligonale si chiama perimetro del poligono. Due poligoni che hanno lo stesso perimetro si chiamano isoperimetrici.

La misura della lunghezza della poligonale si chiama perimetro del poligono. Due poligoni che hanno lo stesso perimetro si chiamano isoperimetrici. Perimetro La misura della lunghezza della poligonale si chiama perimetro del poligono. Quindi è la somma delle lunghezze dei lati. Due poligoni che hanno lo stesso perimetro si chiamano isoperimetrici.

Dettagli

POLIGONI NEL PIANO CARTESIANO (1)

POLIGONI NEL PIANO CARTESIANO (1) POLIGONI NEL PIANO CARTESIANO (1) Ora che sai come si trova la distanza tra due punti sul piano cartesiano e sai anche determinare le coordinate dei punti medi di un segmento,imparerai ad applicare queste

Dettagli

C C B B. Fig. C4.1 Isometria.

C C B B. Fig. C4.1 Isometria. 4. Isometrie 4.1 Definizione di isometria Date due figure congruenti è possibile passare da una all altra con una trasformazione. Una trasformazione geometrica in un piano è una funzione biunivoca che

Dettagli

Le proprietà dei poligoni regolari. La similitudine tra figure piane. Il contenuto delle schede della sezione C e della scheda D1.

Le proprietà dei poligoni regolari. La similitudine tra figure piane. Il contenuto delle schede della sezione C e della scheda D1. D3 Le piramidi Che cosa imparerai Che cosa devi sapere Imparerai a costruire vari tipi di piramidi e ne scoprirai un importante proprietà. Le proprietà dei poligoni regolari. La similitudine tra figure

Dettagli

Laboratorio CIDI. Piazze e dintorni. presso. Scuola primaria Giovanni Cena. 13 dicembre Valerio Scorsipa

Laboratorio CIDI. Piazze e dintorni. presso. Scuola primaria Giovanni Cena. 13 dicembre Valerio Scorsipa Laboratorio CIDI Piazze e dintorni presso Scuola primaria Giovanni Cena 13 dicembre 2016 Francesca Conti Candori fconticandori43@gmail.com Valerio Scorsipa valerio.scorsipa@alice.it F. Conti - V. Scorsipa

Dettagli

Disegna la figura di cui vuoi la trasformata e gli oggetti (asse o centro di simmetria, vettore,...) che caratterizzano la trasformazione

Disegna la figura di cui vuoi la trasformata e gli oggetti (asse o centro di simmetria, vettore,...) che caratterizzano la trasformazione LE TRASFORMAZIONI IN CABRI Per ottenere la figura immagine di una figura data in una trasformazione Disegna la figura di cui vuoi la trasformata e gli oggetti (asse o centro di simmetria, vettore,...)

Dettagli

LA CIRCONFERENZA. Preparazione. Esercizi

LA CIRCONFERENZA. Preparazione. Esercizi IN CLASSE LA CIRCONFERENZA Preparazione Per questi esercizi con GeoGebra dovrai utilizzare i seguenti pulsanti. Leggi sempre le procedure di esecuzione nella zona in alto a destra, accanto alla barra degli

Dettagli

Istruzioni. Ecco gli argomenti che ti chiediamo di ripassare:

Istruzioni. Ecco gli argomenti che ti chiediamo di ripassare: Matematica La matematica rappresenta una delle materie di base dei vari indirizzi del nostro Istituto e, anche se non sarà approfondita come in un liceo scientifico, prevede comunque lo studio di tutte

Dettagli

Test A Teoria dei numeri e Combinatoria

Test A Teoria dei numeri e Combinatoria Test A Teoria dei numeri e Combinatoria Problemi a risposta secca 1. Determinare con quanti zeri termina la scrittura in base 12 del fattoriale di 2002. 2. Determinare quante sono le coppie (x, y) di interi

Dettagli

Proiezioni_ortogonali Loris_Resente[1].ppt

Proiezioni_ortogonali Loris_Resente[1].ppt Introduzione allo studio della tecnologia e sviluppo del linguaggio grafico A cura degli alunni della classe 1^M Docenti:Emanuela Menzaghi Giampiero Biello Gli esercizi impostati con la classe hanno l'obiettivo

Dettagli

TAVOLE PER IL DISEGNO

TAVOLE PER IL DISEGNO TAVOLE PER IL DISEGNO Disegni geometrici tavv. Disegni a mano libera 1-2 Riproduzione di disegni in scala 3 Uso delle squadre 4 Inviluppi di linee 5-6 Uso del compasso 7 Costruzioni geometriche 8-11 Strutture

Dettagli

I quadrilateri Punti notevoli di un triangolo

I quadrilateri Punti notevoli di un triangolo I quadrilateri Capitolo Quadrilateri 1 erifica per la classe prima COGME............................... ME............................. Quesiti 1.a ero o falso? 1. La somma degli angoli interni di un ottagono

Dettagli

Corso di Matematica - Geometria. Geometria - 0. Ing. L. Balogh

Corso di Matematica - Geometria. Geometria - 0. Ing. L. Balogh Geometria - 0 Triangoli qualunque somma degli angoli interni, calcolo del perimetro e dell area Oggetti Vertici Lati Angoli Altezza Raggio Simbolo A, B, C a, b, c,, h S, r Perimetro = + + Somma angoli

Dettagli

Tutte le parabole sono simili?

Tutte le parabole sono simili? Tutte le parabole sono simili? Livello scolare: biennio Abilità interessate Individuare proprietà invarianti per similitudini. Analizzare e risolvere semplici problemi mediante l'applicazione delle similitudini.

Dettagli

piastrelle piastrelle piastrelle

piastrelle piastrelle piastrelle Perché le celle delle api hanno una struttura esagonale regolare? Università delle Liberetà 2008 09 appunti di marinella bassi 1 2 Il tessuto di molti vegetali e il pigmento della retina nei nostri occhi

Dettagli

In un triangolo altezza mediana bisettrice asse Proprietà di angoli e lati di un triangolo

In un triangolo altezza mediana bisettrice asse Proprietà di angoli e lati di un triangolo In un triangolo si dice altezza relativa a un lato il segmento di perpendicolare al lato condotta dal vertice opposto. Si dice mediana relativa a un lato il segmento che unisce il punto medio del lato

Dettagli

Triangoli equilateri e parabole

Triangoli equilateri e parabole Triangoli equilateri e parabole Livello scolare: 2 biennio Abilità interessate Realizzare semplici costruzioni di luoghi geometrici. Risolvere semplici problemi riguardanti rette, circonferenze, parabole.

Dettagli

Copyright Esselibri S.p.A.

Copyright Esselibri S.p.A. Un isometria è perciò una trasformazione geometrica che conserva la distanza tra due punti. onsideriamo alcune particolari trasformazioni isometriche. 2.1.1. Traslazioni hiamiamo vettore un segmento sul

Dettagli

ARROTONDANDO FIGURE CON TRIANGOLI EQUILATERI

ARROTONDANDO FIGURE CON TRIANGOLI EQUILATERI ARROTONDANDO Cosa succede ad accostare figure identiche una all altra? Le figure ottenute che proprietà presentano? Posso trovare un qualche tipo di legge generale? Per rispondere a questa ed altre domande

Dettagli

Prodo3o realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema. Laboratori del Sapere Scien0fico

Prodo3o realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema. Laboratori del Sapere Scien0fico Prodo3o realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema Laboratori del Sapere Scien0fico LA SEZIONE AUREA IN CLASSE I numeri e la geometria CLASSI 3 - Scuola

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMETO DELLA MATEMATICA. LEZIONE n 13

METODI E TECNOLOGIE PER L INSEGNAMETO DELLA MATEMATICA. LEZIONE n 13 METODI E TECNOLOGIE PER L INSEGNAMETO DELLA MATEMATICA LEZIONE n 13 Parte terza TRASFORMAZIONI GEOMETRICHE Dalle indicazioni nazionali: Descrivere, denominare e classificare figure geometriche, identificando

Dettagli

Risposte ai quesiti D E H D

Risposte ai quesiti D E H D Perugia, dic. 2009/gen. 2010 Risposte ai quesiti 1. Dati i quadrati CD e C D, come in figura, provare che la perpendicolare uscente da alla retta DD passa per il punto medio del segmento quale che sia

Dettagli

ESAME DI STATO. SIMULAZIONE PROVA NAZIONALE Scuola Secondaria di I grado Classe Terza. Prova 3. Anno Scolastico 20. - 20. Classe:... Data:...

ESAME DI STATO. SIMULAZIONE PROVA NAZIONALE Scuola Secondaria di I grado Classe Terza. Prova 3. Anno Scolastico 20. - 20. Classe:... Data:... Prova Nazionale di Matematica: Simulazioni - a cura di M. Zarattini Prova ESAME DI STATO Anno Scolastico 0. - 0. SIMULAZIONE PROVA NAZIONALE Scuola Secondaria di I grado Classe Terza Classe:... Data:...

Dettagli

Prodotto realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema. Laboratori del Sapere Scientifico

Prodotto realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema. Laboratori del Sapere Scientifico Prodotto realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema Laboratori del Sapere Scientifico Tassellazioni con Geogebra Familiarizzare con le isometrie nella

Dettagli

Con la mente e con le mani Il calcolo delle aree: esa1o, approssimato, errato

Con la mente e con le mani Il calcolo delle aree: esa1o, approssimato, errato Con la mente e con le mani Il calcolo delle aree: esa1o, approssimato, errato di Franco Ghione e Daniele Pasquazi 10 cm. Quanto vale l area di un triangolo equilatero che ha il lato lungo 10 centimetri?

Dettagli

Applicazioni dei teoremi di Pitagora ed Euclide

Applicazioni dei teoremi di Pitagora ed Euclide Utilizzando le misure di segmenti e superfici si possono riscrivere i teoremi di Pitagora ed Euclide per il triangolo rettangolo: Teorema di Pitagora: 1 + c i c = 1 Teorema di Euclide: c p i 1 = 1 c =

Dettagli

Il primo criterio di congruenza

Il primo criterio di congruenza G Il primo criterio di congruenza Costruire un triangolo congruente a un triangolo dato sfruttando il primo criterio di congruenza dei triangoli. Prima di iniziare a tracciare gli oggetti che fanno parte

Dettagli

74. Geogebra, per operare dinamicamente con la matematica di Sergio Balsimelli

74. Geogebra, per operare dinamicamente con la matematica di Sergio Balsimelli 74. Geogebra, per operare dinamicamente con la matematica di Sergio Balsimelli [s.balsimelli@tiscalinet.it, http://utenti.lycos.it/sergiobalsi/] Sunto. Geogebra è un software libero e multi-piattaforma,

Dettagli

ESERCITAZIONE INVALSI GEOMETRIA PIANA FEBBRAIO 2012

ESERCITAZIONE INVALSI GEOMETRIA PIANA FEBBRAIO 2012 ESERCITAZIONE INVALSI GEOMETRIA PIANA FEBBRAIO 2012 G 1 : Considera la corona circolare formata da due cerchi aventi il raggio uno il doppio dell altro, l angolo al centro â e le due corde AB e A B. La

Dettagli

Test di autovalutazione

Test di autovalutazione Test di autovalutazione Test 0 10 0 30 0 0 0 70 80 90 100 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle alternative. n onfronta le tue risposte con le soluzioni.

Dettagli

Poligoni inscritti e circoscritti ad una circonferenza

Poligoni inscritti e circoscritti ad una circonferenza Poligoni inscritti e circoscritti ad una circonferenza Def: 1. Un poligono si dice inscritto in una circonferenza se tutti i suoi vertici sono punti della La circonferenza si dice circoscritta al poligono.

Dettagli

Triangolo rettangolo

Triangolo rettangolo Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto sen OP cos tg OA cateto OP PA cateto OA cateto opposto ad ipotenusa

Dettagli

MISURA SPERIMENTALE DELLA CIRCONFERENZA E DELL AREA DEL CERCHIO

MISURA SPERIMENTALE DELLA CIRCONFERENZA E DELL AREA DEL CERCHIO MISURA SPERIMENTALE DELLA CIRCONFERENZA E DELL AREA DEL CERCHIO Nella circonferenza, l inizio e la fine coincidono Eraclito La rettificazione della circonferenza è stato un argomento che ha interessato

Dettagli

Università degli Studi di Roma Tor Vergata. Principio di induzione matematica

Università degli Studi di Roma Tor Vergata. Principio di induzione matematica Università degli Studi di Roma Tor Vergata. Principio di induzione matematica Il Principio di induzione matematica è una tecnica di dimostrazione che permette la dimostrazione simultanea di infinite affermazioni.

Dettagli

Problemi di geometria

Problemi di geometria 1 2 6 7 9 Calcola la misura dell ipotenusa di un triangolo rettangolo i cui cateti misurano 11,2 cm e 1 cm. [1,7 cm] In un triangolo rettangolo l ipotenusa misura cm, un cateto è dell ipotenusa. Calcola

Dettagli

Piano cartesiano e Retta

Piano cartesiano e Retta Piano cartesiano e Retta 1 Piano cartesiano e Retta 1. Richiami sul piano cartesiano 2. Richiami sulla distanza tra due punti 3. Richiami punto medio di un segmento 4. La Retta (funzione lineare) 5. L

Dettagli

4.3 PROBLEMI TIPO. 1. Determinare l asse di simmetria, data una figura e la sua simmetrica. (scheda 2)

4.3 PROBLEMI TIPO. 1. Determinare l asse di simmetria, data una figura e la sua simmetrica. (scheda 2) 4.3 PROBLEMI TIPO Le situazioni descritte rappresentano alcuni problemi standard che riguardano lo studio della simmetria assiale. Considerata la potenzialità del software Cabrì Geometre e la possibilità

Dettagli

LA GEOMETRIA DELLA TARTARUGA

LA GEOMETRIA DELLA TARTARUGA LA GEOMETRIA DELLA TARTARUGA CAPITOLO 4 Tracciare figure Iniziamo con una figura semplice: il QUADRATO. Certamente sai che un quadrato ha tutti i lati uguali e gli angoli uguali. Dopo aver avviato Logo

Dettagli

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1. Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero

Dettagli

TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 2

TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 2 TRASFORMAZIONI GEOMETRICHE NEL PIANO Parte 2 La simmetria L'etimologia della parola simmetria è greca. = stessa misura Per estensione, se ne amplia il significato ad espressioni del tipo 'equilibrio fra

Dettagli

Gli enti geometrici fondamentali

Gli enti geometrici fondamentali capitolo 1 Gli enti geometrici fondamentali 1. Introduzione 1 2. La geometria euclidea come sistema ipotetico-deduttivo 2 Teoremi e dimostrazioni, 3 3. Postulati di appartenenza 4 4. Postulati di ordinamento

Dettagli

Classifichiamo i quadrilateri Che noia! O no?

Classifichiamo i quadrilateri Che noia! O no? Classifichiamo i quadrilateri Che noia! O no? Classe II C Scuola secondaria di primo grado di Incisa I.C. Rignano-Incisa Valdarno Docente: Lucia Ciabini 12 Seminario nazionale sul curricolo verticale 07

Dettagli

Prodotto realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema. Laboratori del Sapere Scientifico

Prodotto realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema. Laboratori del Sapere Scientifico Prodotto realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema Laboratori del Sapere Scientifico Corpo Arte Geometria Docenti: Moracchioli Stefania e Tarantola

Dettagli

intersezione di due oggetti semicirconferenza - per due punti circonferenza - per tre punti retta - per due punti

intersezione di due oggetti semicirconferenza - per due punti circonferenza - per tre punti retta - per due punti IN CLASSE IL CERCHIO E Preparazione Per questi esercizi con GeoGebra dovrai utilizzare i seguenti pulsanti. Leggi sempre le procedure di esecuzione nella zona in alto a destra, accanto alla barra degli

Dettagli