NOZIONI DI LOGICA PROPOSIZIONI.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "NOZIONI DI LOGICA PROPOSIZIONI."

Transcript

1 NOZIONI DI LOGICA PROPOSIZIONI. Una proposizione è un affermazione che è vera o falsa, ma non può essere contemporaneamente vera e falsa. ESEMPI Sono proposizioni : 7 è maggiore di 2 Londra è la capitale della Francia Un triangolo ha 5 lati Non sono proposizioni : Che tempo fa? Apri quella porta Che bella festa! Poiché ogni proposizione può essere solo vera o falsa, è possibile associare ad ogni proposizione un valore di verità : vero o falso e si denota rispettivamente con V o F o anche rispettivamente con 1 o 0. Se una proposizione è vera diremo che ha valore di verità V oppure 1,se è falsa diremo che ha valore di verità F oppure 0. Ogni proposizione ha quindi un valore di verità. Le proposizioni si denoteranno con le lettere minuscole dell alfabeto latino, quali a,b,c,. La logica delle proposizioni descrive come si possono combinare tra loro proposizioni in modo da ottenere altre proposizioni. 1

2 TAVOLE DI VERITA Data la proposizione a si può ottenere La proposizione non a, detta la negazione di a. In simboli : a a è vera quando a è falsa a è falsa quando a è vera. I valori di verità di a sono quindi descritti dalla seguente tavola di verità a V F a F V ESEMPIO a : Bari è una città a : Bari non è una città a : Oggi non abbiamo seguito le lezioni a : Oggi abbiamo seguito le lezioni 2

3 Date due proposizioni a e b si possono ottenere : La proposizione a e b detta la congiunzione di a e b. In simboli : a b a b è vera se e solo se a è vera e b è vera. I valori di verità di a b sono quindi descritti dalla seguente tavola di verità a b a b V V V V F F F V F F F F ESEMPI a : 12 è divisibile per 3 ( V ) b : 12 è divisibile per 2 ( V ) a b : 12 è divisibile per 3 e per 2 ( V ) a : 24 è multiplo di 6 ( V ) b : 24 è multiplo di 7 ( F ) a b : 24 è multiplo di 6 e 7 ( F) 3

4 ESERCIZIO a : 3 è multiplo di 5 ( ) b : 8 è multiplo di 2 ( ) a b :? ( ) a : 3 è multiplo di 7 ( ) b : 25 è divisibile per 2 ( ) a b :? ( ) 4

5 La proposizione a o b,detta la disgiunzione di a e b In simboli : a b. a b è vera se e solo se almeno una delle due proposizioni è vera. I valori di verità di a b sono allora descritti dalla seguente tavola di verità a b a b V V V V F V F V V F F F ESEMPI a : 7-4 = 3 ( V ) b : Bari è il capoluogo della Puglia ( V ) a b : 7-4 = 3 o Bari è il capoluogo della Puglia ( V ) a : Firenze è una città ( V ) b : l Arno è un lago ( F ) a b : Firenze è una città o l Arno è un lago ( V ) OSSERVAZIONE La o di a o b è intesa in senso inclusivo ( a è vero oppure b è vero oppure a e b sono entrambe vere ) e non in senso esclusivo (a è vera oppure b è vera, ma non sono entrambe vere). 5

6 ESERCIZIO a : 5-4 = 8 ( ) b : Bari è una città ( ) a b :? ( ) a : Bari è un lago ( ) b : 4 x 2 = 9 ( ) a b :? ( ) 6

7 La proposizione se a allora b o anche a implica b,detta implicazione. In simboli : a b a b è falsa se e solo se a è vera e b è falsa, in tutti gli altri casi a b è vera I valori di verità di a b sono quindi descritti dalla seguente tavola di verità. a b a b V V V V F F F V V F F V ESEMPI a : 12 è un numero divisibile per 6 ( V ) b : 12 è un numero divisibile per 3 ( V ) a b : se 12 è un numero divisibile per 6 allora è un numero divisibile per 3 ( V ) a : l uomo è un elefante ( F ) b : 11 è un numero primo ( V ) a b : se l uomo è un elefante allora 11 è un numero primo ( V) OSSERVAZIONE La nozione di implicazione a b si discosta dal significato usuale che si dà all implicazione che esprime normalmente una correlazione di tipo causa-effetto tra a e b. 7

8 ESERCIZIO a : = 12 ( ) b : ogni cane ha le ali ( ) a b :? ( ) a : 11-4 = 8 ( ) b : = 9 ( ) a b :? ( ) 8

9 La proposizione : a se e solo se b o anche condizione necessaria e sufficiente affinché a è anche b, detta doppia implicazione. In simboli a b a b è vera se e solo se a e b hanno lo stesso valore di verità. I valori di verità di a b sono allora descritti dalla seguente tavola di verità. a b a b V V V V F F F V F F F V. ESEMPI a : Verdi è un compositore italiano ( V ) b : 2 2 = 4 ( V ) a b : Verdi è un compositore italiano se e solo se 2 2 = 4 ( V ) a : il merluzzo è un mammifero ( F ) b : 4 è un numero dispari ( F ) a b : il merluzzo è un mammifero se e solo se 4 è un numero dispari ( V ) 9

10 OSSERVAZIONE Anche la doppia implicazione si discosta dal significato usuale di se e solo se. ESERCIZIO a : 3 2 = 1 ( ) b : Il Mediterraneo è un deserto ( ) a b :? ( ) a : ( 2 2 ) 3 = 2 5 ( ) b : ( ) 2 = 9 ( ) a b :? ( ) 10

11 CONNETTIVI LOGICI I simboli,,,, sono detti connettivi logici A partire da proposizioni molto semplici è possibile, utilizzando i connettivi logici, ottenere proposizioni composte sempre più complesse Il valore di verità di tali proposizioni è univocamente determinato dalle tavole di verità una volta che si sia stabilito il valore di verità delle singole proposizioni di cui sono composte., viene posto prima di una proposizione.,,,, sono posti tra due proposizioni. 11

12 FORMULE Si considerino n simboli a 1,, a n, detti variabili proposizionali Si dicono formule o forme proposizionali ( nelle variabili a 1,, a n ) le espressioni definite da 1. a 1,, a n sono formule 2. se a e b sono formule allora: a b a b a a b a b sono formule 3. sono formule (nelle variabili a 1,, a n ) solo le espressioni ottenute tramite le 1 e 2 ESEMPIO a, b variabili a b è una formula (a b) è una formula a b ( (a b )) è una formula Per semplificare la scrittura: Si eliminano le parentesi più esterne L ordine in cui si considerano i connettivi logici è il seguente: prima la negazione, poi e, infine e. 12

13 ESEMPIO (( a b ) ( ( a ) b)) si scrive ( a b ) ( a b ) Per ogni forma proposizionale nelle variabili a 1,, a n si può costruire una tavola di verità ESEMPIO a b c Le variabili sono a, b, c. Le righe della sua tavola di verità sono 2 3 = 8 a b c a b a b c V V V V V V V F V F V F V V V V F F V F F V V V V F V F V F F F V F V F F F F V OSSERVAZIONE La tavola di verità di una formula in n variabili ha 2 n righe. 13

14 TAUTOLOGIE E CONTRADDIZIONI Una formula nelle variabili a 1,,a n che sia sempre vera qualunque siano i valori di verità assegnati ad a 1,,a n si dice tautologia. ESEMPIO La formula a ( a b ) b è una tautologia a b a b a (a b) a (a b) b V V V V V V F F F V F V V F V F F V F V Una formula nelle variabili a 1,,a n che sia sempre falsa qualunque siano i valori di verità assegnati ad a 1,,a n si dice contraddizione. ESEMPIO La formula a a è una contraddizione a a a a V F F F V F OSSERVAZIONE a è una contraddizione se e solo se a è una tautologia. 14

15 ESERCIZI Siano a e b variabili proposizionali. Si verifichi che sono tautologie le seguenti: a b a b ; a ( b a b ) ; a a b ; 15

16 CONSEGUENZA LOGICA Siano a e b due formule della logica proposizionale. Si dice che b è conseguenza logica di a, se b è vera ogni volta che a è vera e si scrive: a b. Più in generale: Siano a 1,,a n e b formule. Si dice che b è conseguenza logica di a 1,,a n, se b è vera ogni volta che a 1,,a n sono vere e si scrive a 1,,a n b. ESEMPIO a, b, a b sono formule. La formula b è conseguenza logica di a, a b ossia a, a b b Infatti : dalla tavola di verità di a b si vede che nell unico caso in cui a ed a b sono entrambe vere, il che corrisponde solo alla prima riga, anche b è vero. a b a b V V V V F F F V V F F V 16

17 ESEMPIO a, b, a b sono formule. La formula a non è conseguenza logica di b, a b ossia non è vero che b, a b a Infatti : dalla tavola di verità di a b si vede che b ed a b sono entrambe vere sia in corrispondenza della prima riga. sia in corrispondenza della terza riga. Ma mentre in corrispondenza della prima riga anche a è vera, in corrispondenza della terza riga a è falsa. a b a b V V V V F F F V V F F V Siano a e b due formule Si dice che a e b sono semanticamente equivalenti se hanno gli stessi valori di verità, cioè se hanno le stesse tavole di verità e si scrive a b. Quindi se a e b sono semanticamente equivalenti si ha: a è vera se e solo se b è vera ; a è falsa se e solo se b è falsa. 17

18 ESEMPIO Date le formule a e b, sono semanticamente equivalenti le formule : a b e a b Infatti : la tavola di verità di a b è a b a b V V V V F F F V V F F V La tavola di verità di a b è a b a a b V V F V V F F F F V V V F F V V ESERCIZIO Verificare che se a e b sono formule, allora sono semanticamente equivalenti le formule a b ; b a ; ( a b ). 18

19 L equivalenza semantica delle formule a b ; b a ; ( a b ) si collega a tre diversi modi in cui è possibile dimostrare una implicazione. Per dimostrare che si può procedere con una : da a segue b dimostrazione diretta si assume vero a e si deduce la verità di b; dimostrazione indiretta o per contrapposizione da b segue a; dimostrazione per assurdo si suppone a b e si giunge ad una contrapposizione e ciò equivale a provare ( a b ). 19

20 FUNZIONI PROPOSIZIONALI o PREDICATI In matematica sono necessarie oltre alle proposizioni anche le funzioni proposizionali o predicati. Sia D un insieme detto dominio. Una funzione proposizionale su D è un espressione P(x) tale che P(x) sia una proposizione quando al posto della variabile individuale x si sostituisce un arbitrario elemento a D, ossia, per ogni a D, si ha che P(a) è vera o P(a) è falsa Se si considera : a : Antonio è alto 1.60, a è una proposizione. Chi conosce Antonio sa se a è vera o se a è falsa. Se si considera: P ( x ) : x è alto 1.60 ( dove x varia nell insieme di tutti gli uomini ) P(x) è una funzione proposizionale. P ( x ) è vera se x varia nell insieme di tutti gli uomini alti P ( x ) è falsa se x non varia nell insieme di tutti gli uomini alti In generale: Se D 1, D 2,,D n sono n insiemi una funzione proposizionale ( in n variabili) su D 1 x D 2 x x D n è un espressione P(x 1, x 2,,x n ) tale che P(a 1, a 2,,a n ) è una proposizione, per ogni (a 1, a 2,,a n ) elemento di D 1 x D 2 x x D n. 20

21 ESEMPI 1. x è minore di 3 e maggiore di -3 ( dove x varia in R ); è una funzione proposizionale nella variabile x ed il dominio è R: 2. y = 2x ( dove x e y variano in Z ); è una funzione proposizionale nelle variabili x ed y su Z x Z. 21

22 QUANTIFICATORI Un predicato P(x 1, x 2,,x n ) non è né vero né falso, ma diventa vero o falso, cioè diventa una proposizione, se si vincolano le variabili. Le variabili si vincolano se: Si sostituiscono le variabili x 1, x 2,,x n con dei valori particolari. ESEMPIO P( x ) : x è un numero pari ( x varia in N ) P( 4 ) è vera P( 11 ) è falsa Quantificando le variabili Sia P ( x ) un predicato con x variabile nel domino D. Si possono avere enunciati del tipo : 1. per ogni x in D, la proposizione P ( x ) è vera. In simboli x P ( x ) si legge per ogni è detto quantificatore universale ESEMPIO Per ogni numero intero x, x è maggiore di x-1. 22

23 2. esiste almeno un x in D per cui la proposizione P( x ) è vera. In simboli x P ( x ) si legge esiste è detto quantificatore esistenziale. ESEMPIO Esiste almeno un numero intero pari minore di 20 divisibile per 4. La negazione di : x P ( x ) ossia: ( x P ( x ) ) è : x P ( x ) ESEMPIO P(x) : un cane è nero. ogni cane è nero : in simboli x P ( x ) Ha come negazione : in simboli x P ( x ) che si legge : esiste almeno un cane che non è nero. Quindi per ogni funzione proposizionale P(x) su D le proposizioni : ( x P ( x ) ) e x P ( x ), sono equivalenti. Analogamente sono equivalenti le proposizioni: ( x P ( x ) ) e x P ( x ). 23

24 ESEMPIO P(x, y) : x + y è un numero pari. Allora: per ogni x esiste y tale che x + y non è pari ossia in simboli x y P ( x, y ) è equivalente a non esiste x tale che per ogni y, x + y è pari ossia in simboli ( x y P ( x, y ) ) 24

25 LINGUAGGIO Un linguaggio del primo ordine L con identità è formato da Le variabili individuali x 1,, x n, I connettivi logici,,,, Il simbolo di uguaglianza = I quantificatori, I simboli ausiliari (, ) e ; I simboli predicativi I simboli funzionali Le costanti individuali. * simboli predicativi sono quelli che denotano le relazioni * simboli funzionali sono quelli che denotano le applicazioni e le operazioni * le costanti individuali sono quelle che denotano particolari elementi Si dicono simboli logici le variabili individuali, i connettivi logici, il simbolo di uguaglianza e i quantificatori. In ogni linguaggio si trovano sia i simboli logici sia i simboli ausiliari. I simboli funzionali, i simboli predicativi e le costanti individuali dipendono dal linguaggio che si sta considerando. 25

NOZIONI DI LOGICA. Premessa

NOZIONI DI LOGICA. Premessa NOZIONI DI LOGICA Premessa Il compito principale della logica è quello di studiare il nesso di conseguenza logica tra proposizioni, predisponendo delle tecniche per determinare quando la verità di una

Dettagli

Cenni di logica e calcolo proposizionale

Cenni di logica e calcolo proposizionale Cenni di logica e calcolo proposizionale Corso di Laurea in Informatica Università degli Studi di Bari (sede Brindisi) Analisi Matematica S.Milella (sabina.milella@uniba.it) Cenni di logica 1 / 10 Proposizioni

Dettagli

BREVE CENNO DI LOGICA CLASSICA La logica può essere definita come la scienza che studia le condizioni in base alle quali un ragionamento risulta

BREVE CENNO DI LOGICA CLASSICA La logica può essere definita come la scienza che studia le condizioni in base alle quali un ragionamento risulta BREVE CENNO DI LOGICA CLASSICA La logica può essere definita come la scienza che studia le condizioni in base alle quali un ragionamento risulta corretto e vero. Un ragionamento è corretto se segue uno

Dettagli

La logica matematica. Si ringraziano per il loro contributo gli alunni della classe IB Lic. Sc. A.S

La logica matematica. Si ringraziano per il loro contributo gli alunni della classe IB Lic. Sc. A.S La logica matematica Si ringraziano per il loro contributo gli alunni della classe IB Lic. Sc. A.S. 2010-2011 La logica studia le proposizioni logiche e le relazioni tra esse. Una proposizione logica è

Dettagli

Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1

Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1 Luca Costabile Esercizi di Logica Matematica Dispensa Calcolo Proposizionale 1 Esercizio 1.12 Per dimostrare che per ogni funzione esiste una formula in cui compaiono le variabili tale che la corrispondente

Dettagli

Logica: materiale didattico

Logica: materiale didattico Logica: materiale didattico M. Cialdea Mayer. Logica (dispense): http://cialdea.dia.uniroma3.it/teaching/logica/materiale/dispense-logica.pdf Logica dei Predicati (Logica per l Informatica) 01: Logica

Dettagli

Logica proposizionale

Logica proposizionale Logica proposizionale Proposizione: frase compiuta che è sempre o vera o falsa. Connettivi Posti in ordine di precedenza: not, and, or, implica, doppia implicazione Sintassi Le proposizioni sono costituite

Dettagli

Logica degli enunciati; Operazioni con le proposizioni; Proprietà delle operazioni logiche; Tautologie; Regole di deduzione; Logica dei predicati;

Logica degli enunciati; Operazioni con le proposizioni; Proprietà delle operazioni logiche; Tautologie; Regole di deduzione; Logica dei predicati; Logica degli enunciati; Operazioni con le proposizioni; Proprietà delle operazioni logiche; Tautologie; Regole di deduzione; Logica dei predicati; Implicazione logica. Equivalenza logica; Condizione necessaria,

Dettagli

INSIEMI. DEF. Un INSIEME è una qualsiasi collezione di oggetti.

INSIEMI. DEF. Un INSIEME è una qualsiasi collezione di oggetti. INSIEMI DEF. Un INSIEME è una qualsiasi collezione di oggetti. Esso è ben definito quando è chiaro se un oggetto appartiene o non appartiene all insieme stesso. Esempio. E possibile definire l insieme

Dettagli

Cenni di logica. Hynek Kovarik. Università di Brescia. Analisi Matematica A

Cenni di logica. Hynek Kovarik. Università di Brescia. Analisi Matematica A Cenni di logica Hynek Kovarik Università di Brescia Analisi Matematica A Hynek Kovarik (Università di Brescia) Cenni di logica Analisi Matematica A 1 / 21 Scopo: introdurre nozioni di logica & terminologia

Dettagli

Prerequisiti Matematici

Prerequisiti Matematici Prerequisiti Matematici Richiami di teoria degli insiemi Relazioni d ordine, d equivalenza Richiami di logica Logica proposizionale, tabelle di verità, calcolo dei predicati Importante: Principio di Induzione

Dettagli

Elementi di logica. SCOPO: introdurre nozioni di logica & vocabolario per una corretta interpretazione delle dimostrazioni.

Elementi di logica. SCOPO: introdurre nozioni di logica & vocabolario per una corretta interpretazione delle dimostrazioni. Elementi di logica SCOPO: introdurre nozioni di logica & vocabolario per una corretta interpretazione delle dimostrazioni. Quantificatori: elementi fondamentali del linguaggio matematico. quantificatore

Dettagli

Materiale didattico aggiuntivo - Analisi Matematica I CENNI DI LOGICA MATEMATICA. 1. Proposizioni. Valori logici. Connettivi logici. Tavole di verita.

Materiale didattico aggiuntivo - Analisi Matematica I CENNI DI LOGICA MATEMATICA. 1. Proposizioni. Valori logici. Connettivi logici. Tavole di verita. Materiale didattico aggiuntivo - Analisi Matematica I CENNI DI LOGICA MATEMATICA 1. Proposizioni. Valori logici. Connettivi logici. Tavole di verita. Intenderemo per PROPOSIZIONE (o ENUNCIATO) una qualunque

Dettagli

Richiami teorici ed esercizi di Logica

Richiami teorici ed esercizi di Logica Facoltà di ingegneria Università della Calabria Corsi di Potenziamento Matematica e Logica A. A. 2008-2009 Richiami teorici ed esercizi di Logica Proposizioni logiche: Ogni espressione matematica alla

Dettagli

Logica proposizionale

Logica proposizionale Fondamenti di Informatica per la Sicurezza a.a. 2008/09 Logica proposizionale Stefano Ferrari UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI TECNOLOGIE DELL INFORMAZIONE Stefano Ferrari Università degli

Dettagli

Richiami di logica matematica

Richiami di logica matematica Richiami di logica matematica Gli oggetti elementari dei discorsi matematici sono le proposizioni logiche = enunciati di cui si possa stabilire inequivocabilmente se sono veri o falsi. Sono proposizioni

Dettagli

UNIVERSITÀ DEGLI STUDI LA SAPIENZA CORSO DI STUDI IN INFORMATICA ESERCITAZIONI AL CORSO DI LOGICA MATEMATICA LOGICA PROPOSIZIONALE

UNIVERSITÀ DEGLI STUDI LA SAPIENZA CORSO DI STUDI IN INFORMATICA ESERCITAZIONI AL CORSO DI LOGICA MATEMATICA LOGICA PROPOSIZIONALE UNIVERSITÀ DEGLI STUDI LA SAPIENZA CORSO DI STUDI IN INFORMATICA ESERCITAZIONI AL CORSO DI LOGICA MATEMATICA LOGICA PROPOSIZIONALE TAVOLE DI VERITÀ, COLETEZZA VERO-FUNZIONALE Esercizio 1. Calcola le tavole

Dettagli

Logica per la Programmazione

Logica per la Programmazione Logica del Primo Ordine: Motivazioni, Sintassi e Interpretazioni Logica per la Programmazione Lezione 1 Calcolo Proposizionale: sintassi e semantica Tautologie Esempi di Formalizzazione di Enunciati pag.

Dettagli

Fondamenti di Informatica 2

Fondamenti di Informatica 2 Fondamenti di Informatica 2 Linguaggi e Complessità : Lezione 1 Corso Fondamenti di Informatica 2 Marco Schaerf, 2009-2010 Linguaggi e Complessità : Lezione 1 1 Logica proposizionale Linguaggio matematico

Dettagli

L'algebra Booleana. Generalità. Definizioni

L'algebra Booleana. Generalità. Definizioni L'algebra Booleana Generalità L algebra booleana è stata sviluppata da George Boole nel 1854, ed è diventata famosa intorno al 1938 poiché permette l analisi delle reti di commutazione, i cui soli stati

Dettagli

ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI A. MARTINI Castelfranco Veneto (TV) Elementi di Logica

ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI A. MARTINI Castelfranco Veneto (TV) Elementi di Logica settembre 008 Elementi di Logica 1. Nozioni preliminari La logica studia come funziona il pensiero e il ragionamento espresso attraverso degli enunciati Il ragionamento è un sistema di enunciati che permette

Dettagli

Un po di logica. Christian Ferrari. Laboratorio di matematica

Un po di logica. Christian Ferrari. Laboratorio di matematica Un po di logica Christian Ferrari Laboratorio di matematica 1 Introduzione La logica è la disciplina che studia le condizioni di correttezza del ragionamento. Il suo scopo è quindi quello di elaborare

Dettagli

Calcolo proposizionale

Calcolo proposizionale 1 Il calcolo delle proposizioni Una proposizione logica si dice semplice o atomica se contiene soltanto un predicato. Due o più proposizioni semplici collegate mediante l'uso di connettivi formano proposizioni

Dettagli

04 - Logica delle dimostrazioni

04 - Logica delle dimostrazioni Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 04 - Logica delle dimostrazioni Anno Accademico 013/014 D. Provenzano,

Dettagli

George BOOLE ( ) L algebra booleana. (logica proposizionale)

George BOOLE ( ) L algebra booleana. (logica proposizionale) George BOOLE (1815-64) L algebra booleana. (logica proposizionale) La logica e George BOOLE George BOOLE nel 1847 pubblicò il libro Mathematical Analysis of Logic, nel quale presentava ciò che oggi si

Dettagli

Semantica proposizionale. Unit 2, Lez 3 e 4 Corso di Logica

Semantica proposizionale. Unit 2, Lez 3 e 4 Corso di Logica Semantica proposizionale Unit 2, Lez 3 e 4 Corso di Logica Sommario Semantica dei connettivi Costruzione delle tavole di verità Tautologie, contraddizioni e contingenze Semantica delle forme argomentative

Dettagli

02 - Logica delle dimostrazioni

02 - Logica delle dimostrazioni Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 0 - Logica delle dimostrazioni Anno Accademico 015/016

Dettagli

LA NOZIONE DI INSIEME, PRIME OPERAZIONI TRA INSIEMI, ELEMENTI BASILARI DI LOGICA

LA NOZIONE DI INSIEME, PRIME OPERAZIONI TRA INSIEMI, ELEMENTI BASILARI DI LOGICA LA NOZIONE DI INSIEME, PRIME OPERAZIONI TRA INSIEMI, ELEMENTI BASILARI DI LOGICA L impostazione logico-deduttiva propria della matematica affida un importanza basilare alle definizioni. La ricerca, poi,

Dettagli

Elementi di Logica Teoria degli insiemi

Elementi di Logica Teoria degli insiemi Precorso di Analisi Matematica Facoltà d'ingegneria Università del Salento Elementi di Logica Teoria degli insiemi Proff. A. Albanese E. Mangino Dipartimento di Matematica e Fisica E. De Giorgi - Università

Dettagli

Proposizioni. 1) Tra le seguenti frasi riconoscere le proposizioni, e stabilirne poi il valore di verità:

Proposizioni. 1) Tra le seguenti frasi riconoscere le proposizioni, e stabilirne poi il valore di verità: Si ricorda: - L'oggetto della logica sono le proposizioni, o enunciati (i due termini sono sinonimi); - Una proposizione è una espressione dotata di senso compiuto alla quale si può attribuire in modo

Dettagli

Logica di Base. Docente: Francesca Benanti. 27 Gennaio 2007

Logica di Base. Docente: Francesca Benanti. 27 Gennaio 2007 Logica di Base Docente: Francesca Benanti 27 Gennaio 2007 1 Logica Formale La logica è la disciplina filosofica che studia le forme del ragionamento corretto. Da Aristotele al secolo scorso la logica è

Dettagli

DI CHE COSA SI OCCUPA LA LOGICA

DI CHE COSA SI OCCUPA LA LOGICA Di Emily Rinaldi DI CHE COSA SI OCCUPA LA LOGICA La logica si occupa dell esattezza dei ragionamenti Nei tempi antichi solo verbale. Nell epoca moderna la logica viene applicata per l ordinamento sistemazione

Dettagli

Elementi di Algebra e Logica Determinare la tavola della verità di ciascuna delle seguenti forme proposizionali:

Elementi di Algebra e Logica Determinare la tavola della verità di ciascuna delle seguenti forme proposizionali: Elementi di Algebra e Logica 2008. 8. Logica. 1. Determinare la tavola della verità di ciascuna delle seguenti forme proposizionali: (a) p ( q r); (b) p (q r); (c) (p q) ( p r); (d) (p q) ( p r); (e) (p

Dettagli

Introduzione alla logica matematica

Introduzione alla logica matematica Introduzione alla logica matematica 1 PROPOSIZIONE LOGICA Ogni discorso è fatto mediante espressioni di vario tipo che sono dette: proposizioni. Nel linguaggio ordinario, si chiama proposizione qualunque

Dettagli

Ricordando che: = si ha:

Ricordando che: = si ha: Logica matematica Esempi 1. Stailisci il grado di verità delle seguenti proposizioni logiche: :" è h 2 è " :"5 è 2 3 è 6" :" è h : è è " :" h h " :" h è " :" è, è " F 2. Data la proposizione p:" " la sua

Dettagli

CALCOLO PROPOSIZIONALE. Corso di Logica per la Programmazione Andrea Corradini

CALCOLO PROPOSIZIONALE. Corso di Logica per la Programmazione Andrea Corradini CALCOLO PROPOSIZIONALE Corso di Logica per la Programmazione Andrea Corradini andrea@di.unipi.it UN PROBLEMA DI DEDUZIONE LOGICA (da un test d ingresso) Tre amici, Antonio, Bruno e Corrado, sono incerti

Dettagli

CALCOLO PROPOSIZIONALE

CALCOLO PROPOSIZIONALE CALCOLO PROPOSIZIONALE UN PROBLEMA DI DEDUZIONE LOGICA (da un test d ingresso) Tre amici, Antonio, Bruno e Corrado, sono incerti se andare al cinema. Si sa che: Se Corrado va al cinema, allora ci va anche

Dettagli

Maiuscole e minuscole

Maiuscole e minuscole Maiuscole e minuscole Abilità interessate Distinguere tra processi induttivi e processi deduttivi. Comprendere il ruolo e le caratteristiche di un sistema assiomatico. Riconoscere aspetti sintattici e

Dettagli

CALCOLO DEI PREDICATI DEL I ORDINE

CALCOLO DEI PREDICATI DEL I ORDINE CALCOLO DEI PREDICATI DEL I ORDINE Dizionario Simboli descrittivi lettere o variabili proposizionali: p, q, r, A, B, C, lettere o variabili predicative: P, Q, R, lettere o variabili individuali: a, b,

Dettagli

LOGICA DEL PRIMO ORDINE: PROOF SYSTEM. Corso di Logica per la Programmazione A.A. 2013/14 Andrea Corradini

LOGICA DEL PRIMO ORDINE: PROOF SYSTEM. Corso di Logica per la Programmazione A.A. 2013/14 Andrea Corradini LOGICA DEL PRIMO ORDINE: PROOF SYSTEM Corso di Logica per la Programmazione A.A. 2013/14 Andrea Corradini LOGICA DEL PRIMO ORDINE: RIASSUNTO Sintassi: grammatica libera da contesto (BNF), parametrica rispetto

Dettagli

Logica proposizionale

Logica proposizionale Logica proposizionale Linguaggio comune Nel linguaggio comune si utilizzano spesso frasi imprecise o ambigue Esempio Un americano muore di melanoma ogni ora! Assurdo: significa che c è un americano (sfortunato)

Dettagli

1 Richiami di logica matematica

1 Richiami di logica matematica Geometria e Topologia I 7 marzo 2005 1 1 Richiami di logica matematica Definire cos è un enunciato, una proposizione (elemento primitivo della logica delle proposizioni). La definizione è data in termini

Dettagli

METODI MATEMATICI PER L INFORMATICA

METODI MATEMATICI PER L INFORMATICA METODI MATEMATICI PER L INFORMATICA Tutorato Lezione 2 17/03/2016 Corso per matricole congrue a 1 Docente: Margherita Napoli Tutor: Amedeo Leo Applicazioni della logica proposizionale La logica ha una

Dettagli

Introduzione alla logica

Introduzione alla logica Corso di Intelligenza Artificiale 2011/12 Introduzione alla logica iola Schiaffonati Dipartimento di Elettronica e Informazione Sommario 2 Logica proposizionale (logica di Boole) Logica del primo ordine

Dettagli

Cenni di logica matematica e di teoria degli insiemi Paola Rubbioni

Cenni di logica matematica e di teoria degli insiemi Paola Rubbioni Cenni di logica matematica e di teoria degli insiemi Paola Rubbioni CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2017/2018 1 Corsi Introduttivi - a.a. 2017/2018 2 1 Logica matematica Serve

Dettagli

LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13)

LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13) LOGICA MATEMATICA PER INFORMATICA (A.A. 12/13) DISPENSA N. 4 Sommario. Dimostriamo il Teorema di Completezza per il Calcolo dei Predicati del I ordine. 1. Teorema di Completezza Dimostriamo il Teorema

Dettagli

Logica per la Programmazione

Logica per la Programmazione Logica del Primo Ordine: Motivazioni, Sintassi e Interpretazioni Logica per la Programmazione Lezione 7 Formule Valide, Conseguenza Logica Proof System per la Logica del Primo Ordine Leggi per i Quantificatori

Dettagli

Cenni di logica matematica e di teoria degli insiemi. CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni

Cenni di logica matematica e di teoria degli insiemi. CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni Cenni di logica matematica e di teoria degli insiemi CORSI INTRODUTTIVI Dipartimento di Ingegneria di Perugia a.a. 2016/2017 Paola Rubbioni 1 1 Logica matematica Corsi Introduttivi - a.a. 2016/2017 2 Serve

Dettagli

Proposizioni e verità

Proposizioni e verità Proposizioni e verità Claudia Casadio Logica e Psicologia del Pensiero Laurea Triennale - Parte Istituzionale A.A. 2007-08 Contents 1 Proposizione.......................................... 3 2 Verità...............................................

Dettagli

Indice. 1. Cenni di logica 2. Elementi di teoria degli insiemi 3. Relazioni e funzioni. 1 Cenni di logica. 2 Elementi di teoria degli insiemi

Indice. 1. Cenni di logica 2. Elementi di teoria degli insiemi 3. Relazioni e funzioni. 1 Cenni di logica. 2 Elementi di teoria degli insiemi Indice 1 Cenni di logica 2 Elementi di teoria degli insiemi 3 Relazioni e funzioni 4 Strutture algebriche Cenni di logica Dispongo queste quattro carte da gioco davanti a voi, due coperte e due scoperte

Dettagli

Logica per la Programmazione Corso di Laurea in INFORMATICA a.a. 2016/17

Logica per la Programmazione Corso di Laurea in INFORMATICA a.a. 2016/17 Logica per la Programmazione Corso di Laurea in INFORMATICA a.a. 2016/17 Andrea Corradini e Francesca Levi Dipartimento di Informatica E-mail: andrea@di.unipi.it, francesca.levi@unipi.it A. Corradini e

Dettagli

Logica. Claudio Sacerdoti Coen 13-15/11/ : Semantica classica della logica proposizionale. Universitá di Bologna

Logica. Claudio Sacerdoti Coen 13-15/11/ : Semantica classica della logica proposizionale. Universitá di Bologna Logica 6: Semantica classica della logica proposizionale Universitá di Bologna 13-15/11/2017 Outline Semantica classica della logica proposizionale 1 Semantica classica della logica

Dettagli

Fondamenti di Informatica 2, Linguaggi e Complessità : Logica I Parte Lucidi di M.Schaerf e A.Marchetti Spaccamela

Fondamenti di Informatica 2, Linguaggi e Complessità : Logica I Parte Lucidi di M.Schaerf e A.Marchetti Spaccamela Fondamenti di Informatica 2 Linguaggi e Complessità : Logica I Parte Lucidi di M.Schaerf e A.Marchetti Spaccamela Fondamenti di Informatica 2: Logica Indice degli argomenti Introduzione: Motivazioni, Prove,

Dettagli

Esercitazioni per il corso di Logica Matematica

Esercitazioni per il corso di Logica Matematica Esercitazioni per il corso di Logica Matematica Luca Motto Ros 02 marzo 2005 Nota importante. Queste pagine contengono appunti personali dell esercitatore e sono messe a disposizione nel caso possano risultare

Dettagli

Cenni di logica matematica Dott.ssa Sandra Lucente 1

Cenni di logica matematica Dott.ssa Sandra Lucente 1 Cenni di logica matematica Dott.ssa Sandra Lucente 1 Il linguaggio della logica matematica integra e traduce il linguaggio comune sostituendolo quando questo presenta ambiguità. Procediamo come quando

Dettagli

APPUNTI DI ANALISI MATEMATICA Parte Prima

APPUNTI DI ANALISI MATEMATICA Parte Prima APPUNTI DI ANALISI MATEMATICA Parte Prima Versione preliminare del 24 settembre 2008 Pierpaolo Omari Dipartimento di Matematica e Informatica Università degli Studi di Trieste Maurizio Trombetta Dipartimento

Dettagli

sempre vere sempre false

sempre vere sempre false Logica: elementi I principi della logica sono innanzitutto i seguenti: Identità: a=a (ogni cosa è cioè identica a se stessa) Non contraddizione: non (a e non a). E impossibile che la stessa cosa sia e

Dettagli

Fondamenti della Matematica aa Prof. Tovena Proposizioni e tavole di verità

Fondamenti della Matematica aa Prof. Tovena Proposizioni e tavole di verità Proposizioni e tavole di verità Una proposizione è un enunciato (dichiarazione, frase) che può essere vero o può essere falso, ma non può essere contemporaneamente sia vero che falso. Essere vera o falsa

Dettagli

Un po di logica. Logica delle proposizioni. Connettivi logici, tavole di verità e tautologie

Un po di logica. Logica delle proposizioni. Connettivi logici, tavole di verità e tautologie Un po di logica Logica delle proposizioni. Connettivi logici, tavole di verità e tautologie Proposizioni. Le proposizioni, anche dette affermazioni o enunciati, che si considerano in matematica sono quelle

Dettagli

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1 Corso integrato di Matematica per le scienze naturali ed applicate Materiale integrativo Paolo Baiti 1 Lorenzo Freddi 1 1 Dipartimento di Matematica e Informatica, Università di Udine, via delle Scienze

Dettagli

Linguaggio della Matematica

Linguaggio della Matematica Linguaggio della Matematica concetti primitivi: elementi fondamentali di natura intuitiva (punto, retta, insieme, elemento di un insieme,...). assiomi: enunciati, proposizioni vere a priori (gli assiomi

Dettagli

Introduzione alla logica matematica

Introduzione alla logica matematica Introduzione alla logica matematica, Paolo Bison, A.A. 2004-05, 2004-10-26 p.1/29 Introduzione alla logica matematica Silvana Badaloni Paolo Bison Fondamenti di Informatica 1 A.A. 2004/05 Università di

Dettagli

Informatica. Logica e Algebra di Boole

Informatica. Logica e Algebra di Boole Informatica Logica e Algebra di Boole La logica è la scienza del corretto ragionamento e consiste nello studio dei principi e dei metodi che consentono di individuare il corretto ragionamento. Lo studioso

Dettagli

BOOK IN PROGRESS MATEMATICA ALGEBRA PRIMO ANNO TOMO NR. 1

BOOK IN PROGRESS MATEMATICA ALGEBRA PRIMO ANNO TOMO NR. 1 BOOK IN PROGRESS MATEMATICA ALGEBRA PRIMO ANNO TOMO NR. 1 SOMMARIO DEL TOMO 1 CAPITOLO 1: IL LINGUAGGIO DEGLI INSIEMI 1.1 Gli insiemi e la loro rappresentazione pag. 1 1. I sottoinsiemi pag. 6 1.3 Insieme

Dettagli

Logica per la Programmazione

Logica per la Programmazione Logica del Primo Ordine: Motivazioni, Sintassi e Interpretazioni Logica per la Programmazione Lezione 8 Modelli, Formule Valide, Conseguenza Logica Proof Systems Regole di inferenza per Calcolo Proposizionale

Dettagli

non V V V V F F F V F F F F

non V V V V F F F V F F F F 1. Un pò di storia Logica Il primo studioso che si occupò di logica fu il filosofo greco Aristotele (384-322 a.c.). ino al Cinquecento la logica restò sostanzialmente entro i confini tracciati da Aristotele;

Dettagli

Indice. 1 Cenni di logica. 2 Elementi di teoria degli insiemi. 3 Relazioni e funzioni. 4 Strutture algebriche

Indice. 1 Cenni di logica. 2 Elementi di teoria degli insiemi. 3 Relazioni e funzioni. 4 Strutture algebriche Indice 1 Cenni di logica 2 Elementi di teoria degli insiemi 3 Relazioni e funzioni 4 Strutture algebriche Silvia Pianta - Laura Montagnoli Geometria I - Prerequisiti - UCSC A.A. 2015/2016 1 / 36 1. Cenni

Dettagli

Logica per la Programmazione

Logica per la Programmazione Logica per la Programmazione Lezione 7 Semantica della Logica del Primo Ordine Interpretazioni Formalizzazione Un esempio informale di semantica Semantica dei termini Semantica delle formule Esempi A.

Dettagli

1. equivalenze e implicazioni logiche. Esercizio 1.2. Trovare le implicazioni che legano i seguenti enunciati (x, y R):

1. equivalenze e implicazioni logiche. Esercizio 1.2. Trovare le implicazioni che legano i seguenti enunciati (x, y R): . equivalenze e implicazioni logiche Esercizio.. Trovare le implicazioni che legano i seguenti enunciati (x, y R): () x < y, () x = y, () x y, () x y, () (x y) > 0. Osserviamo subito che (x y) > 0 equivale

Dettagli

Linguaggio della Matematica

Linguaggio della Matematica Linguaggio della Matematica concetti primitivi: elementi fondamentali di natura intuitiva (punto, retta, insieme, elemento di un insieme,...). assiomi: enunciati, proposizioni vere a priori (gli assiomi

Dettagli

Nozioni di logica matematica

Nozioni di logica matematica MINISTERO DELL ISTRUZIONE, DELL UNIVERSITA E DELLA RICERCA LICEO STATALE P. E. IMBRIANI Linguistico - Scientifico - Scientifico delle Scienze Applicate Via S. Pescatori, 155 83100 Avellino Tel. (2 linee)

Dettagli

In una palazzina abitata da 20 famiglie, 10 di esse hanno il cane, 2 non hanno n è cane n è gatto mentre 12 famiglie hanno il gatto.

In una palazzina abitata da 20 famiglie, 10 di esse hanno il cane, 2 non hanno n è cane n è gatto mentre 12 famiglie hanno il gatto. Attività In una palazzina abitata da 20 famiglie, 10 di esse hanno il cane, 2 non hanno n è cane n è gatto mentre 12 famiglie hanno il gatto. È possibile che si realizzi la situazione descritta? Motiviamo...

Dettagli

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI Assumiamo come primitivo il concetto di insieme e quello di appartenenza di un elemento a un insieme. La notazione x A indica

Dettagli

DIMOSTRAZIONI DI EQUIVALENZE, SUI CONNETTIVI E SULL'AMBIGUITA' DELLA SINTASSI. Corso di Logica per la Programmazione

DIMOSTRAZIONI DI EQUIVALENZE, SUI CONNETTIVI E SULL'AMBIGUITA' DELLA SINTASSI. Corso di Logica per la Programmazione DIMOSTRAZIONI DI EQUIVALENZE, SUI CONNETTIVI E SULL'AMBIGUITA' DELLA SINTASSI Corso di Logica per la Programmazione SULLE LEGGI DEL CALCOLO PROPOSIZIONALE Abbiamo visto le leggi per l'equivalenza ( ),

Dettagli

Marta Capiluppi Dipartimento di Informatica Università di Verona

Marta Capiluppi Dipartimento di Informatica Università di Verona Marta Capiluppi marta.capiluppi@univr.it Dipartimento di Informatica Università di Verona Algebra di Boole Opera con i soli valori di verità 0 o 1 (variabili booleane o logiche) L'algebra booleana risulta

Dettagli

Logica. Claudio Sacerdoti Coen 07/10/ : Connotazione, denotazione, invarianza per sostituzione. Universitá di Bologna

Logica. Claudio Sacerdoti Coen 07/10/ : Connotazione, denotazione, invarianza per sostituzione. Universitá di Bologna Logica 3: Connotazione, denotazione, invarianza per sostituzione Universitá di Bologna 07/10/2015 Outline 1 Connotazione, denotazione, invarianza per sostituzione Connotazione vs

Dettagli

3. Logica. Obiettivi di apprendimento: Relazioni, dati e previsioni 6T, 7T, 8T, 10Q. La logica nel linguaggio comune...

3. Logica. Obiettivi di apprendimento: Relazioni, dati e previsioni 6T, 7T, 8T, 10Q. La logica nel linguaggio comune... Capitolo 3. Logica 3. Logica Obiettivi di apprendimento: Relazioni, dati e previsioni 6T, 7T, 8T, 10Q. La logica nel linguaggio comune... sei una persona priva di logica è logico comportarsi cosí fai l

Dettagli

Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica ALGEBRA BOOLEANA

Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica ALGEBRA BOOLEANA Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica ALGEBRA BOOLEANA Introduzione George Boole (1815-1864) nel 1854 elaborò una algebra basata su predicati logici. Valori

Dettagli

I.2 Logica. Elisabetta Ronchieri. Ottobre 13, Università di Ferrara Dipartimento di Economia e Management. Insegnamento di Informatica

I.2 Logica. Elisabetta Ronchieri. Ottobre 13, Università di Ferrara Dipartimento di Economia e Management. Insegnamento di Informatica I.2 Logica Università di Ferrara Dipartimento di Economia e Management Insegnamento di Informatica Ottobre 13, 2015 Argomenti Logica 1 Logica 2 3 Logica Si occupa dello studio delle strutture e delle regole

Dettagli

Logica: nozioni di base

Logica: nozioni di base Fondamenti di Informatica Sistemi di Elaborazione delle Informazioni Informatica Applicata Logica: nozioni di base Antonella Poggi Anno Accademico 2012-2013 DIPARTIMENTO DI SCIENZE DOCUMENTARIE LINGUISTICO

Dettagli

I circuiti elementari

I circuiti elementari I circuiti elementari Nel lavoro diprogrammazione con il computer si fa largo uso della logica delle proposizioni e delle regole dell algebra delle proposizioni o algebra di Boole. L algebra di Boole ha

Dettagli

Ragionamento Automatico Richiami di calcolo dei predicati

Ragionamento Automatico Richiami di calcolo dei predicati Richiami di logica del primo ordine Ragionamento Automatico Richiami di calcolo dei predicati (SLL: Capitolo 7) Sintassi Semantica Lezione 2 Ragionamento Automatico Carlucci Aiello, 2004/05Lezione 2 0

Dettagli

PROGRAMMA CONSUNTIVO

PROGRAMMA CONSUNTIVO PAGINA: 1 PROGRAMMA CONSUNTIVO A.S.2014-2015 SCUOLA Liceo Linguistico Manzoni DOCENTE: Marina Barbàra MATERIA: Matematica e Informatica Classe 1 Sezione A OBIETTIVI: le parti sottolineate sono da considerarsi

Dettagli

LOGICA. Definizione: una proposizione semplice è una frase della quale si possa dire se è

LOGICA. Definizione: una proposizione semplice è una frase della quale si possa dire se è LOGICA La logica nasce nell antica Grecia ed in particolare possiamo far risalire il suo inizio al grande filosofo Aristotele (384 a.c. 322 a.c.) che la tratta principalmente negli Analitici I e Analitici

Dettagli

Logica e fondamenti di matematica

Logica e fondamenti di matematica Logica e fondamenti di matematica Docente: Prof. Roberto Giuntini (giuntini@unica.it) Logica proposizionale Logica e teoria dell argomantazione. Cap. 1: Enunciati. Enunciato: Non ogni discorso è dichiarativo

Dettagli

Percorso 2010: Introduzione alla Logica Proposizionale

Percorso 2010: Introduzione alla Logica Proposizionale Percorso 2010: Introduzione alla Logica Proposizionale Francesca Poggiolesi Facoltà di Medicina e Chirurgia 26 Agosto 2010, Firenze Dal test alla logica Alcuni esempi di test 1 Dal test alla logica Alcuni

Dettagli

LA LOGICA ESERCIZI. Indica quali, fra le seguenti frasi, sono proposizioni logiche e attribuisci a queste ultime il relativo valore di verità.

LA LOGICA ESERCIZI. Indica quali, fra le seguenti frasi, sono proposizioni logiche e attribuisci a queste ultime il relativo valore di verità. LA LOGICA 1. Le proposizioni logiche ESERCIZI Indica quali, fra le seguenti frasi, sono proposizioni logiche e attribuisci a queste ultime il relativo valore di verità. 1 A «1 1 è uguale a 5»; «Non si

Dettagli

delta δ mu (mi) µ M iupsilon υ Y eta η H omicron o O psi ψ Ψ 1. Scrivere il proprio nome e cognome in lettere greche.

delta δ mu (mi) µ M iupsilon υ Y eta η H omicron o O psi ψ Ψ 1. Scrivere il proprio nome e cognome in lettere greche. Capitolo 1 Numeri 1.1 Alfabeto greco Un ingrediente indispensabile per lo studente che affronta un corso di analisi matematica è la conoscenza dell alfabeto greco, di cui verranno usate a vario titolo

Dettagli

Logica proposizionale

Logica proposizionale Università di Bergamo Facoltà di Ingegneria Intelligenza Artificiale Paolo Salvaneschi A7_2 V1.1 Logica proposizionale Il contenuto del documento è liberamente utilizzabile dagli studenti, per studio personale

Dettagli

01 - Elementi di Teoria degli Insiemi

01 - Elementi di Teoria degli Insiemi Università degli Studi di Palermo Scuola Politecnica Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 01 - Elementi di Teoria degli Insiemi Anno Accademico 2015/2016

Dettagli

Soluzioni degli Esercizi da Svolgere Capitolo 8

Soluzioni degli Esercizi da Svolgere Capitolo 8 Soluzioni degli Esercizi da Svolgere Capitolo 8 Esercizio 8.19 1. Sia p = 3 + 2 = 7 e q = 4 + 4 = 8 ; la formalizzazione dell enunciato in esame è quindi p q che risulta VERO, essendo la premessa dell

Dettagli

Logica per la Programmazione

Logica per la Programmazione Logica per la Programmazione Lezione 2 Dimostrazione di tautologie Proof System pag. 1 Un Problema di Deduzione Logica [da un test di ingresso] Tre amici, Antonio, Bruno e Corrado, sono incerti se andare

Dettagli

Logica per la Programmazione

Logica per la Programmazione Logica per la Programmazione Lezione 6 Logica del Primo Ordine Motivazioni Sintassi di Termini e Formule Formule aperte e chiuse A. Corradini e F.Levi Dip.to Informatica Logica per la Programmazione a.a.

Dettagli

10 Logica classica predicativa

10 Logica classica predicativa 10 Logica classica predicativa Dopo aver studiato la logica classica proposizionale, ovvero la logica delle proposizioni classiche, passiamo a studiare la logica classica predicativa, ovvero quella dei

Dettagli

3. OPERAZIONI TRA CLASSI 2

3. OPERAZIONI TRA CLASSI 2 INSIEMI 1. Elementi e Classi Lo scopo di questo primo capitolo è di introdurre in maniera rigorosa le nozioni di classe e insieme, e di studiarne le principali proprietà. Nel seguito useremo il termine

Dettagli

LOGICA DEL PRIMO ORDINE: MOTIVAZIONI, SINTASSI E INTERPRETAZIONI. Corso di Logica per la Programmazione A.A Andrea Corradini

LOGICA DEL PRIMO ORDINE: MOTIVAZIONI, SINTASSI E INTERPRETAZIONI. Corso di Logica per la Programmazione A.A Andrea Corradini LOGICA DEL PRIMO ORDINE: MOTIVAZIONI, SINTASSI E INTERPRETAZIONI Corso di Logica per la Programmazione A.A. 2013 Andrea Corradini LIMITI DEL CALCOLO PROPOSIZIONALE Nella formalizzazione di enunciati dichiarativi,

Dettagli

Operatori di relazione

Operatori di relazione Condizioni Negli algoritmi compaiono passi decisionali che contengono una proposizione (o predicato) dal cui valore di verità dipende la sequenza dinamica Chiamiamo condizioni tali proposizioni Nei casi

Dettagli

Corso di Analisi Matematica I numeri reali

Corso di Analisi Matematica I numeri reali Corso di Analisi Matematica I numeri reali Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 57 1 Insiemi e logica 2 Campi ordinati 3 Estremo

Dettagli

LIBRO ADOTTATO. G.M. PIACENTINI CATTANEO: MATEMATICA DISCRETA, ed. ZANICHELLI LIBRI CONSIGLIATI

LIBRO ADOTTATO. G.M. PIACENTINI CATTANEO: MATEMATICA DISCRETA, ed. ZANICHELLI LIBRI CONSIGLIATI LIBRO ADOTTATO G.M. PIACENTINI CATTANEO: MATEMATICA DISCRETA, ed. ZANICHELLI LIBRI CONSIGLIATI A. FACCHINI: ALGEBRA E MATEMATICA DISCRETA, ed. ZANICHELLI M.G. BIANCHI, A. GILLIO: INTRODUZIONE ALLA MA-

Dettagli

Logica per la Programmazione

Logica per la Programmazione Logica per la Programmazione Lezione 6 Logica del Primo Ordine Motivazioni Sintassi Interpretazioni Formalizzazione pag. 1 Limiti del Calcolo Proposizionale Nella formalizzazione di enunciati dichiarativi,

Dettagli