Capitolo 6 Oscilloscopio analogico (parte I)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Capitolo 6 Oscilloscopio analogico (parte I)"

Transcript

1 Appunti di Misure Elettriche Capitolo 6 Oscilloscopio analogico (parte I) Introduzione...1 Concetti generali...2 Sezioni verticali...4 Sezione orizzontale...7 Sezione di trigger...9 Collegamenti dell oscilloscopio al circuito sotto misura Sonde compensate Misure fondamentali con l oscilloscopio Componenti di base di un oscilloscopio Osservazione: connettori BNC INTRODUZIONE L oscilloscopio a raggi catodici (CRO, Cathode-Ray Oscilloscope), o semplicemente oscilloscopio, è attualmente il più versatile ed utile strumento di misura. La sua larga diffusione è dovuta alla possibilità da esso offerta non solo di visualizzare l andamento temporale di grandezze di natura elettrica e non elettrica (tramite l uso di opportuni sensori), ma anche di misurare tensioni e correnti in corrente continua o alternata, tempi, frequenze, sfasamenti, sovraoscillazioni e tante altre caratteristiche statiche e dinamiche. Si tratta di uno strumento impiegato prevalentemente per misure qualitative di grandezze elettriche; le sue applicazioni sono numerose: analisi di qualsiasi tipo di corrente alternata; studio di oscillazioni e vibrazioni; verifica della funzionalità di circuiti elettronici; controllo dei diagrammi dei motori a scoppio; visualizzazione delle immagini di Radar e Sonar; monitoraggio delle correnti cerebrali e della funzionalità di cuore e polmoni. La differenza sostanziale tra un normale sistema di registrazione ed un oscilloscopio sta nella maggiore ampiezza di banda di quest ultimo. Questa è dovuta al fatto di visualizzare il segnale sotto misura tramite l uso di un sottile fascio luminoso incidente su uno schermo fluorescente: la sensibilità nella regolazione della posizione di questo fascio luminoso proporzionalmente al segnale in ingresso è tale da poter seguire variazioni temporali del suddetto segnale anche nell arco dei nanosecondi (almeno nei migliori oscilloscopi).

2 Appunti di Misure Elettriche - Capitolo 6 Il campo di frequenza di un oscilloscopio varia da modello a modello: si va dai 20 MHz per gli apparecchi più economici ai 100 MHz per gli apparecchi tipicamente usati in laboratorio fino ai 500 MHz degli apparecchi migliori (e quindi più costosi). Un altra caratteristica di grande pregio, peraltro comune ad altri strumenti elettronici, è l elevata impedenza di ingresso, che è dell ordine di qualche MΩ. Essa garantisce, nella maggior parte delle applicazioni di misura, un basso effetto di carico sul circuito di misura e quindi un basso errore di consumo (che ricordiamo essere un errore di tipo sistematico). I maggiori svantaggi degli oscilloscopi sono i seguenti: alto costo; fragilità, essenzialmente legata alla presenza del tubo a raggi catodici (CRT, Cathode-Ray Tube), che ha la funzione basilare di convertire il segnale in una immagine su uno schermo; ingombro e peso elevati, anch essi legati alla presenza del CRT; ridotta accuratezza (si va dal 90% degli strumenti più economici a non oltre il 99% per quelli migliori). CONCETTI GENERALI L oscilloscopio è uno strumento atto a visualizzare la tensione (costante o variabile) ai capi di un bipolo; questo bipolo può essere sia un elemento di un circuito sia anche un sensore. Ad esempio, nella figura seguente è riportato l uso di un oscilloscopio insieme ad un sensore di luce: La luce, emessa da una certa sorgente (naturale o artificiale) è captata dal sensore (tipicamente una fotocellula); il sensore genera ai propri capi una tensione proporzionale all intensità della luce captata; questa tensione, tramite un apposito cavo di interconnessione, viene portata all ingresso dell oscilloscopio al fine di visualizzarne l andamento temporale sullo schermo. Essendo un misuratore di tensione, sappiamo bene che l impedenza d ingresso di un oscilloscopio deve essere alta ed in effetti lo è: come anticipato nel precedente paragrafo, un valore tipico (normalmente indicato sul pannello frontale) è 1 MΩ. In realtà, tale impedenza non è puramente resistiva, ma presenta in parallelo una capacità di circa 10 pf. Come è ben noto, la rilevanza di questa capacità è tanto maggiore quanto maggiore è la frequenza del segnale applicato in ingresso allo strumento. Un oscilloscopio può essere analogico oppure digitale. La differenza sostanziale è schematizzata nella figura seguente: 2

3 Oscilloscopio analogico (parte I) Nell oscilloscopio analogico, la tensione da misurare comanda direttamente la deflessione del fascio d elettroni in un tubo a raggi catodici; questo comporta che sullo schermo fluorescente sia visualizzata una traccia continua corrispondente a tale tensione. Al contrario, nell oscilloscopio digitale la tensione di misura è prima convertita in valori numerici e poi tali valori vengono rappresentati su uno schermo simile al monitor di un PC; su tale monitor si ottiene dunque una traccia formata da punti discreti (eventualmente interpolati). In aggiunta a ciò, proprio per la disponibilità dei campioni del segnali l oscilloscopio digitale permette l elaborazione numerica del segnale, cosa che invece non è possibile nell oscilloscopio analogico. Lo schermo dell oscilloscopio è evidentemente usato per visualizzare la forma d onda (o le forme d onda, se ci sono più ingressi allo strumento) sotto misura. Per facilitare le misure, lo schermo è dotato di una griglia, formata (sempre) da 10 divisioni orizzontali e 8 divisioni verticali: Sempre al fine di ottimizzare la visualizzazione delle forme d onda, lo schermo dispone di un certo numero di controlli, che generalmente sono delle manopoline poste sulla parte inferiore dello schermo stesso (come indicato in figura). I controlli più comuni sono i seguenti: intensity: regolazione dell intensità della traccia; focus: messa a fuoco della traccia; 3

4 Appunti di Misure Elettriche - Capitolo 6 scale illumination: illuminazione della griglia; trace rotation: regolazione per rendere perfettamente orizzontale la traccia Nel seguito vedremo in dettaglio come questi comandi intervengono fisicamente sul dispositivo e, in particolare, sul tubo a raggi catodici. Sul pannello frontale dell oscilloscopio sono presenti, oltre allo schermo ed ai relativi controlli, svariate altre sezioni: Abbiamo - una o più sezioni verticali (tante quanti sono i canali in ingresso); - una sezione orizzontale; - una sezione di trigger. Sezioni verticali Ci sono tante sezioni verticali quanti sono i canali dell oscilloscopio (di solito almeno due). Schematicamente, una sezione appare verticale è del tipo seguente: 4

5 Oscilloscopio analogico (parte I) I primi due controlli della sezione verticale sono: position: serve a regolare la posizione verticale della traccia sullo schermo; volt/div: serva a regolare il guadagno verticale (sensitivity). Supponiamo ad esempio che la tensione sotto misura sia una tensione costante di 2V. Se la manopola position è nella posizione intermedia (0), la linea orizzontale della griglia dello schermo corrisponde a 0V (livello di riferimento), per cui sullo schermo vedremo una traccia orizzontale posta al di sopra di tale linea: traccia (tensione positiva) 0 V livello di riferimento Se invece ruotiamo in senso orario la manopola position, in pratica alziamo il livello di riferimento a 0V rispetto al centro dello schermo, per cui si alza anche la traccia; viceversa, ruotando la manopola in senso antiorario, la traccia si abbassa in quanto abbiamo abbassato il livello di riferimento: 0 V 0 V La posizione della traccia non dipende però solo dalla manopola position, ma anche dal guadagno verticale che stiamo adottando. Supponiamo ad esempio che il livello di riferimento a 0V sia al centro dello schermo (manopola position in posizione intermedia). Se fissiamo un guadagno verticale di 1 volt/div, vedremo la traccia orizzontale in corrispondenza della seconda linea della griglia al di sopra della linea centrale (corrispondente a 0V). Se invece fissiamo un guadagno verticale di 2 volt/div, allora la traccia sarà in corrispondenza della prima linea al di sopra di quella centrale: 0 V 2 V 0 V 2 V 1 volt/div 2 volt/div 5

6 Appunti di Misure Elettriche - Capitolo 6 Come vedremo nel dettaglio più avanti, la regolazione della manopola VOLT/div consiste nella regolazione dell attenuazione che viene imposta al segnale sotto misura in modo che l ampiezza risultante sia adeguata a pilotare la deflessione del fascio di elettroni che incide sullo schermo. Ancora riguardo i pulsanti posti nella generica sezione verticale, sono molto importanti quelli per il controllo di accoppiamento (coupling) del bipolo sotto misura con lo strumento. Abbiamo le seguenti possibilità: DC: con il commutatore in questa posizione, si ha un accoppiamento in continua, il che significa che il bipolo è collegato direttamente all oscilloscopio; AC: con il commutatore in questa posizione, viene inserito un condensatore in serie tra bipolo e strumento, al fine di rimuovere l eventuale componente continua presente nel segnale da misurare; è chiaro che la presenza di questo condensatore altera l impedenza d ingresso e la risposta dinamica dello strumento; GND: in questo caso, il bipolo è scollegato dall oscilloscopio, a cui è applicata invece una tensione nulla; portare il commutatore su questa posizione serve semplicemente a verificare la posizione sullo schermo del livello di riferimento a 0V; Bandwidth Limit: in quest ultimo caso, l ingresso è filtrato passabasso, in modo da ridurre il rumore in alta frequenza; abbiamo ancora una volta una alterazione dell impedenza di ingresso e della risposta dinamica. E ovvio che non andrà fatta questa scelta quando il segnale è di tipo passa banda, in quanto verrebbe filtrato anche il segnale oltre il rumore. Un modo banale per comprendere le posizioni DC e AC è rappresentato nella figura seguente: La tensione di misura è sinusoidale con sovrapposta una componente continua (pensiamo ad esempio alla tensione di uscita di un amplificatore elettronico, in cui la componente continua è dovuta alla polarizzazione degli elementi attivi come i transistor). Con l accoppiamento in DC, viene visualizzata la forma d onda nella sua completezza, cioè con inclusa la componente continua, che comporta semplicemente una traslazione del valor medio (in questo caso a +2V). Con l accoppiamento in AC, invece, la continua viene soppressa, per cui risulta visualizzata la classica forma d onda sinusoidale a valor medio nullo. Nella sezione verticale troviamo anche il controllo per visualizzare più canali simultaneamente. In particolare, oltre a poter scegliere quali canali visualizzare (canale 1, canale 2, canali 1 e 2, ecc.), possiamo scegliere tra due modalità di visualizzazione simultanea: alternate: in questo caso, viene riportato prima l andamento di un segnale e poi quello dell altro e la cosa si ripete per ciascun periodo; 6

7 Oscilloscopio analogico (parte I) chop: in quest altro caso, i due segnali vengono diagrammati alternativamente, riservando cioè al primo una prima frazione di tempo, poi al secondo la frazione successiva, poi ancora al primo e così via fino alla completa scansione dello schermo. La figura seguente chiarisce il concetto: Infine, è spesso possibile (anche sugli oscilloscopi analogici) qualche semplice elaborazione tra i segnali dei diversi canali. Per esempio, è possibile visualizzare la forma d onda ottenuta come somma o differenza di due canali: Al contrario degli oscilloscopi analogici, gli oscilloscopi digitali permettono invece di visualizzare manipolazioni matematiche del segnale anche molto più complesse (moltiplicazione, divisione, integrazione, derivazione, FFT, ecc.) Sezione orizzontale Come detto in precedenza, mentre ci sono tante sezioni verticali quanti sono i canali, la sezione orizzontale è unica ed è del tipo seguente: 7

8 Appunti di Misure Elettriche - Capitolo 6 Si distinguono qui due controlli principali: x position: serve a regolare la posizione orizzontale della traccia sullo schermo; time/div: serve a regolare la velocità della base dei tempi o tempo di spazzolamento (timebase, sweep time). Sulla questione della regolazione della base dei tempi torneremo approfonditamente in seguito. Per il momento, ci limitiamo a dire che spesso, se sullo schermo vediamo una forma d onda inaspettata o irriconoscibile, la causa è una regolazione grossolanamente errata proprio del valore di time/div. Un altro importante controllo della sezione orizzontale è quello che permette di scegliere il tipo di visualizzazione. Anche se ne parleremo in dettaglio più avanti, anticipiamo che la traccia dei segnali sullo schermo fluorescente del CRT è ottenuta spostando, su tale schermo, un fascio sottile di elettroni; in ciascun istante di tempo, lo spostamento verticale di tale fascio è proporzionale al segnale y applicato in ingresso, mentre invece la deflessione orizzontale dipende dal tipo di visualizzazione che si vuole: la visualizzazione cosiddetta in modo normale è tale da visualizzare la curva di equazione y(t); questo lo si ottiene usando, come segnale di comando per la deflessione orizzontale, un dente di sega generato internamente al dispositivo; al contrario, la visualizzazione in modo XY serve a diagrammare la curva di equazione x = x(t) y = y(t) dove x è un segnale applicato all altro ingresso dell oscilloscopio. Un facile esempio per comprendere quanto appena detto è illustrato nella figura seguente: 8

9 Oscilloscopio analogico (parte I) Si suppone che i due segnali x ed y in ingresso siano due sinusoidi isofrequenziali ed in quadratura di fase: nella visualizzazione in modo normale, i due segnali vengono diagrammati nella loro classica forma, proprio perché il segnale che comanda la deflessione orizzontale consente di seguire l andamento temporale di tali segnali; nella visualizzazione in modo XY, invece, non c è nessun dente di sega, per cui, in ciascun istante t, il fascio elettronico illumina il punto di coordinate (x(t),y(t)). La sostanziale differenza tra i due casi è nel fatto che, mentre il dente di sega sposta progressivamente il fascio elettronico orizzontalmente da sinistra verso destra dello schermo, nella visualizzazione XY tale spostamento orizzontale dipende dal segnale x, per cui non necessariamente è progressivo; per esempio, nel caso riportato in figura, in cui x(t) è sinusoidale, la posizione orizzontale oscilla sullo schermo. Sezione di trigger Anche la sezione di trigger è unica (come quella orizzontale) ed se il suo uso è meno intuitivo delle precedenti. Una corretta impostazione del trigger è indispensabile sia per ottenere un immagine stabile sullo schermo sia per visualizzare il segnale nel modo voluto e più utile. Nella figura seguente sono riportate due tipiche situazioni, con riferimento ad un segnale in ingresso puramente sinusoidale: Nella figura di sinistra è mostrato quello che si vede quando il trigger è mal regolato: vediamo sul display più curve, che appaiono anche in continuo movimento. Al contrario, nella figura di sinistra è mostrato ciò che si vede nel caso di una corretta regolazione del trigger: una curva unica e ferma, corrispondente alla successione di fotografie del segnale applicato. 9

10 Appunti di Misure Elettriche - Capitolo 6 Questo concetto della successione di fotografie del segnale è alla base del funzionamento dell oscilloscopio. Per ottenere una traccia stabile sullo schermo sono necessarie due condizioni fondamentali: in primo luogo, il segnale in ingresso deve essere periodico; in secondo luogo, esso deve essere tracciato partendo sempre dalla stessa fase, ossia dallo stesso istante rispetto all inizio di un periodo. Il concetto da tenere presente è che il pennello elettronico, dopo aver scandito l intero schermo (orizzontalmente da sinistra verso destra), impiega un certo tempo (molto breve, come si vedrà) per tornare nuovamente a sinistra dello schermo e quindi riprendere la propria scansione. Quindi, ogni scansione rappresenta di fatto una fotografia del segnale in ingresso, ossia una osservazione di tale segnale per un tempo (detto tempo di spazzolamento) pari a quello necessario per la scansione completa dello schermo. Allora, se il segnale non fosse periodico, cioè cambiasse continuamente ed in modo casuale, ciascuna fotografia sarebbe diversa dalla precedente, per cui vedremmo sullo schermo una successione di tracce tutte diverse tra loro, il che servirebbe a ben poco. Se invece il segnale è periodico, allora potremo ottenerne una rappresentazione stabile, ma solo alla condizione che le fotografie siano fatte nello stesso modo, cioè partendo dallo stesso punto e finendo nello stesso punto 1. Per spiegarci ancora meglio, consideriamo una sinusoide: supponiamo di effettuare la prima fotografia partendo da un istante in cui essa ha fase π/2 (se si tratta di un Seno, siamo perciò al valore massimo, +1, del segnale); se la successiva fotografia non viene fatta nuovamente partendo da un istante in cui la fase è π/2, otterremo un andamento diverso dal precedente, cadendo nello stesso problema di prima, cioè con un segnale apparentemente in movimento e quindi inutilizzabile per le misure: Chiarito questo, è evidente che otteniamo una traccia stabile sullo schermo quando sia il tempo di spazzolamento sia il tempo di ritorno del pennello sono dei multipli interi del periodo del segnale da visualizzare: in questo caso, infatti, possiamo star certi che la scansione comincia nei punti in cui il segnale ha sempre la stessa fase. Il problema, invece, è che lo spazzolamento non necessariamente dura un numero intero di periodi: la durata del tempo di spazzolamento è stabilita dalla manopola time/div presente nella sezione orizzontale. In aggiunta a questo, bisogna anche tener conto che il segnale non è visualizzato senza interruzioni, ma sono saltati pezzi anche molto lunghi rispetto allo spazzolamento. La figura seguente aiuta a comprendere il concetto: 1 In realtà, deve essere verificata una ulteriore condizioni, relativa però al funzionamento dell oscilloscopio e non al segnale sotto misura: la frequenza di ripetizione (cioè la frequenza con cui la traccia viene ridisegnata) deve essere superiore a quella di persistenza dell immagine sulla retina 10

11 Oscilloscopio analogico (parte I) Il cosiddetto istante di trigger è l istante (ricavato direttamente dal segnale in ingresso) in cui il pennello elettronica comincia la propria scansione. Il già citato tempo di spazzolamento è invece la durata della scansione. Concentriamoci proprio sull istante di trigger: è l istante in cui il segnale raggiunge un certo valore (detto trigger level) con pendenza di segno fissato (trigger slope). La figura seguente chiarisce questo aspetto: A sinistra è indicato l andamento (periodico) del segnale da diagrammare (input signal). Il trigger level è impostato sul valore 3V, il che significa che la scansione deve cominciare quando il segnale è a 3V. Questo, però, non basta, in quanto il segnale attraversa i 3V sia in aumento sia in diminuzione. E possibile allora settare il trigger slope, sul valore positivo (il trigger scatta quando il segnale raggiunge i 3V in fase di aumento) o sul valore negativo (il trigger scatta quando il segnale raggiunge i 3V in fase di diminuzione). Entrambi questi valori (livello e segno) del trigger possono essere impostati manualmente tramite gli appositi comandi. In alcuni casi, è molto importante disporre di un ulteriore controllo della sezione trigger, che prende il nome di holdoff (trattenimento) del trigger. Consideriamo per esempio un segnale del tipo riportato nella figura seguente: 11

12 Appunti di Misure Elettriche - Capitolo 6 Se il livello di trigger è quello indicato dalla linea orizzontale tratteggiata, avremmo tre scatti molto ravvicinati del trigger, il che non ci andrebbe bene perché la natura periodica del segnale non verrebbe tenuta in conto: vedremmo prima un impulso, poi l altro, poi un altro ancora, poi una traccia nulla e poi di nuovo un impulso e così via. Allora, il comando di holdoff permette di risolvere il problema, in quanto permette di fissare un tempo, successivo allo spazzolamento, in cui il verificarsi della condizione di trigger viene ignorato. Con riferimento al caso preso in esame, grazie alla regolazione opportuna dell holdoff lo spazzolamento viene eseguito sempre sul solo primo impulso di ogni sequenza di tre, ottenendo così una immagine stabile. Collegamenti dell oscilloscopio al circuito sotto misura Dal punto di vista elettrico, gli ingressi dell oscilloscopio sono normalmente di tipo grounded single-ended, vale a dire con filo di ritorno del segnale in comune e messo a terra. Ci sono però altre configurazioni possibili: floating single-ended (filo di ritorno isolato) differential (fili di ritorno separati) Le abbiamo citate in ordine decrescente di vantaggio e di costo. Si deve sempre tenere presente che nel connettere l oscilloscopio a un circuito si collegano insieme e si mettono a terra determinati punti. 12

13 Oscilloscopio analogico (parte I) Sonde compensate Un accessorio importante per la connessione dell oscilloscopio è la sonda compensata (compensated probe), di cui abbiamo già parlato in precedenza: Una sonda compensata non è altro che il parallelo tra una resistenza ed una capacità variabili. La figura seguente mostra lo schema circuitale di una connessione dell oscilloscopio alla sorgente di misura (V S ) tramite un connettore BNC 2 (posto sul pannello dell oscilloscopio), un cavo coassiale ed una sonda compensata: Il tipo più semplice di sonda compensata è provvisto di un commutatore a slitta a due posizioni: nella posizione 1X non si ha compensazione, mentre nella posizione 10 X il segnale è attenuato di 10 volte e ma si ha compensazione. In posizione 10X, la sonda è sostanzialmente una resistenza elevata con in parallelo una capacità variabile. Abbiamo perciò la seguente schematizzazione: 2 Parleremo più avanti di questo tipo di connettore 13

14 Appunti di Misure Elettriche - Capitolo 6 A sinistra abbiamo il generatore di segnali che vogliamo connettere all oscilloscopio, mentre a destra abbiamo l oscilloscopio stesso, del quale viene visualizzata solo l impedenza di ingresso (il noto parallelo tra una resistenza da 1MΩ ed una capacità da circa 20 pf). I comuni dell oscilloscopio e del generatore sono messi entrambi a terra (grounded), per cui il collegamento viene fatto tramite un unico cavo (ad esempio un coassiale), che termina con la sonda compensata, in posizione 10X: si tratta, come evidenziato in figura, in un parallelo tra una resistenza da circa 9MΩ ed una capacità variabile. Ruotando una apposita vite predisposta esternamente alla sonda, è possibile regolare questa capacità, fin quando non viene annullato l effetto passabasso della capacità equivalente dell oscilloscopio: si tratta in pratica di abbassare la costante di tempo con cui l oscilloscopio risponde all eccitazione in ingresso, in modo da aumentare la velocità di risposta dello strumento, cioè da ridurne l effetto passa-basso. Data l attenuazione introdotta sul segnale, con la sonda si ottiene di caricare 10 volte di meno il circuito e di annullare quindi l effetto della capacità. Un procedimento di questo tipo andrebbe sempre usato per segnali a frequenza superiore a 5 khz e di entità sufficientemente alta rispetto al rumore. Anche la regolazione della sonda (tramite la suddetta vite) è stata già descritta in precedenza, per cui facciamo un riepilogo rapido: si connette al suo ingresso un generatore di onda quadra (di solito a 1 khz con picco di 5V); si regola la vite (condensatore variabile) col cacciavite di plastica fornito, fino alla visualizzazione ottima dell onda: 14

15 Oscilloscopio analogico (parte I) MISURE FONDAMENTALI CON L OSCILLOSCOPIO Prima di passare alla descrizione dettagliata delle singole parti da cui è costituito un oscilloscopio, accenniamo ad alcune semplici misure eseguibili con l oscilloscopio. Una misura molto semplice è quella della ampiezza picco-picco per una tensione sinusoidale: Se il livello di riferimento a 0V è stato posto al centro dello schermo ed il segnale sinusoidale in ingresso ha valor medio nullo, otterremo una visualizzazione del tipo riportato in figura, con la sinusoide perfettamente centrata (verticalmente). Potremo allora semplicemente contare le divisioni che ci sono tra i picchi positivi e negativi (ampiezza picco-picco) oppure quelle tra il generico picco ed il valor medio (ampiezza). Con lo stesso criterio, applicato però in orizzontale, possiamo anche misurare il periodo T della sinusoide, contando le divisioni tra un picco ed il successivo con la stessa fase, e quindi la frequenza, che vale 1/T. Ricordiamo, a tal proposito, che, per risalire dal numero di divisioni ad un quantità espressa in secondi è sufficiente conoscere il valore (impostato manualmente tramite la manopola time/div) di tempo corrispondente a ciascuna divisione: indicato con t div tale valore, avremo che T = t div n div dove ovviamente n div è il numero di divisioni che abbiamo contato (in orizzontale). Discorso assolutamente analogo in verticale, cioè per la misura dell ampiezza: in questo caso, i volt corrispondenti a ciascuna divisione sono dati dal valore impostato (sempre manualmente) con la manopola volt/div; indicato con V div tale valore, avremo che A p p = V div m div dove m div è il numero di divisioni che abbiamo contato (in verticale). Altre tipiche misure eseguibili con l oscilloscopio sono quelle sui parametri temporali di un impulso: 15

16 Appunti di Misure Elettriche - Capitolo 6 I parametri tipici sono tempo di salita o discesa (tra 10% e 90%) e la durata dell impulso (detta anche tempo di emivalore, in quanto corrisponde alla distanza temporale tra i punti al 50% dell ampiezza). Spesso l oscilloscopio permette la regolazione fine del guadagno verticale, in modo da far coincidere la base e il tetto dell impulso con dei marcatori prestampati (marker) sulla griglia. COMPONENTI DI BASE DI UN OSCILLOSCOPIO I componenti di base di un oscilloscopio sono i seguenti: il tubo a raggi catodici (CRT), comprendente al suo interno il cannone elettronico, gli anodi di accelerazione e focalizzazione, le placchette di deflessione orizzontale e verticale, lo schermo fluorescente; il sistema relativo all ingresso Y, comprendente i circuiti di condizionamento, l amplificatore verticale, una linea di ritardo ed un amplificatore in controfase; il sistema relativo all ingresso X, comprendente i circuiti di condizionamento, l amplificatore orizzontale ed un altro amplificatore in controfase; la base dei tempi, il cui cuore è un generatore a dente di sega; il sistema di sincronizzazione, il cui cuore è il circuito di scatto (detto comunemente trigger); il sistema di alimentazione dei circuiti e dei dispositivi elettronici interni. La figura seguente riporta uno schema a blocchi semplificato di un oscilloscopio a singolo canale 3 : 3 Sui canali di un oscilloscopio si è già detto qualcosa in precedenza e si dirà qualcosa in più in seguito. 16

17 Oscilloscopio analogico (parte I) Schema a blocchi di un oscilloscopio a singolo canale Il cuore dell oscilloscopio è senz altro costituito dal tubo a raggi catodici, del quale possiamo dare subito una semplice schematizzazione: All interno del tubo, un sottile fascio di elettroni, dopo aver subito una accelerazione ad alta velocità, viene focalizzato tramite l azione di due lenti elettrostatiche (una collimatrice e l altra focalizzatrice, costituite in entrambi i casi da una serie di dischi e cilindri a diverso potenziale elettrico); il fascio attraversa successivamente due placchette parallele di deflessione verticale e due di deflessione orizzontale, per giungere poi in un preciso punto dello schermo fluorescente. La messa a punto della focalizzazione avviene attraverso la manopola FOCUS posta sul pannello frontale dello strumento. Sullo stesso pannello c è anche una manopola INTENSITY che consente di regolare la luminosità della traccia sullo schermo: essa agisce sostanzialmente sulla velocità di emissione del fascio di elettroni, in quanto regola la corrente di riscaldamento del catodo che emette gli elettroni stessi. L azione combinata delle placchette deflettrici orizzontali e verticali, alle quali sono applicate tensioni indipendenti tra loro, permette il movimento del fascio di elettroni sullo schermo e quindi della traccia. 17

18 Appunti di Misure Elettriche - Capitolo 6 Come sottolineato, l ultima figura si riferisce ad un semplice oscilloscopio a singola traccia, che quindi può essere usato per seguire l andamento di un unico segnale. In effetti, gli attuali oscilloscopi hanno invece la possibilità di mostrare due o più segnali contemporaneamente: basta infatti riprodurre N volte (dove N sono gli ingressi, detti canali) i componenti relativi all ingresso Y. Per il generico canale, gli oscilloscopi più economici hanno un ingresso ad un solo morsetto, il che significa che consentono la misura di tensioni verso terra, come nella figura seguente: Gli oscilloscopi di maggior pregio presentano invece i cosiddetti ingressi differenziali: per ogni canale sono disponibili 3 distinti morsetti, di cui uno specifico per il collegamento a terra. Osservazione: connettori BNC Nella maggior parte degli oscilloscopi, gli ingressi relativi a ciascun canale sono di tipo BNC, come si vede nell ultima figura ed ancora meglio nella prossima: Gli ingressi BNC consentono di misurare la tensione applicata rispetto al comune dell oscilloscopio, in genere posto al potenziale di terra (grounded). Un ingresso BNC si presta particolarmente ad un collegamento con la sorgente di misura tramite cavo coassiale: quest ultimo, infatti, è notoriamente composto tra un anima e da una calza (quest ultima generalmente portata al potenziale di riferimento), per cui l anima viene connessa al polo interno del connettore BNC, mentre la calza viene connessa al cilindro esterno (sempre collegato a massa, come in figura). I connettori BNC sono generalmente usati negli oscilloscopi ad ampia banda, mentre non sono presenti in quelli a bassa frequenza, che invece presentano, per ogni canale, due 18

19 Oscilloscopio analogico (parte I) boccole isolate rispetto alla massa dell oscilloscopio (che è tipicamente ancorata alla terra dell alimentazione elettrica). Questo tipo di connessione presenta vantaggi e svantaggi: il vantaggio è nella possibilità di misurare tensioni aventi componenti anche rilevanti di modo comune rispetto a terra; lo svantaggio è invece che il collegamento della sorgente allo strumento non avviene tramite un cavo schermato, ma con una coppia di conduttori isolati, i cui parametri parassiti (capacità e induttanze) provocano distorsioni del segnale tanto più rilevanti quanto maggiore è la frequenza del segnale stesso. Sempre con riferimento allo schema a blocchi generale visto prima, l unico canale previsto è stato contrassegnato con Y. Concentriamoci allora sui componenti fondamentali relativi al canale Y: Come si vede, il canale Y è inizialmente caratterizzato da un sistema di condizionamento: esso serve appunto a condizionare il segnale di misura in modo da ottenere l ampiezza di tensione ottima per l amplificatore verticale principale, posto immediatamente in cascata all attenuatore; l uscita di tale amplificatore va in ingresso ad una linea di ritardo (la cui presenza sarà giustificata in seguito) e poi ad un amplificatore in controfase (indicato come amplificatore deflessione Y), che comanda le placchette deflettrici verticali. Inoltre, il segnale in uscita dall amplificatore verticale principale viene portato in ingresso ad un altra sezione importante dello strumento, quella di trigger, di cui parleremo in seguito. La scelta della migliore attenuazione da imporre al segnale, in base alla sua ampiezza, avviene mediante una manopola sul pannello frontale dell oscilloscopio, marcata con la scritta VOLT/div. Come si è già detto in precedenza, tale manopola è presente per ciascun canale dell oscilloscopio, in modo da avere regolazioni del tutto indipendenti le une dalle altre. Mentre le placchette deflettrici verticali sono sempre pilotate dal segnale di misura (opportunamente condizionato e soprattutto attenuato, in base alle considerazioni fatte prima), le placchette deflettrici orizzontali possono essere pilotate in vario modo, a seconda di come viene posizionato un apposito commutatore presente sempre sul pannello frontale dello strumento: nel funzionamento in modo XY, il segnale pilota delle placchette orizzontali è prelevato da uno dei canali (indicato convenzionalmente come canale X), per cui può essere di natura qualsiasi; invece, nel funzionamento in modo normale, il segnale è un classico dente di sega prelevato da un generatore interno. Questa è la situazione riportata nella figura di prima. Nel funzionamento in modo normale, l organo denominato base tempi deve creare una tensione (che appunto pilota le placchette deflettrici orizzontali) che consenta di determinare una relazione di proporzionalità tra il tempo e la posizione del fascio nella sua escursione tra le placchette deflettrici 19

20 Appunti di Misure Elettriche - Capitolo 6 orizzontali. Affinché sullo schermo si possa vedere una figura stabile, questa tensione, a forma di rampa, deve essere applicata ripetutamente alle placchette e deve inoltre essere sincronizzata con il segnale in ingresso al canale Y (almeno nel caso generale in cui questo sia tempo-variante). A quest ultimo compito si dedica un circuito di sincronizzazione: ogni ciclo della forma d onda visualizzata sullo schermo è attivato da un impulso di sincronizzazione, che determina l innesco della rampa nel generatore della base tempi; gli impulsi di sincronizzazione provengono da un apposito generatore di impulsi (detto circuito di scatto o circuito di trigger), che a sua volta è comandato in ingresso da un segnale che prende il nome di segnale di scatto o TRIGGER. Questo segnale di trigger può provenire da tre distinte sorgenti: il caso più frequente è quello in cui il segnale di trigger è derivato direttamente dal segnale da misurare (trigger interno); se invece il segnale di trigger proviene dall esterno, si parla di trigger esterno; questa scelta è adottata quando il segnale su Y non è sufficiente a pilotare il generatore di impulsi di scatto oppure quando si vogliono misurare differenze di fase tra due segnali sinusoidali le cui frequenze siano in rapporto intero e costante (condizione necessaria per avere sullo schermo una figura stabile); infine, se il segnale di trigger è un segnale alla stessa frequenza della linea di alimentazione, si parla di trigger di linea: tipicamente, questa scelta viene fatta quando anche il segnale di misura è alla frequenza dell alimentazione. La scelta tra queste tre possibilità è effettuata tramite un apposito commutatore sul pannello dell oscilloscopio, che pilota un corrispondente commutatore all interno del dispositivo: Riepilogando, quindi, il segnale per la deflessione orizzontale può essere prelevato dall esterno (modo di funzionamento XY) oppure generato internamente (modo di funzionamento normale); in questo secondo caso, il circuito di scatto può essere pilotato nei tre modi descritti (trigger interno, esterno o di linea): 20

21 Oscilloscopio analogico (parte I) La figura mette in evidenza le possibilità di commutazione, presenti in corrispondenza sia del blocco di generazione della base tempi sia del blocco di sincronizzazione (trigger) E importante osservare la funzione della linea di ritardo con cui il segnale viene portato all amplificatore verticale ed a quello orizzontale (entrambi in controfase 4 ): infatti, quando si usa il trigger interno, occorrono alcune frazioni di microsecondo per attivare, mediante il segnale su Y, il generatore di impulsi di scatto; di conseguenza, la linea di ritardo serve a ritardare l arrivo della forma d onda alle placchette deflettrici sia verticali sia orizzontali, in modo da avere una perfetta sincronizzazione. Tornando ancora al trigger, abbiamo già osservato in precedenza che, tramite due manopole (trigger level e trigger slope) sul pannello, è inoltre possibile definire in corrispondenza di quale punto del segnale di scatto si deve avere l innesco dell impulso di sincronizzazione, come ampiamente descritto in precedenza: Caso di trigger interno: il segnale di trigger è proporzionale al segnale sul canale Y; il livello di trigger è stato fissato a 3V, mentre la pendenza è fissata positiva nella figura superiore e negativa in quella inferiore 4 Gli amplificatori in controfase consentono di avere disponibili, sulle placchette sia orizzontali sia verticali, due segnali uguali ma in opposizione di fase per ciascuna coppia di placchette, il che migliora notevolmente la linearità di deflessione del fascio nel CRT. 21

22 Appunti di Misure Elettriche - Capitolo 6 Infine, ricordiamo che il tempo di spazzolamento, cioè il tempo necessario affinché il fascio elettronico scandisca l intero schermo (da sinistra verso destra) è controllato mediante la manopola TIME/div sul pannello. Per concludere con questa panoramica generale, ricordiamo che l alimentazione dell oscilloscopio è generalmente prelevata dalla linea di potenza a bassa tensione 5 ; la tensione prelevata dall esterna viene inviata sia ad un trasformatore elevatore, che fornisce in uscita l alta tensione necessaria per il funzionamento del CRT, sia ad uno stadio di raddrizzamento, che fornisce la bassissima tensione continua per la polarizzazione dei dispositivi attivi. Autore: SANDRO PETRIZZELLI sandry@iol.it sito personale: succursale: 5 Ad ogni modo, molti oscilloscopio prevedono anche una alimentazione interna in corrente continua, tramite apposite batterie. 22

11/04/00. L oscilloscopio (raccolta di lucidi)

11/04/00. L oscilloscopio (raccolta di lucidi) 11/04/00 L oscilloscopio (raccolta di lucidi) L oscilloscopio visualizza la tensione (variabile) ai capi di un bipolo (che può essere un elemento di un circuito, un sensore, ecc.). In quanto misuratore

Dettagli

L Oscilloscopio e misure relative

L Oscilloscopio e misure relative Facoltà di INGEGNERIA II - Taranto Corso di Misure e Strumentazione Elettronica mod. I- L Oscilloscopio e misure relative 1 L oscilloscopio è attualmente uno dei più versatili e utili strumenti di misura

Dettagli

L oscilloscopio: introduzione

L oscilloscopio: introduzione L oscilloscopio: introduzione Ampiezza y Tubo a raggi catodici canale Y canale X segnale base tempi asse tempi t ingresso L oscilloscopio è uno strumento che visualizza su uno schermo l andamento di una

Dettagli

L OSCILLOSCOPIO. Ing. Stefano Severi

L OSCILLOSCOPIO. Ing. Stefano Severi L OSCILLOSCOPIO Ing. Stefano Severi L oscilloscopio è in grado di visualizzare solo l andamento di tensioni periodiche PANNELLO FRONTALE DI UN OSCILLOSCOPIO una sezione di trigger schermo menù buttons

Dettagli

OSCILLOSCOPIO. L oscilloscopio a raggi catodici è certamente lo strumento principe del laboratorio elettronico.

OSCILLOSCOPIO. L oscilloscopio a raggi catodici è certamente lo strumento principe del laboratorio elettronico. OSCILLOSCOPIO L oscilloscopio a raggi catodici è certamente lo strumento principe del laboratorio elettronico. La sua caratteristica essenziale è quella di visualizzare l andamento nel tempo dei segnali

Dettagli

L oscilloscopio consente di visualizzare forme d onda

L oscilloscopio consente di visualizzare forme d onda Oscilloscopi L oscilloscopio consente di visualizzare forme d onda Più in generale è un dispositivo che visualizza una qualunque funzione di 2 variabili. Per fare ciò esse devono essere (o essere trasformate

Dettagli

Tensioni e corrente variabili

Tensioni e corrente variabili Tensioni e corrente variabili Spesso, nella pratica, le tensioni e le correnti all interno di un circuito risultano variabili rispetto al tempo. Se questa variabilità porta informazione, si parla spesso

Dettagli

Esercitazione Oscilloscopio

Esercitazione Oscilloscopio Esercitazione Oscilloscopio - 1 Esercitazione Oscilloscopio 1 - Oggetto Uso dell oscilloscopio. Rilievo della caratteristica tensione-corrente di un diodo. Misure di capacità mediante misure di sfasamento.

Dettagli

Gli oscilloscopi analogici

Gli oscilloscopi analogici Gli oscilloscopi analogici Struttura generale Modi operativi Trigger Doppia traccia 1 Testi consigliati C. Offelli - Strumentazione elettronica - Edizioni Libreria Progetto - Padova - 1991 G. Costanzini,

Dettagli

4 - Visualizzazione di forme d onda in funzione del tempo

4 - Visualizzazione di forme d onda in funzione del tempo Esercitazione Oscilloscopio - 1 Esercitazione Oscilloscopio 1 - Oggetto Uso dell oscilloscopio. Rilievo della caratteristica tensione-corrente di un diodo. Misure di capacità mediante misure di sfasamento.

Dettagli

L oscilloscopio. Samuele Straulino.

L oscilloscopio. Samuele Straulino. L oscilloscopio Samuele Straulino straulino@fi.infn.it http://hep.fi.infn.it/ol/samuele/dida.php Cos è un oscilloscopio Si tratta sostanzialmente di un voltmetro capace di visualizzare in funzione del

Dettagli

Sottosistema 1 I 1 I - Z 2 - Z G1 (I 2 +I 1 ) + Z G2. Z G1 Massa

Sottosistema 1 I 1 I - Z 2 - Z G1 (I 2 +I 1 ) + Z G2. Z G1 Massa Appunti di Compatibilità Elettromagnetica COLLEGAMENTI A MASSA Nell accezione convenzionale, con il termine massa (o terra) si intende una superficie equipotenziale ad impedenza nulla, ossia un conduttore

Dettagli

Fattore di merito. L'impedenza del circuito alla risonanza vale tutta reale (come atteso da definizione) ma non al massimo valore

Fattore di merito. L'impedenza del circuito alla risonanza vale tutta reale (come atteso da definizione) ma non al massimo valore Fattore di merito Applicando la definizione del fattore di merito si ricava e quindi per valori alti di Q 0 si ha Q 0P Q 0 L'impedenza del circuito alla risonanza vale tutta reale (come atteso da definizione)

Dettagli

Oscilloscopio Rappresentazione dell andamento temporale di tensioni

Oscilloscopio Rappresentazione dell andamento temporale di tensioni Oscilloscopio p.1/35 Oscilloscopio Rappresentazione dell andamento temporale di tensioni % &. # - 0. / # + + + + + + ' * $ % & % ) "! $ ' Oscilloscopio p.2/35 Tubo a raggi catodici ' ' ' ' ' ' ' ! ' %&

Dettagli

L oscilloscopio. l oscilloscopio analogico l oscilloscopio digitale

L oscilloscopio. l oscilloscopio analogico l oscilloscopio digitale L oscilloscopio L oscilloscopio è lo strumento forse più diffuso in assoluto. L applicazione più diffusa è quella di visualizzare su uno schermo l andamento nel tempo di un segnale. Ci sono due classi

Dettagli

Oscilloscopio e forme d onda delle grandezze alternate CIRCUITO. v Tempo v

Oscilloscopio e forme d onda delle grandezze alternate CIRCUITO. v Tempo v Oscilloscopio e forme d onda delle grandezze alternate Segnale IN OUT Studio della risposta CIRCUITO v Tempo v Frequenza t f Studio forme d onde Studio dello spettro Strumento OSCILLOSCOPIO Strumento ANALIZZATORE

Dettagli

Esercitazione Oscilloscopio. 2 - Visualizzazione di forme d onda in funzione del tempo

Esercitazione Oscilloscopio. 2 - Visualizzazione di forme d onda in funzione del tempo Esercitazione Oscilloscopio - 1 Esercitazione Oscilloscopio 1 - Oggetto Uso dell oscilloscopio. Rilievo della caratteristica tensione-corrente di un diodo. Misure di capacità mediante misure di sfasamento.

Dettagli

Uso dell oscilloscopio 1

Uso dell oscilloscopio 1 1/5 1 1 Introduzione Gli obiettivi di questa esercitazione sono sia quello di imparare l uso dei comandi principali dell oscilloscopio sia quello di imparare a valutare le incertezze di misura di questo

Dettagli

FRANCESCO MARINO - TELECOMUNICAZIONI

FRANCESCO MARINO - TELECOMUNICAZIONI Classe: Data Gruppo: Alunni assenti Schema dell esercitazione. Progetto di un filtro RC passa-basso avendo specificato la frequenza di taglio 2. Realizzazione dei collegamenti e disegno dello schema circuitale

Dettagli

Il blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una

Il blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una l blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una sorgente. Nel caso, come riportato in figura, il segnale

Dettagli

Elettronica I - Lab. Did. Elettronica Circuitale - BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA

Elettronica I - Lab. Did. Elettronica Circuitale - BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA Elettronica I - Lab. Did. Elettronica Circuitale - BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA Generatore di Funzioni T T i - TG2000 Generatore di Funzioni T T i - TG2000 Genera i segnali di

Dettagli

5. Amplificatori. Corso di Fondamenti di Elettronica Fausto Fantini a.a

5. Amplificatori. Corso di Fondamenti di Elettronica Fausto Fantini a.a 5. Amplificatori Corso di Fondamenti di Elettronica Fausto Fantini a.a. 2010-2011 Amplificazione Amplificare un segnale significa produrre un segnale in uscita (output) con la stessa forma d onda del segnale

Dettagli

Uso dell oscilloscopio. Generalita Banda passante Input e amplificazione verticale Trigger Analogico vs. Digitale

Uso dell oscilloscopio. Generalita Banda passante Input e amplificazione verticale Trigger Analogico vs. Digitale Uso dell oscilloscopio Generalita Banda passante Input e amplificazione verticale Trigger Analogico vs. Digitale Generalita Possiamo considerare l oscilloscopio semplicemente come un voltmetro in grado

Dettagli

Capitolo IX. Convertitori di dati

Capitolo IX. Convertitori di dati Capitolo IX Convertitori di dati 9.1 Introduzione I convertitori di dati sono circuiti analogici integrati di grande importanza. L elaborazione digitale dei segnali è alternativa a quella analogica e presenta

Dettagli

Interazione tra strumenti e sistemi in misura: effetto di carico

Interazione tra strumenti e sistemi in misura: effetto di carico Corso di Laurea a distanza in INGEGNERIA ELETTRONICA Sede di Torino - A.A. 2005/2006 Modulo: Misure Elettroniche II (05EKCcm) Esercitazioni di Laboratorio Alessio Carullo 27 luglio 2006 Interazione tra

Dettagli

Laboratorio di Elettronica T

Laboratorio di Elettronica T Laboratorio di Elettronica T Esperienza 1 Strumenti: Oscilloscopio e Gen. di funzione Cognome Nome Matricola Postazione N 1) Predisposizione banco di misura Accendete il generatore di funzione (FG) Agilent

Dettagli

Le modulazioni impulsive

Le modulazioni impulsive Le modulazioni impulsive a cura di Francesco Galgani (www.galgani.it) Indice 1 Introduzione 2 2 La modulazione PAM 3 2.1 Cenni teorici....................................... 3 2.2 Simulazione con il computer

Dettagli

Contatori Elettronici frequenzimetri

Contatori Elettronici frequenzimetri Facoltà di Ingegneria Università degli Studi di Firenze Dipartimento di Elettronica e Telecomunicazioni Contatori Elettronici frequenzimetri Ing. Andrea Zanobini Dipartimento di Elettronica e Telecomunicazioni

Dettagli

Alcune misure con l oscilloscopio

Alcune misure con l oscilloscopio Alcune misure con l oscilloscopio 1 Misura delle caratteristiche di un segnale A disposizione: oscilloscopio digitale o analogico sonda breadbord senza saldature con generatore di forme d onda resistori

Dettagli

Esperienza 6 : semplici circuiti con diodi Corso di Laboratorio di Elettromagnetismo e Circuiti, prof. S. Masi

Esperienza 6 : semplici circuiti con diodi Corso di Laboratorio di Elettromagnetismo e Circuiti, prof. S. Masi Esperienza 6 : semplici circuiti con diodi Corso di Laboratorio di Elettromagnetismo e Circuiti, prof. S. Masi 1 MISURA DELLA CARATTERISTICA DEL DIODO CON L OSCILLOSCOPIO E IL TRASFORMATORE Sono disponibili:

Dettagli

6. Amplificatori di potenza

6. Amplificatori di potenza 6.1 Amplificatori switching 6. Amplificatori di potenza Lo studio degli amplificatori in classe A (capitolo 4) ha mostrato come ci sia una relazione lineare fra l ampiezza del segnale d ingresso e quello

Dettagli

Elettronica I - Prima Esercitazione - RISPOSTA IN FREQUENZA DI CIRCUITI CON AMPLIFICATORI OPERAZIONALI OpAmp

Elettronica I - Prima Esercitazione - RISPOSTA IN FREQUENZA DI CIRCUITI CON AMPLIFICATORI OPERAZIONALI OpAmp Elettronica I - Prima Esercitazione - RISPOSTA IN FREQUENZA DI CIRCUITI CON AMPLIFICATORI OPERAZIONALI OpAmp 1 Configurazione Invertente Circuito ATTIVO: l OpAmp va alimentato 2 OpAmp Ideale 3 Configurazione

Dettagli

Un convertitore D/A o digitale/analogico è un dispositivo che ha lo scopo di

Un convertitore D/A o digitale/analogico è un dispositivo che ha lo scopo di Convertitore D/A Un convertitore D/A o digitale/analogico è un dispositivo che ha lo scopo di trasformare un dato digitale in una grandezza analogica, in generale una tensione. Naturalmente vi deve essere

Dettagli

OSCILLOSCOPIO. Questi strumenti di misura elettronici si possono dividere in due gruppi principali: Analogici e Digitali.

OSCILLOSCOPIO. Questi strumenti di misura elettronici si possono dividere in due gruppi principali: Analogici e Digitali. OSCILLOSCOPIO L oscilloscopio permette di visualizzare l'andamento di un segnale elettrico nel tempo oppure la relazione temporale tra due segnali elettrici: consente quindi misure qualitative e quantitative

Dettagli

Le misure di tempo e frequenza

Le misure di tempo e frequenza Le misure di tempo e frequenza Le misure di tempo e frequenza costituiscono un importante branca delle misure elettriche ed elettroniche ed in generale delle misure di grandezze fisiche. E possibile raggiungere

Dettagli

Circuito RC con d.d.p. sinusoidale

Circuito RC con d.d.p. sinusoidale Circuito C con d.d.p. sinusoidale Un circuito C-serie ha la seguente configurazione: G è la resistenza interna del generatore. Misura dello sfasamento della tensione ai capi del condensatore rispetto alla

Dettagli

Compensazione della sonda

Compensazione della sonda In laboratorio - compensazione della sonda - misure su segnali prodotti con g.f.o. - trigger ed effetti soglia - segnali lenti - risoluzione verticale - sweep (gen. forme d onda) - traslazione della traccia

Dettagli

Generatore di Funzioni

Generatore di Funzioni Generatore di Funzioni Tipo di onda Come impostare una certa frequenza? Hz, khz, MHz. Oscilloscopio CH1 nel tempo CH2 nel tempo XY (CH1 vs. CH2) DUAL entrambi Lettura: Valore/DIVISIONE Ogni quadrato corrisponde

Dettagli

AMPLIFICATORE DIFFERENZIALE

AMPLIFICATORE DIFFERENZIALE AMPLIFICATORE DIFFERENZIALE Per amplificatore differenziale si intende un circuito in grado di amplificare la differenza tra due segnali applicati in ingresso. Gli ingressi sono due: un primo ingresso

Dettagli

Oscilloscopi. Corso di Misure Elettriche

Oscilloscopi. Corso di Misure Elettriche Oscilloscopi Corso di Misure Elettriche http://sms.unipv.it/misure/ Piero Malcovati Dipartimento di Ingegneria Industriale e dell Informazione Università di Pavia piero.malcovati@unipv.it Piero Malcovati

Dettagli

Generatore. Generatore. Un sistema a raggi-x consiste di: Tubo a raggi-x. Sistema di rilevazione

Generatore. Generatore. Un sistema a raggi-x consiste di: Tubo a raggi-x. Sistema di rilevazione Generatore Un sistema a raggi-x consiste di: Tubo a raggi-x Sistema di rilevazione Generatore Il generatore trasferisce la potenza elettrica P (KW) al tubo a raggi-x I parametri U (KV) e I (ma) vengono

Dettagli

MANUALE D'ISTRUZIONI GENERATORI DI FUNZIONI

MANUALE D'ISTRUZIONI GENERATORI DI FUNZIONI MANUALE D'ISTRUZIONI GENERATORI DI FUNZIONI Manuale in lingua italiana Importato da: Paoletti Ferrero srl via Pratese 24 50145 Firenze Tel: 055 319367 319437 Fax: 055 319551 E-mail: info@paolettiferrero.it

Dettagli

Generatore di funzioni. Modalità operative Circuito di uscita Uso del generatore di funzioni

Generatore di funzioni. Modalità operative Circuito di uscita Uso del generatore di funzioni Generatore di funzioni Modalità operative Circuito di uscita Uso del generatore di funzioni 1 Modalità operative Il Il generatore di di funzioni è un un dispositivo in in grado di di generare segnali di

Dettagli

RELAZIONE DI LABORATORIO

RELAZIONE DI LABORATORIO RELAZIONE DI LABORATORIO Esercitazione di laboratorio di Elettrotecnica N 4 Svolta in data 11/01/2011 Corso di laurea in Ingegneria Aerospaziale Docente del corso ZICH RICCARDO Squadra (A,B,C) B Tavolo

Dettagli

Le sonde Pagina in. - figura

Le sonde Pagina in. - figura Le sonde Paga 04 LE ONDE L impedenza di gresso,, di un oscilloscopio è modellabile dal parallelo tra una resistenza e una capacità C, i cui valori tipici sono rispettivamente MΩ e 0 0pF. Il loro valore

Dettagli

ESERCITAZIONE DI LABORATORIO SUL TEOREMA DI THEVENIN

ESERCITAZIONE DI LABORATORIO SUL TEOREMA DI THEVENIN ESECITAZIONE DI LABOATOIO SUL TEOEMA DI THEVENIN Simone Fiori Dipartimento di Ingegneria Industriale Facoltà di Ingegneria - Università di Perugia (fiori@unipg.it) IL TEOEMA DI SOSTITUZIONE DI THEVENIN

Dettagli

Elettronica Applicata a.a. 2015/2016 Esercitazione N 1 STRUMENTAZIONE

Elettronica Applicata a.a. 2015/2016 Esercitazione N 1 STRUMENTAZIONE Elettronica Applicata a.a. 2015/2016 Esercitazione N 1 STRUMENTAZIONE Prof. Ing. Elena Biagi Sig. Marco Calzolai Sig. Andrea Giombetti Piergentili Ing. Simona Granchi Ing. Enrico Vannacci www.uscndlab.dinfo.unifi.it

Dettagli

I Contatori Elettronici. Sistemi Virtuali di Acquisizione Dati Prof. Alessandro Pesatori

I Contatori Elettronici. Sistemi Virtuali di Acquisizione Dati Prof. Alessandro Pesatori I Contatori Elettronici 1 I Contatori Elettronici Misure di frequenza Misure di periodo Misure di rapporto di frequenza Misure di intervallo di temporale Misure totali tra due segnali 2 I Contatori Elettronici

Dettagli

Parte III L oscilloscopio

Parte III L oscilloscopio L oscilloscopio consente di osservare l andamento di una grandezza (Y) che varia in funzione di un altra (X). Possono essere visualizzate grandezze periodiche (anche non sinusoidali). Con particolari accorgimenti

Dettagli

CIRCUITERIA DELLA POMPA MAGNETOIDRODINAMICA

CIRCUITERIA DELLA POMPA MAGNETOIDRODINAMICA CIRCUITERIA DELLA POMPA MAGNETOIDRODINAMICA 9.1 Introduzione Nel capitolo precedente, è stato affrontato il progetto dei componenti meccanici della pompa MHD; a questi va ovviamente integrata tutta la

Dettagli

Esperienza n. 8 Uso dell oscilloscopio analogico

Esperienza n. 8 Uso dell oscilloscopio analogico 1 L oscilloscopio consente di visualizzare forme d onda e più in generale è un dispositivo che visualizza una qualunque funzione di 2 variabili. Per fare ciò esse devono essere o essere trasformate in

Dettagli

L OSCILLOSCOPIO: FUNZIONAMENTO E COMANDI

L OSCILLOSCOPIO: FUNZIONAMENTO E COMANDI L OSCILLOSCOPIO: FUNZIONAMENTO E COMANDI 1 - Forze elettriche Tra due punti dello spazio tra i quali esiste una d.d.p. è presente un campo elettrico E orientato come in fig. 1. Una carica elettrica libera

Dettagli

Laboratorio di elettromagnetismo II anno CdL in Fisica. Oscilloscopio digitale Agilent 54621A

Laboratorio di elettromagnetismo II anno CdL in Fisica. Oscilloscopio digitale Agilent 54621A Laboratorio di elettromagnetismo II anno CdL in Fisica Oscilloscopio digitale Agilent 4621A 1 2 6 3 3 4 4 CH1 CH2 3 3 2 1 6 1 Horizontal controls Controlli della posizione orizzontale delle tracce 1 Controllo

Dettagli

Misure su linee di trasmissione

Misure su linee di trasmissione Appendice A A-1 A-2 APPENDICE A. Misure su linee di trasmissione 1) Misurare, in trasmissione o in riflessione, la lunghezza elettrica TL della linea. 2) Dal valore di TL e dalla lunghezza geometrica calcolare

Dettagli

Linee di trasmissione

Linee di trasmissione Linee di trasmissione Finora esperienza con circuiti a costanti concentrate. E un approssimazione, valida solo per lunghezze d onda dei segnali grandi rispetto alle dimensioni del circuito. Esempio Sinusoidale

Dettagli

Scopo di un alimentatore stabilizzato è di fornire una tensione di alimentazione continua di alcuni

Scopo di un alimentatore stabilizzato è di fornire una tensione di alimentazione continua di alcuni Gli alimentatori stabilizzati rev. 1 del 22/06/2008 pagina 1/21 Gli alimentatori stabilizzati Scopo di un alimentatore stabilizzato è di fornire una tensione di alimentazione continua di alcuni volt (necessaria

Dettagli

Generatore di forme d onda

Generatore di forme d onda Generatore di forme d onda Uso Il display indica il numero corrispondente alla forma d onda, rappresentato con una singola cifra esadecimale ( da o a F ). Il numero, e quindi la forma d onda, può essere

Dettagli

Amplificatori in classe A con accoppiamento capacitivo

Amplificatori in classe A con accoppiamento capacitivo Ottobre 00 Amplificatori in classe A con accoppiamento capacitivo amplificatore in classe A di Fig. presenta lo svantaggio che il carico è percorso sia dalla componente di segnale, variabile nel tempo,

Dettagli

Passa-Basso Passa-Alto

Passa-Basso Passa-Alto Filtri Passivi Filtri elettrici ideali: sono quadrupoli che trasmettono un segnale di ingresso in un certo intervallo di frequenze ovvero esiste una banda di pulsazioni tale che la funzione di trasferimento:

Dettagli

Moduli logici. Interfacciamento di dispositivi logici. Parametri statici e dinamici. Circuiti logici combinatori Circuiti logici sequenziali

Moduli logici. Interfacciamento di dispositivi logici. Parametri statici e dinamici. Circuiti logici combinatori Circuiti logici sequenziali Moduli logici Moduli logici Interfacciamento di dispositivi logici Parametri statici e dinamici Circuiti logici combinatori Circuiti logici sequenziali Registri, contatori e circuiti sequenziali Esempi

Dettagli

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA AC2. Circuiti in corrente alternata

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA AC2. Circuiti in corrente alternata Scopo dell'esperienza: Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA AC2 Circuiti in corrente alternata. Uso di un generatore di funzioni (onda quadra e sinusoidale); 2.

Dettagli

Elettronica I - Laboratorio Didattico - BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA

Elettronica I - Laboratorio Didattico - BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA Elettronica I - Laboratorio Didattico - BREVE INTRODUZIONE AGLI STRUMENTI DEL BANCO DI MISURA Generatore di Funzioni Tektronix CFG280 Generatore di Funzioni Tektronix CFG280 Genera i segnali di tensione

Dettagli

CIRCUITI 2. determinazione della risposta in frequenza del multimetro misura di impedenze

CIRCUITI 2. determinazione della risposta in frequenza del multimetro misura di impedenze CIRCUITI 2 determinazione della risposta in frequenza del multimetro misura di impedenze Laboratorio di Fisica Dipartimento di Fisica G.Occhialini Università di Milano Bicocca PARTE PRIMA: Determinazione

Dettagli

Generatori di funzione e filtri RC

Generatori di funzione e filtri RC 1/12 Generatori di funzione e filtri RC 1 Introduzione La seguente esercitazione di laboratorio riguarda lo studio di un filtro RC (passa basso o passa alto) per mezzo sia di uno stimolo sinusoidale che

Dettagli

valore v u = v i / 2 V u /V i = 1/ 2

valore v u = v i / 2 V u /V i = 1/ 2 I Filtri Il filtro è un circuito che ricevendo in ingresso segnali di frequenze diverse è in grado di trasferire in uscita solo i segnali delle frequenze volute, in pratica seleziona le frequenze che si

Dettagli

Laboratorio misure elettroniche ed elettriche: regolatori di tensione a tiristori

Laboratorio misure elettroniche ed elettriche: regolatori di tensione a tiristori Laboratorio misure elettroniche ed elettriche: regolatori di tensione a tiristori Circuiti di accensione per tiristori (Tavole E.1.1 - E.1.2) Considerazioni teoriche Per le debite considerazioni si fa

Dettagli

Sistemi elettronici di conversione

Sistemi elettronici di conversione Sistemi elettronici di conversione (conversione ac-dc, ac-ac, dc-dc, dc-ac) C. Petrarca Cenni su alcuni componenti elementari Diodo, tiristore, contattore statico, transistore Interruttore ideale interruttore

Dettagli

Elettronica analogica: cenni

Elettronica analogica: cenni Elettronica analogica: cenni VERSIONE 23.5.01 valle del componente di acquisizione dati nella struttura funzionale di un sistema di misura: misurando x y y z sens elab pres ambiente w abbiamo già considerato

Dettagli

Misurare l impedenza di un altoparlante

Misurare l impedenza di un altoparlante Misurare l impedenza di un altoparlante Nel lavoro di riparazione-restauro di una vecchia radio può rendersi necessaria la sostituzione dell altoparlante, vuoi perché guasto irreparabilmente o addirittura

Dettagli

Misure di tensione alternata 1

Misure di tensione alternata 1 1/5 1 Introduzione 1 La seguente esercitazione di laboratorio riguarda l uso dei voltmetri nella modalità di misura di tensioni in alternata. Obiettivo dell esercitazione, oltre a raffinare la dimestichezza

Dettagli

Capitolo 7 Strumenti per l analisi armonica

Capitolo 7 Strumenti per l analisi armonica Appunti di Misure Elettriche Capitolo 7 Strumenti per l analisi armonica Introduzione...1 Analizzatori di distorsione...1 Analizzatori d onda...4 Analizzatore di spettro...5 INTRODUZIONE Sappiamo bene

Dettagli

II.3.1 Inverter a componenti discreti

II.3.1 Inverter a componenti discreti Esercitazione II.3 Caratteristiche elettriche dei circuiti logici II.3.1 Inverter a componenti discreti Costruire il circuito dell invertitore in logica DTL e verificarne il funzionamento. a) Posizionando

Dettagli

Strumentazione per la misura a banda stretta del campo elettromagnetico. Laura Vallone

Strumentazione per la misura a banda stretta del campo elettromagnetico. Laura Vallone Strumentazione per la misura a banda stretta del campo elettromagnetico Laura Vallone Strumentazione a banda stretta Un misuratore di campo EM a banda stretta si compone di varie parti: o Sistema di ricezione

Dettagli

figura 5.17 figura 5.18

figura 5.17 figura 5.18 5.3 Filtri passa banda passivi Un filtro passa banda ideale è un circuito che ha il compito di consentire il passaggio di tensioni elettriche la cui frequenza può essere compresa tra f1 ed f2; al di fuori

Dettagli

Gli schemi circuitali impiegati per la realizzazione dei convertitori statici sono molteplici.

Gli schemi circuitali impiegati per la realizzazione dei convertitori statici sono molteplici. Gli schemi circuitali impiegati per la realizzazione dei convertitori statici sono molteplici. Infatti, la struttura del convertitore risulta fortemente influenzata: dal tipo di sorgente primaria di alimentazione;

Dettagli

Generatori di funzione e filtri RC

Generatori di funzione e filtri RC 1/12 Generatori di funzione e filtri RC 1 Introduzione La seguente esercitazione di laboratorio riguarda lo studio di un filtro RC di tipopassabassopermezzosiadiunostimolosinusoidalechediunaformad onda

Dettagli

USO DELL OSCILLOSCOPIO PER LA MISURA DELLA VELOCITA' DEL SUONO NELL ARIA

USO DELL OSCILLOSCOPIO PER LA MISURA DELLA VELOCITA' DEL SUONO NELL ARIA USO DELL OSCILLOSCOPIO PER LA MISURA DELLA VELOCITA' DEL SUONO NELL ARIA B. Cottalasso R. Ferrando AIF PLS Corso Estivo di Fisica Genova 2009 1 Scopo dell esperimento Ci si propone di misurare la velocità

Dettagli

Appunti sull Oscilloscopio

Appunti sull Oscilloscopio Corso di Laboratorio di Circuiti Elettrici ed Elettromagnetismo per le lauree triennali in Fisica Fisica e Astrofisica Tecnologie Fisiche e dell Informazione Appunti sull Oscilloscopio Fulvio Ricci Dipartimento

Dettagli

Misure con l oscilloscopio (e non) su circuiti con amplificatori operazionali

Misure con l oscilloscopio (e non) su circuiti con amplificatori operazionali Misure con l oscilloscopio (e non) su circuiti con amplificatori operazionali Edgardo Smerieri Laura Faè PLS - AIF - Corso Estivo di Fisica Genova 2009 Amplificatore operazionale perché? Moltiplicazione

Dettagli

Manuale per la progettazione dei circuiti elettronici analogici di bassa frequenza

Manuale per la progettazione dei circuiti elettronici analogici di bassa frequenza Manuale per la progettazione dei circuiti elettronici analogici di bassa frequenza C. Del Turco 2007 Indice : Cap. 1 I componenti di base (12) 1.1 Quali sono i componenti di base (12) 1.2 I resistori (12)

Dettagli

4.4 Il regolatore di tensione a diodo zener.

4.4 Il regolatore di tensione a diodo zener. 4.4 l regolatore di tensione a diodo zener. n molte applicazioni il valore del fattore di ripple ottenibile con un alimentatore a raddrizzatore e filtro capacitivo non è sufficientemente basso. Per renderlo

Dettagli

TRASMETTITORE TX SAW MID 3V

TRASMETTITORE TX SAW MID 3V TRASMETTITORE Il è un modulo trasmettitore SAW di dati digitali con modulazione AM OOK. E dotato di uno stadio di buffer che garantisce sia la potenza RF che basse armoniche in uscita, consentendo un elevata

Dettagli

Indice generale. Presentazione dell edizione italiana... ix. Prefazione... xi

Indice generale. Presentazione dell edizione italiana... ix. Prefazione... xi Presentazione dell edizione italiana... ix Prefazione... xi Capitolo 1 Analisi di circuiti in corrente continua con PSpice... 1 Analisi di un circuito serie... 1 Legge di Kirchhoff delle tensioni per circuiti

Dettagli

misure di tensione/corrente; sistemi specializzati per sensibilità o modalità operative. misura di specifici parametri

misure di tensione/corrente; sistemi specializzati per sensibilità o modalità operative. misura di specifici parametri Test su (dispositivi a) semiconduttori misure di tensione/corrente; sistemi specializzati per sensibilità o modalità operative. Test: parametrici funzionali misura di specifici parametri misura di vari

Dettagli

Liberamente tratto da Prima Legge di Ohm

Liberamente tratto da  Prima Legge di Ohm Liberamente tratto da www.openfisica.com Prima Legge di Ohm Agli estremi di due componenti elettrici di un circuito (che si possono chiamare conduttore X ed Y) è applicata una differenza di potenziale

Dettagli

Test su (dispositivi a) semiconduttori

Test su (dispositivi a) semiconduttori Test su (dispositivi a) semiconduttori misure di tensione/corrente; sistemi specializzati per sensibilità o modalità operative. Test: parametrici funzionali misura di specifici parametri misura di vari

Dettagli

CAPITOLO L oscilloscopio: generalità. 9.2 Il tubo a raggi catodici.

CAPITOLO L oscilloscopio: generalità. 9.2 Il tubo a raggi catodici. CAPITOLO 9 9.1 L oscilloscopio: generalità. Nell esecuzione di una misurazione o, più in generale, nello studio di un qualsiasi fenomeno fisico, si ha a che fare con grandezze che possono evolvere nei

Dettagli

La corrente alternata

La corrente alternata La corrente alternata Corrente continua e corrente alternata Le correnti continue sono dovute ad un generatore i cui poli hanno sempre lo stesso segno e pertanto esse percorrono un circuito sempre nello

Dettagli

IGB2 MANUALE DI SERVIZIO

IGB2 MANUALE DI SERVIZIO 11/10/2005 17.01 Pagina 1 di 9 IGB2 MANUALE DI SERVIZIO Indice 1 Generalità... 2 2 Schema a blocchi... 3 3 Collegamenti elettrici... 3 4 Disposizione componenti di taratura e regolazione... 4 5 Adattamento

Dettagli

figura 5.9 figura 5.10

figura 5.9 figura 5.10 5.2 Filtri passa alto passivi Un filtro passa alto ideale è un circuito che ha il compito di consentire il passaggio di tensioni elettriche la cui frequenza può essere compresa tra f1 e valori superiori

Dettagli

L Oscilloscopio. (raccolta di lucidi)

L Oscilloscopio. (raccolta di lucidi) L Oscilloscopio (raccolta di lucidi) Introduzione L oscilloscopio è lo strumento di misura fondamentale per l analisi dei segnali nel dominio del tempo. Questo dispositivo, che può essere sia analogico

Dettagli

RELAZIONE DI TELECOMUNICAZIONI ITIS Vobarno Titolo: Fourier: analisi di spettro

RELAZIONE DI TELECOMUNICAZIONI ITIS Vobarno Titolo: Fourier: analisi di spettro ELAZIONE DI TELEOMUNIAZIONI ITIS Vobarno Titolo: Fourier: analisi di spettro Nome: Samuele Sandrini AT 07/0/ Un segnale periodico può essere considerato come la somma di armoniche più una costante che

Dettagli

Test su (dispositivi a) semiconduttori

Test su (dispositivi a) semiconduttori Test su (dispositivi a) semiconduttori misure di tensione/corrente; sistemi specializzati per sensibilità o modalità operative. Test: parametrici funzionali misura di specifici parametri misura di vari

Dettagli

Alcune esperienze di laboratorio sull elettromagnetismo

Alcune esperienze di laboratorio sull elettromagnetismo Alcune esperienze di laboratorio sull elettromagnetismo - Scarica del condensatore A - Oscilloscopio didattico Q - Motorino elettrico A - Sistema molla-magnete Q - Trasformatore didattico A P. Bernardini

Dettagli

Laboratorio di Elettronica Dispositivi elettronici e circuiti Linee di trasmissione. Misure su linee di trasmissione. Amplificatore operazionale e reazione. Applicazioni dell'amplificatore operazionale.

Dettagli

Esercitazione 6: Convertitori A/D Delta e Sigma-Delta

Esercitazione 6: Convertitori A/D Delta e Sigma-Delta Esercitazione 6: Convertitori A/D Delta e Sigma-Delta Scopo dell esercitazione Gli obiettivi di questa esercitazione sono: - Verificare il comportamento di un convertitore A/D differenziale - Determinare

Dettagli

TRASMETTITORE TX SAW MID 5V

TRASMETTITORE TX SAW MID 5V TRASMETTITORE Il è un modulo trasmettitore SAW di dati digitali che vengono trasmessi alla frequenza di 433,9 MHz con modulazione AM OOK. E dotato di uno stadio di buffer che garantisce sia la potenza

Dettagli

Esercitazione di Laboratorio Oscilloscopio Analogico

Esercitazione di Laboratorio Oscilloscopio Analogico 1 Realizzazione del banco di misura 1 1 Realizzazione del banco di misura Esercitazione di Laboratorio Oscilloscopio Analogico Lo svolgimento di questa esercitazione richiede l allestimento del banco di

Dettagli