sedimentazione Approfondimenti matematici

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "sedimentazione Approfondimenti matematici"

Transcript

1 sedimenazione Approfondimeni maemaici considerazioni sulla velocià L espressione p A F = R (1) che fornisce la relazione sulle forze ageni nel processo della sedimenazine, indica che all inizio il moo è un moo accelerao e solo dopo un cero inervallo di empo il moo divena uniforme a causa dell aumeno della forza viscosa. Per calcolare dopo quano empo, e dopo quale percorso, il moo divena uniforme, si deve risolvere in forma generale l equazione (1) dove le espressioni delle singole forze sono dae nella relazione (2). m c g - m l g - k l h v = m c a (2) con a l accelerazione che agisce sul corpo di massa m c. La (2) può essere scria, dividendo per m c ed espliciando la relazione fra massa e, anche come a = 1 - ρ l g - klη v =A-Bv (3) ρ c m c ossia come una relazione lineare fra velocià e accelerazione con A e B due cosani noe dipendeni dalle caraerisiche del corpo e del liquido. La relazione (3) esprime una equazione differenziale poiché a è la derivaa della velocià la soluzione si ricava scrivendo la (4) come dv =A-Bv (4) d dv = d (5) A-Bv e successivamene moliplicando i due ermini, dv e d, per B e sommando a numeraore la cosane A; operazione che non alera i valori dei due ermini poiché la derivaa di una cosane è zero. La relazione (5) divena d(a-bv) A-Bv Quesa equazione ha come soluzione il logarimo del denominaore = -Bd (6) ln(a-bv) = -B + k (7) dove k rappresena le cosani che nel processo della derivazione sono sae cancellae. La relazione (7) si può scrivere, passando agli esponenziali, come A-Bv = e (-B+k) (8) La cosane k incognia si ricava dalle condizioni che il sisema deve soddisfare, ossia che all isane iniziale =, la velocià ha il valore iniziale v e che dopo un empo molo grande la

2 velocià raggiunge il valore che chiameremo veocià asinoica v = A/B, e che è dao dalla relazione (6) del paragrafo sulla sedimenazine. Così le condizioni al conorno si raggruppano = v = v e k =A-Bv = v =A/B (9) da cui la relazione (7) divena A-Bv = e -B (A-Bv ) (1) e in definiiva isolando la velocià v = v e -B + A B (1 - e-b ) (11) La relazione (11) mosra che la velocià è una grandezza variabile che all aumenare del empo ende al valore cosane A/B, la velocià asinoica. Infai, poiché il coefficiene B è posiivo il ermine e -B è un ermine che ende a, per cui la dipendenza dalla velocià iniziale scompare e i ermini in parenesi endono all unià. La presenza della velocià iniziale fa prefigurare la presenza di re differeni scenari. Se v è maggiore della velocià asinoica la velocià diminuirà fino ad aesarsi al valore A/B; se invece v è minore di quella asinoica la velocià aumenerà fino al valore A/B; se v è nulla la velocià parirà da fino ad aesarsi al valore asinoico A/B. Nella figura 3 è indicaa la siuazione per i re scenari velocià di sedimenazione v v > A/B v < A/B A/B v = Figura 3 l andameno della velocià di sedimenazione in dipendenza del valore della velocià iniziale v. considerazioni sul percorso Il percorso che il corpo compie è dao da s = v d (12) con la velocià daa dalla relazione (11) e l inegrale calcolao fra l isane iniziale = e l isane generico. Sviluppando, si oiene ( ) s = 1 B A + A B -v e -B -1 (13)

3 una espressione che non è lineare con il empo, a causa della presenza del ermine esponenziale. Si può noare, uavia, che al passare del empo il ermine esponenziale ende a divenare rascurabile e lo spazio percorso divena proporzionale al empo, ossia il moo divena un moo uniforme. Nella figura 4 sono mosrai i re possibili scenari della dipendenza dello spazio percorso dal valore iniziale della velocià percorso di sedimenazione v < A/B s v > A/B v = Figura 4 l andameno dello spazio percorso in dipendenza del valore della velocià iniziale v. Si può noare che la pendenza delle re linee endono a divenare parallele mosrando la sessa pendenza, ossia la sessa velocià che è, in definiiva, la velocià di sedimenazione. Le condizioni per cui la velocià si sabilizza e divena cosane si verificano relaivamene preso. Lo spazio, e in accordo il empo, risulano abbasanza piccoli. Quesa siuazione la si può osservare in due esempi, uno relaivo alla sedimenazione di globuli rossi nel plasma ed uno relaivo al processo della sedimenazione osservao in laboraorio. Erirosedimenazione In queso caso, per applicare in maniera semplice le espressioni della sedimenazione, la forma degli erirocii è approssimaa a quella di sferee con un diamero pari alle dimensioni lineari dei globuli rossi. I valori delle cosani sono la dimensione dei globuli rossi, la loro, la e la viscosià del plasma e sono indicai nella abella 1 abella 1 alcune caraerisiche degli erirocii e del plasma sanguigno raggio (m) erirocii plasma viscosià (Pa s) , Con quesi valori, la velocià asinoica di sedimenazione è abbasanza bassa, poco meno di m/s. Ciò significa che per fare il percorso di 1 cm occorrerebbero un milione di secondi (circa 11,5 giorni). Le curve della velocià e dello spazio percorso in funzione del empo, sono mosrae nella figura 5 a e 5b

4 velocià di sedimenazione percorso di sedimenazione µm/sec µsec Figura 5-a andameno della velocià in funzione del empo. I cerchiei sono in corrispondenza del 99% della velocià massima pm µsec Figura 5-b andameno della percorso compiuo in funzione del empo. I cerchiei sono in corrispondenza del 99% della velocià massima Dall analisi dei grafici si noa che la velocià aumena fino al valore massimo di sedimenazione pari a 5,7 1-6 m/s, ossia 5,7 µ m/s. Queso valore si raggiunge abbasanza preso. Nella figura 5-a il cerchieo sull asse dei empi, inorno ad un empo di 13 µ s, indica l isane in cui la velocià ha raggiuno il 99% del suo valore massimo. Il cerchieo sull asse delle ordinae mosra il corrispondene valore della velocià. Nella figura 5-b, i cerchiei indicano quano spazio è sao percorso nello sesso empo. Lo spazio percorso è esremamene piccolo, poco meno di 6 pm (picomeri) ossia 6 mila miliardesimi di mero. Ciò significa che la velocià massima viene raggiuna quasi subio. sedimenazione di palline di acciaio Per il secondo esempio consideriamo delle palline di acciaio che sedimenano in glicerina, la classica esperienza di laboraorio eseguia per sudiare queso fenomeno. I dai sono raggruppai nella abella 2 abella 2 alcuni valori relaivi agli oggei considerai palline di acciaio raggio (m) glicerina viscosià (Pa s) 1, ,4 Nella figura 6 a e 6 b sono indicai la velocià e lo spazio percorso in funzione del empo.

5 velocià di sedimenazione percorso di sedimenazione 2,5,6 cm/sec 2, 1,5 1,,5 mm,5,4,3,2,1,,,1,2,3 Figura 6-a - andameno della velocià in funzione del empo. I cerchiei sono in corrispondenza del 99% della velocià massima sec,,,1,2,3 Figura 6-b andameno della percorso compiuo in funzione del empo. I cerchiei sono in corrispondenza del 99% della velocià massima sec Si noi che le condizioni di velocià asinoica, il valore massimo, sono raggiune abbasanza preso. Dopo qualche cenesimo di secondo la velocià ha raggiuno il 99% del suo valore massimo e nello sesso inervallo di empo lo spazio percorso è sao di qualche decimo di millimero. Il processo si sabilizza quasi subio.

Introduzione alla cinematica

Introduzione alla cinematica Inroduzione alla cinemaica La cinemaica si pone come obieivo lo sudio del moo, ovvero lo sudio degli sposameni di un corpo in funzione del empo A ale fine viene inrodoo un conceo asrao: il puno maeriale

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte prima

Teoria dei Segnali. La Convoluzione (esercizi) parte prima Teoria dei Segnali La Convoluzione (esercizi) pare prima 1 Si ricorda che la convoluzione ra due segnali x() e y(), reali o complessi, indicaa simbolicamene come: C xy () = x() * y() è daa indifferenemene

Dettagli

] = b [ ] [ ] b [ ] = T 1 [ ] LT 1

] = b [ ] [ ] b [ ] = T 1 [ ] LT 1 Moo smorzao Nel precedene paragrafo abbiamo risolo il caso in cui l'accelerazione del puno maeriale è cosane. In queso paragrafo affroneremo il caso di una accelerazione dipendene dalla elocià. Consideriamo

Dettagli

Cinematica del punto materiale 1. La definizione di cinematica.

Cinematica del punto materiale 1. La definizione di cinematica. Cinemaica del puno maeriale 1. La definizione di cinemaica. 2. Posizione e Sposameno 3. Equazione oraria del moo 4. Traieoria 5. Moo in una dimensione. 6. Velocià media e velocià isananea. 7. Moo reilineo

Dettagli

Cinematica moto armonico. Appunti di Fisica. Prof. Calogero Contrino

Cinematica moto armonico. Appunti di Fisica. Prof. Calogero Contrino 2006 Cinemaica moo armonico Appuni di Fisica Prof. Calogero Conrino : definizione Il moo di un puno maeriale P è deo armonico se soddisfa le segueni condizioni: La raieoria è un segmeno. Le posizioni occupae

Dettagli

Il concetto di punto materiale

Il concetto di punto materiale Il conceo di puno maeriale Puno maeriale = corpo privo di dimensioni, o le cui dimensioni sono rascurabili rispeo a quelle della regione di spazio in cui può muoversi e degli alri oggei con cui può ineragire

Dettagli

Il moto in una o più dimensioni

Il moto in una o più dimensioni Il moo in una o più dimensioni Rappresenazione Grafica e esempi Piccolo riepilogo Moo: posizione in funzione del empo (grafico P-). Necessia della scela di un sisema di riferimeno ( ) Velocià media v m

Dettagli

MOTO RETTILINEO UNIFORMEMENTE ACCELERATO (M.R.U.A.) Giuseppe Frangiamore con la collaborazione di Francesco Garofalo

MOTO RETTILINEO UNIFORMEMENTE ACCELERATO (M.R.U.A.) Giuseppe Frangiamore con la collaborazione di Francesco Garofalo MOTO RETTILINEO UNIFORMEMENTE ACCELERATO (M.R.U.A.) Giuseppe Frangiamore con la collaborazione di Francesco Garofalo Accelerazione Il moo reilineo uniformemene accelerao è il moo di un puno sooposo ad

Dettagli

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1 www.maefilia.i Indirizzi: LI2, EA2 SCIENTIFICO; LI3 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE 2 AMERICHE 21 PROBLEMA 1 Sai seguendo un corso, nell'amio dell'orienameno universiario,

Dettagli

Posizione-Spostamento-velocità media. t 3. x 3. x ( t 3 ) = x 3. x ( t 4 ) = x 4. caso particolare di moto unidimensionale. r!

Posizione-Spostamento-velocità media. t 3. x 3. x ( t 3 ) = x 3. x ( t 4 ) = x 4. caso particolare di moto unidimensionale. r! Posizione-Sposameno-velocià media Consideriamo un puno maeriale che si muove nel empo lungo una rea (moo unidimensionale) 5 1 5 1 2 2 4 ( 1 ) = 1 ( 2 ) = 2 ( 3 ) = 3 ( 4 ) = 4 ( 5 ) = 5 v, ʹ < 1 < 2

Dettagli

COMPITO TEST- RELATIVITA GALILEANA SIMULAZIONE

COMPITO TEST- RELATIVITA GALILEANA SIMULAZIONE COMPITO TEST- RELATIVITA GALILEANA SIMULAZIONE 1 2 3 4 5 6 7 In un sisema di riferimeno inerziale: A se la somma delle forze che agiscono su un puno maeriale è nulla, la sua velocià non è cosane e, se

Dettagli

Laboratorio di Fisica I: laurea in Ottica e Optometria

Laboratorio di Fisica I: laurea in Ottica e Optometria Laboraorio di Fisica I: laurea in Oica e Opomeria Misura del empo caraerisico di carica e scarica di un condensaore araverso una resisenza Descrizione Si vuole cosruire un circuio in serie collegando generaore

Dettagli

), dove K è una costante positiva della quale si richiede l unità di

), dove K è una costante positiva della quale si richiede l unità di Simulazione di prova scria di MATEMATICA-FISICA - MIUR -..019 PROBLEMA 1 - soluzione con la calcolarice grafica TI-Nspire CX della Texas Insrumens Soluzione a cura di: Formaori T Ialia - Teachers Teaching

Dettagli

Equazioni Differenziali (5)

Equazioni Differenziali (5) Equazioni Differenziali (5) Daa un equazione differenziale lineare omogenea y n + a n 1 ()y n 1 + a 0 ()y = 0, (1) se i coefficieni a i non dipendono da, abbiamo viso che le soluzioni si possono deerminare

Dettagli

ANALISI VETTORIALE ESERCIZI SU EQUADIFF. y = y(y 1)t. = e C e t2 /2 y 1 y

ANALISI VETTORIALE ESERCIZI SU EQUADIFF. y = y(y 1)t. = e C e t2 /2 y 1 y ANALISI VETTORIALE ESERCIZI SU EQUADIFF Esercizio Calcolare l inegrale generale dell equazione differenziale = ( ) e deerminare quali soluzioni sono definie su uo R. Risposa Fuori dagli equilibri = 0 e

Dettagli

SOLUZIONI SCRITTO DI ANALISI MATEMATICA II - 24/06/08. C.L. in Matematica e Matematica per le Applicazioni

SOLUZIONI SCRITTO DI ANALISI MATEMATICA II - 24/06/08. C.L. in Matematica e Matematica per le Applicazioni SOLUZIONI SCRITTO DI ANALISI MATEMATICA II - 4/06/08 C.L. in Maemaica e Maemaica per le Applicazioni Prof. K. R. Payne e Do. M. Calanchi, C. Tarsi, L. Vesely Soluzione esercizio. (a) Sia f definia da f(x)

Dettagli

Moto in una dimensione

Moto in una dimensione INGEGNERIA GESTIONALE corso di Fisica Generale Prof. E. Puddu LEZIONE DEL 24 SETTEMBRE 2008 Moo in una dimensione Sposameno e velocià Sposameno Il moo di un puno maeriale è deerminao se si conosce, isane

Dettagli

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi impulsivi. Prof. Adolfo Santini - Dinamica delle Strutture 1

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi impulsivi. Prof. Adolfo Santini - Dinamica delle Strutture 1 La risposa di un sisema lineare viscoso a un grado di liberà solleciao da carichi impulsivi Prof. Adolfo Sanini - Dinamica delle Sruure 1 Inroduzione 1/2 Un carico p() si definisce impulsivo quando agisce

Dettagli

1) Determinare la soluzione massimale del problema di Cauchy. 2) Determinare la soluzione massimale del problema di Cauchy.

1) Determinare la soluzione massimale del problema di Cauchy. 2) Determinare la soluzione massimale del problema di Cauchy. Capiolo 3 Equazioni differenziali Esercizi ) Deerminare la soluzione massimale del problema di Cauchy y ()= y() 4 3 y()= ) Deerminare la soluzione massimale del problema di Cauchy y ()= 4 + 6 y()+ 8 (

Dettagli

Meccanica introduzione

Meccanica introduzione Meccanica inroduzione La meccanica e quella pare della Fisica che sudia il moo dei corpi. Essa e cosiuia dalla cinemaica e dalla dinamica. La dinamica si occupa dello sudio del moo e delle sue cause. La

Dettagli

f v, lim allora x, y x, y e analogamente se 0,1 Osserviamo che la derivata direzionale esiste per ogni punto x y e ogni vettore,2 0,0 cos 2 1

f v, lim allora x, y x, y e analogamente se 0,1 Osserviamo che la derivata direzionale esiste per ogni punto x y e ogni vettore,2 0,0 cos 2 1 DERIVATA DIREZIONALE La definizione di derivaa direzionale è y, lim,, f v y v f y v, v Se v, allora, y, y e analogamene se,, y, y f, y y Calcolare la derivaa direzionale della funzione dove v allora dom

Dettagli

( ) ( ) Esempio di Prova di MATEMATICA E FISICA - MIUR PROBLEMA 1 (traccia di soluzione di S. De Stefani)

( ) ( ) Esempio di Prova di MATEMATICA E FISICA - MIUR PROBLEMA 1 (traccia di soluzione di S. De Stefani) Esempio di Prova di MATEMATICA E FISICA - MIUR - 8..9 PROBLEMA (raccia di soluzione di S. De Sefani) Assegnae due cosani reali a e (con >), si consideri la funzione ) così definia: )=. A seconda dei possiili

Dettagli

Equazioni orarie. Riassumendo. 1 2 at

Equazioni orarie. Riassumendo. 1 2 at Equazioni orarie Riassumendo s s 1 a a as Moo ericale dei grai o Tui i corpi cadono nel uoo con accelerazione cosane (esperienza di Galileo). g = 9.8 m/s h P s s suolo g gs 1 g Da una orre ala 8m cade

Dettagli

MODELLO DI MALTHUS. DESTINO FINALE DI UNA POPOLAZIONE MALTHUSIANA. MODELLO LOGISTICO ED EQUILIBRIO LOGISTICO. Angela Donatiello

MODELLO DI MALTHUS. DESTINO FINALE DI UNA POPOLAZIONE MALTHUSIANA. MODELLO LOGISTICO ED EQUILIBRIO LOGISTICO. Angela Donatiello MODELLO DI MALTHUS. DESTIO FIALE DI UA POPOLAZIOE MALTHUSIAA. MODELLO LOGISTICO ED EQUILIBRIO LOGISTICO. Con il ermine popolazione si indica un qualsiasi insieme di organismi disini. I modelli maemaici

Dettagli

Analisi Matematica 3/Analisi 4 - SOLUZIONI (19/01/2015)

Analisi Matematica 3/Analisi 4 - SOLUZIONI (19/01/2015) Corso di Laurea in Maemaica Docene: Claudia Anedda Analisi Maemaica 3/Analisi 4 - SOLUZIONI (19/1/215) 1) Daa la serie x b e nx [(n + 1) 2 e x n 2 ], n1 b N +, b pari: i) dimosrare che essa è una serie

Dettagli

ALTRE APPLICAZIONI DELLA CRESCITA LOGISTICA

ALTRE APPLICAZIONI DELLA CRESCITA LOGISTICA ALTRE APPLICAZIONI DELLA CRESCITA LOGISTICA Diffusione di un infezione Auocaalisi Cineica chimica DIFFUSIONE DI UNA MALATTIA INFETTIVA IPOTESI I Infei S Susceibili N = S + I N individui I Infei hanno conrao

Dettagli

3.13 Accelerazione vettoriale 1. L accelerazione vettoriale media di un punto nell intervallo di tempo tra t' e t" è la grandezza

3.13 Accelerazione vettoriale 1. L accelerazione vettoriale media di un punto nell intervallo di tempo tra t' e t è la grandezza Capiolo 3 Cinemaica generale (pare prima) 87 48 (a) Dao che a ds = v dv (vedi precedene risp.44), e al empo sesso a = k v (dao del problema), possiamo scrivere k v ds = v dv, ovvero k ds = (dv) /v. er

Dettagli

Velocità istantanea. dx dt. Università degli Studi di Bari Aldo Moro Dip. DiSAAT - Ing. Francesco Santoro Corso di Fisica

Velocità istantanea. dx dt. Università degli Studi di Bari Aldo Moro Dip. DiSAAT - Ing. Francesco Santoro Corso di Fisica Velocià isananea Al diminuire dell inerallo di empo Δ, fissao il empo, la elocià ende ad un alore limie. Riducendo a zero l ampiezza dell inerallo di empo equiarrebbe a deerminare la elocià del puno maeriale

Dettagli

Circuiti dinamici. Circuiti del primo ordine. (versione del ) Circuiti del primo ordine

Circuiti dinamici. Circuiti del primo ordine.  (versione del ) Circuiti del primo ordine ircuii dinamici ircuii del primo ordine www.die.ing.unibo.i/pers/masri/didaica.hm (versione del 4-5- ircuii del primo ordine ircuii del primo ordine: circuii il cui sao è definio da una sola variabile

Dettagli

ed interpretare geometricamente il risultato ottenuto. Esprimere, per t 2, l integrale

ed interpretare geometricamente il risultato ottenuto. Esprimere, per t 2, l integrale Fisica Prova d esempio per l esame (MIUR, aprile 019) Problema 1 Due fili reilinei paralleli vincolai a rimanere nella loro posizione, disani 1 m l uno dall alro e di lunghezza indefinia, sono percorsi

Dettagli

Forze dipendenti dalla velocità

Forze dipendenti dalla velocità Forze dipendeni dalla velocià Ario Viscoso Corpo in cadua libera in un fluido -> resisenza f R del mezzo In casi semplici (geomeria semplice, bassa velocià, assenza di urbolenze nel fluido) vale f R =

Dettagli

Fondamenti di Automatica Test di autovalutazione n.1 (test di ingresso) può anche essere rappresentato come

Fondamenti di Automatica Test di autovalutazione n.1 (test di ingresso) può anche essere rappresentato come Fondameni di Auomaica Tes di auovaluazione n. (es di ingresso). Il numero complesso [a] 2 j2 3 [b] 2 3 j2 [c] 8 3 j [d] 2 + j2 3 /6 4e jπ può anche essere rappresenao come 2. L argomeno, espresso in radiani,

Dettagli

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1 Volume FISICA Elemeni di eoria ed applicazioni Fisica ELEMENTI DI TEORIA ED APPLICAZIONI Fisica CUES Cooperaiva Universiaria Edirice Salerniana Via Pone Don Melillo Universià di Salerno Fisciano (SA)

Dettagli

(studio del moto dei corpi) Cinematica: descrizione del moto. Dinamica: descrizione del moto in funzione della forza

(studio del moto dei corpi) Cinematica: descrizione del moto. Dinamica: descrizione del moto in funzione della forza MECCANICA (sudio del moo dei corpi) Cinemaica: descrizione del moo Dinamica: descrizione del moo in funzione della forza CINEMATICA del puno maeriale oo in una dimensione x 2 x 1 2 1 disanza percorsa empo

Dettagli

EQUAZIONI GONIOMETRICHE

EQUAZIONI GONIOMETRICHE EQUAZIONI GONIOMETRICHE ) risolvere: cos + cos 0 Si raa di un caso riconducibile ad un equazione algebrica di grado nell incognia cos, per cui si può scrivere: cos ± + 8 4 cos cos 80 + k60 ± 60 + k60 6)

Dettagli

1 Catene di Markov a stati continui

1 Catene di Markov a stati continui Caene di Markov a sai coninui In queso caso abbiamo ancora una successione di variabili casuali X 0, X, X,... ma lo spazio degli sai è un insieme più che numerabile. Nel seguio supporremo che lo spazio

Dettagli

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1 www.maefilia.i Indirizzi: LI2, EA2 SCIENTIFICO; LI3 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE 2 AMERICHE 21 PROBLEMA 1 Sai seguendo un corso, nell'amio dell'orienameno universiario,

Dettagli

Corso di laurea in Ingegneria Meccatronica CONTROLLI AUTOMATICI E CA - 03 FUNZIONE DI TRASFERIMENTO

Corso di laurea in Ingegneria Meccatronica CONTROLLI AUTOMATICI E CA - 03 FUNZIONE DI TRASFERIMENTO Auomaion Roboics and Sysem CONTROL Corso di laurea in Ingegneria Meccaronica CONTROLLI AUTOMATICI E AZIONAMENTI ELETTRICI CA - 03 FUNZIONE DI TRASFERIMENTO Universià degli Sudi di Modena e Reggio Emilia

Dettagli

Esercizi Scheda N Fisica II. Esercizi con soluzione svolta

Esercizi Scheda N Fisica II. Esercizi con soluzione svolta Poliecnico di Torino etem Esercizi Scheda N. 0 45 Fisica II Esercizi con soluzione svola Esercizio 0. Si consideri il circuio V R T R T V I V 0 Vols R 5 Ω R 0 Ω µf sapendo che per 0 T on T off 5 µs T off

Dettagli

Fondamenti di Automatica Test di autovalutazione. può anche essere rappresentato come

Fondamenti di Automatica Test di autovalutazione. può anche essere rappresentato come Fondameni di Auomaica Tes di auovaluazione PARTE A A. Il numero complesso [a] 2 j2 3 [b] 2 3 j2 [c] 8 3 j [d] 2 + j2 3 /6 4e jπ può anche essere rappresenao come A2. L argomeno, espresso in radiani, del

Dettagli

CINEMATICA. 28 febbraio 2009 (PIACENTINO - PREITE) Fisica per Scienze Motorie

CINEMATICA. 28 febbraio 2009 (PIACENTINO - PREITE) Fisica per Scienze Motorie CINEMATICA 8 febbraio 9 (PIACENTINO - PREITE) Fisica per Scienze Moorie 1 Cosa è la Cinemaica? La cinemaica è quel ramo della meccanica che si occupa di descriere il moo dei corpi a prescindere dalle cause

Dettagli

Il modello di crescita deriva dalla logica del tasso di interesse semplice

Il modello di crescita deriva dalla logica del tasso di interesse semplice Eserciazione 7: Approfondimeni sui modelli di crescia. Crescia arimeica, geomerica, esponenziale. Calcolo del asso di crescia e del empo di raddoppio. Viviana Amai 03/06/2009 Modelli di crescia Nella prima

Dettagli

Sessione ordinaria 2019 Problema2 MATHESIS ROMA. Problema 2

Sessione ordinaria 2019 Problema2 MATHESIS ROMA. Problema 2 Problema 2 B varia secondo la legge: B = k ( 2 +a 2 ) Soluzione 3 r con r R e con a e k posiive [a]=[s] a ha le dimensioni di un empo, perché deve poersi sommare con, affinché la formula abbia senso. [k]=

Dettagli

LA CINEMATICA IN BREVE. Schede di sintesi a cura di Nicola SANTORO.

LA CINEMATICA IN BREVE. Schede di sintesi a cura di Nicola SANTORO. LA CINEMAICA IN BREVE Schede di sinesi a cura di Nicola SANORO Lo scopo di quese schede è quello di riassumere i concei principali e le formule fondamenali della cinemaica, per venire inconro alle esigenze

Dettagli

Legame fra l azione della forza agente sul punto durante l intervallo dt e la variazione della sua quantita di moto

Legame fra l azione della forza agente sul punto durante l intervallo dt e la variazione della sua quantita di moto Seconda legge di Newon: Fd = dp Legame fra l azione della forza agene sul puno durane l inervallo d e la variazione della sua quania di moo Casi in cui F() e noa: relaivamene rari Spesso per conoscere

Dettagli

1. ESEMPIO DI CINEMATICA DI UN SISTEMA A DUE CORPI RIGIDI

1. ESEMPIO DI CINEMATICA DI UN SISTEMA A DUE CORPI RIGIDI . ESEMPIO DI CINEMATICA DI UN SISTEMA A DUE CORPI RIGIDI Dao il sisema illusrao in Figura, consisene in due barre rigide connesse da un giuno di roazione orizzonale ; la prima barra è vincolaa a ruoare

Dettagli

Proposta di soluzione della seconda prova M049 ESAME DI STATO IPSIA a.s. 2008/2009

Proposta di soluzione della seconda prova M049 ESAME DI STATO IPSIA a.s. 2008/2009 Proposa di soluzione della seconda prova M049 ESAME D STATO PSA a.s. 008/009 l primo Opamp e la circuieria annessa rappresenano un inegraore il segnale cosane in viene inegrao nel empo per cui l uscia

Dettagli

Meccanica Applicata alle Macchine Compito 27/12/99

Meccanica Applicata alle Macchine Compito 27/12/99 page 1a Meccanica Applicaa alle Macchine Compio 27/12/99 1. Il disposiivo mosrao in figura serve per il sollevameno di veicoli. Il corpo indicao con 1 si appoggia al erreno (considerarlo solidale con il

Dettagli

[8.1] [8.1,a] Nel caso di uno spostamento angolare (moto di un pendolo) ξ = (coordinata angolare) [8.1.b]

[8.1] [8.1,a] Nel caso di uno spostamento angolare (moto di un pendolo) ξ = (coordinata angolare) [8.1.b] U n i v e r s i à d e g l i S u d i d i C a a n i a - C o r s o d i s u d i o i n I n g e g n e r i a I n f o r m a i c a - D i p a r i m e n o d i F i s i c a e s r o n o m i a MOI OSCILLOI - Moo armonico

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Franco Obersnel. e 5x dx.

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Franco Obersnel. e 5x dx. Universià di Triese Facolà d Ingegneria. Eserciazioni per la preparazione della prova scria di Maemaica 3 Do. Franco Obersnel Lezione 7: inegrali generalizzai; funzioni definie da inegrali. Esercizio.

Dettagli

VARIAZIONI GRADUALI DI PORTATA

VARIAZIONI GRADUALI DI PORTATA eonardo aella VARIAZIONI GRAAI I PORTATA Vi sono siuazioni nelle uali una condoa è desinaa ad eroare una pare o ua la sua poraa luno un cero percorso come ad esempio le condoe uilizzae neli acuedoi per

Dettagli

C2. Introduzione alla cinematica del moto in una dimensione

C2. Introduzione alla cinematica del moto in una dimensione C. Inroduzione alla cinemaica del moo in una dimensione Legge oraria di un puno maeriale che si muove su una rea Come già discusso, la legge oraria di un puno maeriale che si muove su una rea è la funzione

Dettagli

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento Geomeria analiica del piano pag 7 Adolfo Scimone Ree in posizioni paricolari rispeo al sisema di riferimeno L'equazione affine di una rea a + + c = 0 può assumere forme paricolari in relazione alla posizione

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale x(, deo ingresso, generando

Dettagli

Vantaggio temporale. Problemi sul moto rettilineo uniforme. Risoluzione

Vantaggio temporale. Problemi sul moto rettilineo uniforme. Risoluzione Creao il 25/2/2 19.35. elaborao il 14/5/26 alle ore 18.3.26 Problemi sul moo reilineo uniforme anaggio emporale m s (m) Un moociclisa passa dall origine del sisema di riferimeno ( m) al empo s ad una velocià

Dettagli

FISICA. Lezione n. 3 (2 ore) Gianluca Colò Dipartimento di Fisica sede Via Celoria 16, Milano

FISICA. Lezione n. 3 (2 ore) Gianluca Colò Dipartimento di Fisica sede Via Celoria 16, Milano Universià degli Sudi di Milano Facolà di Scienze Maemaiche Fisiche e Naurali Corsi di Laurea in: Informaica ed Informaica per le Telecomunicazioni Anno accademico 1/11, Laurea Triennale, Edizione diurna

Dettagli

DOCENTE:Galizia Rocco MATERIA: Fisica

DOCENTE:Galizia Rocco MATERIA: Fisica COMPITI PER LE VACANZE ESTIVE E INDICAZIONI PER IL RECUPERO DEL DEBITO FORMATIVO DOCENTE:Galizia Rocco MATERIA: Fisica CLASSE BL Anno scolasico 6-7 Gli sudeni con giudizio sospeso in Fisica dovranno sudiare

Dettagli

SISTEMI A TEMPO DISCRETO. x t + = f x( t ),u( t ) = Ax( t ) + Bu( t ), x( t ) = x R y(t) = η x(t),u(t) = Cx(t) + Du(t)

SISTEMI A TEMPO DISCRETO. x t + = f x( t ),u( t ) = Ax( t ) + Bu( t ), x( t ) = x R y(t) = η x(t),u(t) = Cx(t) + Du(t) Assumiamo la variabile emporale discrea; sia f lineare. Si consideri la seguene rappresenazione implicia: 1 x f x,u Ax Bu, x x R y η x,u Cx Du n 1 1 Rappresenazioni equivaleni Si consideri la rasformazione:

Dettagli

SIMULAZIONE SECONDA PROVA SCRITTA 02 APRILE Tema di MATEMATICA e FISICA PROBLEMA 1

SIMULAZIONE SECONDA PROVA SCRITTA 02 APRILE Tema di MATEMATICA e FISICA PROBLEMA 1 www.maefilia.i SIMULAZIONE SECONDA PROVA SCRITTA 02 APRILE 209 Tema di MATEMATICA e FISICA PROBLEMA Due fili reilinei paralleli vincolai a rimanere nella loro posizione, disani m l uno dall alro e di lunghezza

Dettagli

Laboratorio di Calcolo Numerico A.A. 2007/2008 II semestre

Laboratorio di Calcolo Numerico A.A. 2007/2008 II semestre Eserciazione 9 Corso di Laurea Triennale in Maemaica Laboraorio di Calcolo Numerico A.A. 7/8 II semesre Creare una carella dove verranno salvai i file creai nella sessione di lavoro. Appena enrai

Dettagli

Università del Sannio

Università del Sannio Uniersià del Sannio Corso di Fisica 1 Lezione 3 Cinemaica I Prof.ssa Sefania Peracca Corso di Fisica 1 - Lez. 3 - Cinemaica I 1 Cinemaica La cinemaica è quella branca della fisica che sudia il moimeno

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte seconda

Teoria dei Segnali. La Convoluzione (esercizi) parte seconda Teoria dei Segnali La Convoluzione (esercizi) pare seconda 1 Esercizio n.8 Calcolare la convoluzione ra i due segnali : e x() = rec ( ) rec ( 2 ) y() = rec 2 ( ) Conviene inizialmene disegnare i due segnali

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 EQUAZIONI DIFFERENZIALI 1

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 EQUAZIONI DIFFERENZIALI 1 Universià Carlo Caaneo Ingegneria gesionale Analisi maemaica aa 07/08 EQUAZIONI DIFFERENZIALI ESERCIZI CON SOLUZIONE Trovare l inegrale generale dell equazione ' Si raa di un equazione differenziale lineare

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2016/2017 EQUAZIONI DIFFERENZIALI 1

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2016/2017 EQUAZIONI DIFFERENZIALI 1 Universià Carlo Caaneo Ingegneria gesionale Analisi maemaica aa 06/07 EQUAZIONI DIFFERENZIALI ESERCIZI CON SOLUZIONE Trovare l inegrale generale dell equazione ' Si raa di un equazione differenziale lineare

Dettagli

La cicloide. Flaviano Battelli Dipartimento di Scienze Matematiche Università Politecnica delle Marche, Ancona

La cicloide. Flaviano Battelli Dipartimento di Scienze Matematiche Università Politecnica delle Marche, Ancona La cicloide Flaviano Baelli Diparimeno di Scienze Maemaiche Universià Poliecnica delle Marche, Ancona In una circonferenza γ di raggio r che poggia su una rea fissiamo un puno P e facciamo roolare senza

Dettagli

ESERCIZI E ALCUNE SOLUZIONI ANALISI MATEMATICA 1 SETTIMANA 27

ESERCIZI E ALCUNE SOLUZIONI ANALISI MATEMATICA 1 SETTIMANA 27 ESERCIZI E ALCUNE SOLUZIONI ANALISI MATEMATICA SETTIMANA 27.. Convergenza di inegrali generalizzai. () Per ognuno dei segueni inegrali impropri deerminae qual è l insieme dei valori del paramero α > per

Dettagli

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali Grandezze scalari e veoriali Esempio veore sposameno: Esisono due ipi di grandezze fisiche. a)grandezze scalari specificae da un valore numerico (posiivo negaivo o nullo) e (nel caso di grandezze dimensionae)

Dettagli

Lezione 2. F. Previdi - Automatica - Lez. 2 1

Lezione 2. F. Previdi - Automatica - Lez. 2 1 Lezione 2. Sisemi i dinamici i i a empo coninuo F. Previdi - Auomaica - Lez. 2 Schema della lezione. Cos è un sisema dinamico? 2. Modellisica dei sisemi dinamici 3. Il conceo di dinamica 4. Sisemi dinamici

Dettagli

*5$1'(==(3(5,2',&+( W GW

*5$1'(==(3(5,2',&+( W GW *51'((3(5'&+( 3UQFSDOGQ]RQ Una grandezza empodipendene D) si definisce SURGFD quando ad uguali inervalli T assume valori uguali cioè quando vale la relazione (con n inero qualsiasi): ( ) D( Q) D + (1)

Dettagli

Verifica di Matematica Classe V

Verifica di Matematica Classe V Liceo Scienifico Pariario R. Bruni Padova, loc. Pone di Brena, 6/3/17 Verifica di Maemaica Classe V Soluzione Problemi. Risolvi uno dei due problemi: 1. Facciamo il pieno. Il serbaoio del carburane di

Dettagli

Corso di Geometria e Algebra Lineare: Geometria Lineare. 6^ Lezione

Corso di Geometria e Algebra Lineare: Geometria Lineare. 6^ Lezione Corso di Geomeria e Algebra Lineare: Geomeria Lineare 6^ Lezione Luoghi geomerici del piano. Rea. Equazione caresiana. Equazione esplicia. Forme paricolari dell equazione della rea. Equazione segmenaria

Dettagli

( x) Soluzione. Si consideri la figura sottostante, che rappresenta la questione geometrica:

( x) Soluzione. Si consideri la figura sottostante, che rappresenta la questione geometrica: Sessione sraordinaria LS_ORD 7 Soluzione Si consideri la figura soosane, ce rappresena la quesione geomerica: Il riangolo APB, essendo inscrio in una semicirconferenza è reangolo, per cui AP r sin, PB

Dettagli

PIL NOMINALE, PIL REALE E DEFLATORE

PIL NOMINALE, PIL REALE E DEFLATORE PIL NOMINALE, PIL REALE E DEFLATORE Il PIL nominale (o a prezzi correni) Come sappiamo il PIL è il valore di ui i beni e servizi finali prodoi in un cero periodo all inerno del paese. Se per calcolare

Dettagli

CONTROLLI AUTOMATICI Ingegneria Meccatronica

CONTROLLI AUTOMATICI Ingegneria Meccatronica CONTROLLI AUTOMATICI Ingegneria Meccaronica TRASFORMATE DI LAPLACE Prof. Cesare Fanuzzi Ing. Crisian Secchi e-mail: cesare.fanuzzi@unimore.i, crisian.secchi@unimore.i hp://www.auomazione.ingre.unimore.i

Dettagli

Meccanica Applicata alle Macchine compito del 17/ 2/99

Meccanica Applicata alle Macchine compito del 17/ 2/99 ompio 7//99 pagina Meccanica Applicaa alle Macchine compio del 7/ /99 A) hi deve sosenere l'esame del I modulo deve svolgere i puni e. B) hi deve sosenere l'esame compleo deve svolgere i puni, e 3. ) hi

Dettagli

Mo# con accelerazione costante. Mo# bidimensionali

Mo# con accelerazione costante. Mo# bidimensionali Mo# con accelerazione cosane Mo# bidimensionali Moo con accelerazione cosane () ü Se l accelerazione è cosane uol dire che la elocià aria in modo lineare nel empo, cioè per ineralli di empo uguali si hanno

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondameni di Conrolli Auomaici Prova Parziale 8 Aprile 2 - A.A. 2/ Nome: Nr. Ma. Firma: a) Deerminare la rasformaa di Laplace X i (s) dei segueni segnali emporali x i (): x () = 4 + 2 e +5 cos(3 6), x

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA SISTEMI LTI Inroduzione Se il segnale d ingresso di un sisema Lineare Tempo-Invariane LTI e un esponenziale complesso, l

Dettagli

N09 (Quesito Numerico)

N09 (Quesito Numerico) N09 (Quesio Numerico): La "legge di graviazione universale" afferma che l'inerazione ra due oggei assimilabili a puni maeriali, di masse m 1 ed m 2 posi a disanza r 12 si esplica ramie una forza il cui

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Ailio Sanocchia Ø Ufficio presso il Diparimeno di Fisica (Quino Piano) Tel. 075-585 708 Ø E-mail: ailio.sanocchia@pg.infn.i Ø Web: hp://www.fisica.unipg.i/~ailio.sanocchia

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI Fondameni di Segnali e Trasmissione Sisema: Definizione di Sisema Da un puno di visa fisico e un disposiivo ce modifica un segnale, deo ingresso, generando il segnale,

Dettagli

Oscillazione Moto di una molla

Oscillazione Moto di una molla Oscillazione oo di una molla Uno dei più imporani esempi di moo armonico semplice (AS) è il moo di una molla. (Una molla ideale è una molla che rispea la Legge di Hooe.) Consideriamo una molla sospesa

Dettagli

MOTO RETTILINEO UNIFORME

MOTO RETTILINEO UNIFORME MOTO RETTILINEO UNIFORME = cosane a = 0 = cos ( x-x o )/ = cos x = x o + 1 MOTO RETTILINEO UNIFORME = cosane a a = 0 = cos ( x-x o )/ = cos x = x o + 2 MOTO RETTILINEO UNIFORME a = 0 = cos = cosane ( x-x

Dettagli

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi periodici. Prof. Adolfo Santini - Dinamica delle Strutture 1

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi periodici. Prof. Adolfo Santini - Dinamica delle Strutture 1 La risposa di un sisema lineare viscoso a un grado di liberà solleciao da carichi periodici Prof. Adolfo Sanini - Dinamica delle Sruure 1 Inroduzione 1/ Un carico p() si dice periodico quando assume indefiniamene

Dettagli

Approccio Classico: Metodi di Scomposizione

Approccio Classico: Metodi di Scomposizione Approccio Classico: Meodi di Scomposizione Il Modello di Scomposizione Il modello maemaico ipoizzao nel meodo classico di scomposizione è: y =f(s, T, E ) dove y è il dao riferio al periodo S è la componene

Dettagli

Moto di un corpo. Descrizione del moto. Moto in 2 dimensioni. È un moto in 1 Dimensione

Moto di un corpo. Descrizione del moto. Moto in 2 dimensioni. È un moto in 1 Dimensione Descrizione del moo Moo di un corpo Prerequisio: conceo di spazio e di empo. Finalià: descrizione di come varia la posizione o lo sao di un sisema meccanico in funzione del empo y In una sola direzione!!!!

Dettagli

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica Edile - Informatica Esercitazione 4 CIRCUITI ELETTRICI

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica Edile - Informatica Esercitazione 4 CIRCUITI ELETTRICI Fisica Generale Modulo di Fisica II A.A. 6-7 Ingegneria Meccanica Edile - Informaica Eserciazione IUITI ELETTII b. Nel circuio della figura si ha 5, e 3 3 e nella resisenza passa una correne di A.Il volaggio

Dettagli

Corso di Fisica. Lezione 4 La dinamica

Corso di Fisica. Lezione 4 La dinamica Corso di Fisica Lezione 4 La dinamica Lo scopo della dinamica La dinamica si occupa di sudiare perché e come si muovono i corpi. Parlare di movimeno di un corpo significa che il corpo sesso cambia la sua

Dettagli

TRASFORMATE DI LAPLACE

TRASFORMATE DI LAPLACE CONTROLLI AUTOMATICI Ingegneria della Gesione Indusriale e della Inegrazione di Impresa hp://www.auomazione.ingre.unimore.i/pages/corsi/conrolliauomaicigesionale.hm Trasformae di Laplace Gli esempi visi

Dettagli

Unità 7: Il caso delle travi

Unità 7: Il caso delle travi Eserciio 1 Daa una seione circolare piena di diamero 70 mm soggea a un momeno orcene 5000 Nm calcolare: a) il valore della ensione angeniale massima; b) il valore della ensione angeniale sulla circonferena

Dettagli

2. Determinare la velocità v di impatto al suolo del sasso, e commentare se è maggiore o minore di quella di lancio;

2. Determinare la velocità v di impatto al suolo del sasso, e commentare se è maggiore o minore di quella di lancio; 1 Esercizio Un uomo lancia in alo, vericalmene luno l asse z, un sasso da un alezza h 0 = m dal suolo, con una velocià di 10 m/s. Il sasso si muove di moo uniformemene accelerao, con un accelerazione di

Dettagli

TRASFORMAZIONE DEI SEGNALI. Lineari (tra cui il Filtraggio) Non Lineari

TRASFORMAZIONE DEI SEGNALI. Lineari (tra cui il Filtraggio) Non Lineari TRASFORMAZIONE DEI SEGNALI SENZA MEMORIA: ZMNL (Zero-Memory Non Lineariy) g x( ) y = CON MEMORIA: Lineari (ra cui il Filraggio) Non Lineari L5/1 TRASFORMAZIONI SENZA MEMORIA (ISTANTANEE) y Limiazione dura

Dettagli

Meccanica Cinematica del punto materiale

Meccanica Cinematica del punto materiale Meccanica 7-8 3 Moo reilineo osizione: ( ) d( ) ( ) Accelerazione: a( ) Velocià: d( ) Equazione del moo: d ( ) Equazione della elocià: ( ) + ( ) ( ) + a( ) Moo reilineo uniforme: a cosane ( ) + ( ) Moo

Dettagli

e sostituendo il valore =6 si ottiene che:

e sostituendo il valore =6 si ottiene che: ESAME DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 011 CORSO DI ORDINAMENTO Quesionario Quesio 1 Poniamo = con i limii geomerici 0

Dettagli

Lezione 2. Meccanica di un sistema puntiforme Cinematica in due dimensioni

Lezione 2. Meccanica di un sistema puntiforme Cinematica in due dimensioni Lezione Meccanica di un sisema puniforme Cinemaica in due dimensioni Moo in un piano Il moo di un corpo su una rea può essere definio, in ogni isane da una sola funzione del empo ;spazio percorso. Se la

Dettagli

Simulare un sistema dinamico

Simulare un sistema dinamico Simulare un sisema dinamico Serie di Taylor Daa una unzione, ed un puno 0 in cui la unzione sia noa assieme alle sue derivae, è possibile approssimare la unzione ramie serie di Taylor: 0 + ' 0 0 + '' 0

Dettagli

Meccanica Cinematica del punto materiale

Meccanica Cinematica del punto materiale Meccanica 8-9 3 Moo reilineo osizione: ( ) d( ) ( ) Accelerazione: a( ) Velocià: d( ) Equazione del moo: d ( ) Equazione della elocià: ( ) + ( ) ( ) + a( ) Moo reilineo uniforme: a cosane ( ) + ( ) Moo

Dettagli

Sistemi Lineari e Tempo-Invarianti (SLI) Risposta impulsiva e al gradino

Sistemi Lineari e Tempo-Invarianti (SLI) Risposta impulsiva e al gradino Sisemi Lineari e Tempo-Invariani (SLI) Risposa impulsiva e al gradino by hp://www.oasiech.i Con sisema SLI si inende un sisema lineare e empo invariane, rispeo alla seguene figura: Lineare: si ha quando

Dettagli

Circuiti del I ordine

Circuiti del I ordine ircuii del I ordine 9 Un circuio è deo del I ordine se coniene un solo elemeno dinamico, condensaore o induore, e per il reso è cosiuio da componeni elerici di ipo algebrico privi di memoria, ovvero generaori

Dettagli