Sistemi lineari. 2x 1 + x 2 x 3 = 2 x 1 x 2 + x 3 = 1 x 1 + 3x 2 2x 3 = 0. x 1 x 2 x 3

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Sistemi lineari. 2x 1 + x 2 x 3 = 2 x 1 x 2 + x 3 = 1 x 1 + 3x 2 2x 3 = 0. x 1 x 2 x 3"

Transcript

1 Sistemi lineari 2x 1 + x 2 x 3 = 2 x 1 x 2 + x 3 = 1 x 1 + 3x 2 2x 3 = x 1 x 2 x 3 = n j=1 a i,jx j = b i, i = 1,, n Ax = b A = (a i,j ) R n n matrice invertibile (det(a) 0) b = (b i ) R n vettore termine noto x = (x i ) R n vettore incognito

2 Sistemi lineari La soluzione può essere ottenuta con la regola di Cramer x j = j det(a) j = 1,, n j il determinante della matrice ottenuta sostituendo la j-esima colonna di A col vettore termine noto Questa formula è troppo costosa Numero di operazioni (n + 1)!

3 Risoluzione di sistemi triangolari Triangolare inferiore: l 1,1 0 0 l 2,1 l 2,2 0 l 3,1 l 3,2 l 3,3 x 1 x 2 x 3 = b 1 b 2 b 3 x 1 = 1 l 1,1 b 1 x 2 = 1 l 2,2 (b 2 l 2,1 x 1 ) x 3 = 1 l 3,3 (b 3 l 3,1 x 1 l 3,2 x 2 ) Triangolare superiore: u 1,1 u 1,2 u 1,3 0 u 2,2 u 2,3 0 0 u 3,3 x 1 x 2 x 3 = x 3 = 1 u 3,3 b 3 x 2 = 1 u 2,2 (b 2 u 2,3 x 3 ) x 1 = 1 u 1,1 (b 1 u 1,2 x 2 u 1,3 x 3 ) b 1 b 2 b 3

4 Risoluzione di sistemi triangolari Lx = b for i=1:n x i = 1 i 1 (b i l i,j x j ) l i,i end Ux = b for i=n:-1:1 x i = 1 u i,i (b i end j=1 n j=i+1 u i,j x j ) Sostituzioni in avanti Sostituzioni all indietro Numero di operazioni n 2

5 Il metodo di eliminazione gaussiana Si basa sull idea di ridurre il sistema Ax = b ad un sistema equivalente (con la stessa soluzione) triangolare superiore 2x 1 + x 2 x 3 = 2 x 1 x 2 + x 3 = 1 x 1 + 3x 2 2x 3 = 0 2x 1 + x 2 x 3 = x x 3 = x x 3 = 1 L 1 L 2 L L 1 L 3 L L 1 L 1 L 2 L 3 L 3 7/2 3/2 L 2 2x 1 + x 2 x 3 = x x 3 = 0 x 3 = 1

6 Il metodo di eliminazione gaussiana 2x 1 + x 2 x 3 = 2 x 1 x 2 + x 3 = 1 x 1 + 3x 2 2x 3 = 0 2x 1 + x 2 x 3 = x x 3 = 0 x 3 = 1 Ax = b Ux = c A (1) x = b (1) A (2) x = b (2) A (n) x = b (n) con A (1) = A, b (1) = b, e A (n) = U, b (n) = c Vediamo come si passa da A (k) x = b (k) a A (k+1) x = b (k+1)

7 Il metodo di eliminazione gaussiana 1,1 1,2 1,k 1 0 2,2 2,k 2,k 1 1,k 1,k+1 1,n 2,k+1 2,n 0 0 k 1,k 1 k 1,k k,k k+1,k n,k k 1,k+1 k,n k,k+1 k,n k+1,k+1 k+1,n n,k+1 a n,n (k) x 1 x 2 x k 1 x k x k+1 x n = b (k) 1 b (k) 2 b (k) k 1 b (k) k b (k) k+1 b n (k) Le prime k righe non si modificano Dobbiamo azzerare gli elementi nella colonna k-esima sotto la diagonale

8 Il metodo di eliminazione gaussiana for k=1:n-1 for i=k+1:n m i,k = a(k) i,k k,k for j=k+1:n a (k+1) i,j = i,j end end end b (k+1) i = b (k) i m i,k k,j m i,k b (k) k I coefficienti m i,k si chiamano moltiplicatori Gli k,k, detti elementi pivotali, devono essere tutti non nulli Il numero di operazioni è dell ordine di 2n 3 /3

9 Il metodo di eliminazione gaussiana x 1 + 2x 2 + 3x 3 = 6 2x 1 + 4x 2 x 3 = 5 m 1,2 = 2/1 x 1 2x 2 + 2x 3 = 1 m 1,3 = 1/1 x 1 + 2x 2 + 3x 3 = 6 0x 2 7x 3 = 7 4x 2 x 3 = 5 m 2,3 = 4/0?? Ma in realtà il sistema ha soluzione Scambiando la seconda e la terza riga x 1 + 2x 2 + 3x 3 = 6 4x 2 x 3 = 5 7x 3 = 7

10 Il metodo di eliminazione gaussiana Il solo fatto che gli elementi diagonali di A siano diversi da zero non garantisce che gli elementi pivotali siano diversi da zero Se i minori principali d i di A sono diversi da zero per i = 1,, n 1, allora tutti gli elementi pivotali sono non nulli Classi di matrici con questa proprietà sono: le matrici a dominanza diagonale (per righe o per colonne), le matrici simmetriche e definite positive

11 Il metodo di eliminazione gaussiana Minore principale d i : determinante della sottomatrice principale A i costituita dalle prime i righe ed i colonne di A n Matrici a dominanza diagonale per righe: a i,i > a i,j per i = 1,, n Matrici a dominanza diagonale per colonne: a j,j > per j = 1,, n Matrice simmetrica: A = A T j=1 j i n i=1 i j a i,j Matrice simmetrica definita positiva: A = A T e x T Ax > 0 per ogni x R n, x 0

12 Il MEG come metodo di fattorizzazione Il MEG equivale a fattorizzare la matrice A nel prodotto di due matrici, A = LU con L triangolare inferiore ed U triangolare superiore A (k+1) = M k A (k) con M k = m k+1,k m n,k 0 1 quindi U = M n 1 M 1 A

13 Il MEG come metodo di fattorizzazione U = M n 1 M 1 A M 1 1 M 1 n 1 U = A m 2,1 1 L = M1 1 Mn 1 1 = m 3,1 m 3,2 0 m n,1 m n,2 m n,n 1 1 LU = A

14 Il MEG come metodo di fattorizzazione Ax = b A = LU { Ly = b Ux = y Il costo computazionale del processo di fattorizzazione è lo stesso del MEG 2n 3 /3 Nota la fattorizzaione, per risolvere un sistema con matrice A devo risolvere due sistemi triangolari 2n 2 operazioni La stessa fattorizzazione può essere utilizzata per risolvere diversi sistemi di matrice A e termine noto b variabile Calcolo dell inversa

15 Altri tipi di fattorizzazione Se A è non singolare e A = LU allora gli elementi sulla diagonale di U sono tutti diversi da zero Consideriamo la matrice diagonale D = diag(u 1,1,, u n,n ) D è invertibile A = LU = LDD 1 U Sia M T := D 1 U A = LDM T M T è una matrice triangolare superiore con elementi diagonali pari ad uno Se A è simmetrica M = L A = LDL T Se A è simmetrica definita positiva allora d i > 0 per i = 1,, n Sia R = L diag( d 1, d n ) A = RR T Fattorizzazione di Cholesky

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Pivoting e stabilità Se la matrice A non appartiene a nessuna delle categorie precedenti può accadere che al k esimo passo risulti a (k) k,k = 0, e quindi il

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Pivoting e stabilità Se la matrice A non appartiene a nessuna delle categorie precedenti può accadere che al k esimo passo risulti a (k) k,k = 0, e quindi il

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dottssa MC De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Corso di Calcolo Numerico - Dottssa MC De Bonis

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 7 - CALCOLO NUMERICO CON MATRICI Richiami teorici Operazioni fondamentali Siano A = {a ij } e B = {b ij }, i = 1,..., m, j = 1,..., n due

Dettagli

Esercitazione di Calcolo Numerico 1 22 Aprile Determinare la fattorizzazione LU della matrice a 1 1 A = 3a 2 a 2a a a 2 A =

Esercitazione di Calcolo Numerico 1 22 Aprile Determinare la fattorizzazione LU della matrice a 1 1 A = 3a 2 a 2a a a 2 A = Esercitazione di Calcolo Numerico 22 Aprile 29. Determinare la fattorizzazione LU della matrice a A = 3a 2 a 2a a a 2 ed utilizzarla per calcolare il det(a). 2. Calcolare il determinante della matrice

Dettagli

Per esempio, una matrice 4 4 triangolare alta ha la forma. 0 a. mentre una matrice di ordine 4 triangolare bassa è del tipo

Per esempio, una matrice 4 4 triangolare alta ha la forma. 0 a. mentre una matrice di ordine 4 triangolare bassa è del tipo Matrici triangolari Prima di esporre il metodo LU per la risoluzione di sistemi lineari, introduciamo la nozione di matrice triangolare Ci limiteremo al caso di matrici quadrate anche se l estensione a

Dettagli

1 Risoluzione di sistemi lineari

1 Risoluzione di sistemi lineari Risoluzione di sistemi lineari La presente nota è in parte ripresa dal testo D Bini M Capovani O Menchi Metodi numerici per l algebra lineare Zanichelli Editore Siano A una matrice non singolare di ordine

Dettagli

RISOLUZIONE DI SISTEMI LINEARI

RISOLUZIONE DI SISTEMI LINEARI RISOLUZIONE DI SISTEMI LINEARI Algebra lineare numerica 1 La risoluzione di un sistema lineare è il nucleo principale del processo di risoluzione di circa il 70% di tutti i problemi reali Per la risoluzione

Dettagli

Esercitazione 5: Sistemi a risoluzione immediata.

Esercitazione 5: Sistemi a risoluzione immediata. Esercitazione 5: Sistemi a risoluzione immediata. Ipotesi: Supponiamo le matrici non singolari. Nota: Per verificare che si ha risolto correttamente il sistema lineare Ax = b basta calcolare la norma del

Dettagli

Risoluzione di sistemi lineari sparsi e di grandi dimensioni

Risoluzione di sistemi lineari sparsi e di grandi dimensioni Risoluzione di sistemi lineari sparsi e di grandi dimensioni Un sistema lineare Ax = b con A R n n, b R n, è sparso quando il numero di elementi della matrice A diversi da zero è αn, con n α. Una caratteristica

Dettagli

Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani

Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE Giovanni Villani Matrici Definizione 1 Si definisce matrice di tipo m n una funzione che associa

Dettagli

Sistemi lineari. Lucia Gastaldi. DICATAM - Sez. di Matematica,

Sistemi lineari. Lucia Gastaldi. DICATAM - Sez. di Matematica, Sistemi lineari Lucia Gastaldi DICATAM - Sez. di Matematica, http://www.ing.unibs.it/gastaldi/ Indice 1 Risoluzione di sistemi lineari Risoluzione di sistemi lineari in Matlab Metodi di risoluzione Fattorizzazione

Dettagli

Un sistema lineare si rappresenta in generale come

Un sistema lineare si rappresenta in generale come SISTEMI LINEARI Un sistema lineare si rappresenta in generale come n j=1 a ij x j = b i i = 1, 2,..., m o anche AX = B. La soluzione esiste se e solo se B appartiene allo spazio lineare generato dalle

Dettagli

MATRICI E VETTORI APPROFONDIMENTO PER IL CORSO DI LABORATORIO DI INFORMATICA SARA POLTRONIERI

MATRICI E VETTORI APPROFONDIMENTO PER IL CORSO DI LABORATORIO DI INFORMATICA SARA POLTRONIERI MATRICI E VETTORI APPROFONDIMENTO PER IL CORSO DI LABORATORIO DI INFORMATICA SARA POLTRONIERI LE MATRICI DEFINIZIONE: Una matrice è un insieme di numeri disposti su righe e colonne. 1 3 7 M = 2 5 1 M è

Dettagli

Sistemi II. Sistemi II. Elisabetta Colombo

Sistemi II. Sistemi II. Elisabetta Colombo Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 2011-2012, http://users.mat.unimi.it/users/colombo/programmabio.html 1 2 3 con R.C.+ o 1.10 Rango massimo e determinante con R.C.+

Dettagli

= 3 (con qualunque precisione di macchina) e richiede una sola operazione, mentre attraverso il calcolo dell'inversa 1/7 si ottiene la soluzione

= 3 (con qualunque precisione di macchina) e richiede una sola operazione, mentre attraverso il calcolo dell'inversa 1/7 si ottiene la soluzione CAP2A-DUDOC Versione aggiornata il 2/0/93 2- METODI DIRETTI I metodi diretti per la risoluzione numerica dei sistemi lineari consistono sostanzialmente nell'applicazione del metodo di riduzione di Gauss

Dettagli

Richiami di algebra delle matrici a valori reali

Richiami di algebra delle matrici a valori reali Richiami di algebra delle matrici a valori reali Vettore v n = v 1 v 2. v n Vettore trasposto v n = (v 1, v 2,..., v n ) v n = (v 1, v 2,..., v n ) A. Pollice - Statistica Multivariata Vettore nullo o

Dettagli

Motivazioni. Sistemi lineari. Obiettivo. Il problema

Motivazioni. Sistemi lineari. Obiettivo. Il problema Motivazioni Sistemi lineari Metodo di eliminazione di Gauss Molti problemi si possono rappresentare mediante un sistema lineare La soluzione di un sistema lineare costituisce un sottoproblema di moltissime

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI 1 Rappresentazione di dati strutturati MATRICI E SISTEMI LINEARI Gli elementi di una matrice, detti coefficienti, possono essere qualsiasi e non devono necessariamente essere omogenei tra loro; di solito

Dettagli

Esercitazione 1-I parte

Esercitazione 1-I parte Esercitazione 1-I parte Argomento: Sistemi triangolari Scopo: Implementare il metodo di sostituzione all indietro per la risoluzione di sistemi triangolari superiori. function x=indietro(a,b) Sintassi

Dettagli

Metodi numerici per la risoluzione di Sistemi Lineari

Metodi numerici per la risoluzione di Sistemi Lineari Metodi numerici per la risoluzione di Sistemi Lineari Dipartimento di Matematica tel. 011 0907503 stefano.berrone@polito.it http://calvino.polito.it/~sberrone Laboratorio di modellazione e progettazione

Dettagli

2. Risolvere con il metodo di eliminazione di Gauss con pivoting parziale il seguente sistema lineare:

2. Risolvere con il metodo di eliminazione di Gauss con pivoting parziale il seguente sistema lineare: Esercizi sui metodi diretti per la risoluzione di sistemi lineari 1. Data la matrice 1 0 2 1 3 1 5 2 1 determinare la sua fattorizzazione P LR. Risolvere il sistema Ax = b con b = (3, 5, 6) T mediante

Dettagli

Modelli Matematici e Calcolo Numerico

Modelli Matematici e Calcolo Numerico Modelli Matematici e Calcolo Numerico Calcolo Numerico Massimiliano Martinelli martinelli@imati.cnr.it Università di Pavia Facoltà di Ingegneria 30 Settembre - 14 Ottobre 2010 Obiettivi del corso Esempi

Dettagli

Matrici di permutazione

Matrici di permutazione Matrici di permutazione Si dice matrice di permutazione elementare una matrice ottenuta dall identità scambiando due righe i e j o due colonne i e j. P ij =...... P ij ha come effetto di scambiare le righe

Dettagli

3x 2 = 6. 3x 2 x 3 = 6

3x 2 = 6. 3x 2 x 3 = 6 Facoltà di Scienze Statistiche, Algebra Lineare 1 A, GParmeggiani LEZIONE 7 Sistemi lineari Scrittura matriciale di un sistema lineare Def 1 Un sistema di m equazioni ed n incognite x 1, x 2, x n, si dice

Dettagli

Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Vettori e matrici Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utentiunifeit/lorenzopareschi/ lorenzopareschi@unifeit Lorenzo Pareschi Univ Ferrara

Dettagli

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari Introduzione soft alla matematica per l economia e la finanza Marta Cardin, Paola Ferretti, Stefania Funari Capitolo Sistemi di equazioni lineari.8 Il Teorema di Cramer Si consideri un generico sistema

Dettagli

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

Matrici. Matrici.h Definizione dei tipi. Un po di esercizi sulle matrici Semplici. Media difficoltà. Difficili

Matrici. Matrici.h Definizione dei tipi. Un po di esercizi sulle matrici Semplici. Media difficoltà. Difficili Matrici Un po di esercizi sulle matrici Semplici Lettura e scrittura Calcolo della trasposta Media difficoltà Calcolo del determinante Difficili Soluzione di sistemi lineari È veramente difficile? 1 Matrici.h

Dettagli

Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016.

Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016. Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016 Di seguito si riporta il riassunto degli argomenti svolti; i riferimenti sono a parti del Cap8 Elementi di geometria e algebra lineare Par5

Dettagli

Fattorizzazione LU ed eliminazione gaussiana

Fattorizzazione LU ed eliminazione gaussiana Fattorizzazione LU ed eliminazione gaussiana Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica 3 maggio 2015 Alvise Sommariva Fattorizzazione LU ed eliminazione gaussiana 1/

Dettagli

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4B) January 17, 005 1 SISTEMI LINEARI Se a ik, b i R,

Dettagli

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite 3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x

Dettagli

Matrici elementari e fattorizzazioni

Matrici elementari e fattorizzazioni Matrici elementari e fattorizzazioni Dario A Bini, Università di Pisa 19 ottobre 2015 Sommario Questo modulo didattico introduce ed analizza la classe delle matrici elementari Tale classe verrà usata per

Dettagli

Sistemi lineari - Parte Seconda - Esercizi

Sistemi lineari - Parte Seconda - Esercizi Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione

Dettagli

2x 5y +4z = 3 x 2y + z =5 x 4y +6z = A =

2x 5y +4z = 3 x 2y + z =5 x 4y +6z = A = Esercizio 1. Risolvere il sistema lineare 2x 5y +4z = x 2y + z =5 x 4y +6z =10 (1) Soluz. La matrice dei coefficienti è 1 4 6, calcoliamone il rango. Il determinante di A è (applico la regola di Sarrus):

Dettagli

Motivazione: Come si fa? Matrici simmetriche. Fattorizzazioni di matrici speciali

Motivazione: Come si fa? Matrici simmetriche. Fattorizzazioni di matrici speciali Motivazione: Fattorizzazioni di matrici speciali Diminuire la complessità computazionale = evitare operazioni inutili = risparmiare tempo di calcolo Diminuire l occupazione di memoria Come si fa? Si tiene

Dettagli

Definizioni e operazioni fondamentali

Definizioni e operazioni fondamentali MATRICI Definizioni e operazioni fondamentali Autovalori e autovettori Potenza Esponenziale Limiti, derivate e integrali Illustrazioni dal Testo di Riferimento per gentile concessione degli Autori 1 DEFINIZIONI

Dettagli

INTRODUZIONE A MATLAB

INTRODUZIONE A MATLAB INTRODUZIONE A MATLAB M.R. Russo Università degli Studi di Padova Dipartimento di Matematica Pura ed Applicata A.A. 2008/2009 INDICE Sistemi lineari Casi particolari Eliminazione di Gauss Fattorizzazione

Dettagli

Geometria BIAR Esercizi 2

Geometria BIAR Esercizi 2 Geometria BIAR 0- Esercizi Esercizio. a Si consideri il generico vettore v b R c (a) Si trovi un vettore riga x (x, y, z) tale che x v a (b) Si trovi un vettore riga x (x, y, z) tale che x v kb (c) Si

Dettagli

Il teorema di Rouché-Capelli

Il teorema di Rouché-Capelli Luciano Battaia Questi appunti (1), ad uso degli studenti del corso di Matematica (A-La) del corso di laurea in Commercio Estero dell Università Ca Foscari di Venezia, campus di Treviso, contengono un

Dettagli

Determinanti. Definizione ed esempi. Definizione ed esempi. Proprietà dei determinanti Rango di matrici

Determinanti. Definizione ed esempi. Definizione ed esempi. Proprietà dei determinanti Rango di matrici Introduzione S S S Rango di matrici Si dice sottomatrice d'una matrice data la matrice ottenuta selezionando un certo numero di righe e di colonne della matrice iniziale. Lezione 24.wpd 08/01/2011 XXIV

Dettagli

( ) TEORIA DELLE MATRICI. A. Scimone a.s pag 1

( ) TEORIA DELLE MATRICI. A. Scimone a.s pag 1 . Scimone a.s 1997 98 pag 1 TEORI DELLE MTRICI Dato un campo K, definiamo matrice ad elementi in K di tipo (m, n) un insieme di numeri ordinati secondo righe e colonne in una tabella rettangolare del tipo

Dettagli

( ), i, j = 1,2,...,n, si cerca un vettore x!r n tale che

( ), i, j = 1,2,...,n, si cerca un vettore x!r n tale che 4. Sistemi di equazioni algebriche lineari La soluzione numerica della maggior parte dei problemi di interesse nell ingegneria, anche molto complessi, si riduce alla soluzione di un sistema di equazioni

Dettagli

Le matrici. Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1.

Le matrici. Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1. Le matrici Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1. Siano m, n N\{0}. Una matrice m n a coefficienti in K è una tabella di m n elementi di K disposti

Dettagli

ESERCIZI SULLE MATRICI

ESERCIZI SULLE MATRICI ESERCIZI SULLE MATRICI Consideriamo il sistema lineare a, x + a, x + + a,n x n = b a, x + a, x + + a,n x n = b a m, x + a m, x + + a m,n x n = b m di m equazioni in n incognite che ha a, a,n A = a m, a

Dettagli

Metodi iterativi per sistemi lineari

Metodi iterativi per sistemi lineari Metodi iterativi per sistemi lineari Mirano a costruire la soluzione x di un sistema lineare come limite di una successione di vettori Per matrici piene di ordine n il costo computazionale è dell ordine

Dettagli

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU 9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A LU 9.1 Il metodo di Gauss Come si è visto nella sezione 3.3, per la risoluzione di un sistema lineare si può considerare al posto

Dettagli

Corso di Matematica e Statistica 3 Algebra delle matrici. Una tabella rettangolare: la matrice. Una tabella rettangolare: la matrice

Corso di Matematica e Statistica 3 Algebra delle matrici. Una tabella rettangolare: la matrice. Una tabella rettangolare: la matrice Pordenone Corso di Matematica e Statistica 3 Algebra delle UNIVERSITAS STUDIORUM UTINENSIS Giorgio T. Bagni Facoltà di Scienze della Formazione Dipartimento di Matematica e Informatica Università di Udine

Dettagli

Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari

Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari Esercizi su algebra lineare, fattorizzazione LU e risoluzione di sistemi lineari 4 maggio Nota: gli esercizi più impegnativi sono contrassegnati dal simbolo ( ) Esercizio Siano 3 6 8 6 4 3 3 ) determinare

Dettagli

3. Vettori, Spazi Vettoriali e Matrici

3. Vettori, Spazi Vettoriali e Matrici 3. Vettori, Spazi Vettoriali e Matrici Vettori e Spazi Vettoriali Operazioni tra vettori Basi Trasformazioni ed Operatori Operazioni tra Matrici Autovalori ed autovettori Forme quadratiche, quadriche e

Dettagli

Parte II: Eliminazione di Gauss

Parte II: Eliminazione di Gauss Matrici e sistemi lineari Richiamiamo rapidamente alcuni elementi essenziali di algebra lineare. Indicato con a ij (i indice di riga della tabella, j indice di colonna della tabella) il generico elemento

Dettagli

e così via per tutte le colonne. Una prima proprietà importante ci dice quello che accade quando si fanno delle permutazioni di colonne di A.

e così via per tutte le colonne. Una prima proprietà importante ci dice quello che accade quando si fanno delle permutazioni di colonne di A. Capitolo 3 DETERMINANTE Il problema di stabilire se un insieme di vettori è linearmente indipendente (ad esempio se lo sono le colonne di una matrice quadrata, e quindi se la matrice è invertibile) non

Dettagli

Esercizi di ripasso: geometria e algebra lineare.

Esercizi di ripasso: geometria e algebra lineare. Esercizi di ripasso: geometria e algebra lineare. Esercizio. Sia r la retta passante per i punti A(2,, 3) e B(,, 2) in R 3. a. Scrivere l equazione cartesiana del piano Π passante per A e perpendicolare

Dettagli

Applicazioni eliminazione di Gauss

Applicazioni eliminazione di Gauss Applicazioni eliminazione di Gauss. Premessa Nel seguito supporremo sempre di applicare il metodo di eliminazione di Gauss allo scopo di trasformare la matrice del sistema Ax = b in una matrice triangolare

Dettagli

Esercitazione di Matematica su matrici e sistemi lineari

Esercitazione di Matematica su matrici e sistemi lineari Esercitazione di Matematica su matrici e sistemi lineari Notazioni: deta, A T =trasposta di A, A 1 =inversa di A. 1. Si considerino le matrici A, B, C, D denite da 1 0 5 1 A = 0, B = 0 0, C = 0 1 0 6 1

Dettagli

ALGEBRA LINEARE PARTE II

ALGEBRA LINEARE PARTE II DIEM sez. Matematica Finanziaria Marina Resta Università degli studi di Genova Dicembre 005 Indice PREMESSA INVERSA DI UNA MATRICE DETERMINANTE. DETERMINANTE DI MATRICI ELEMENTARI................. MATRICI

Dettagli

Corso di Analisi Numerica - AN1. Parte 2: metodi diretti per sistemi lineari. Roberto Ferretti

Corso di Analisi Numerica - AN1. Parte 2: metodi diretti per sistemi lineari. Roberto Ferretti Corso di Analisi Numerica - AN1 Parte 2: metodi diretti per sistemi lineari Roberto Ferretti Richiami sulle norme e sui sistemi lineari Il Metodo di Eliminazione di Gauss Il Metodo di Eliminazione con

Dettagli

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Antonio Lanteri e Cristina Turrini UNIMI - 2016/2017 Antonio Lanteri e Cristina Turrini (UNIMI - 2016/2017 Elementi di Algebra Lineare

Dettagli

Argomento 13 Sistemi lineari

Argomento 13 Sistemi lineari Sistemi lineari: definizioni Argomento 3 Sistemi lineari I Un equazione nelle n incognite x,,x n della forma c x + + c n x n = b ove c,,c n sono numeri reali (detti coefficienti) eb è un numero reale (detto

Dettagli

Algoritmi per operazioni con le matrici

Algoritmi per operazioni con le matrici Algoritmi per operazioni con le matrici 1 Sommario Definizioni Alcune operazioni principali sulle matrici Somma di due matrici Trasposta di una matrice Prodotto di matrici: algoritmo classico Prodotto

Dettagli

Esercitazione di Calcolo Numerico 1 27 Maggio Calcolare la fattorizzazione P A = LU della matrice A =

Esercitazione di Calcolo Numerico 1 27 Maggio Calcolare la fattorizzazione P A = LU della matrice A = Esercitazione di Calcolo Numerico 1 27 Maggio 29 1. Calcolare la fattorizzazione P A = LU della matrice 1 2 3 A = 2 3 3, ed utilizzarla per risolvere il sistema lineare Ax = b, con b = (1, 2,, 16) T. 2.

Dettagli

Esercizi sui sistemi di equazioni lineari.

Esercizi sui sistemi di equazioni lineari. Esercizi sui sistemi di equazioni lineari Risolvere il sistema di equazioni lineari x y + z 6 x + y z x y z Si tratta di un sistema di tre equazioni lineari nelle tre incognite x, y e z Poichè m n, la

Dettagli

Metodi diretti per la soluzione di sistemi lineari

Metodi diretti per la soluzione di sistemi lineari Metodi diretti per la soluzione di sistemi lineari N Del Buono 1 Introduzione Consideriamo un sistema di n equazioni in n incognite a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1, a 21 x 1 + a 22 x

Dettagli

LEZIONE i i 3

LEZIONE i i 3 LEZIONE 5 51 Determinanti In questo lezione affronteremo da un punto di vista prettamente operativo la nozione di determinante, descrivendone le proprietà ed i metodi di calcolo, senza entrare nei dettagli

Dettagli

Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti)

Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) April 14, 2011 (alcune note non complete sugli argomenti trattati: eventuali completamenti saranno aggiunti)

Dettagli

= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con

= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con Definizione di matrice Una matrice (di numeri reali) è una tabella di m x n numeri disposti su m righe e n colonne. I numeri che compaiono nella tabella si dicono elementi della matrice. La loro individuazione

Dettagli

Autovalori e autovettori

Autovalori e autovettori Capitolo 3 Autovalori e autovettori 3. Richiami di teoria Prerequisiti: nozioni elementari di algebra lineare, numeri complessi. Sia A R n n. Un numero λ per cui esiste un vettore x 0 tale che valga la

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

08 - Matrici, Determinante e Rango

08 - Matrici, Determinante e Rango Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 08 - Matrici, Determinante e Rango Anno Accademico 2013/2014 D.

Dettagli

RICHIAMI PER IL CORSO DI ANALISI NUMERICA

RICHIAMI PER IL CORSO DI ANALISI NUMERICA RICHIAMI PER IL CORSO DI ANALISI NUMERICA Anno accademico 211 212 1 RICHIAMI: PRECISIONE FINITA (USO DI UN COMPUTER) IN UN COMPUTER UNA QUALUNQUE INFORMAZIONE VIENE RAPPRESENTATA COME UNA SEQUENZA FINITA

Dettagli

Veri ca di Matematica sulle matrici [1]

Veri ca di Matematica sulle matrici [1] Veri ca di Matematica sulle matrici []. Si considerino le matrici A e de nite da 5 A = 2 3 7 5 4 7 3 A ; = 5 6 7 alcolare det(a), det(); la matrice somma = A + ; la matrice prodotto D = A. 6 7 2 2 2 3

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni Corso di Geometria 2- BIAR, BSIR Esercizi 2: soluzioni Esercizio Calcolare il determinante della matrice 2 3 : 3 2 a) con lo sviluppo lungo la prima riga, b) con lo sviluppo lungo la terza colonna, c)

Dettagli

Decomposizione LU di una matrice quadrata

Decomposizione LU di una matrice quadrata Appendice al Cap. 5 Decomposizione LU di una matrice quadrata Una qualunque matrice quadrata M = {m ij } di ordine N, reale, invertibile, i cui minori principali siano tutti non nulli, si può sempre decomporre

Dettagli

Appunti su Indipendenza Lineare di Vettori

Appunti su Indipendenza Lineare di Vettori Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo

Dettagli

Sui determinanti e l indipendenza lineare di vettori

Sui determinanti e l indipendenza lineare di vettori Sui determinanti e l indipendenza lineare di vettori 1 Si dice che m vettori v 1, v 2,,v m di R n sono linearmente indipendenti, se una loro combinazione lineare può dare il vettore nullo solo se i coefficienti

Dettagli

Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente

Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente Dati i vettori di R (i) Calcolare il prodotto scalare v w, (ii) Stabilire se v e w sono ortogonali, (ii) Stabilire

Dettagli

1 se k = r i. 0 altrimenti. = E ij (c)

1 se k = r i. 0 altrimenti. = E ij (c) Facoltà di Scienze Statistiche, Algebra Lineare A, G.Parmeggiani LEZIONE 5 Matrici elementari e loro inverse Si fissi m un numero naturale. Per ogni i, j m con i j siano E ij (c) (ove c è uno scalare )

Dettagli

SISTEMI LINEARI, METODO DI GAUSS

SISTEMI LINEARI, METODO DI GAUSS SISTEMI LINEARI, METODO DI GAUSS Abbiamo visto che un sistema di m equazioni lineari in n incognite si può rappresentare in forma matriciale come A x = b dove: A è la matrice di tipo (m, n) dei coefficienti

Dettagli

Richiami di algebra delle matrici

Richiami di algebra delle matrici Richiami di algebra delle matrici (S. Terzi) 1. SPAZI VETTORIALI I. ALCUNE DEFINIZIONI 1) Definizione di spazio vettoriale Sia S un insieme di vettori di ordine n. S è detto spazio lineare se e' un insieme

Dettagli

Le matrici. A cura di Benedetta Noris, 17 aprile Cos è una matrice. 2 Rappresentazione di una matrice generica 2

Le matrici. A cura di Benedetta Noris, 17 aprile Cos è una matrice. 2 Rappresentazione di una matrice generica 2 Le matrici A cura di Benedetta Noris, 17 aprile 2012 benedetta.noris1@unimib.it Indice 1 Cos è una matrice 1 2 Rappresentazione di una matrice generica 2 3 Somma di matrici e prodotto di una matrice per

Dettagli

Metodi numerici con elementi di Programmazione A.A

Metodi numerici con elementi di Programmazione A.A Metodi numerici con elementi di Programmazione A.A. 2013-2014 Esercizi svolti in Laboratorio Lezione del 19-11-2013 1 Docente: Vittoria Bruni Email: vittoria.bruni@sbai.uniroma1.it Ufficio: Via A. Scarpa,

Dettagli

Testi consigliati e contatti

Testi consigliati e contatti Testi consigliati e contatti P.Bonacini, M. G. Cinquegrani, L. Marino, Algebra lineare: esercizi svolti, Cavallotto Edizioni, Catania P. Bonacini, M. G. Cinquegrani, L. Marino, Geometria analitica: esercizi

Dettagli

RICHIAMI DI ALGEBRA LINEARE E NORME DI MATRICI E VETTORI. a 11 a 12 a 1n a 21 a 22 a 2n. a m1 a m2 a mn

RICHIAMI DI ALGEBRA LINEARE E NORME DI MATRICI E VETTORI. a 11 a 12 a 1n a 21 a 22 a 2n. a m1 a m2 a mn RICHIAMI DI ALGEBRA LINEARE E NORME DI MATRICI E VETTORI LUCIA GASTALDI 1. Matrici. Operazioni fondamentali. Una matrice A è un insieme di m n numeri reali (o complessi) ordinati, rappresentato nella tabella

Dettagli

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se Lezioni di Algebra Lineare. Versione novembre 2008 VI. Il determinante Il determinante det A di una matrice A, reale e quadrata, è un numero reale associato ad A. Dunque det è una funzione dall insieme

Dettagli

Sistemi sovradeterminati

Sistemi sovradeterminati Sistemi sovradeterminati Sia A una matrice m n ove m > n sia b R m trovare una soluzione del sistema sovradeterminato Ax = b significa cercare di esprimere un vettore di R m come combinazione lineare di

Dettagli

ottenuta scambiando in A, le righe con le colonne, così, ad esempio, posto

ottenuta scambiando in A, le righe con le colonne, così, ad esempio, posto MATRICI Si chiama matrice di m righe ed n colonne una tabella costituita da m n numeri (detti elementi), disposti in m righe orizzontali ed in n colonne verticali, racchiusi tra due parentesi tonde. (1)

Dettagli

SISTEMI LINEARI. x 2y 2z = 0. Svolgimento. Procediamo con operazioni elementari di riga sulla matrice del primo sistema: 1 1 1 3 1 2 R 2 R 2 3R 0 4 5.

SISTEMI LINEARI. x 2y 2z = 0. Svolgimento. Procediamo con operazioni elementari di riga sulla matrice del primo sistema: 1 1 1 3 1 2 R 2 R 2 3R 0 4 5. SISTEMI LINEARI Esercizi Esercizio. Risolvere, se possibile, i seguenti sistemi: x y z = 0 x + y + z = 3x + y + z = 0 x y = 4x + z = 0, x y z = 0. Svolgimento. Procediamo con operazioni elementari di riga

Dettagli

Esercitazione 6 - Soluzione

Esercitazione 6 - Soluzione Anno Accademico 28-29 Corso di Algebra Lineare e Calcolo Numerico per Ingegneria Meccanica Esercitazione 6 - Soluzione Immagine, nucleo. Teorema di Rouché-Capelli. Esercizio Sia L : R 3 R 3 l applicazione

Dettagli

SISTEMI LINEARI MATRICI E SISTEMI 1

SISTEMI LINEARI MATRICI E SISTEMI 1 MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui

Dettagli

Prendiamo in considerazione la matrice tridiagonale

Prendiamo in considerazione la matrice tridiagonale Questi esercizi sono il completamento di quelli sui sistemi lineari già a disposizione. Ogni esercizio proposto può fare riferimento a qualcuno di questi. In ogni caso sono riportati tutti i dati essenziali

Dettagli

1 Forme quadratiche 1. 2 Segno di una forma quadratica Il metodo dei minori principali Soluzioni degli esercizi 7.

1 Forme quadratiche 1. 2 Segno di una forma quadratica Il metodo dei minori principali Soluzioni degli esercizi 7. 1 FORME QUADRATICHE 1 Forme quadratiche Indice 1 Forme quadratiche 1 2 Segno di una forma quadratica 2 2.1 Il metodo dei minori principali........................................ 3 3 Soluzioni degli esercizi

Dettagli

Lezioni di Algebra Lineare. II. Aritmetica delle matrici e eliminazione di Gauss. versione ottobre 2008

Lezioni di Algebra Lineare. II. Aritmetica delle matrici e eliminazione di Gauss. versione ottobre 2008 versione ottobre 2008 Lezioni di Algebra Lineare II. Aritmetica delle matrici e eliminazione di Gauss Contenuto. 1. Somma di matrici e prodotto di una matrice per uno scalare 2. Prodotto di matrici righe

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante

Dettagli

Def. 1. Si chiamano operazioni elementari sulle righe di A le tre seguenti operazioni:

Def. 1. Si chiamano operazioni elementari sulle righe di A le tre seguenti operazioni: Facoltà di Scienze Statistiche, Algebra Lineare 1 A, G.Parmeggiani LEZIONE 5 Operazioni elementari sulle righe di una matrice Sia A una matrice m n. Def. 1. Si chiamano operazioni elementari sulle righe

Dettagli

QUADERNI DI DIDATTICA

QUADERNI DI DIDATTICA Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Marta Cardin Paola Ferretti Stefania Funari Introduzione soft alla matematica per l economia e la finanza: I SISTEMI LINEARI

Dettagli

4 Sistemi di equazioni.

4 Sistemi di equazioni. 4 Sistemi di equazioni. Risolvere un sistema significa erminare le soluzioni comuni a tutte le equazioni che lo compongono. Il grado di un sistema è il prodotto dei gradi di tali equazioni. 4. Sistemi

Dettagli

Inversa. Inversa. Elisabetta Colombo

Inversa. Inversa. Elisabetta Colombo Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 00-0, http://users.mat.unimi.it/users/colombo/programmabio.html e 3 con i Matrici inverse di matrici quadrate e con i Sia A una

Dettagli

Esercizi svolti sui sistemi lineari

Esercizi svolti sui sistemi lineari Esercizio 1. Risolvere il seguente sistema lineare al variare del parametro reale t: t x + (t 1)y + z = 1 (t 1)y + t z = 1 2 x + z = 5 Soluzione. Il determinante della matrice dei coefficienti è t t 1

Dettagli

Esercizi svolti sui sistemi lineari

Esercizi svolti sui sistemi lineari Francesco Daddi - www.webalice.it/francesco.daddi Esercizi svolti sui sistemi lineari Esercizio 1. Risolvere il seguente sistema lineare al variare del parametro reale t: tx+(t 1)y + z =1 (t 1)y + tz =1

Dettagli