La dipendenza. Antonello Maruotti

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "La dipendenza. Antonello Maruotti"

Transcript

1 La dipendenza Antonello Maruotti

2 Outline 1 Distribuzioni doppie 2 Medie e varianze condizionate 3 Indici di associazione

3 Distribuzione doppia Definizione Una distribuzione doppia si ha quando su di uno stesso collettivo rileviamo due caratteri contemporaneamente. Distribuzione doppia unitaria. Tabella doppia di frequenze.

4 Distribuzione doppia unitaria Unità Sesso Occupato 1 M Sì 2 F Sì 3 M No 4 F No 5 M Sì 6 M Sì 7 M Sì 8 F No 9 M Sì 10 F No

5 Tabella doppia di frequenze Occupato Sì No Totale Sesso M F Totale

6 Distribuzioni marginali (colonna) Occupato Sì No Totale Sesso M F Totale

7 Distribuzioni marginali (riga) Occupato Sì No Totale Sesso M F Totale

8 Distribuzioni condizionate (colonna) Occupato Sì No Totale Sesso M F Totale

9 Distribuzioni condizionate (riga) Occupato Sì No Totale Sesso M F Totale

10 Tabella doppia di frequenze: schema X Y y 1 y j y J x 1 n 11 n 1j n 1J n 1. x i n i1 n ij n ij n i. x I n I1 n Ij n IJ n I. n.1 n.j n.j n..

11 Tabella doppia di frequenze: Riepilogo n i. = n.j = I n.. = J n ij, j=1 I n ij, i=1 i = 1,..., I j = 1,..., J J J I n ij = n.j = n i. i=1 j=1 j=1 i=1

12 Medie e varianze condizionate Quando uno dei due carattere (ad esempio Y ) è quantitativo, è possibile calcolare la media aritmetica e la varianza condizionata. Per l i-esima modalità di X (x i ), la media condizionata di Y è data da µ Y X=xi = 1 J y j n ij n i. j=1 E possibile ricavare anche la varianza condizionata, che esprime la variabilità intorno alla propria media delle unità della distribuzione condizionata σ 2 Y X=x i = 1 n i. J (y j µ y X=xi ) 2 n ij j=1

13 Medie e varianze condizionate: proprietà La media aritmetica delle medie condizionate di Y dato X è uguale alla media della distribuzione marginale di Y µ Y = 1 I J y j n ij = 1 I µ n.. n Y X=xi n i... i=1 j=1 La variabilità di un carattere Y rispetto ad un carattere X può essere scomposta i=1 σ 2 Y = σ 2 Y,W + σ 2 Y,B σ 2 Y,W = 1 n.. σ 2 Y,B = 1 n.. I σy 2 X=x i n i. i=1 I (µ Y X=xi µ y ) 2 n i. i=1

14 Definizione Indipendenza Due caratteri sono detti indipendenti se le distribuzioni di uno condizionate alle modalità dell altro hanno le stesse frequenze relative o percentuali Osservazioni: in tutti gli altri casi i due caratteri saranno detti dipendenti. Due caratteri sono indipendenti se e solo se la generica frequenza assoluta corrispondente alla i-esima modalità di X e alla j-esima di Y è uguale a n ij = n i. n.j n.. Le frequenze di indipendenza saranno indicate con ˆn ij

15 Massima dipendenza Definizione Due caratteri sono massimamente dipendenti quando le distribuzioni di uno condizionate alle modalità dell altro sono massimamente diverse. In altre parole, Y dipende perfettamente da X se conoscendo le modalità di X posso predire con certezza le modalità di Y Osservazioni: la dipendenza perfetta implica che in una tabella doppia per ogni i c è un solo j per il quale n ij 0. Tra due caratteri sussite interdipendenza perfetta se ad ogni modalità di uno dei deu caratteri corrisponde una ed una sola modalità dell altro carattere e viceversa.

16 Misure di dipendenza Chi-quadrato I J χ 2 (n ij ˆn ij ) 2 = i=1 j=1 Contingenza quadratica media ˆn ij V di Cramer Φ 2 = χ2 n Φ 2 min[(i 1), (J 1)]

Esercitazioni di statistica

Esercitazioni di statistica Esercitazioni di statistica Misure di associazione: Indipendenza assoluta e in media Stefania Spina Universitá di Napoli Federico II stefania.spina@unina.it 22 ottobre 2014 Stefania Spina Esercitazioni

Dettagli

Analisi dei Dati - Prof. Marozzi Rilevazione dei caratteri "titolo di studio" e "qualifica professionale". Collettivo: addetti di un'azienda.

Analisi dei Dati - Prof. Marozzi Rilevazione dei caratteri titolo di studio e qualifica professionale. Collettivo: addetti di un'azienda. Rilevazione dei caratteri "titolo di " e "qualifica professionale". Collettivo: addetti di un'azienda. laurea quadro laurea quadro laurea impiegato diploma quadro diploma operaio diploma impiegato diploma

Dettagli

Statistica. Alfonso Iodice D Enza iodicede@unicas.it

Statistica. Alfonso Iodice D Enza iodicede@unicas.it Statistica Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () Statistica 1 / 2 Outline 1 2 3 4 () Statistica 2 / 2 Misura del legame Data una variabile doppia (X, Y ), la misura

Dettagli

STATISTICHE DESCRITTIVE Parte II

STATISTICHE DESCRITTIVE Parte II STATISTICHE DESCRITTIVE Parte II INDICI DI DISPERSIONE Introduzione agli Indici di Dispersione Gamma Differenza Interquartilica Varianza Deviazione Standard Coefficiente di Variazione introduzione Una

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 5

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 5 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 5 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Misura dell associazione tra due caratteri Uno store manager è interessato a studiare la relazione

Dettagli

Anno scolastico 2015/2016 PROGRAMMA SVOLTO. Docente: Catini Romina. Materie: Matematica. Classe : 4 L Indirizzo Scientifico Scienze Applicate

Anno scolastico 2015/2016 PROGRAMMA SVOLTO. Docente: Catini Romina. Materie: Matematica. Classe : 4 L Indirizzo Scientifico Scienze Applicate Anno scolastico 2015/2016 PROGRAMMA SVOLTO Docente: Catini Romina Materie: Matematica Classe : 4 L Indirizzo Scientifico Scienze Applicate UNITA DIDATTICA FORMATIVA 1: Statistica Rilevazione dei dati Rappresentazioni

Dettagli

Lezione 4 a - Misure di dispersione o di variabilità

Lezione 4 a - Misure di dispersione o di variabilità Lezione 4 a - Misure di dispersione o di variabilità Abbiamo visto che la media è una misura della localizzazione centrale della distribuzione (il centro di gravità). Popolazioni con la stessa media possono

Dettagli

Elementi di statistica

Elementi di statistica Scuola media G. Ungaretti Elementi di statistica Prof. Enrico Castello Ti insegnerò a conoscere i criteri organizzatori di una tabella di dati distinguere frequenze assolute e frequenze percentuali determinare

Dettagli

Statistica Descrittiva III

Statistica Descrittiva III Serie Bi-variate Statistica Descrittiva III Definizioni Serie statistiche bi-variate Rappresentazioni tabellari e grafiche Indici di posizione e di variabilità Dipendenza lineare: retta di regressione

Dettagli

Lezione 4. Statistica. Alfonso Iodice D Enza iodicede@unicas.it. Università degli studi di Cassino. Lezione 4. A. Iodice. Indici di posizione.

Lezione 4. Statistica. Alfonso Iodice D Enza iodicede@unicas.it. Università degli studi di Cassino. Lezione 4. A. Iodice. Indici di posizione. Statistica Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () Statistica 1 / 28 Outline 1 Indici 2 3 mediana distribuzioni 4 5 () Statistica 2 / 28 Indici robusti (o ): La moda

Dettagli

Istituzioni di Statistica 1 Esercizi su tabelle di contingenza

Istituzioni di Statistica 1 Esercizi su tabelle di contingenza Istituzioni di Statistica 1 Esercizi su tabelle di contingenza Esercizio 1 Per stimare la percentuale di fumatori nella popolazione italiana adulta viene intervistato un campione di 60 donne e uno di 40

Dettagli

Distribuzioni di probabilità

Distribuzioni di probabilità Distribuzioni di probabilità Distribuzioni di probabilità L analisi statistica spesso studia i fenomeni collettivi confrontandoli con modelli teorici di riferimento. Tra di essi, vedremo: la distribuzione

Dettagli

STATISTICA DESCRITTIVA. Elementi di statistica medica GLI INDICI INDICI DI DISPERSIONE STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA. Elementi di statistica medica GLI INDICI INDICI DI DISPERSIONE STATISTICA DESCRITTIVA STATISTICA DESCRITTIVA Elementi di statistica medica STATISTICA DESCRITTIVA È quella branca della statistica che ha il fine di descrivere un fenomeno. Deve quindi sintetizzare tramite pochi valori(indici

Dettagli

STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE

STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE 1 STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE La presentazione dei dati per molte ricerche mediche fa comunemente riferimento a frequenze, assolute o percentuali. Osservazioni cliniche conducono

Dettagli

Esercitazioni di Statistica Dott.ssa Cristina Mollica cristina.mollica@uniroma1.it

Esercitazioni di Statistica Dott.ssa Cristina Mollica cristina.mollica@uniroma1.it Esercitazioi di Statistica Dott.ssa Cristia Mollica cristia.mollica@uiroma1.it Cocetrazioe Esercizio 1. Nell'ultima settimaa ua baca ha erogato i segueti importi (i migliaia di euro) per prestiti a imprese:

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Indici di posizione e di variabilità Prof. Livia De Giovanni lstatistica@dis.uniroma1.it Esercizio 1 Data la seguente distribuzione unitaria del carattere X: X : 4 2 4 2 6 4

Dettagli

ANOVA: ANALISI DELLA VARIANZA Prof. Antonio Lanzotti

ANOVA: ANALISI DELLA VARIANZA Prof. Antonio Lanzotti UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II DIPARTIMENTO DI INGEGNERIA AEROSPAZIALE D.I.A.S. STATISTICA PER L INNOVAZIONE a.a. 007/008 ANOVA: ANALISI DELLA VARIANZA Prof. Antonio Lanzotti A cura di: Ing.

Dettagli

Capitolo 11 Test chi-quadro

Capitolo 11 Test chi-quadro Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 11 Test chi-quadro Insegnamento: Statistica Corsi di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.

Dettagli

Esercizio 1. Si rilevano le variabili età, altezza e peso di 18 pazienti:

Esercizio 1. Si rilevano le variabili età, altezza e peso di 18 pazienti: Esercizio 1 Si rilevano le variabili età, altezza e peso di 18 pazienti: N. 1 2 3 4 5 6 7 8 9 10 età 25 31 24 25 27 20 19 22 22 21 altezza 185 167 163 155 172 170 182 160 175 184 peso 73 80 60 45 73 60

Dettagli

Lo scarto quadratico medio è s = s 2 2,15. c) Le confezioni con peso inferiore a 500g sono 18, quindi in percentuale sono 18 = 0,72 = 72%.

Lo scarto quadratico medio è s = s 2 2,15. c) Le confezioni con peso inferiore a 500g sono 18, quindi in percentuale sono 18 = 0,72 = 72%. Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in CTF - anno acc 2013/2014 docente: Giulia Giantesio, gntgli@unifeit Esercizi sulla Statistica Descrittiva

Dettagli

Distribuzioni campionarie. Antonello Maruotti

Distribuzioni campionarie. Antonello Maruotti Distribuzioni campionarie Antonello Maruotti Outline 1 Introduzione 2 Concetti base Si riprendano le considerazioni fatte nella parte di statistica descrittiva. Si vuole studiare una popolazione con riferimento

Dettagli

L indagine statistica

L indagine statistica 1 L indagine statistica DEFINIZIONE. La statistica è quella disciplina che si occupa della raccolta di dati quantitativi relativi a diversi fenomeni, della loro elaborazione e del loro utilizzo a fini

Dettagli

Statistica - metodologie per le scienze economiche e sociali S. Borra, A. Di Ciaccio - McGraw Hill

Statistica - metodologie per le scienze economiche e sociali S. Borra, A. Di Ciaccio - McGraw Hill Statistica - metodologie per le scienze economiche e sociali S. Borra, A. Di Ciaccio - McGraw Hill Es. Soluzione degli esercizi del capitolo 7 home - indice In base agli arrotondamenti effettuati nei calcoli,

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Rappresentazioni grafiche Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si consideri la seguente distribuzione delle industrie tessili secondo il fatturato

Dettagli

Statistica. Campione

Statistica. Campione 1 STATISTICA DESCRITTIVA Temi considerati 1) 2) Distribuzioni statistiche 3) Rappresentazioni grafiche 4) Misure di tendenza centrale 5) Medie ferme o basali 6) Medie lasche o di posizione 7) Dispersione

Dettagli

Inferenza statistica

Inferenza statistica Inferenza statistica Marcella Montico e Lorenzo Monasta Servizio di epidemiologia e biostatistica Inferenza statistica: insieme di metodi che permette di generalizzare i risultati ottenuti dai dati raccolti

Dettagli

Università degli Studi di Bologna - Facoltà di Economia, sede di Forlì. Metodi statistici per l economia - Prof. A Capitanio

Università degli Studi di Bologna - Facoltà di Economia, sede di Forlì. Metodi statistici per l economia - Prof. A Capitanio Università degli Studi di Bologna - Facoltà di Economia, sede di Forlì Metodi statistici per l economia - Prof. A Capitanio ESERCIZI RISOLTI (prima parte) Esercizio 1 Un azienda ha servito 500 clienti

Dettagli

ESERCIZI SVOLTI Giuliano Bonollo - Michele Bonollo

ESERCIZI SVOLTI Giuliano Bonollo - Michele Bonollo ESERCIZI SVOLTI Giuliano Bonollo - Michele Bonollo 1 La seguente tabella riporta le frequenze relative riguardanti gli studenti di un università e gli esiti dell esame da essi sostenuto. Qual è la percentuale

Dettagli

Censimento delle abitazioni

Censimento delle abitazioni 23 dicembre 2013 Censimento delle abitazioni L Istat diffonde oggi un primo insieme di dati sulle abitazioni e sugli altri tipi di alloggio (baracche, roulotte, cantine, eccetera) occupati da persone.

Dettagli

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 15: Metodi non parametrici

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 15: Metodi non parametrici Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 15: Metodi non parametrici 1 Metodi non parametrici Statistica classica La misurazione avviene con

Dettagli

STATISTICA esercizi svolti su: INTERPOLAZIONE PER/FRA PUNTI NOTI

STATISTICA esercizi svolti su: INTERPOLAZIONE PER/FRA PUNTI NOTI STATISTICA esercizi svolti su: INTERPOLAZIONE PER/FRA PUNTI NOTI 1 2 1. La popolazione (in migliaia) residente a Milano negli anni 1971 e 1981 è riportata nella seguente tabella: Anno 1971 1981 Abitanti

Dettagli

Modelli descrittivi, statistica e simulazione

Modelli descrittivi, statistica e simulazione Modelli descrittivi, statistica e simulazione Master per Smart Logistics specialist Roberto Cordone (roberto.cordone@unimi.it) Statistica inferenziale Cernusco S.N., giovedì 18 febbraio 2016 (9.00/13.00)

Dettagli

Generazione di Numeri Casuali- Parte 2

Generazione di Numeri Casuali- Parte 2 Esercitazione con generatori di numeri casuali Seconda parte Sommario Trasformazioni di Variabili Aleatorie Trasformazione non lineare: numeri casuali di tipo Lognormale Trasformazioni affini Numeri casuali

Dettagli

Statistica. Alfonso Iodice D Enza iodicede@gmail.com

Statistica. Alfonso Iodice D Enza iodicede@gmail.com La misura di Statistica Alfonso Iodice D Enza iodicede@gmail.com Università degli studi di Cassino () Statistica 1 / 13 Outline La misura di 1 La 2 misura di 3 4 () Statistica 2 / 13 La La misura di In

Dettagli

normopeso <=25 sovrappeso 25-29.9 obesità I 30-34.9 obesità II 35-39.9 obesità III >=40

normopeso <=25 sovrappeso 25-29.9 obesità I 30-34.9 obesità II 35-39.9 obesità III >=40 E stato condotto uno studio relativo all effetto di una dieta sul BMI Body mass index in relazione al grado di obesità in un campione di adulti maschi avente le seguenti classi normopeso

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 16

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 16 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 16 Ancora sulle relazioni Proviamo a rappresentare alcune relazioni 1)Nell insieme dei primi dieci numeri naturali la relazione: a) a è

Dettagli

Facoltà di Scienze Politiche Corso di laurea in Servizio sociale. Compito di Statistica del 7/1/2003

Facoltà di Scienze Politiche Corso di laurea in Servizio sociale. Compito di Statistica del 7/1/2003 Compito di Statistica del 7/1/2003 I giovani addetti all agricoltura in due diverse regioni sono stati classificati per età; la distribuzione di frequenze congiunta è data dalla tabella seguente Età in

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 1

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 1 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 1 Dott.ssa Antonella Costanzo a.costanzo@unicas.it A.Studio dell interdipendenza tra variabili: riepilogo Concetto relativo allo studio delle relazioni tra

Dettagli

a.a Esercitazioni di Statistica Medica e Biometria Corsi di Laurea triennali Ostetricia / Infermieristica Pediatrica I anno

a.a Esercitazioni di Statistica Medica e Biometria Corsi di Laurea triennali Ostetricia / Infermieristica Pediatrica I anno a.a. 2007-2008 Esercitazioni di Statistica Medica e Biometria Corsi di Laurea triennali Ostetricia / Infermieristica Pediatrica I anno Dott.ssa Daniela Alessi daniela.alessi@med.unipmn.it 1 Argomenti:

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Variabili casuali Prof. Livia De Giovanni statistica@dis.uniroma.it Esercizio Determinare se le funzioni seguenti: 0.0 se x < 0. se x = g(x) = 0.5 se x = 0.7 se x = 3 se x =

Dettagli

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi tel:

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi tel: UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA Prof.ssa Donatella Siepi donatella.siepi@unipg.it tel: 075 5853525 2 LEZIONE Statistica descrittiva STATISTICA DESCRITTIVA Rilevazione dei dati Rappresentazione

Dettagli

Regressione lineare multipla CORSO DI ANALISI DEI DATI Anno Accademico 2009/2010, I ciclo

Regressione lineare multipla CORSO DI ANALISI DEI DATI Anno Accademico 2009/2010, I ciclo Regressione lineare multipla CORSO DI ANALISI DEI DATI Anno Accademico 2009/2010, I ciclo 1 Controllo di ipotesi sui parametri In questo contesto risulta necessario avvalersi dell assunzione di normalita

Dettagli

Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Vettori e matrici Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utentiunifeit/lorenzopareschi/ lorenzopareschi@unifeit Lorenzo Pareschi Univ Ferrara

Dettagli

Capitolo 6. La distribuzione normale

Capitolo 6. La distribuzione normale Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 6 La distribuzione normale Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università

Dettagli

STATISTICA: esercizi svolti sulla MEDIA ARITMETICA

STATISTICA: esercizi svolti sulla MEDIA ARITMETICA STATISTICA: esercizi svolti sulla MEDIA ARITMETICA 1 1 MEDIA ARITMETICA 2 1 MEDIA ARITMETICA 1. La seguente tabella riporta il numero di persone divise per sesso che si sono presentate durante l anno 1997

Dettagli

Università di Cassino. Esercitazioni di Statistica 1 del 29 Gennaio 2010. Dott. Mirko Bevilacqua

Università di Cassino. Esercitazioni di Statistica 1 del 29 Gennaio 2010. Dott. Mirko Bevilacqua Università di Cassino Esercitazioni di Statistica del 29 Gennaio 200 Dott. Mirko Bevilacqua DATASET STUDENTI N SESSO ALTEZZA PESO CORSO NUMERO COLORE COLORE (cm) (kg) LAUREA SCARPA OCCHI CAPELLI M 79 65

Dettagli

0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3, 3,3,3,4,4,4,4,4,4,5,5,6,6,7,8,8, 11

0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3, 3,3,3,4,4,4,4,4,4,5,5,6,6,7,8,8, 11 I QUARTILI Per il calcolo della mediana e del primo e terzo quartile il procedimento da seguire è il seguente: 1. si ordinano le intensità in senso non decrescente 2. si individuano le intensità da utilizzare

Dettagli

GRIGLIA DI CORREZIONE 2012 Matematica Classe II Scuola Secondaria di secondo grado

GRIGLIA DI CORREZIONE 2012 Matematica Classe II Scuola Secondaria di secondo grado GRIGLIA DI CORREZIONE 2012 Matematica Classe II Scuola Secondaria di secondo grado LEGENDA AMBITI: NU (Numeri), SF (Spazio e figure), DP (Dati e previsioni), RF (Relazioni e funzioni) LEGENDA PROCESSI:

Dettagli

Spin. La hamiltoniana classica di una particella di massa m e carica q in presenza di un potenziale elettromagnetico (Φ, A) si scrive.

Spin. La hamiltoniana classica di una particella di massa m e carica q in presenza di un potenziale elettromagnetico (Φ, A) si scrive. Spin La hamiltoniana lassia di una partiella di massa m e aria q in presenza di un potenziale elettromagnetio Φ, A si srive Sviluppando il quadrato si ha H = H = p q A 2 + qφ p 2 + A 2 2q A p + qφ 2 Se

Dettagli

Distribuzioni di Probabilità

Distribuzioni di Probabilità Distribuzioni di Probabilità Distribuzioni discrete Distribuzione uniforme discreta Distribuzione di Poisson Distribuzioni continue Distribuzione Uniforme Distribuzione Gamma Distribuzione Esponenziale

Dettagli

No 8 Si 12 20. Y Scadente Buono Ottimo f i. Francia 3 1 3 7 Germania 1 0 4 5 Inghilterra 3 4 1 8 Norvegia 2 1 7 10 f j 9 6 15 30

No 8 Si 12 20. Y Scadente Buono Ottimo f i. Francia 3 1 3 7 Germania 1 0 4 5 Inghilterra 3 4 1 8 Norvegia 2 1 7 10 f j 9 6 15 30 Capitolo 9 Soluzione degli esercizi a cura di Rosa Falotico Esercizio 9.1 Esercizio 9.2 Y Centro ord Sud f i o 4 0 4 8 Si 0 6 6 12 4 6 10 20 f i o 8 Si 12 20 f i Y Centro 4 ord 6 Sud 10 20 Y Scadente Buono

Dettagli

7. Il valore che in un insieme di dati statistici si presenta con maggiore frequenza si chiama A.moda B.mediana C.media D.

7. Il valore che in un insieme di dati statistici si presenta con maggiore frequenza si chiama A.moda B.mediana C.media D. www.matematicamente.it statistica 1 Elementi di Statistica ognome e nome: lasse ata 1. Quali definizioni sono corrette? A.L unità statistica è il più piccolo elemento sul quale si effettua un osservazione.

Dettagli

SISTEMI LINEARI MATRICI E SISTEMI 1

SISTEMI LINEARI MATRICI E SISTEMI 1 MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. CLASSE quarta INDIRIZZO SIA UdA n. 5 B Titolo: COSTI E GUADAGNI Utilizzare le strategie del pensiero razionale negli aspetti dialettici ed algoritmici per affrontare situazioni problematiche, elaborando

Dettagli

MISURE DI DISPERSIONE

MISURE DI DISPERSIONE MISURE DI DISPERSIONE 78 MISURE DI DISPERSIONE Un insieme di dati numerici può essere sintetizzato da alcuni valori tipici, che indicano il grado di variabilità dei dati stessi. Grado di Variabilità o

Dettagli

PROBABILITÀ SCHEDA N. 7 LA VARIABILE ALEATORIA NORMALE

PROBABILITÀ SCHEDA N. 7 LA VARIABILE ALEATORIA NORMALE Matematica e statistica: dai dati ai modelli alle scelte wwwdimaunige/pls_statistica Responsabili scientifici MP Rogantin e E Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ SCHEDA

Dettagli

Argomento 13 Sistemi lineari

Argomento 13 Sistemi lineari Sistemi lineari: definizioni Argomento 3 Sistemi lineari I Un equazione nelle n incognite x,,x n della forma c x + + c n x n = b ove c,,c n sono numeri reali (detti coefficienti) eb è un numero reale (detto

Dettagli

Titolo della lezione. Analisi dell associazione tra due caratteri: indipendenza e dipendenza

Titolo della lezione. Analisi dell associazione tra due caratteri: indipendenza e dipendenza Titolo della lezione Analisi dell associazione tra due caratteri: indipendenza e dipendenza Introduzione Analisi univariata, bivariata, multivariata Analizzare le relazioni tra i caratteri, per cercare

Dettagli

Il test (o i test) del Chi-quadrato ( 2 )

Il test (o i test) del Chi-quadrato ( 2 ) Il test (o i test) del Chi-quadrato ( ) I dati: numerosità di osservazioni che cadono all interno di determinate categorie Prima di tutto, è un test per confrontare proporzioni Esempio: confronto tra numero

Dettagli

2. APPUNTI SUI FASCI DI CIRCONFERENZE (raccolti dal prof. G. Traversi)

2. APPUNTI SUI FASCI DI CIRCONFERENZE (raccolti dal prof. G. Traversi) 2. APPUNTI SUI FASCI DI CIRCONFERENZE (raccolti dal prof. G. Traversi) La circonferenza è la curva di 2^ grado che viene individuata univocamente da tre punti non allineati e possiede la seguente proprietà:

Dettagli

1. OPERAZIONE DI ESTRAZIONE DELLA RADICE DI UN NUMERO

1. OPERAZIONE DI ESTRAZIONE DELLA RADICE DI UN NUMERO 1. OPERAZIONE DI ESTRAZIONE DELLA RADICE DI UN NUMERO L'estrazione della radice di un numero è una delle due operazioni inverse dell'operazione di elevamento a potenza attraverso la quale si calcola la

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante

Dettagli

Ellisse. DEF: "il luogo dei punti la cui somma delle distanze da due punti dati detti fuochi. è costante"; CONSIDERAZIONI:

Ellisse. DEF: il luogo dei punti la cui somma delle distanze da due punti dati detti fuochi. è costante; CONSIDERAZIONI: Ellisse DEF: "il luogo dei punti la cui somma delle distanze da due punti dati detti fuochi è costante"; CONSIDERAZIONI: Il punto P appartiene all'ellisse se, e solo se, la distanza del punto P dal fuoco

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2013-2014 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

ESERCIZI. La seguente tabella riporta la classificazione delle famiglie italiane secondo il reddito dichiarato (in milioni di lire) nel 1983:

ESERCIZI. La seguente tabella riporta la classificazione delle famiglie italiane secondo il reddito dichiarato (in milioni di lire) nel 1983: ESERCIZI ESERCIZIO_1 La seguente tabella riporta la classificazione delle famiglie italiane secondo il reddito dichiarato (in milioni di lire) nel 1983: Reddito Numero di famiglie (in migliaia) 0 6 1.128

Dettagli

Istituzioni di Statistica 1 Esercizi su strumenti grafici e funzione di frequenza relativa cumulata

Istituzioni di Statistica 1 Esercizi su strumenti grafici e funzione di frequenza relativa cumulata Istituzioni di Statistica 1 Esercizi su strumenti grafici e funzione di frequenza relativa cumulata Esercizio 1 La seguente tabella riguarda il tempo per passare da 0 a 100 km/h di 17 automobili tedesche

Dettagli

Analisi della varianza

Analisi della varianza 1. 2. univariata ad un solo fattore tra i soggetti (between subjects) 3. univariata: disegni fattoriali 4. univariata entro i soggetti (within subjects) 5. : disegni fattoriali «misti» L analisi della

Dettagli

7. Si confronti la variabilità del carattere età nel gruppo dei maschi ed in quello delle femmine.

7. Si confronti la variabilità del carattere età nel gruppo dei maschi ed in quello delle femmine. Esercizio n. 1 Da un collettivo di 20 individui si è rilevata la seguente distribuzione univariata multipla relativa ai caratteri età, sesso, numero di automobili possedute: unità età sesso n.auto 1 35

Dettagli

RISPOSTA ALLA SELEZIONE

RISPOSTA ALLA SELEZIONE RISPOSTA ALLA SELEZIONE Una volta valutati e scelti i riproduttori secondo criteri di selezione precisi, è necessario stimare la risposta ottenibile con un determinato progetto selettivo e verificare a

Dettagli

Risoluzione esercizio 4 Esercitazione 3

Risoluzione esercizio 4 Esercitazione 3 Punto a) Determinare la distribuzione congiunta della tabella. Colesterolo Disturbi cardiaci totale A lato è riportata la distribuzione congiunta

Dettagli

Esercitazioni di statistica

Esercitazioni di statistica Esercitazioni di statistica Intervalli di confidenza Stefania Spina Universitá di Napoli Federico II stefania.spina@unina.it 10 Dicembre 2014 Stefania Spina Esercitazioni di statistica 1/43 Stefania Spina

Dettagli

Calcolo di una Regressione lineare semplice con Excel

Calcolo di una Regressione lineare semplice con Excel Calcolo di una Regressione lineare semplice con Excel Inserire i dati In un tabellone vuoto di Excel, inserire i dati di X e di Y. Ad esempio i dati della Tabella 0.1 dovrebbero essere inseriti in Excel

Dettagli

1. Proprietà della somma di matrici. 1. (A + B) + C = A + (B + C) qualunque. 2. A + B = B + A qualunque siano le matrici

1. Proprietà della somma di matrici. 1. (A + B) + C = A + (B + C) qualunque. 2. A + B = B + A qualunque siano le matrici Matrici R. Notari 1 1. Proprietà della somma di matrici 1. (A + B) + C = A + (B + C) qualunque siano le matrici A, B, C Mat(m, n; K). 2. A + B = B + A qualunque siano le matrici A, B Mat(m, n; K). 3. Sia

Dettagli

Statistica - metodologie per le scienze economiche e sociali /2e S. Borra, A. Di Ciaccio - McGraw Hill

Statistica - metodologie per le scienze economiche e sociali /2e S. Borra, A. Di Ciaccio - McGraw Hill Statistica - metodologie per le scienze economiche e sociali /e S. Borra A. Di Ciaccio - McGraw Hill s. 9. Soluzione degli esercizi del capitolo 9 In base agli arrotondamenti effettuati nei calcoli si

Dettagli

1 L estrazione di radice

1 L estrazione di radice 1 L estrazione di radice Consideriamo la potenza 3 2 = 9 di cui conosciamo: Esponente 3 2 = 9 Valore della potenza Base L operazione di radice quadrata consiste nel chiedersi qual è quel numero x che elevato

Dettagli

LICEO SCIENTIFICO Galileo Galilei VERONA Anno Scolastico 2006-2007 PROGRAMMA PREVISTO

LICEO SCIENTIFICO Galileo Galilei VERONA Anno Scolastico 2006-2007 PROGRAMMA PREVISTO PROGRAMMA PREVISTO Testo di riferimento: ForMat SPE Volume 1 e Volume 2 (Maraschini - Palma) I moduli a fondo grigio sono opzionali e saranno svolti solo se possibile. Gli argomenti riportati in corsivo

Dettagli

CURRICOLO VERTICALE MATEMATICA RELAZIONI/ DATI E PREVISIONI/ MISURA

CURRICOLO VERTICALE MATEMATICA RELAZIONI/ DATI E PREVISIONI/ MISURA CURRICOLO VERTICALE MATEMATICA / DATI E PREVISIONI/ MISURA SCUOLA PRIMARIA CONOSCENZE (Concetti) ABILITA Classe 1^ - Classificazione - in situazioni concrete, classificare persone, oggetti, figure, numeri

Dettagli

PROBABILITÀ SCHEDA N. 5 SOMMA E DIFFERENZA DI DUE VARIABILI ALEATORIE DISCRETE

PROBABILITÀ SCHEDA N. 5 SOMMA E DIFFERENZA DI DUE VARIABILI ALEATORIE DISCRETE PROBABILITÀ SCHEDA N. 5 SOMMA E DIFFERENZA DI DUE VARIABILI ALEATORIE DISCRETE 1. Distribuzione congiunta Ci sono situazioni in cui un esperimento casuale non si può modellare con una sola variabile casuale,

Dettagli

CONFRONTI MULTIPLI TEST HSD DI TUKEY

CONFRONTI MULTIPLI TEST HSD DI TUKEY CONFRONTI MULTIPLI TEST HSD DI TUKEY Nel caso in cui i risultati dell analisi della varianza ad una via sono significativi, ovvero se il R.V. è risultato avere un F maggiore dell F critico, e quindi le

Dettagli

La dissomiglianza tra due distribuzioni normali

La dissomiglianza tra due distribuzioni normali Annali del Dipartimento di Scienze Statistiche Carlo Cecchi Università degli Studi di Bari Aldo Moro - Vol. X (2011): 43-50 Editore CLEUP, Padova - ISBN: 978-88-6129-833-0 La dissomiglianza tra due distribuzioni

Dettagli

La probabilità matematica

La probabilità matematica 1 La probabilità matematica In generale parliamo di eventi probabili o improbabili quando non siamo sicuri se si verificheranno. DEFINIZIONE. Un evento (E) si dice casuale, o aleatorio, quando il suo verificarsi

Dettagli

ANALISI MULTIVARIATA

ANALISI MULTIVARIATA ANALISI MULTIVARIATA Marcella Montico Servizio di epidemiologia e biostatistica... ancora sulla relazione tra due variabili: la regressione lineare semplice VD: quantitativa VI: quantitativa Misura la

Dettagli

Nuovo Ordinamento Esame di Statistica I 24 giugno 2002 Cognome docente: J. Mortera / P. Vicard Nome

Nuovo Ordinamento Esame di Statistica I 24 giugno 2002 Cognome docente: J. Mortera / P. Vicard Nome Esame di Statistica I 24 giugno 2002 Cognome 1. [12] Da un campione di 100 aziende agricole della provincia di Bologna è stata rilevata la classe di superficie (in migliaia di ettari) ottenendo i seguenti

Dettagli

Probabilità e Statistica

Probabilità e Statistica Diario delle lezioni e del tutorato di Probabilità e Statistica a.a. 2015/2016 www.mat.uniroma2.it/~caramell/did 1516/ps.htm 01/03/2016 - Lezioni 1, 2 [Caramellino] Breve introduzione al corso. Fenomeni

Dettagli

Funzioni di regressione non lineari

Funzioni di regressione non lineari Funzioni di regressione non lineari Eduardo Rossi 2 2 Università di Pavia (Italy) Maggio 2013 Rossi Regressione nonlineare Econometria - 2013 1 / 25 Sommario Funzioni di regressione non lineari - note

Dettagli

Inferenza statistica

Inferenza statistica Inferenza statistica Si tratta di un complesso di tecniche, basate sulla teoria della probabilità, che consentono di verificare se sia o no possibile trasferire i risultati ottenuti per un campione ad

Dettagli

Teorema del limite centrale TCL

Teorema del limite centrale TCL Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazione lineare di N variabili aleatorie le cui funzioni

Dettagli

Modelli matematici di fenomeni aleatori Variabilità e casualità

Modelli matematici di fenomeni aleatori Variabilità e casualità Modelli matematici di fenomeni aleatori Variabilità e casualità La casualità è alla base della scelta degli individui che compongono un campione ai fini di un indagine statistica. La casualità è alla base

Dettagli

Statistica. Alfonso Iodice D Enza iodicede@unina.it

Statistica. Alfonso Iodice D Enza iodicede@unina.it Statistica Alfonso Iodice D Enza iodicede@unina.it Università degli studi di Cassino () Statistica 1 / 16 Outline 1 () Statistica 2 / 16 Outline 1 2 () Statistica 2 / 16 Outline 1 2 () Statistica 2 / 16

Dettagli

Esame di Statistica A-Di Prof. M. Romanazzi

Esame di Statistica A-Di Prof. M. Romanazzi 1 Università di Venezia Esame di Statistica A-Di Prof. M. Romanazzi 22 Gennaio 2016 Cognome e Nome..................................... N. Matricola.......... Valutazione Il punteggio massimo teorico di

Dettagli

Analisi dei Dati, Prof. Marozzi RAPPORTI STATISTICI

Analisi dei Dati, Prof. Marozzi RAPPORTI STATISTICI RAPPORTI STATISTICI Rapporto statistico: rapporto tra due numeri, di cui almeno uno è un dato statistico (frequenza o intensità). Impiego: per fare confronti tra situazioni (fenomeniche, temporali o geografiche)

Dettagli

Fonti e strumenti statistici per la comunicazione (prof.ssa I.Mingo) Esercizi (soluzioni e suggerimenti )

Fonti e strumenti statistici per la comunicazione (prof.ssa I.Mingo) Esercizi (soluzioni e suggerimenti ) Esercizio 1 Fonti e strumenti statistici per la comunicazione (prof.ssa I.Mingo) Esercizi (soluzioni e suggerimenti ) Qualitativo Sconnesso: Marca di Jeans preferita, Partito votato nelle ultime elezioni,

Dettagli

Esercizio 1 Questa tabella esprime i tempi di durata di 200 apparecchiature elettriche:

Esercizio 1 Questa tabella esprime i tempi di durata di 200 apparecchiature elettriche: Istituzioni di Statistica 1 Esercizi su indici di posizione e di variabilità Esercizio 1 Questa tabella esprime i tempi di durata di 200 apparecchiature elettriche: Durata (ore) Frequenza 0 100? 100 200

Dettagli

CORSO LAUREA IN INGEGNERIA ELETTRONICA E INFORMATICA RAPPORTO DI RIESAME 2016 APPENDICE

CORSO LAUREA IN INGEGNERIA ELETTRONICA E INFORMATICA RAPPORTO DI RIESAME 2016 APPENDICE CORSO LAUREA IN INGEGNERIA ELETTRONICA E INFORMATICA RAPPORTO DI RIESAME 2016 APPENDICE Tab. 1 Iscritti/ al 1 anno TIPOLOGIA ISCRIZIONE generici Iscritti A.A. 2011/12 134 142 147 A.A. 2012/13 107 114 114

Dettagli

ARITMETICA. Scomposizione dei numeri in relazione al calcolo. Possibili agganci calcolo mentale. Ciclo. Titolo e data Contenuto Scopo N.o pag.

ARITMETICA. Scomposizione dei numeri in relazione al calcolo. Possibili agganci calcolo mentale. Ciclo. Titolo e data Contenuto Scopo N.o pag. ARITMETICA Scomposizione dei numeri in relazione al calcolo Titolo e data Contenuto Scopo N.o pag. Carte - comporre un numero - riflettere sulle relazioni 1) 10 dato in tre modi diversi e tra i tre o i

Dettagli

Sistemi di equazioni lineari

Sistemi di equazioni lineari Sistemi di equazioni lineari A. Bertapelle 25 ottobre 212 Cos è un sistema lineare? Definizione Un sistema di m equazioni lineari (o brevemente sistema lineare) nelle n incognite x 1,..., x n, a coefficienti

Dettagli

Probabilità. Ing. Ivano Coccorullo

Probabilità. Ing. Ivano Coccorullo Ing. Ivano Coccorullo PROBABILITA Teoria della Eventi certi, impossibili e casuali Nella scienza e nella tecnologia è fondamentale il principio secondo il quale ogni volta che si realizza un insieme di

Dettagli

Il volontariato e il non profit pugliese

Il volontariato e il non profit pugliese Identitàe ruolo del volontariato all indomani della riforma. Verso nuovo legame con la comunità Il volontariato e il non profit pugliese Stefania Della Queva, Mauro Caramaschi Servizio Censimenti Economici

Dettagli

Introduzione alla probabilità

Introduzione alla probabilità Introduzione alla probabilità Osservazione e studio dei fenomeni naturali: a. Caso deterministico: l osservazione fornisce sempre lo stesso risultato. b. Caso stocastico o aleatorio: l osservazione fornisce

Dettagli