Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3.4, 3.9. Esercizi 3.4, 3.9.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3.4, 3.9. Esercizi 3.4, 3.9."

Transcript

1 Appunti sul corso di Complementi di Matematica - mod Analisi prof. B.Baccelli 200/ 07 - Funzioni vettoriali, derivata della funzione composta, formula di Taylor. Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3.4, 3.9. Esercizi 3.4, 3.9. Funzioni a valori vettoriali di variabile reale Sia r : R R n una funzione a valori vettoriali definita in un intervallo J R, cioè r è una legge ce associa ad ogni t J un vettore a n componenti: r(t) = (r (t), r 2 (t),..., r n (t)), t J. N.B. Ogni componente è funzione reale di variabile reale. Il limite di una funzione a valori vettoriali viene fatto per componenti: ( ) lim r(t) = lim r (t), lim r 2 (t),..., lim r n (t) t t 0 t t 0 t t0 t t0 Si dice ce r è continua in t se sono continue in t tutte le sue componenti. La derivata r (t), se esiste, è il vettore ce a per componenti le derivate delle componenti: r r(t + ) r(t) (t) = lim = (r 0 (t), r 2(t),..., r n(t)) In questo caso ogni componente è funzione reale di variabile reale e la derivabilità equivale alla differenziabilità. Si a quindi ce se r è derivabile in t allora r è continua in t. Esempio. r(t) = (2 cos t, 3 sin t), t [0, π] descrive un arco di ellisse nel primo e secondo quadrante. La derivata è r (t) = ( 2 sin t, 3 cos t). Esempio 2. r(t) = (a + t, b + tk), t [0, ] descrive il segmento dal punto (a, b) al punto (a +, b + k). La derivata è r (t) = (, k).

2 Derivata della funzione composta - Caso in cui la funzione composta è funzione reale di variabile reale. Teorema. Se z = f(x) : A R n R e r(t) = (r (t), r 2 (t),..., r n (t)) : J R A e sia g = f r la funzione composta: g(t) = f(r(t)), t J, allora se r(t) è derivabile in J e f è differenziabile in A si a ce g è derivabile in J con Dim. Poicè A è aperto, sia g (t) = f(r(t)) r (t) a = r(t) un punto interno ad A, cioè esiste un intorno U(a) contenuto in A. Vogliamo dimostrare ce g (t) = f(a) r (t). Poicè esiste r (t) allora r è continua in t. Pertanto esiste un δ tale ce per < δ i punti r(t+) sono in U(a). Sia allora 0 < < δ e sia r(t+) = a+y, cioè a = r(t) e y = r(t + ) r(t). Poicè f è differenziabile in a abbiamo g(t + ) g(t) = f(r(t + )) f(r(t)) = f(a + y) f(a) = f(a) y + y E(a, y) dove E(a, y) 0 se y 0. Poicè y = r(t + ) r(t), dividendo per otteniamo g(t + ) g(t) = f(a) r(t + ) r(t) Passando al limite per 0 osserviamo ce + r(t + ) r(t) E(a, y) g(t + ) g(t) g r(t + ) r(t) (t), r (t). e quindi r(t + ) r(t) è limitata. Inoltre, per la continuità di r in t, y 0 se 0, e quindi E(a, y) 0 se 0. 2

3 r(t + ) r(t) Ma allora E(a, y) 0 se 0. Da cui si a la tesi, g (t) = f(a) r (t). Nel caso n=2 la formula diventa, essendo r(t) = (x(t), y(t)), g (t) = f(r(t)) r (t) = D f(x(t), y(t))x (t) + D 2 f(x(t), y(t))y (t) Esempio Sia a =(a, b), y = (, k), e sia g(t) = f(a+ty) = f(a + t, b + tk). Allora, g (t) = f(a+ty) y =f x (a + t, b + tk) + f y (a + t, b + tk) k. Esempio Sia g(t) = f(t 2, log t), dove f(x, y) = x 5 + 3xy. Allora, g (t) = f x (t 2, log t)2t + f y (t 2, log t) t = (5x 4 + 3y) x=t 2,y=log t2t + (3x) x=t 2,y=log t t = (5t8 + 3 log t)2t + 3t 2 Esempio. Ortogonalità del vettore gradiente rispetto ai vettori tangenti alle curve di livello. Sia z = f(x, y) e sia S = {(x, y, z) : z = f(x, y)}. Notiamo ce S è la superficie di livello 0 della funzione F Inoltre, F (x, y, z) = f(x, y) z. F = (f x, f y, ). Sia r(t) = (x(t), y(t), z(t)) l equazione di una una curva ce giace sulla superficie S, e passante per a = (a, b, f(a, b)). Supponiamo ce r(t) sia definita e differenziabile in un intervallo J R. Sia r(t 0 ) = a. Vogliamo mostrare ce il vettore r (t 0 ) tangente alla curva in a è perpendicolare al vettore gradiente F (a). Infatti poicè la curva giace su S, r soddisfa l equazione F (r(t)) = 0, t J. Derivando rispetto a t entrambi i membri si a per la regola di derivazione della funzione composta valutata in t 0 F (a) r (t 0 ) = 0. 3

4 Questo succede per ogni curva di questo tipo, e il piano di equazione F (a) (x a) = 0 contiene quindi tutti i vettori r (t 0 ) tangenti alle curve ce stanno sulla superficie S e ce passano per a. Per questo tale piano è il piano tangente alla superficie z = f(x, y) nel punto a = (a, b, f(a, b)). Tale equazione scritta in forma scalare è z = f(a, b) + f x (a, b, f(a, b)) (x a) + f y (a, b, f(a, b)) (y b) Formula di Taylor per funzioni di due variabili. Come per funzioni di una variabile la formula di Taylor di centro (a,b) di una funzione f di due variabili, rappresenta f(x, y) come somma di un polinomio di grado n, in questo caso nelle potenze di (x a)e(y b), e di un resto (errore) ce è stimato nella forma di Lagrange o nella forma di Peano. Tali stime esprimono il fatto ce in un intorno del centro (a, b) dello sviluppo, tale polinomio è una approssimazione all ordine n della funzione data, cioè l errore è un infinitesimo di ordine superiore a (x a, y b) n, se (x, y) (a, b). Notazione. In quel ce segue l espressione (D + kd 2 ) m f(a, b) indica la potenza m-esima formale del binomio (D f(a, b) + kd 2 f(a, b)), essendo = x a, k = y b; per esempio e in generale (D + kd 2 ) 2 f = 2 D 2,f + 2kD 2,2f + k 2 D 2 2,2f, (D + kd 2 ) m f = m j=0 ( ) m (D j j D m j 2 f ) j k m j Teorema (Formula di Taylor). Supponiamo ce f : R 2 R, definita in un aperto A R 2 contenente un punto (a, b) abbia derivate parziali continue fino all ordine n + in un intorno U((a, b)) A. Allora per ogni (, k) R 2 tale ce (a +, b + k) U ((a, b)) si a f(a +, b + k) = n m=0 m! (D + kd 2 ) m f(a, b) + R n (, k), 4

5 dove il termine del resto di Lagrange è dato da R n (, k) = (n + )! (D + kd 2 ) n+ f(a + θ, b + θk), essendo θ (0, ) un numero opportuno, dipendente da (a, b) e da (, k). La formula puo ance scriversi (resto di Peano) nella forma f(a +, b + k) = n m=0 dove lim (,k) (0,0) o ( (, k) n ) (, k) n = 0. m! (D + kd 2 ) m f(a, b) + o ( (, k) n ), Dim. Dimostriamo solo la formula col resto di Lagrange. Fissato (, k) definiamo g(t) = f(a + t, b + tk), t [0, ]. Appliciamo a g la formula di Taylor (di una variabile) di ordine n, di centro t 0 = 0, incremento t =, e resto di Lagrange. Si ottiene g() = g(0) + g (0) + g (0) 2! g(n) (0) n! + g(n+) (θ), dove 0 < θ <. (n + )! Abbiamo g() = f(a +, b + k), g(0) = f(a, b). Applicando la regola di derivazione della funzione composta si a g (t) = D f(a + t, b + tk) + D 2 f(a + t, b + tk)k, g (0) = (D + kd 2 )f(a, b) g (t) = Df(a 2 + t, b + tk) 2 + D2f(a 2 + t, b + tk)k + D2f(a 2 + t, b + tk)k + D22f(a 2 + t, b + tk)k 2 = Df(a 2 + t, b + tk) 2 + 2D2f(a 2 + t, b + tk)k + D22f(a 2 + t, b + tk)k 2 g (0) = (D + kd 2 ) 2 f(a, b) e in generale g (m) (0) = (D + kd 2 ) m f(a, b) Da cui sostituendo si a la tesi. 5

6 In particolare la formula di Taylor di ordine due, resto di Peano e centro in (a, b) è la seguente: f(x, y) = f(a, b) + f x (a, b)(x a) + f y (a, b)(y b) per (x, y) (a, b) + 2 f xx(a, b)(x a) 2 + f xy (a, b)(x a)(y b) + 2 f yy(a, b)(y b) 2 + o((x a) 2 + (y b) 2 ), Esercizi Scrivere la formula di Taylor di ordine due, resto di Peano e centro nel punto P indicato. f(x, y) = e y/x + xy + 2, P = (, 0) Facendo le derivate parziali necessarie e applicando la formula si ottiene f(x, y) = 3 + 2y + y 2 /2 + o((x ) 2 + y 2 ), (x, y) (, 0) f(x, y) = x 3 + y 2 + 2e xy, P = (, ) Facendo le derivate parziali necessarie e applicando la formula si ottiene f(x, y) = 2e + (3 2e)(x + ) + ( 2 2e)(y + ) (3 e)(x + ) 2 +2( + e)(x + )(y + ) + ( + e)(y + ) 2 + o((x + ) 2 + (y + ) 2 ), (x, y) (, ) f(x, y) = x 5 3xy + sin y 2, P = (0, 0) In questo caso, senza fare derivate, si può usare lo sviluppo di McLaurin di sin t f(x, y) = 3xy + y 2 + o((x 2 + y 2 ), (x, y) (0, 0) Da questa formula si può dedurre ce f xx (0, 0) = 0, f xy (0, 0) = 3, f yy (0, 0) = 2 f(x, y) = log(3x 2 + y), P = (0, ) Senza fare derivate, si può usare lo sviluppo di McLaurin di log( + t) f(x, y) = log((3x 2 + y ) + ) = (3x 2 + y ) 2 (3x2 + y ) = (y ) + 3x 2 2 (y )2 + o((x 2 + (y ) 2 ), (x, y) (0, ) f(x, y) = e x 2y, P = (3, 0) Senza fare derivate, si può usare lo sviluppo di McLaurin di e t f(x, y) = e x 3+3 2y = e 3 e (x 3) 2y = e 3 [((x 3) 2y) + ((x 3) 2 2y) ] 6

7 = e 3 (x 3) 2e 3 y + e3 2 (x 3)2 + e 3 y 2 2e 3 (x 3)y + o((x 3) 2 + y 2 ), (x, y) (3, 0) Scrivere la formula di Taylor di ordine 6, resto di Peano e centro nel punto (0, 0) f(x, y) = x 4 + cos(x 3 y) Senza fare derivate, si può usare lo sviluppo di McLaurin di cos t f(x, y) = x 4 + o((x 2 + y 2 ) 3 ), (x, y) (0, 0) 7

Appunti sul corso di Complementi di Matematica mod.analisi prof. B.Bacchelli a.a. 2010/2011

Appunti sul corso di Complementi di Matematica mod.analisi prof. B.Bacchelli a.a. 2010/2011 Appunti sul corso di Complementi di Matematica mod.analisi prof. B.Bacchelli a.a. 2010/2011 08- Estremi: Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 4.1. Esercizi 4.1 Estremi liberi: punti

Dettagli

DERIVATE SUCCESSIVE E MATRICE HESSIANA

DERIVATE SUCCESSIVE E MATRICE HESSIANA FUNZIONI DI DUE VARIABILI 1 DERIVATE SUCCESSIVE E MATRICE HESSIANA Derivate parziali seconde e matrice hessiana. Sviluppo di Taylor del secondo ordine. Punti stazionari. Punti di massimo o minimo (locale

Dettagli

Circonferenze del piano

Circonferenze del piano Circonferenze del piano 1 novembre 1 Circonferenze del piano 1.1 Definizione Una circonferenza è il luogo dei punti equidistanti da un punto fisso, detto centro. La distanza di un qualunque punto della

Dettagli

Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008. Dott.ssa G. Bellomonte

Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008. Dott.ssa G. Bellomonte Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008 Dott.ssa G. Bellomonte Indice 1 Introduzione 2 2 Equazioni differenziali lineari del primo ordine

Dettagli

Osservazioni sulle funzioni composte

Osservazioni sulle funzioni composte Osservazioni sulle funzioni composte ) 30 dicembre 2009 Scopo di questo articolo è di trattare alcuni problemi legati alla derivabilità delle funzioni composte nel caso di funzioni di R n in R m Non si

Dettagli

Curve e integrali curvilinei: esercizi svolti

Curve e integrali curvilinei: esercizi svolti Curve e integrali curvilinei: esercizi svolti 1 Esercizi sulle curve parametriche....................... 1.1 Esercizi sulla parametrizzazione delle curve............. 1. Esercizi sulla lunghezza di una

Dettagli

Appunti ed esercizi sulle coniche

Appunti ed esercizi sulle coniche 1 LA CIRCONFERENZA 1 Appunti ed esercizi sulle coniche Versione del 1 Marzo 011 1 La circonferenza Nel piano R, fissati un punto O = (a, b) e un numero r > 0, la circonferenza (o cerchio) C di centro O

Dettagli

Corso di Laurea in Ingegneria Edile-Architettura ANALISI MATEMATICA I. Prova scritta del 8 Gennaio 2014

Corso di Laurea in Ingegneria Edile-Architettura ANALISI MATEMATICA I. Prova scritta del 8 Gennaio 2014 Corso di Laurea in Ingegneria Edile-Architettura ANALISI MATEMATICA I Prova scritta del 8 Gennaio 214 Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile. (1) (Punti 8)

Dettagli

Derivate delle funzioni di una variabile.

Derivate delle funzioni di una variabile. Derivate delle funzioni di una variabile. Il concetto di derivata di una funzione di una variabile è uno dei più fecondi della matematica ed è quello su cui si basa il calcolo differenziale. I problemi

Dettagli

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si PROBLEMA Determinare il punto simmetrico di P( ;) rispetto alla retta x y =0 Soluzione Il simmetrico di P rispetto ad una retta r è il punto P che appartiene alla retta passante per P, perpendicolare ad

Dettagli

Funzioni convesse su intervallo

Funzioni convesse su intervallo Università degli Studi di Palermo Facoltà di Economia Dip. di Scienze Statistiche e Matematiche Silvio Vianelli Appunti del corso di Matematica Generale Funzioni convesse su intervallo Anno Accademico

Dettagli

Curve n d. f(x, y)=l. x,yda,b

Curve n d. f(x, y)=l. x,yda,b Curve n d Linee di livello: curva che si ottiene sezionando il grafico di una funzione n d con dei piani del tipo z=k, e quindi paralleli al piano xy e perpendicolari all asse z. Matematicamente si ottengono

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

C I R C O N F E R E N Z A...

C I R C O N F E R E N Z A... C I R C O N F E R E N Z A... ESERCITAZIONI SVOLTE 3 Equazione della circonferenza di noto centro C e raggio r... 3 Equazione della circonferenza di centro C passante per un punto A... 3 Equazione della

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

CORSO DI ANALISI MATEMATICA 2 ESERCIZI. Carlo Ravaglia

CORSO DI ANALISI MATEMATICA 2 ESERCIZI. Carlo Ravaglia CORSO DI ANALISI MATEMATICA ESERCIZI Carlo Ravaglia 8 febbraio 6 iv Indice 4 Calcolo differenziale 4 Derivate parziali 4 Derivate parziali 4 Massimi e minimi 4 Massimi e minimi di funzioni 43 Derivate

Dettagli

Il Teorema di Kakutani

Il Teorema di Kakutani Il Teorema di Kakutani Abbiamo visto, precedentemente, il seguente risultato: 1 Sia X uno spazio di Banach. Se X è separabile, la palla è debolmente compatta. B X = {x X x 1} Il Teorema di Kakutani è un

Dettagli

SIMULAZIONE TEST ESAME - 1

SIMULAZIONE TEST ESAME - 1 SIMULAZIONE TEST ESAME - 1 1. Il dominio della funzione f(x) = log (x2 + 1)(4 x 2 ) (x 2 2x + 1) è: (a) ( 2, 2) (b) ( 2, 1) (1, 2) (c) (, 2) (2, + ) (d) [ 2, 1) (1, 2] (e) R \{1} 2. La funzione f : R R

Dettagli

APPUNTI ANALISI MATEMATICA

APPUNTI ANALISI MATEMATICA MAURIZIO TROMBETTA APPUNTI DEL CORSO DI ANALISI MATEMATICA PER IL DIPLOMA UNIVERSITARIO PARTE PRIMA INDICE Capitolo Primo: INSIEMI, APPLICAZIONI, RELAZIONI 1 Gli insiemi... Pag 1 2 Operazioni fra insiemi...

Dettagli

CORSO DI LAUREA IN MATEMATICA ESERCIZI SUI LIMITI 2

CORSO DI LAUREA IN MATEMATICA ESERCIZI SUI LIMITI 2 CORSO DI LAUREA IN MATEMATICA ESERCITAZIONI DI ANALISI MATEMATICA I ESERCIZI SUI LIMITI CALCOLARE IL VALORE DEI SEGUENTI LIMITI sine 4 log e e sin e 5 tan sin 5 7 tan 9 sin + e e + 4 6 8 + 0 n + log +

Dettagli

Esercizi svolti sulla parabola

Esercizi svolti sulla parabola Liceo Classico Galilei Pisa - Classe a A - Prof. Francesco Daddi - 19 dicembre 011 Esercizi svolti sulla parabola Esercizio 1. Determinare l equazione della parabola avente fuoco in F(1, 1) e per direttrice

Dettagli

Le sezioni coniche: parabole e circonferenze.

Le sezioni coniche: parabole e circonferenze. Le sezioni coniche: parabole e circonferenze. Copyright c 2008 Pasquale Terrecuso Tutti i diritti sono riservati. un pò di storia... 2 Menecmo...............................................................

Dettagli

Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n

Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n Si tratta del quadrato di un binomio. Si ha pertanto (x m y n ) 2 = x 2m 2x m y n + y 2n 4. La divisione (x 3 3x 2 + 5x 2) : (x 2) ha Q(x) = x 2 x + 3 e R = 4 Dalla divisione tra i polinomi risulta (x

Dettagli

4 0 = 4 2 = 4 4 = 4 6 = 0.

4 0 = 4 2 = 4 4 = 4 6 = 0. Elementi di Algebra e Logica 2008. Esercizi 4. Gruppi, anelli e campi. 1. Determinare la tabella additiva e la tabella moltiplicativa di Z 6. (a) Verificare dalla tabella moltiplicativa di Z 6 che esistono

Dettagli

Equazioni algebriche di terzo grado: ricerca delle soluzioni

Equazioni algebriche di terzo grado: ricerca delle soluzioni Equazioni algebriche di terzo grado: ricerca delle soluzioni 1 Caso particolare: x 3 + px + q = 0....................... Caso generale: x 3 + bx + cx + d = 0..................... 4 3 Esercizi.....................................

Dettagli

La circonferenza nel piano cartesiano

La circonferenza nel piano cartesiano La circonferenza nel piano cartesiano 1. Definizione ed equazione. Si chiama circonferenza C, di centro C( α, β ) e raggio r, l insieme di tutti e soli i punti del piano che hanno distanza r da C. L equazione

Dettagli

Verifiche di matematica classe 3 C 2012/2013

Verifiche di matematica classe 3 C 2012/2013 Verifiche di matematica classe 3 C 2012/2013 1) È assegnato il punto P 1 (3; 1), calcolare le coordinate dei punti: P 2 simmetrico di P 1 rispetto alla bisettrice del primo e terzo quadrante P 3 simmetrico

Dettagli

Materiale coperto nel corso di Analisi Matematica 1 Ingegneria, docente S. Cuccagna A.A. 2011-12

Materiale coperto nel corso di Analisi Matematica 1 Ingegneria, docente S. Cuccagna A.A. 2011-12 Materiale coperto nel corso di Analisi Matematica 1 Ingegneria, docente S. Cuccagna A.A. 2011-12 Martedì 4 Ottobre Settembre 2011 16-19 3 ore Numeri naturali. Definizione di minimo di un sottoinsieme di

Dettagli

GEOMETRIA LINEARE E CONICHE - GIUGNO 2002. 1. Nello spazio ordinario, assegnato un riferimento ortonormale si considerino le rette: x = z 2 y = z

GEOMETRIA LINEARE E CONICHE - GIUGNO 2002. 1. Nello spazio ordinario, assegnato un riferimento ortonormale si considerino le rette: x = z 2 y = z GEOMETRIA LINEARE E CONICHE - GIUGNO 2002 1. Nello spazio ordinario, assegnato un riferimento ortonormale si considerino le rette: r : x = z y = 0 x = z 2, s : y = z. Dopo aver provato che r ed s sono

Dettagli

Robotica industriale. Richiami di statica del corpo rigido. Prof. Paolo Rocco

Robotica industriale. Richiami di statica del corpo rigido. Prof. Paolo Rocco Robotica industriale Richiami di statica del corpo rigido Prof. Paolo Rocco (paolo.rocco@polimi.it) Sistemi di forze P 1 P 2 F 1 F 2 F 3 F n Consideriamo un sistema di forze agenti su un corpo rigido.

Dettagli

Monomi e Polinomi. Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione.

Monomi e Polinomi. Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione. Monomi e Polinomi Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione. ) Sono monomi: 5 a 3 b 2 z; 2 3 a2 c 9 ; +7; 8a b 3 a 2. Non sono monomi: a + 2; xyz

Dettagli

Applicazioni lineari e diagonalizzazione. Esercizi svolti

Applicazioni lineari e diagonalizzazione. Esercizi svolti . Applicazioni lineari Esercizi svolti. Si consideri l applicazione f : K -> K definita da f(x,y) = x + y e si stabilisca se è lineare. Non è lineare. Possibile verifica: f(,) = 4; f(,4) = 6; quindi f(,4)

Dettagli

ESAME DI STATO LICEO SCIENTIFICO MATEMATICA 2011

ESAME DI STATO LICEO SCIENTIFICO MATEMATICA 2011 ESAME DI STATO LICEO SCIENTIFICO MATEMATICA PROBLEMA La funzione f ( ) ( )( ) è una funzione dispari di terzo grado Intercetta l asse nei punti ;, ; e ; Risulta f per e per è invece f per e per f ' risulta

Dettagli

Derivate delle funzioni di una variabile. Il problema delle tangenti

Derivate delle funzioni di una variabile. Il problema delle tangenti Derivate delle funzioni di una variabile Il concetto di derivata di una funzione di una variabile è uno dei più importanti di tutta la matematica sia per le sue implicazioni di natura puramente teorica,

Dettagli

6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz:

6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz: FUNZIONI DI PIU VARIABILI Esercizi svolti. Determinare il dominio delle seguenti funzioni e rappresentarlo graficamente : (a) f log( x y ) (b) f log(x + y ) (c) f y x 4 (d) f sin(x + y ) (e) f log(xy +

Dettagli

S 2 S 1 S 3 S 4 B S 5. Figura 1: Cammini diversi per collegare i due punti A e B

S 2 S 1 S 3 S 4 B S 5. Figura 1: Cammini diversi per collegare i due punti A e B 1 ENERGI PTENZILE 1 Energia potenziale 1.1 orze conservative Se un punto materiale è sottoposto a una forza costante, cioè che non cambia qualunque sia la posizione che il punto materiale assume nello

Dettagli

LA CIRCONFERENZA E LA SUA EQUAZIONE

LA CIRCONFERENZA E LA SUA EQUAZIONE LA CIRCONFERENZA E LA SUA EQUAZIONE LA CIRCONFERENZA COME LUOGO GEOMETRICO DEFINIZIONE Assegnato nel piano un punto C, detto centro, si chiama circonferenza la curva piana luogo geometrico dei punti equidistanti

Dettagli

UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI INGEGNERIA (sede di Vicenza)

UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI INGEGNERIA (sede di Vicenza) UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI INGEGNERIA (sede di Vicenza) PROGRAMMA DI MATEMATICA A, A.A. 2007-08 CANALI 1 E 2 - Prof. F. Albertini e M. Motta Testi Consigliati: Elementi di Analisi Matematica

Dettagli

Forme differenziali e campi vettoriali: esercizi svolti

Forme differenziali e campi vettoriali: esercizi svolti Forme differenziali e campi vettoriali: esercizi svolti 1 Esercizi sul Teorema di Green......................... 2 2 Esercizi sul Teorema di Stokes......................... 4 3 Esercizi sul Teorema di

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6 EQUAZIONI DIFFERENZIALI.. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x log t (d) x = e t x log x (e) y = y 5y+6 (f) y = ty +t t +y (g) y = y (h) xy = y (i) y y y = 0 (j) x = x (k)

Dettagli

LEZIONE 10. S(C,ρ) Figura 10.1

LEZIONE 10. S(C,ρ) Figura 10.1 LEZIONE 10 10.1. Sfere nello spazio. In questa lezione studieremo alcuni oggetti geometrici non lineari, circonferenze e sfere nello spazio A 3. Poiché le proprietà delle circonferenze nel piano sono del

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA EQUAZIONI E DISEQUAZIONI DI SECONDO GRADO Dr. Erasmo Modica erasmo@galois.it EQUAZIONI DI SECONDO GRADO Definizione: Dicesi

Dettagli

I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica

I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica Negli esercizi che seguono si suppone fissato nello spazio

Dettagli

Equazioni, funzioni e algoritmi: il metodo delle secanti

Equazioni, funzioni e algoritmi: il metodo delle secanti Equazioni, funzioni e algoritmi: il metodo delle secanti Christian Ferrari 1 Introduzione La risoluzione di equazioni in R ci ha mostrato che solo per le equazioni polinomiali di primo e secondo grado,

Dettagli

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n SPAZI E SOTTOSPAZI 1 SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n Spazi di matrici. Spazi di polinomi. Generatori, dipendenza e indipendenza lineare, basi e dimensione. Intersezione e somma di sottospazi,

Dettagli

1 IL LINGUAGGIO MATEMATICO

1 IL LINGUAGGIO MATEMATICO 1 IL LINGUAGGIO MATEMATICO Il linguaggio matematico moderno è basato su due concetti fondamentali: la teoria degli insiemi e la logica delle proposizioni. La teoria degli insiemi ci assicura che gli oggetti

Dettagli

y 3y + 2y = 1 + x x 2.

y 3y + 2y = 1 + x x 2. Università degli Studi della Basilicata Corsi di Laurea in Chimica / Scienze Geologiche Matematica II A. A. 03-04 (dott.ssa Vita Leonessa) Esercizi svolti: Equazioni differenziali ordinarie. Risolvere

Dettagli

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE ESERCIZI SVOLTI SUL CALCOLO INTEGRALE * Tratti dagli appunti delle lezioni del corso di Matematica Generale Dipartimento di Economia - Università degli Studi di Foggia Prof. Luca Grilli Dott. Michele Bisceglia

Dettagli

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f LEZIONE 23 23.1. Riduzione delle coniche a forma canonica. Fissiamo nel piano un sistema di riferimento Oxy e consideriamo un polinomio di grado 2 in x, y a meno di costanti moltiplicative non nulle, diciamo

Dettagli

LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b

LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA LOGARITMI L uguaglianza: a x = b nella quale a e b rappresentano due numeri reali noti ed x un incognita, è un equazione

Dettagli

Soluzioni. 1. Calcolare la parte reale e immaginaria del numero complesso. z = i i. 3 (2 + i) = i i = i.

Soluzioni. 1. Calcolare la parte reale e immaginaria del numero complesso. z = i i. 3 (2 + i) = i i = i. 20 Roberto Tauraso - Analisi 2 Soluzioni 1. Calcolare la parte reale e immaginaria del numero complesso R. z = i + 3 2 i. z = i + 3 2 i 2 i = 6 5 + ( 1 + 3 5 3 (2 + i) = i + 2 4 + 1 ) i = 6 5 + 8 5 i.

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

Massimi e minimi vincolati

Massimi e minimi vincolati Massimi e minimi vincolati In problemi di massimo e minimo vincolato viene richiesto di ricercare massimi e minimi di una funzione non definita su tutto R n, ma su un suo sottoinsieme proprio. Esempio:

Dettagli

Programmazione per competenze del corso Matematica, Quinto anno 2015-16

Programmazione per competenze del corso Matematica, Quinto anno 2015-16 Programmazione per competenze del corso Matematica, Quinto anno 2015-16 Competenze di aree Traguardi per lo sviluppo dellle competenze Abilità Conoscenze Individuare le principali proprietà di una - Individuare

Dettagli

Analisi 2 - funzioni di più variabili. Andrea Minetti - andrea.minetti@gmail.com

Analisi 2 - funzioni di più variabili. Andrea Minetti - andrea.minetti@gmail.com Analisi 2 - funzioni di più variabili Andrea Minetti - andrea.minetti@gmail.com January 28, 2011 Ciao a tutti, ecco i miei riassunti, ovviamente non posso garantire la correttezza (anzi garantisco la non

Dettagli

2. APPUNTI SUI FASCI DI CIRCONFERENZE (raccolti dal prof. G. Traversi)

2. APPUNTI SUI FASCI DI CIRCONFERENZE (raccolti dal prof. G. Traversi) 2. APPUNTI SUI FASCI DI CIRCONFERENZE (raccolti dal prof. G. Traversi) La circonferenza è la curva di 2^ grado che viene individuata univocamente da tre punti non allineati e possiede la seguente proprietà:

Dettagli

la vasca si riempie e, per tali valori di k il tempo necessario affinché la vasca si riempia.

la vasca si riempie e, per tali valori di k il tempo necessario affinché la vasca si riempia. Esercizio In una vasca della capacità di 0 dm 3 e che inizialmente contiene 00 lt. di acqua, una pompa immette k lt. (k > 0) di acqua al minuto. Da un foro sul fondo l acqua esce con portata proporzionale

Dettagli

I Appello di Analisi Matematica I - 19-01-2009

I Appello di Analisi Matematica I - 19-01-2009 I Appello di Analisi Matematica I - 19-01-2009 Corso di laurea in Ingegneria Clinica. A.A. 2008-2009 Testo del compito d esame e sue soluzioni Esercizio 1. Studiare, al variare del parametro reale α, il

Dettagli

LA CIRCONFERENZA La circonferenza è il luogo geometrico dei punti equidistanti da un punto C, detto centro.

LA CIRCONFERENZA La circonferenza è il luogo geometrico dei punti equidistanti da un punto C, detto centro. Geometria Analitica Le coniche Queste curve si chiamano coniche perché sono ottenute tramite l'intersezione di una superficie conica con un piano. Si possono definire tutte come luoghi geometrici e, di

Dettagli

Esercitazione ENS sulle finestre (22 Aprile 2008)

Esercitazione ENS sulle finestre (22 Aprile 2008) Esercitazione ENS sulle finestre ( Aprile 008) D. Donno Esercizio : Separazione di due segnali Si consideri un segnale z(t) somma di due segnali x(t) e y(t) reali e di potenza simile, ciascuno con semi

Dettagli

Soluzioni della prova di Matematica Maturità 2015

Soluzioni della prova di Matematica Maturità 2015 Soluzioni della prova di Matematica Maturità 015 Lara Charawi 1, Alberto Cogliati e Luca Magri 1 Dipartimento di Matematica, Università degli Studi di Pavia Dipartimento di Matematica, Università degli

Dettagli

Programma di matematica classe Prima

Programma di matematica classe Prima Programma di matematica classe Prima RELAZIONI E FUNZIONI Insiemi Definizione e rappresentazione con diagrammi di Venn, per elencazione, per caratteristica. Operazioni tra insiemi: intersezione, unione,

Dettagli

Esami a. a Analisi Matematica Svolgere i seguenti esercizi motivando tutte le risposte.

Esami a. a Analisi Matematica Svolgere i seguenti esercizi motivando tutte le risposte. Esami a. a. 2006-07 Perugia, 7 giugno 2007 1. Automobili. Due automobili da corsa A, B accelerano da ferme fino a raggiungere le seguenti velocità t secondi dopo la partenza v A (t) = 40t, v B (t) = 40t

Dettagli

CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione

CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione CONICHE Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oy sia data la conica C di equazione 7 2 + 2 3y + 5y 2 + 32 3 = 0. Calcolare le equazioni di una rototraslazione che riduce

Dettagli

2 Argomenti introduttivi e generali

2 Argomenti introduttivi e generali 1 Note Oltre agli esercizi di questa lista si consiglia di svolgere quelli segnalati o assegnati sul registro e genericamente quelli presentati dal libro come esercizio o come esempio sugli argomenti svolti

Dettagli

CORSO DI RECUPERO DI MATEMATICA PER ALUNNI CLASSI TERZE CON GIUDIZIO SOSPESO

CORSO DI RECUPERO DI MATEMATICA PER ALUNNI CLASSI TERZE CON GIUDIZIO SOSPESO CORSO DI RECUPERO DI MATEMATICA PER ALUNNI CLASSI TERZE CON GIUDIZIO SOSPESO ESERCIZI PROPOSTI 1. DATI I PUNTI A(3,-) E B(-5,): A. RAPPRESENTARLI SUL PIANO; B. CALCOLARE LA LORO DISTANZA; C. CALCOLARE

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

il discriminante uguale a zero; sviluppando i calcoli si ottiene che deve essere

il discriminante uguale a zero; sviluppando i calcoli si ottiene che deve essere Macerata maggio 0 classe M COMPITO DI MATEMATICA RECUPERO ASSENTI QUESITO Considera il fascio di curve di equazione: x y (.) = k + k 6 a) Trova per quali valori di k si hanno delle ellissi. Deve essere

Dettagli

CdL in Ingegneria Informatica (Orp-Z)

CdL in Ingegneria Informatica (Orp-Z) CdL in ngegneria nformatica (Orp-Z) Prova scritta di Algebra Lineare assegnata il 22 Novembre 2004 - A Usare solo carta fornita dal Dipartimento di Matematica e nformatica, riconsegnandola tutta. Sia f

Dettagli

Funzioni di Due Variabili

Funzioni di Due Variabili Funzioni di Due Variabili 1 Lo Spazio Vettoriale R 2 R 2 è l insieme R 2 = (x, y) : x R, y R}, quindi un elemento P = (x, y) di R 2 è un punto P del piano di coordinate x e y. Inoltre, R 2 è uno spazio

Dettagli

Anno 3 Rette e circonferenze

Anno 3 Rette e circonferenze Anno 3 Rette e circonferenze 1 Introduzione In questa lezione esamineremo le reciproche posizioni che possono sussistere tra retta e circonferenza o tra due circonferenze. Al termine della lezione sarai

Dettagli

ANALISI MATEMATICA INGEGNERIA GESTIONALE PROF. GIACOMELLI ESEMPI DI ESERCIZI D ESAME

ANALISI MATEMATICA INGEGNERIA GESTIONALE PROF. GIACOMELLI ESEMPI DI ESERCIZI D ESAME ANALISI MATEMATICA INGEGNERIA GESTIONALE PROF. GIACOMELLI ESEMPI DI ESERCIZI D ESAME Contents. Numeri complessi. Funzioni: dominio, estremo superiore e inferiore, massimi e minimi 3. Successioni e serie

Dettagli

Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto.

Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto. Classe: TERZA (Liceo Artistico) Pagina 1 / 2 della Matematica La scomposizione dei polinomi in fattori primi L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la

Dettagli

TRIGONOMETRIA: DISEQUAZIONI TRIGONOMETRICHE

TRIGONOMETRIA: DISEQUAZIONI TRIGONOMETRICHE FACOLTÀ DI INGEGNERIA CORSI DI POTENZIAMENTO - MATEMATICA E LOGICA ANNO ACCADEMICO 008-009 ESERCIZI DI TRIGONOMETRIA: DISEQUAZIONI TRIGONOMETRICHE Esercizio : Risolvere la seguente disequazione >. Svolgimento:

Dettagli

ESPONENZIALI E LOGARITMI. chiameremo logaritmica (e si legge il logaritmo in base a di c è uguale a b ).

ESPONENZIALI E LOGARITMI. chiameremo logaritmica (e si legge il logaritmo in base a di c è uguale a b ). ESPONENZIALI E LOGARITMI Data una espressione del tipo a b = c, che chiameremo notazione esponenziale (e dove a>0), stabiliamo di scriverla anche in un modo diverso: log a c = b che chiameremo logaritmica

Dettagli

DIODO. La freccia del simbolo indica il verso della corrente.

DIODO. La freccia del simbolo indica il verso della corrente. DIODO Si dice diodo un componente a due morsetti al cui interno vi è una giunzione P-N. Il terminale del diodo collegato alla zona P si dice anodo; il terminale collegato alla zona N si dice catodo. Il

Dettagli

CORSO DI ANALISI MATEMATICA 1 ESERCIZI. Carlo Ravaglia

CORSO DI ANALISI MATEMATICA 1 ESERCIZI. Carlo Ravaglia CORSO DI ANALISI MATEMATICA ESERCIZI Carlo Ravaglia 6 settembre 5 iv Indice Numeri reali Ordine fra numeri reali Funzioni reali 4 Radici aritmetiche 7 4 Valore assoluto 9 5 Polinomi 6 Equazioni 7 Disequazioni

Dettagli

QUANTITA DI MOTO Corso di Fisica per Farmacia, Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2006

QUANTITA DI MOTO Corso di Fisica per Farmacia, Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2006 QUANTITA DI MOTO DEFINIZIONE(1) m v Si chiama quantità di moto di un punto materiale il prodotto della sua massa per la sua velocità p = m v La quantità di moto è una grandezza vettoriale La dimensione

Dettagli

Attenzione: i programmi sono cambiati negli anni. Non tutti gli esercizi nella presente raccolta riguardano argomenti trattati.

Attenzione: i programmi sono cambiati negli anni. Non tutti gli esercizi nella presente raccolta riguardano argomenti trattati. Si raccolgono qui temi d esame, esercizi e domande di teoria dati negli anni 3-4 nei corsi di Analisi Matematica I presso il DTG di Vicenza. Il materiale è stato reso disponibile dai docenti che hanno

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

Ellisse. DEF: "il luogo dei punti la cui somma delle distanze da due punti dati detti fuochi. è costante"; CONSIDERAZIONI:

Ellisse. DEF: il luogo dei punti la cui somma delle distanze da due punti dati detti fuochi. è costante; CONSIDERAZIONI: Ellisse DEF: "il luogo dei punti la cui somma delle distanze da due punti dati detti fuochi è costante"; CONSIDERAZIONI: Il punto P appartiene all'ellisse se, e solo se, la distanza del punto P dal fuoco

Dettagli

MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A

MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A Nome e cognome Matricola I Parte OBBLIGATORIA (quesiti preliminari: 1 punto ciascuno). Riportare le soluzioni su questo foglio, mostrando i

Dettagli

Grafici di funzioni: valore assoluto, parabole 1 / 21

Grafici di funzioni: valore assoluto, parabole 1 / 21 Grafici di funzioni: valore assoluto, parabole 1 / 21 Grafico di una funzione 2 / 21 Per prima cosa stabiliamo un collegamento diretto tra la geometria analitica e lo studio di funzioni. Definizione: Siano

Dettagli

Equazioni differenziali ordinarie di ordine n

Equazioni differenziali ordinarie di ordine n Equazioni differenziali ordinarie di ordine n Indice Indice 1 1 ODE 1 Equazioni differenziali ordinarie del primo ordine 1 Equazioni differenziali a variabili separabili Equazioni differenziali del primo

Dettagli

Corso di Chimica-Fisica A.A. 2008/09. Prof. Zanrè Roberto E-mail: roberto.zanre@gmail.com Oggetto: corso chimica-fisica. Esercizi: Dinamica

Corso di Chimica-Fisica A.A. 2008/09. Prof. Zanrè Roberto E-mail: roberto.zanre@gmail.com Oggetto: corso chimica-fisica. Esercizi: Dinamica Corso di Chimica-Fisica A.A. 2008/09 Prof. Zanrè Roberto E-mail: roberto.zanre@gmail.com Oggetto: corso chimica-fisica Esercizi: Dinamica Appunti di lezione Indice Dinamica 3 Le quattro forze 4 Le tre

Dettagli

a) Osserviamo innanzi tutto che dev essere x > 0. Pertanto il dominio è ]0, + [. b) Poniamo t = log x. Innanzi tutto si ha:

a) Osserviamo innanzi tutto che dev essere x > 0. Pertanto il dominio è ]0, + [. b) Poniamo t = log x. Innanzi tutto si ha: ESERCIZIO - Data la funzione f (x) = (log x) 6 7(log x) 5 + 2(log x) 4, si chiede di: a) calcolare il dominio di f ; ( punto) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire

Dettagli

COMPLEMENTI DI ANALISI VETTORIALE

COMPLEMENTI DI ANALISI VETTORIALE COMPLEMENTI DI ANALISI VETTORIALE Giovanni Maria Troianiello 8 novembre 04 RICEVIMENTO NELLO STUDIO 8 DI MATEMATICA IL VENERDÌ ALLE 5 STUDENTI CHE HANNO SUPERATO IL COMPITO SCRITTO DELL APPELLO STRAORDINARIO

Dettagli

Esercizi svolti di aritmetica

Esercizi svolti di aritmetica 1 Liceo Carducci Volterra - Classi 1A, 1B Scientifico - Francesco Daddi - 15 gennaio 29 Esercizi svolti di aritmetica Esercizio 1. Dimostrare che il quadrato di un numero intero che finisce per 25 finisce

Dettagli

Esercizi di Analisi 2. Nicola Fusco (Dipartimento di Matematica e Applicazioni, Università Federico II, Napoli) 1. Successioni e Serie di Funzioni

Esercizi di Analisi 2. Nicola Fusco (Dipartimento di Matematica e Applicazioni, Università Federico II, Napoli) 1. Successioni e Serie di Funzioni Esercizi di Analisi 2 Nicola Fusco (Dipartimento di Matematica e Applicazioni, Università Federico II, Napoli) 1. Successioni e Serie di Funzioni 1.1 Al variare di α IR studiare la convergenza della serie

Dettagli

Corso di Matematica per CTF Appello 15/12/2010

Corso di Matematica per CTF Appello 15/12/2010 Appello 15/12/2010 Svolgere i seguenti esercizi: 1) Calcolare entrambi i limiti: a) lim(1 x) 1 e x 1 ; x 0 x log 2 x b) lim x 1 1 cos(x 1). 2) Data la funzione: f(x) = x log x determinarne dominio, eventuali

Dettagli

Integrali multipli - Esercizi svolti

Integrali multipli - Esercizi svolti Integrali multipli - Esercizi svolti Integrali di superficie. Si calcoli l integrale di superficie Σ z +y +4(x +y ) dσ, dove Σ è la parte di superficie di equazione z = x y che si proietta in = {(x,y)

Dettagli

Testi verifiche 3 C 3 I a. s. 2008/2009

Testi verifiche 3 C 3 I a. s. 2008/2009 Testi verifiche 3 C 3 I a. s. 2008/2009 1) Sono assegnati i punti A(- 1; 3) C(3; 0) M ;1 a) Ricavare le coordinate del simmetrico di A rispetto a M e indicarlo con B. Verificare che il segmento congiungente

Dettagli

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0;

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0; La parabola è una particolare conica definita come è una curva aperta, nel senso che non può essere contenuta in alcuna superficie finita del piano; è simmetrica rispetto ad una retta, detta ASSE della

Dettagli

SYLLABUS DI MATEMATICA Liceo Linguistico Classe III

SYLLABUS DI MATEMATICA Liceo Linguistico Classe III SYLLABUS DI MATEMATICA Liceo Linguistico Classe III LE EQUAZIONI DI SECONDO GRADO Le equazioni di secondo grado e la loro risoluzione. La formula ridotta. Equazioni pure, spurie e monomie. Le relazioni

Dettagli

1) D0MINIO. Determinare il dominio della funzione f (x) = ln ( x 3 4x 2 3x). Deve essere x 3 4x 2 3x > 0. Ovviamente x 0.

1) D0MINIO. Determinare il dominio della funzione f (x) = ln ( x 3 4x 2 3x). Deve essere x 3 4x 2 3x > 0. Ovviamente x 0. D0MINIO Determinare il dominio della funzione f ln 4 + Deve essere 4 + > 0 Ovviamente 0 Se > 0, 4 + 4 + quindi 0 < < > Se < 0, 4 + 4 4 e, ricordando che < 0, deve essere 4 < 0 dunque 7 < < 0 Il campo di

Dettagli

Pierpaolo Omari Maurizio Trombetta TEMI SVOLTI DI ANALISI MATEMATICA I

Pierpaolo Omari Maurizio Trombetta TEMI SVOLTI DI ANALISI MATEMATICA I Pierpaolo Omari Maurizio Trombetta TEMI SVOLTI DI ANALISI MATEMATICA I Trieste Udine giugno 005 Prefazione Questo volume raccoglie i temi assegnati alle prove d esame dei corsi di Analisi matematica I

Dettagli

SIMULAZIONE - 22 APRILE 2015 - PROBLEMA 2: IL VASO

SIMULAZIONE - 22 APRILE 2015 - PROBLEMA 2: IL VASO www.matefilia.it SIMULAZIONE - 22 APRILE 2015 - PROBLEMA 2: IL VASO L'azienda in cui lavori produce articoli da giardino e sei stato incaricato di rivedere il disegno di un vaso portafiori realizzato da

Dettagli

Energia meccanica. Lavoro Energia meccanica Concetto di campo in Fisica. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_)

Energia meccanica. Lavoro Energia meccanica Concetto di campo in Fisica. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Energia meccanica Lavoro Energia meccanica Concetto di campo in Fisica Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Per consigli, suggerimenti, eventuali errori o altro potete

Dettagli