SPAZI METRICI COMPLETI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "SPAZI METRICI COMPLETI"

Transcript

1 Capitolo 1 SPAZI METRICI COMPLETI Sia dato uno spazio metrico (X, d). Definizione 1.1 Una successione {x n } si dice successione di Cauchy se ε > 0 n 0 n, m n 0 = d(x n x m ) < ε (1.1) Esercizio 1.1 Dimostrare che (1.1) è equivalente a ε > 0 n 0 n n 0 p 1 = d(x n x n+p ) < ε (1.2) Definizione 1.2 Uno spazio metrico (X, d) si dice completo se ogni successione di Cauchy è convergente. Definizione 1.3 Uno spazio vettoriale normato (V, ) completo nella metrica d(x, y) = x y si dice spazio di Banach. Definizione 1.4 Uno spazio di Banach la cui norma deriva da un prodotto scalare si dice spazio di Hilbert. Completezza di R Teorema 1.1 Sia {x n } una successione in R. Allora: {x n } è una successione di Cauchy {x n } è convergente. In particolare, R è completo. Dim. =) Se la successione converge a x R, è facile vedere che è una successione di Cauchy. Infatti, se converge: ε > 0 n 0 n n 0 = d(x n, x m ) = x n x < ε. Se prendiamo n, m n 0, abbiamo che: x n x m = x n x + x x m x n x + x x m < 2ε e quindi la successione è di Cauchy, per l arbitrarietà di ε. 1

2 2 = ) Devo costruire il limite x della successione. Osservo che, dalla definizione di successione di Cauchy: ε > 0 n 0 n, m n 0 = x n x m < ε. (1.3) (1.3) è vera per n = n 0,, cioè x n0 x n < ε x n0 ε < x m < x n0 + ε Dato che per ogni n n 0, x m > x n0 ε, esiste solo un numero finito di x n minori di x n0 ε. Invece, per tutti gli n n 0, x n < x n0 + ε (e quindi ci sono infiniti elementi della successione minori di x n0 + ε). Definiamo allora È vero che: S = {y R : esiste un numero finito di x n < y}. 1. S, perché (x n0 ε) S. 2. Se y S = (, y] S 3. S è limitato superiormente, perché x n0 + ε è un maggiorante di S. Per l assioma di completezza di R, esiste l estremo superiore di S; poniamo Per quanto detto finora: Inoltre, se m n 0 : x = sup S R. x n0 ε x < x n0 + ε (1.4) x n0 ε < x m < x n0 + ε (1.5) Cambiando segno ai termini della disequazione (4.2) x n0 ε < x m < x n0 + ε (1.6) Sommando termine a termine le disequazioni (4.1) e (4.4), abbiamo Ne segue che 2ε < x x m < 2ε. ε > 0 n 0 m n 0 = x x m < 2ε e dunque la successione {x n } converge a x. Completezza di R k La completezza di R k, con la norma del prodotto scalare, discende dalla completezza di R attraverso il seguente Lemma. Lemma Una successione {v n = (v 1n, v 2n,..., v kn )} in R k è una successione di Cauchy nella norma del sup le successioni {v 1n }, {v 2n },... {v kn }, sono successioni di Cauchy in R.

3 3 2. Una successione {v n = (v 1n, v 2n,..., v kn )} in R k converge a v = (v 1,..., v k ) R k v jn v j, per ogni j = 1,..., k Dim. Dimostriamo il punto (1). = ) Dire che {v n } è di Cauchy nella norma del sup significa che ε > 0 n 0 n, m n 0 = v n v m = sup v nj v mj < ε. j=1,...,k Allora, per ogni j = 1,..., k: v jn v jm < ε e quindi ogni successione {v jn } è di Cauchy. =) {v jn } è di Cauchy se ε > 0, n j n, m n j = v jn v jm < ε.. Se prendiamo n 0 = max{n 1,..., n k }, abbiamo che, per ogni n, m n 0 v n v m = sup v nj v mj = max v nj v mj < ε. j=1,...,k j=1,...,k e quindi la successione {v n } è una successione di Cauchy nella norma del sup. Esercizio 1.2 Dimostrare il punto (2) Teorema 1.2 R k con la norma del sup è completo. Dim. Discende dalla completezza di R. Infatti, se {v n } è di Cauchy in R k, per il Lemma 1.1, le successioni {v jn } sono successioni di Cauchy in R, e dunque convergono a v j, per ogni j = 1,..., k. Dal Lemma 1.1, segue che la successione data converge a v = (v 1,..., v n ). Esercizio 1.3 Se due norme 1 e 2 sono equivalenti, allora è vero che: 1. La successione {v n } è di Cauchy nella norma 1 {v n } è di Cauchy nella norma La successione {v n } converge a v nella norma 1 {v n } converge a v nella norma 2. Teorema 1.3 R k è completo rispetto ad una norma qualunque. Dim. Dimostreremo in seguito che in R k tutte le norme sono equivalenti, e dunque la completezza discende dal Teorema 1.2 e dall Esercizio 1.3.

4 4

5 Capitolo 2 Lemma delle contrazioni Il Lemma delle contrazioni (o Shrinking Lemma) ha molteplici applicazioni, che vedremo nel seguito. Al Lemma facciamo precedere un Lemma tecnico, che si rifà alla teoria delle serie numeriche. Lemma 2.1 La successione s n (x) = 1 + x x n è crescente e converge a, per ogni x (0, 1). 1 1 x Dim. Dato che x > 0, è chiaro che, per ogni n 0, s n (x) = 1 + x x n < 1 + x x n + x n+1 = s n+1 (x), e dunque la successione è crescente. Dalla fattorizzazione segue che, per ogni x 1 1 x n+1 = (1 x)(1 + x x n ) s n (x) = 1 xn+1 1 x. Se x (0, 1), la successione x n 0 per n +, quindi lim s 1 x n+1 n(x) = lim n + n + 1 x = sup s n(x) = 1 1 x. Definizione 2.1 Data un insieme X e un applicazione T : X X, un punto x 0 X è detto punto fisso di T se T (x 0 ) = x 0. Teorema 2.1 ( Lemma delle Contrazioni) Sia (X, d) uno spazio metrico completo e sia T : X X una contrazione, cioè un applicazione per cui esiste K (0, 1) tale che, per ogni x, y X, d(t (x), T (y)) Kd(x, y) = T ha un unico punto fisso x 0. Si dimostra che per ogni x X, x 0 = lim n + T n (x). Dim. Preso un qualunque x X, si definisce la successione T n (x) = T... T (x), dove T n è la composizione di T con se stessa n volte. La dimostrazione si articola in 5 passi: Passo 1. x X, d(t n (x), T n 1 (x)) K n d, con d = d(t (x), x). Passo 2. d(t n 1 (x), x) d 1 K per ogni n 5

6 6 Passo 3. T n (x) è una successione di Cauchy Passo 4. T n (x) converge ad un punto fisso x 0 Passo 5. Il punto fisso trovato è unico Dim. Passo 1. Dimostriamo il passo 1 per induzione. Per definizione di contrazione, la proposizione è vera per n = 2 Assumiamo vero che d(t 2 (x), T (x)) = d(t (T (x)), T (x)) Kd(T (x), x) = Kd. d(t n 1 (x), T n 2 (x)) K n 1 d (2.1) e dimostriamo che la proposizione è vera al passo n: d(t n (x), T n 1 (x)) = d(t (T n 1 (x)), T (T n 2 (x)) Kd(T n 1 (x), T n 2 (x)) per definizione di contrazion k k n 1 d = K n d per (2.1) Dim. Passo 2. Usando più volte la disuguaglianza triangolare, abbiamo che (2.2) d(t n (x), x) d(t n (x), T n 1 (x)) + d(t n 1 (x), x) per il Passo 1 per il Lemma (2.1) d(t n (x), T n 1 (x)) + d(t n 1 (x), T n 2 (x)) d(t (x), x) K n d + K n 1 d Kd + d = d(k n K + 1) K 1 1 K. Dim. Passo 3. Bisogna dimostrare che Osserviamo che ε > 0 n 0 m n 0 p 1 = d(t m+p (x), T m (x)) < ε. d(t m+p (x), T m (x)) = d(t m (T p (x)), T m (x)) Kd(T m 1 (T p (x)), T m 1 (x)) K m (T p (x), x) K m 1 1 K iterando il procedimento per il passo 2. Dato che K (0, 1), K m 1 1 K 0 per n +, e quindi, per definizione di limite ε > 0 n 0 n n 0 = K m 1 1 K < ε e otteniamo che ε > 0 n 0 m n 0 p 1 = d(t m+p (x), T m (x)) K m Poiché X è uno spazio metrico completo, T n (x) converge. 1 1 K < ε.

7 7 Dim. Passo 4. x 0 = lim n + T n (x) è un punto fisso di T. Infatti, ricordando che T è continua (come ogni funzione Lipschitziana) lim n + T n+1 (x) = x 0 lim T n+1 (x) = lim T (T n (x)) = T ( lim T n (x)) = T (x 0 ) n + n + n + e dunque T (x 0 ) = x 0. Dim. Passo 5. Supponiamo che T abbia due punti fissi x 0 e x 1. Allora, ricordando che K è una contrazione d(x 0, x 1 ) = d(t (x 0 ), T (x 1 )) Kd(x 0, x 1 ), con K < 1. Questo può accadere se e solo se d(x 0, x 1 ) = 0 e quindi se e solo se x 0 = x 1. Questo conclude la dimostrazione. Esercizio 2.1 Sia (V, ) uno spazio metrico normato completo. Sia B r = B(0, r) e sia f : B r X una funzione tale che 1. K (0, 1) x, y B r, f(x) f(y) K x y 2. f(0) < r(1 K) Dimostrare che se x è un punto fisso di f, allora x B r.

8 8

9 Capitolo 3 EQUAZIONI DIFFERENZIALI Definizione 3.1 Siano (X, d 1 ) e (Y, d 2 ) due spazi metrici, e sia I un intervallo in R. Una funzione f : I X Y è lipschitziana in y uniformemente rispetto a t se esiste h > 0 tale che y 1, y 2 X d 2 (f(t, y 1 ), f(t, y 2 )) h d 1 (y 1, y 2 ) (3.1) Si dice che in (t 0, y 0 ) la funzione f è localmente lipschitziana in y, uniformemente rispetto a t, se esiste un intorno di (t 0, y 0 ) su cui è verificata (3.1). In particolare, se X è un intervallo I e Y = R, (3.1) si traduce in y 1, y 2 I f(t, y 1 ) f(t, y 2 ) h y 1 y 2. Lemma 3.1 Sia f(t, y) una funzione continua sul rettangolo I J R R e sia dato il problema di Cauchy { y = f(t, y) y(t 0 ) = y 0 (3.2) con f continua su un aperto contenente (t 0, y 0 ). La funzione ϕ : I δ = (t 0 δ, t 0 + δ) R è una soluzione di (3.3) su I δ se e solo se ϕ(t) = y 0 + t t 0 f(s, φ(s)) ds, per ogni t I δ. Dim. Ricordiamo che una soluzione di (3.3) è una funzione ϕ(t) di classe C 1 (I δ ) tale che ϕ (t) = f(t, ϕ(t)) per ogni t I δ e tale che ϕ(t 0 ) = y 0. Data una funzione h(t) continua su I δ, la funzione g(t) = f(t, h(t)) è continua su I δ, quindi per il teorema fondamentale del calcolo integrale t g ϕ(t) = y 0 + f(s, h(s)) ds = y 0 + t 0 (s) ds t 0 9

10 10 è tale che ϕ(t 0 ) = y 0, è derivabile e la sua derivata è uguale a ϕ (t) = g(t) = f(t, h(t)), t I δ. Allora abbiamo che ϕ(t) è soluzione del problema di Cauchy se e solo se ϕ(t) = y 0 + t t 0 f(s, ϕ(s)) ds, per ogni t I δ. Teorema 3.1 (di Cauchy o di esistenza e unicità locale delle soluzioni) Sia I J R R un rettangolo aperto, e sia dato il problema di Cauchy { y = f(t, y) y(t 0 ) = y 0 (3.3) dove 1. (t 0, y 0 ) I J 2. f è continua su I J 3. in (t 0, y 0 ) f è localmente lipschitziana in y, uniformemente rispetto a t, con costante di Lipschitz h = Esiste δ > 0, esiste ed è unica una funzione ϕ : (t 0 δ, t 0 + δ) R, di classe C 1 su tale intervallo, che è soluzione del problema di Cauchy (3.3). Dim. Passo 1. Costruiamo uno spazio metrico completo X δ. Per far questo, sia ε > 0 tale che [t 0 ε, t 0 + ε] [y 0 ε, y 0 + ε] I J e consideriamo l intervallo chiuso I δ = [t 0 δ, t 0 + δ], con δ < ε. Possiamo allora definire l insieme { } X δ = y(t) C(I δ ) : sup t I δ y(t) y 0 ε Identificando y 0 con la funzione costante y(t) = y 0, vediamo che X δ è la palla chiusa di centro y 0 e raggio δ nello spazio metrico C(I δ ) con la norma del sup, che è uno spazio metrico completo per un Teorema dimostrato in precedenza. Poiché ne è un sottospazio chiuso, anche X δ è uno spazio metrico completo. Passo 2. Costruiamo una mappa su X δ. Definiamo T : X δ C(I δ ) y(t) T (y)(t) = y 0 + t t 0 f(s, y(s)) ds. (3.4) Per il Lemma precedente, y(t) è un punto fisso di T se e solo se y(t) è una soluzione del problema di Cauchy (3.3),. Nei passi successivi della dimostrazione costruiremo un δ > 0 in modo che T sia interna a X δ e che sia una contrazione. Passo 3. Costruiamo δ > 0 in modo che T abbia valori in X δ.

11 11 Poiché f è continua sul chiuso K ε = [t 0 ε, t 0 + ε] [y 0 ε, y 0 + ε], per il Teorema di Weierstrass esiste N > 0 tale che f(t, y) N, (t, y) K ε. Vogliamo trovare un δ in modo che T (y) X δ, cioè in modo che T (y) y 0 ε. T (y) y 0 = sup T (y)(t) y 0 = t I δ t = sup f(s, y(s)) ds sup t f(s, y(s)) ds t I δ t 0 t I δ t 0 sup N t t 0 Nδ t I δ Se scegliamo δ in modo che δ < min{ε/n, ε}, abbiamo che T (y) y 0 ε. Passo 4. Costruiamo δ in modo che T sia una contrazione, cioè in modo che per ogni y 1, y 2 X δ, T (y 1 ) T (y 2 ) K y 1 y 2. T (y 1 ) T (y 2 ) = sup t I δ = sup t I δ sup t I δ t t 0 t t f(s, y 1 (s)) ds f(s, y 2 (s)) ds t 0 t 0 t (f(s, y 1 (s)) f(s, y 2 (s))) ds t 0 t f(s, y 1 (s)) f(s, y 2 (s)) ds t 0 ( ) sup f(t, y 1 (t)) f(t, y 2 (t)) t I δ Ma f è lipschitziana in y uniformemente rispetto a t, con costante di Lipschitz h, quindi sup t Iδ f(t, y 1 (t)) f(t, y 2 (t)) = f(t, y 1 ) f(t, y 2 ) h y 1 y 2, e se scegliamo δ < 1/h. Passo 5. Scegliendo T (y 1 ) T (y 2 ) δh y 1 y 2 < K y 1 y 2 { 1 0 < δ < min h, ε } N, ε abbiamo che T è una contrazione dallo spazio metrico completo X δ in se stesso, quindi T ha un unico punto fisso, cioè esiste un unica funzione y(t) definita su I δ tale che t y(t) = T (y)(t) = y 0 + f(s, y(s)) ds, t 0 t Iδ. Abbiamo così trovato che il problema di Cauchy (3.3) ha un unica soluzione definita sull intervallo (t 0 δ, t 0 + δ).

12 12 Osserviamo che la soluzione trovata è solo una soluzione locale, perché la scelta di δ è legata non solo all ipotesi di continuità sull insieme I J, ma anche alla costante di Lipschitz locale. Il Teorema sopra dimostrato può essere esteso anche al caso dei sistemi di equazioni differenziali ordinarie. Data una funzione F (t, X) : R R n R n definita su un insieme I A, dove I è un intervallo e A un aperto di R n, possiamo definire il sistema di equazioni differenziali y 1 = F 1(t, y 1,..., y n ) y 2 = F 2(t, y 1,..., y n )... y n = F n (t, y 1,..., y n ) che si scrive più brevemente in forma vettoriale come Y = F (t, X) In questo caso una soluzione è una funzione ϕ : J A, derivabile su J, sottointervallo aperto di I (dunque una curva in forma parametrica) tale che, per ogni t J: ϕ 1 (t) = F 1(t, ϕ 1 (t),..., ϕ, x n (t)) ϕ 2 = F 2(t, ϕ 1 (t),..., ϕ n (t))... ϕ n = F n (t, ϕ 1 (t),..., ϕ n (t)) dunque è una curva in forma parametrica il cui vettore tangente è assegnato dal sistema di equazioni differenziali. In questo caso una soluzione ϕ soddisfa una condizione iniziale Y (t 0 ) = Y 0 se la curva passa per il punto Y 0 al istante t 0, vale a dire se ϕ(t 0 ) = Y 0. Enunciamo allora il teorema precedente anche in questo caso (la dimostrazione segue le stesse linee, e non la riproponiamo) Teorema 3.2 Sia dato un problema di Cauchy di equazioni differenziali { Y = F (f, Y ) Y (t 0 ) = Y 0 (3.5) dove F è definita su I A R R n, con I intervallo aperto contenente t 0 e A aperto contenente Y 0. Se F è continua in un intorno di (t 0, Y 0 ), e se (t 0, Y 0 ) F è localmente lipschitziana in Y, uniformemente rispetto a t = Esiste δ > 0, esiste ed è unica una funzione ϕ : (t 0 δ, t 0 + δ) R, di classe C 1 su tale intervallo, che è soluzione del problema di Cauchy (3.5). Proposizione 3.1 Se f : I J R è di classe C 1 (I J), allora f è lipschitziana.

13 Capitolo 4 Teorema della funzione inversa Prima di enunciare e dimostrare il teorema della funzione inversa,ricordiamo alcuni fatti riguardanti le funzioni di pi variabili Definizione 4.1 Si dice che una funzione G : R n R n è o( x x ) per x x se 1 lim G(x) = 0. x x x x Se questo accade, esiste una funzione ψ : R n R n tale che lim ψ(x x 0) = 0 e G(x) = ψ(x x 0 ) x x. x x Definizione 4.2 Una funzione F : R n R n si dice differenziabile in x punto interno al dominio di F se eiste un applicazione lineare T : R n R n tale che, per ogni x in un intorno di x: F (x) = F (x) + T (x x) + o( x x ), rmper x x. L applicazione T è detta il differenziale di F in x e viene indicato con d x F. Si dimostra che se F è differenziabile in x, esiste la matrice jacobiana di F in x e d x F = JF (x). Definizione 4.3 Una funzione F : U R n V R n (con U e V aperti) si dice un omeomorfismo di U su V se F è una biiezione F è continua F 1 è continua Si dice che F è un diffeomorfismo di classe k (k > 0) di U su V se F è una biiezione F è di classe C k su U F 1 è di classe C k su V 13

14 14 Teorema 4.1 Sia A R n un aperto, e sia F : A R n R n una funzione tale che F è di classe C k su A, co k 1 Il differenziale d x F è un isomorfismo, e dunque la matrice JF (x) è invertibile = Esistono un intorno aperto U di x e un intorno aperto V di y = F (x) tali che la restrizione di F a U è un diffeomorfismo di classe C k. Inoltre, y V, JF 1 (y) = (JF ) 1 (F 1 (y)). Dim. Passo 1 Possiamo assumere che x = 0. La traslazione τ x (x) = x x è un diffeomorfismo di classe C. Allora la funzione composta H(x) = F τ x (x) = F (x x)è invertibile (con inversa di classe C k ) se e solo se F lo è. Passo 2 Possiamo assumere che JF (0) uguale alla matrice identità. Per ipotesi, la matrice jacobiana è invertibile in x = 0. Allora la funzione (JF (0)) 1 F è ben definita, ed ha le proprietà: (JF (0)) 1 F è invertibile se e solo se lo è F Per il teorema di derivazione di funzione composta, J ( (JF (0)) 1 F ) (0) = (JF (0)) 1 JF (0) = Id, dove con Id indichiamo la matrice identità di R n. Passo 3 Definiamo la funzione G(x) = x F (x). Poiché G è di classe C k, JG(x) è una funzione continua, e JG(0) = Id JF (0) = 0. Per la continuità di JG(x), fissato ε = 1 2, esiste r > 0 tale che: x B(0, 2r) = JG(x) 1 2 (4.1) Poiché B(0, 2r) è convesso, possiamo applicare il Teorema di Lagrange al segmento congiungente 0 a x. Esiste allora x sul segmento tale che G(x) = G(x) G(0) = JG( x)(x 0) = JG( x)x. Allora, facendo uso anche di (4.1), abbiamo che G(x) JG( x) x 1 x (4.2) 2 ( ) Allora G B(0, 2r) B(0, r 2 ). Passo 4 Mostriamo che F : B(0, r ) overlineb(0, fracr2) è invertibile, cioè che per ogni y B(0, r 2 ), esiste un unico x B(0, 2r) tale che F (x) = y. Per far questo, per ogni y B(0, r 2 ) definiamo la funzione Osserviamo che: G 0 (x) = G(x) G y (x) = y + x F (x) = y + G(x). X è un punto fisso di G y, cioè G y (x) = x y = F (x)

15 15 Se dimostriamo che G y è una contrazione sullo spazio metrico completo B(0, r), riusciamo a dimostrare che F è invertibile, come richiesto. A tale scopo, procediamo in due passi successivi: 1. Per ogni x B(0, r), da (4.2) otteniamo che: G y (x) = y + G(x) y + G(x) r x r 2 + r 2 = r (4.3) 2. Per ogni x, x B(0, r), per il teorema di Lagrange esiste x sul segmento di estremi x, x tale che G y (x) G y (x) = G(x) G(x) = JG( x)(x x) JG( x) (x x) 1 2 (x x) (4.4) per (4.1). Quindi G y è una contrazione, e pertanto esiste ( F 1 : B 0, r ) B(0, 2). 2 Passo 5 Esistono due intorni aperti U e V (rispettivamente di 0 e di F (0)) su cui F 1 è continua. Definiamo { U = x B(0, r) : F (x) < r }. 2 U è aperto perché è la controimmagine dell aperto (, r/2) mediante la funzione continua F. Sia V = F (U). Per quanto dimostrato finora, F è iniettiva e dunque esiste F 1 : V U. Dimostriamo che F 1 è continua in ogni y V 1 (di conseguenza, V risulta aperto, in quanto controimmagine di un aperto mediante una funzione continua). Poniamo x = F 1 (y) e x = F 1 (y). Scrivendo x = x F (x) + F (x) = G(x) + F (x) abbiamo che F 1 (y) F 1 (y) = x x = G(x) + F (x) G(x) F (x) G(x) G(x) + F (x) F (x) per (4.4) 1 2 x x + F (x) F (x) Portando 1 2 x x a sinistra e moltiplicando per 2, otteniamo F 1 (y) F 1 (y) = x x = 2 F (x) F (x) = 2 y y (4.5) Abbiamo così dimostrato che F 1 è continua. Passo 6 Dobbiamo dimostrare che F 1 è differenziabile in ogni y V, con differenziale uguale a [JF (x)] 1, cioè che F 1 (y) F 1 (y) [JF (x)] 1 (y y) = o( y y ), per y y (4.6)

16 16 Ricordiamo che o( x x ) = ψ(x x) x x, con ψ(x x) 0 per x x. Poniamo x = F 1 (y) e x = F 1 (y). F 1 (y) F 1 (y) [JF (x)] 1 (y y) = = x x [JF (x)] 1 (F (x) F (x)) = per la differenziabilita di F in x = x x [JF (x)] 1 (JF (x)(x x) + o( x x )) = = x x (x x) [JF (x)] 1 o( x x )) = [JF (x)] 1 o( x x )) Dobbiamo dimostrare che un o( x x ) per x x in questo caso è anche un o y y ), per y y. A tale scopo scriviamo o( x x ) = ϕ(x x) x x, con ϕ(x x) 0 per x 0, e osserviamo che: x x ϕ(x x) = x x ϕ(f 1 (y) F 1 (y)) 2 y y ϕ(f 1 (y) F 1 (y)) per (4.5). Siccome F 1 è continua, quando y y, F 1 (y) F 1 (y) e dunque ϕ(f 1 (y) F 1 (y)) 0. Abbiamo così ottenuto che F 1 è differenziabile in x.

Analisi 2. Roberto Monti. Appunti del Corso - Versione 5 Ottobre 2012

Analisi 2. Roberto Monti. Appunti del Corso - Versione 5 Ottobre 2012 Analisi 2 Roberto Monti Appunti del Corso - Versione 5 Ottobre 212 Indice Capitolo 1. Programma 5 Capitolo 2. Convergenza uniforme 7 1. Convergenza uniforme e continuità 7 2. Criterio di Abel Dirichlet

Dettagli

AM2: Tracce delle lezioni- IX Settimana INSIEMI DI LIVELLO, MINIMI VINCOLATI PRINCIPIO DEI MOLTIPLICATORI DI LAGRANGE

AM2: Tracce delle lezioni- IX Settimana INSIEMI DI LIVELLO, MINIMI VINCOLATI PRINCIPIO DEI MOLTIPLICATORI DI LAGRANGE AM2: Tracce delle lezioni- IX Settimana INSIEMI DI LIVELLO, MINIMI VINCOLATI PRINCIPIO DEI MOLTIPLICATORI DI LAGRANGE Sia g C 1 R 2 ), c R. L insieme γ = γ c := {x, y) R 2 : gx, y) = c} si chiama insieme

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli

Esistenza ed unicità per equazioni differenziali

Esistenza ed unicità per equazioni differenziali Esistenza ed unicità per equazioni differenziali Per concludere queste lezioni sulle equazioni differenziali vogliamo dimostrare il teorema esistenza ed unicità per il problema di Cauchy. Faremo la dimostrazione

Dettagli

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo C.6 Funzioni continue Pag. 114 Dimostrazione del Corollario 4.25 Corollario 4.25 Sia f continua in un intervallo I. Supponiamo che f ammetta, per x tendente a ciascuno degli estremi dell intervallo, iti

Dettagli

5.3 Alcune classi di funzioni integrabili

5.3 Alcune classi di funzioni integrabili 3. Si verifichi che per ogni f, g : [a, b] R si ha f g = g + (f g) 0, f g = f + g f g; dedurne che se f, g R(a, b) allora f g, f g R(a, b). [Traccia: si osservi che basta verificare che f 0 R(a, b), e

Dettagli

Funzioni di n variabili a valori vettoriali

Funzioni di n variabili a valori vettoriali Funzioni di n variabili a valori vettoriali Ultimo aggiornamento: 22 maggio 2018 1 Differenziale per funzioni da R n in R k Una funzione F : A R n R k può essere vista come una k-upla di funzioni scalari

Dettagli

Equazioni differenziali del primo ordine: casi particolari e teorema di esistenza per il problema di Cauchy

Equazioni differenziali del primo ordine: casi particolari e teorema di esistenza per il problema di Cauchy Equazioni differenziali del primo ordine: casi particolari e teorema di esistenza per il problema di Cauchy 10 maggio 2010 Supponiamo che f(x, y) sia una funzione continua definita in un rettangolo del

Dettagli

Esercizi del Corso di Istituzioni di Analisi Superiore, I modulo

Esercizi del Corso di Istituzioni di Analisi Superiore, I modulo sercizi del Corso di Istituzioni di Analisi Superiore, I modulo 1. sercizi su massimo e minimo limite 1. lim inf a n lim sup a n 2. Se a n b n per ogni n N, allora lim inf a n lim inf b n. Vale anche lim

Dettagli

Il teorema di Ascoli-Arzelà

Il teorema di Ascoli-Arzelà Il teorema di Ascoli-Arzelà Alcuni risultati sugli spazi metrici Spazi metrici (e topologici) compatti Richiamiamo le definizioni di compattezza negli spazi metrici. Sia (X, d) una spazio metrico e sia

Dettagli

Si dimostri che la (*) possiede un unica soluzione (u n ) limitata.

Si dimostri che la (*) possiede un unica soluzione (u n ) limitata. Scuola Normale Superiore, ammissione al IV anno del corso ordinario Prova scritta di Analisi Matematica per Fisica, Informatica, Matematica 26 Agosto 2 Esercizio. Siano (a n ) e (b n ) successioni di numeri

Dettagli

Equazioni differenziali Problema di Cauchy

Equazioni differenziali Problema di Cauchy Equazioni differenziali Problema di Cauch Primo esempio - Risolvere l equazione '( ) = g( ) con g( ) :[ a, b] R continua Teor. fondamentale del calcolo integrale ( ) = + g ( t )dt Primo esempio - Osserviamo

Dettagli

Teorema delle Funzioni Implicite

Teorema delle Funzioni Implicite Teorema delle Funzioni Implicite Sia F una funzione di due variabili definita in un opportuno dominio D di R 2. Consideriamo l equazione F (x, y) = 0, questa avrà come soluzioni coppie di valori (x, y)

Dettagli

Note sul teorema del Dini

Note sul teorema del Dini Note sul teorema del Dini S. Spagnolo 1 Punti fissi Data un applicazione ψ : C C, ogni punto z C per cui risulti ψ(z) = z si chiama punto fisso della ψ. Teorema 1 (delle contrazioni) Sia C un sottoinsieme

Dettagli

COMPLETAMENTO DI SPAZI METRICI

COMPLETAMENTO DI SPAZI METRICI COMPLETAMENTO DI SPAZI METRICI 1. Successioni di Cauchy e spazi metrici completi Definizione 1.1. Una successione x n n N a valori in uno spazio metrico X, d si dice di Cauchy se, per ogni ε > 0 esiste

Dettagli

Il teorema di Sard. Alessandro Ghigi. 25 ottobre 2014

Il teorema di Sard. Alessandro Ghigi. 25 ottobre 2014 Il teorema di Sard Alessandro Ghigi 25 ottobre 2014 1 Sottoricoprimenti numerabili Esercizio 1. Sia X uno spazio topologico e sia Y X un sottospazio. Se {A i } i I è una base della topologia di X, allora

Dettagli

Integrali Curvilinei

Integrali Curvilinei Integrali Curvilinei Gianluca Gorni 11 gennaio 2006 1 Lunghezza di una curva Definizione 1.1. Una curva N-dimensionale è una funzione definita su un intervallo (compatto, se non specificato altrimenti)

Dettagli

Studio qualitativo. Emanuele Paolini 2 luglio 2002

Studio qualitativo. Emanuele Paolini 2 luglio 2002 Studio qualitativo Emanuele Paolini 2 luglio 2002 Non sempre è possibile determinare esplicitamente le soluzione di una equazione differenziale. Ci proponiamo quindi di trovare dei metodi per determinare

Dettagli

SPAZI COMPATTI. Proposizione 2 Sia (X, d) uno spazio metrico. Se esso è sequenzialmente compatto allora è completo.

SPAZI COMPATTI. Proposizione 2 Sia (X, d) uno spazio metrico. Se esso è sequenzialmente compatto allora è completo. SPAZI COMPATTI D ora in poi tutti gli spazi topologici sono di Hausdorff. Definizione 1 Uno spazio topologico (X, τ) si dice sequenzialmente compatto, o compatto per successioni, se ogni successione di

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

1. Funzioni implicite

1. Funzioni implicite 1. Funzioni implicite 1.1 Il caso scalare Sia X R 2 e sia f : X R. Una funzione y : (a, b) R si dice definita implicitamente dall equazione f(x, y) = 0 in (a, b) quando: 1. (x, y(x)) X x (a, b); 2. f(x,

Dettagli

NOTE SU EQUAZIONI DIFFERENZIALI ORDINARIE

NOTE SU EQUAZIONI DIFFERENZIALI ORDINARIE NOTE SU EQUAZIONI DIFFERENZIALI ORDINARIE ROBERTO GIAMBÒ INDICE 1. Spazi metrici e spazi normati 1 1.1. Contrazioni 2 2. Lo spazio delle curve continue 4 2.1. Spazi di Banach 4 3. Esistenza e unicità locale

Dettagli

4 Funzioni continue. Geometria I 27. Cfr: Sernesi vol II, cap I, 4 [1].

4 Funzioni continue. Geometria I 27. Cfr: Sernesi vol II, cap I, 4 [1]. Geometria I 27 4 Funzioni continue Cfr: Sernesi vol II, cap I, 4 [1]. Le funzioni continue tra spazi topologici si dicono anche mappe. Si può dimostrare, esattamente come in (2.10) e in (1.10), che vale

Dettagli

Funzioni implicite e teorema del Dini

Funzioni implicite e teorema del Dini Funzioni implicite e teorema del Dini Il succo dell argomento può essere presentato così. Sia f una funzione a valori reali, definita in un aperto G del piano euclideo R 2 e sufficientemente buona; consideriamo

Dettagli

Alcune nozioni di calcolo differenziale

Alcune nozioni di calcolo differenziale Alcune nozioni di calcolo differenziale G. Mastroeni, M. Pappalardo 1 Limiti per funzioni di piu variabili Supporremo noti i principali concetti algebrici e topologici relativi alla struttura dello spazio

Dettagli

ANALISI 1 - Teoremi e dimostrazioni vari

ANALISI 1 - Teoremi e dimostrazioni vari ANALISI 1 - Teoremi e dimostrazioni vari Sommario Proprietà dell estremo superiore per R... 2 Definitivamente... 2 Successioni convergenti... 2 Successioni monotone... 2 Teorema di esistenza del limite

Dettagli

I. CENNI SULL ANALISI FUNZIONALE

I. CENNI SULL ANALISI FUNZIONALE I. CENNI SULL ANALISI FUNZIONALE 0 Introduzione In questo capitolo discutiamo la definizione di un operatore lineare su uno spazio di Banach e di Hilbert e alcune delle sue proprietà. Nell appendice presentiamo

Dettagli

Definizione 1.1. Dato un insieme non vuoto X, si dice distanza una funzione d : X X R tale che

Definizione 1.1. Dato un insieme non vuoto X, si dice distanza una funzione d : X X R tale che 1 Spazi metrici Definizione 1.1. Dato un insieme non vuoto X, si dice distanza una funzione d : X X R tale che 1) d(x, y) 0, x, y X; d(x, y) = 0 x = y, ) d(x, y) = d(y, x), x, y X, 3) d(x, z) d(x, y) +

Dettagli

3 La curva di Peano. insieme di misura nulla in R m. Definiamo, ora,

3 La curva di Peano. insieme di misura nulla in R m. Definiamo, ora, Versione del 5/0/04 3 La curva di Peano Proposizione (a) Sia f : A R n R m con n < m. Se f è una funzione lipschitziana, allora f(a) è un insieme di misura nulla in R m. (b) Esiste una funzione ϕ C ( [0,

Dettagli

ANALISI MATEMATICA A SECONDO MODULO SOLUZIONI DEGLI ESERCIZI DELLA SETTIMANA 15. x 2 i

ANALISI MATEMATICA A SECONDO MODULO SOLUZIONI DEGLI ESERCIZI DELLA SETTIMANA 15. x 2 i ANALISI MATEMATICA A SECONDO MODULO SOLUZIONI DEGLI ESERCIZI DELLA SETTIMANA 15 (1) (Es 9 pag 117) Se per ogni x R n ( x := x 2 i ) 1/2 verificate che per ogni x, y R n vale la seguente legge del parallelogramma:

Dettagli

2 Calcolo differenziale in spazi di Banach

2 Calcolo differenziale in spazi di Banach 2 Calcolo differenziale in spazi di Banach In questo capitolo riassumiamo le principali definizioni ed i principali risultati del calcolo differenziale per mappe tra spazi di Banach. Per le dimostrazioni

Dettagli

Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Bacchelli - a.a. 2010/2011.

Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Bacchelli - a.a. 2010/2011. Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Baccelli - a.a. 2010/2011. 06 - Derivate, differenziabilità, piano tangente, derivate di ordine superiore. Riferimenti: R.Adams, Calcolo

Dettagli

Consideriamo il seguente sistema di equazioni differenziali ordinarie (ODE) ai valori iniziali:

Consideriamo il seguente sistema di equazioni differenziali ordinarie (ODE) ai valori iniziali: Capitolo 1 PROBLEMI INIZIALI PER ODE Consideriamo il seguente sistema di equazioni differenziali ordinarie (ODE) ai valori iniziali: { y (t) = f(t, y(t)), t t f (1.1) y( ) = y 0 dove f : [, t f ] R m R

Dettagli

COMPATTEZZA. i) X è compatto, cioè ogni ricoprimento aperto ammette un sottoricoprimento finito.

COMPATTEZZA. i) X è compatto, cioè ogni ricoprimento aperto ammette un sottoricoprimento finito. 1 COMPATTEZZA Sia X un sottoinsieme di R. Una famiglia A di sottoinsiemi aperti di R si dice ricoprimento aperto di X se X A, cioè se X è contenuto nell unione degli elementi di A. Una sottofamiglia di

Dettagli

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE ROBERTO GIAMBÒ 1. DEFINIZIONI E PRIME PROPRIETÀ In queste note saranno presentate alcune proprietà principali delle funzioni convesse di una variabile

Dettagli

Analisi IV - esercizi. G.P.Leonardi 2008

Analisi IV - esercizi. G.P.Leonardi 2008 Analisi IV - esercizi G.P.Leonardi 2008 1 1 Esercizi settimana n.1 1.1 Siano (X, d) e (X, d ) due spazi metrici. Dimostrare che la funzione d : (X X ) (X X ) [0, ) definita da d((x, x ), (y, y )) = d(x,

Dettagli

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica II del

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica II del Prova scritta di nalisi Matematica II del 12-06-2001. C1 1) Studiare la convergenza semplice, uniforme e totale della serie di funzioni seguente ( 1) [ n 2 ] n x 1 + n 2 x. n=0 2) Data la funzione (x 2

Dettagli

Funzione derivabile. La derivata.

Funzione derivabile. La derivata. Funzione derivabile. La derivata. Dati: f I R funzione; I R intervallo aperto ; x 0 I. Definizione (Derivata come limite del rapporto incrementale) Se esiste finito (cioè, non + o ) il limite del rapporto

Dettagli

Completezza e compattezza

Completezza e compattezza 1 Completezza e compattezza Spazi metrici completi Data una successione x : N X, j x j, una sua sottosuccessione è la composizione x ν, ove ν : N N è strettamente crescente. Data una successione (x j )

Dettagli

Alcuni complementi di teoria dell integrazione.

Alcuni complementi di teoria dell integrazione. Alcuni complementi di teoria dell integrazione. In ciò che segue si suppone di avere uno spazio di misura (,, µ) 1 Sia f una funzione misurabile su un insieme di misura positiva tale che f 0. Se fdµ =

Dettagli

0.1 Arco di curva regolare

0.1 Arco di curva regolare .1. ARCO DI CURVA REGOLARE 1.1 Arco di curva regolare Se RC(O, i, j, k ) è un riferimento cartesiano fissato per lo spazio euclideo E, e se v (t) = x(t) i + y(t) j + z(t) k è una funzione a valori vettoriali

Dettagli

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica II del c.1.

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica II del c.1. Prova scritta di Analisi Matematica II del 14-07-1999 - c.1 1) Sia (d n ) una successione di numeri reali tali che inf d n > 0. Studiare il carattere della serie + n=1 al variare del parametro reale positivo

Dettagli

non solo otteniamo il valore cercato per la validità della (1.4), ma anche che tale valore non dipende da

non solo otteniamo il valore cercato per la validità della (1.4), ma anche che tale valore non dipende da NOTE INTEGRATIVE PER IL CORSO DI ANALISI MATEMATICA 2 ANNO ACCADEMICO 2012/13 NOTE SULLA CONTINUITÀ UNIFORME D.BARTOLUCCI, D.GUIDO Sia f(x) = x 3, x [ 1, 1]. Si ha 1. La continuità uniforme x 3 y 3 = x

Dettagli

Analisi II, a.a Soluzioni 1. j j + 1 ; ( 1)j

Analisi II, a.a Soluzioni 1. j j + 1 ; ( 1)j Analisi II, a.a. 7-8 Soluzioni Calcolare le seguenti distanze e norme: (i d (x, y dove x = {x j } e y = {y j } sono le successioni di l definite da x j = ( j, y j = j/(j + ; (ii d (f, g dove f, g sono

Dettagli

f(x) := lim f n (x) Se introduciamo la norma uniforme di una funzione f (sull insieme A) mediante := sup f(x)

f(x) := lim f n (x) Se introduciamo la norma uniforme di una funzione f (sull insieme A) mediante := sup f(x) Capitolo 2 Successioni e serie di funzioni 2. Convergenza puntuale e orme Supponiamo che sia un sottoinsieme di R N e supponiamo che per ogni intero n sia data una funzione f n : R M. Diremo in questo

Dettagli

La formula di Taylor per funzioni di più variabili

La formula di Taylor per funzioni di più variabili La formula di Taylor per funzioni di più variabili Il polinomio di Taylor Due variabili. Sia A R 2 un aperto, f : A R una funzione sufficientemente regolare, (x, y) un punto di A. Sia (h, k) un vettore

Dettagli

Funzioni vettoriali di variabile scalare

Funzioni vettoriali di variabile scalare Capitolo 11 Funzioni vettoriali di variabile scalare 11.1 Curve in R n Abbiamo visto (capitolo 2) come la posizione di un punto in uno spazio R n sia individuata mediante le n coordinate di quel punto.

Dettagli

ESERCIZI DI EQUAZIONI DIFFERENZIALI - FOGLIO N. 4

ESERCIZI DI EQUAZIONI DIFFERENZIALI - FOGLIO N. 4 ESERCIZI DI EQUAZIONI DIFFERENZIALI - FOGLIO N. 4 CDL IN MATEMATICA, A.A. /3 (A. MALUSA) Esercizio. Sia f C(A, R n ), A R R n aperto. Dimostrare che le iterate di Picard relative al problema di Cauchy

Dettagli

13 LIMITI DI FUNZIONI

13 LIMITI DI FUNZIONI 3 LIMITI DI FUNZIONI Estendiamo la nozione di ite a funzioni reali di variabile reale. Definizione caratterizzazione per successioni) Si ha fx) = L x 0, L R) se e solo se per ogni successione a n x 0 con

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

PROGRAMMA di ANALISI MATEMATICA 1

PROGRAMMA di ANALISI MATEMATICA 1 PROGRAMMA di ANALISI MATEMATICA Ingegneria gestionale, meccanica e meccatronica, Vicenza A.A. 200-20, Canale e matricole da 84 a 99 del Canale 3, docente: Monica Motta Testo Consigliato: Analisi Matematica,

Dettagli

Limiti e continuità. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Limiti e continuità Analisi A 1 / 68

Limiti e continuità. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Limiti e continuità Analisi A 1 / 68 Limiti e continuità Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) Limiti e continuità Analisi A 1 / 68 Cenni di topologia La nozione di intorno Sia x 0 R e r > 0.

Dettagli

RACCOLTA DI ESERCIZI PER IL TUTORATO

RACCOLTA DI ESERCIZI PER IL TUTORATO RACCOLTA DI ESERCIZI PER IL TUTORATO GIORGIO STEFANI Vi propongo questi esercizi per rafforzare la vostra preparazione per il corso del Professor Ricci. Se volete controllare l esattezza delle vostre soluzioni,

Dettagli

Analisi a più variabili: Integrazione sulle curve e superfici, forme differenziali

Analisi a più variabili: Integrazione sulle curve e superfici, forme differenziali Analisi a più variabili: Integrazione sulle curve e superfici, forme differenziali 1 Definizione (Parametrizzazione di T): T R n, una sua parametrizzazione è una coppia φ, con = a, b intervallo di R e

Dettagli

Esonero di Analisi Matematica II (A)

Esonero di Analisi Matematica II (A) Esonero di Analisi Matematica II (A) Ingegneria Edile, 8 aprile 3. Studiare la convergenza del seguente integrale improprio: + x log 3 x (x ) 3 dx.. Studiare la convergenza puntuale ed uniforme della seguente

Dettagli

Università degli Studi di Udine Anno Accademico 2016/2017

Università degli Studi di Udine Anno Accademico 2016/2017 Università degli Studi di Udine Anno Accademico 2016/2017 Dipartimento di Scienze Matematiche, Informatiche e Fisiche Corso di Laurea in Matematica Programma del Analisi Matematica II primo modulo e parte

Dettagli

Analisi II, a.a Soluzioni 4

Analisi II, a.a Soluzioni 4 Analisi II, a.a. 17-18 Soluzioni 4 1) Consideriamo le curve in forma parametrica in R φ : R R, φ(t) = (cos t, cos(t)), φ : R R, φ(t) = (1 + cos t, sen t) φ :], π/[ R, φ(t) = (sen t, cos t) φ : R R, φ(t)

Dettagli

2. Fra tutti i rettangoli inscritti in una circonferenza, determinare quello di area massima.

2. Fra tutti i rettangoli inscritti in una circonferenza, determinare quello di area massima. 2. Fra tutti i rettangoli inscritti in una circonferenza, determinare quello di area massima. 3. Fra tutti i cilindri a base rotonda inscritti in una sfera, determinare quello di volume massimo. 4. Dimostrare

Dettagli

Analisi Matematica 2 - A

Analisi Matematica 2 - A Analisi Matematica 2 - A Soluzione Appello scritto del 5 Luglio 2013 Esercizio 1 Sia α > 0 un parametro fissato e si consideri la funzione f : R 2 R definita nel seguente modo { α sin, 0, f(x, = 0 = 0.

Dettagli

Equazioni non lineari: esempi. Risoluzione f (x) = 0 con x [a,b] R, f C([a,b]).

Equazioni non lineari: esempi. Risoluzione f (x) = 0 con x [a,b] R, f C([a,b]). Equazioni non lineari: esempi. Risoluzione f (x) = 0 con x [a,b] R, f C([a,b]). Equazioni non lineari: esempi. Risoluzione f (x) = 0 con x [a,b] R, f C([a,b]). Esempio 1: equazioni polinomiali p N (x)

Dettagli

DIARIO DELLE LEZIONI DEL CORSO DI ANALISI MATEMATICA I (L Z) CORSO DI LAUREA IN INGEGNERIA AEROSPAZIALE

DIARIO DELLE LEZIONI DEL CORSO DI ANALISI MATEMATICA I (L Z) CORSO DI LAUREA IN INGEGNERIA AEROSPAZIALE DIARIO DELLE LEZIONI DEL CORSO DI ANALISI MATEMATICA I (L Z) 2011-2012 CORSO DI LAUREA IN INGEGNERIA AEROSPAZIALE DANIELE ANDREUCCI DIP. SCIENZE DI BASE E APPLICATE PER L INGEGNERIA UNIVERSITÀ LA SAPIENZA

Dettagli

Sappiamo che una funzione definita in un intervallo aperto I ed ivi derivabile è anche differenziabile, ossia che, fissato x 0 I, si ha.

Sappiamo che una funzione definita in un intervallo aperto I ed ivi derivabile è anche differenziabile, ossia che, fissato x 0 I, si ha. La formula di Taylor Sappiamo che una funzione definita in un intervallo aperto I ed ivi derivabile è anche differenziabile, ossia che, fissato x 0 I, si ha dove f(x) = f(x 0 ) + f (x 0 )(x x 0 ) + ω(x)(x

Dettagli

Calcolo differenziale II

Calcolo differenziale II Calcolo differenziale II Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Derivate (II) Analisi Matematica 1 1 / 36 Massimi e minimi Definizione Sia A R, f

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

DIFFERENZIAZIONE. Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim

DIFFERENZIAZIONE. Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim DIFFERENZIAZIONE 1 Regola della catena Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim = f (x 0 ). x x 0 x x 0 Questa

Dettagli

Dispense sulla distanza di Hausdorff

Dispense sulla distanza di Hausdorff Dispense sulla distanza di Hausdorff Fabio Ferri Giada Franz Federico Glaudo 23 aprile 2014 Sommario In questo documento studieremo le proprietà della distanza di Hausdorff, la naturale distanza indotta

Dettagli

Sviluppi e derivate delle funzioni elementari

Sviluppi e derivate delle funzioni elementari Sviluppi e derivate delle funzioni elementari In queste pagine dimostriamo gli sviluppi del prim ordine e le formule di derivazioni delle principali funzioni elementari. Utilizzeremo le uguaglianze lim

Dettagli

Massimo limite e minimo limite di una funzione

Massimo limite e minimo limite di una funzione Massimo limite e minimo limite di una funzione Sia f : A R una funzione, e sia p DA). Per ogni r > 0, l insieme ) E f p r) = { fx) x A I r p) \ {p} } è non vuoto; inoltre E f p r ) E f p r ) se 0 < r r.

Dettagli

Corso di Laurea in Matematica Geometria 2. Esercizi di preparazione allo scritto a.a Topologia

Corso di Laurea in Matematica Geometria 2. Esercizi di preparazione allo scritto a.a Topologia Corso di Laurea in Matematica Geometria 2 Esercizi di preparazione allo scritto a.a. 2015-16 Esercizio 1. Dimostrare che Topologia 1. d(x, y) = max 1 i n x i y i definisce una distanza su R n. 2. d(x,

Dettagli

E, la successione di numeri {f n (x 0. n f n(x) (15.1)

E, la successione di numeri {f n (x 0. n f n(x) (15.1) Capitolo 15 15.1 Successioni e serie di funzioni Sia {f n } una successione di funzioni, tutte definite in un certo insieme E dello spazio R n ; si dice che essa è convergente nell insieme E se, comunque

Dettagli

Definizione 1.1. Sia A un sottoinsieme dei numeri reali. Diciamo che A è un insieme induttivo se

Definizione 1.1. Sia A un sottoinsieme dei numeri reali. Diciamo che A è un insieme induttivo se 1 Numeri naturali, interi e razionali Definizione 1.1. Sia A un sottoinsieme dei numeri reali. Diciamo che A è un insieme induttivo se 1. 1 A. per ogni x A, si ha x + 1 A Definizione 1.. Chiamo insieme

Dettagli

Il Teorema di Mountain-Pass

Il Teorema di Mountain-Pass Capitolo 4 Il Teorema di Mountain-Pass Descriviamo ora un altro metodo per trovare soluzioni non nulle di alcuni tipi di problemi, per esempio { u = u p 1 u in u = 0 su (4.1) con p > 1, utilizzando dei

Dettagli

Esercitazione di Analisi Matematica I Esercizi e soluzioni 19/04/2013 TOPOLOGIA

Esercitazione di Analisi Matematica I Esercizi e soluzioni 19/04/2013 TOPOLOGIA Esercitazione di Analisi Matematica I Esercizi e soluzioni 9/04/203 TOPOLOGIA Mostrare che uno spazio infinito con la metrica discreta non può essere compatto Soluzione: Per la metrica discreta d : X X

Dettagli

y = f(t, y) y = y y(0) = 0,

y = f(t, y) y = y y(0) = 0, Il teorema di Peano Considerato il problema di Cauchy 1) y = ft, y) y ) = y 0, se il campo vettoriale f è solamente continuo e non localmente lipschitziano nella seconda variabile, la successione delle

Dettagli

Analisi Matematica 2

Analisi Matematica 2 Analisi Matematica Appunti delle lezioni tenute dal Prof. A. Fonda Università di Trieste CdL Matematica a.a. 07/08 La derivata direzionale In questa sezione E sarà un sottoinsieme aperto di R N x 0 un

Dettagli

IL CALCOLO DIFFERENZIALE PER FUNZIONI DI PIÙ VARIABILI

IL CALCOLO DIFFERENZIALE PER FUNZIONI DI PIÙ VARIABILI IL CALCOLO DIFFERENZIALE PER FUNZIONI DI PIÙ VARIABILI 218-19 CLAUDIO BONANNO Richiamiamo le definizioni e le prime principali proprietà delle funzioni differenziabili di più variabili e a valori vettoriali

Dettagli

Un intervallo di numeri reali è un sottoinsieme I R tale che. è l estremità superiore. Si vede facilmente che I contiene x R ; a(i) < x < b(i)

Un intervallo di numeri reali è un sottoinsieme I R tale che. è l estremità superiore. Si vede facilmente che I contiene x R ; a(i) < x < b(i) ed è contenuto in {x R ; a(i) x b(i) }. Sulla continuità uniforma: Un intervallo di numeri reali è un sottoinsieme I R tale che Per un intervallo I I x 1 x x 2 I = x I. a(i) = inf x (appartenente a R o

Dettagli

Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2015/16 Docente: Fabio Paronetto

Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2015/16 Docente: Fabio Paronetto Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2015/16 Docente: Fabio Paronetto Gli argomenti denotati con un asterisco tra parentesi (e solo

Dettagli

Analisi Matematica 1 Foglio 1 Lunedì 3 ottobre. f(x) = log x 2 6x + 5.

Analisi Matematica 1 Foglio 1 Lunedì 3 ottobre. f(x) = log x 2 6x + 5. Analisi Matematica Foglio Lunedì 3 ottobre Esercizio. Trovare il dominio naturale della funzione f data da ( ) f(x) = log x 2 6x + 5. Esercizio 2. Dire quali tra le seguenti funzioni sono iniettive :.

Dettagli

Numeri complessi, Successioni numeriche, Serie numeriche, Limiti e continuità, Calcolo differenziale: TEOREMI

Numeri complessi, Successioni numeriche, Serie numeriche, Limiti e continuità, Calcolo differenziale: TEOREMI Numeri complessi, Successioni numeriche, Serie numeriche, Limiti e continuità, Calcolo differenziale: TEOREMI Pagina 1 NUMERI COMPLESSI (C, +, ) è un campo. i 2 = -1. K, +,,, 0, 1 L'equazione x 2 +1=0

Dettagli

Istituzioni di Analisi Superiore, secondo modulo

Istituzioni di Analisi Superiore, secondo modulo Università degli Studi di Udine Anno Accademico 996/97 Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Matematica Istituzioni di Analisi Superiore, secondo modulo Cognome e Nome:

Dettagli

Esercizi sulle equazioni differenziali a cura di Sisto Baldo, Elisabetta Ossanna e Sandro Innocenti

Esercizi sulle equazioni differenziali a cura di Sisto Baldo, Elisabetta Ossanna e Sandro Innocenti Esercizi sulle equazioni differenziali a cura di Sisto Baldo, Elisabetta Ossanna e Sandro Innocenti 1. Verifica che y(t) = 1 t + e t è una soluzione dell equazione y (t) = y(t) + t.. Scrivi un equazione

Dettagli

SISSA Area Matematica Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni 27 marzo 2019

SISSA Area Matematica Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni 27 marzo 2019 SISSA Area Matematica Esame di ammissione per il corso di Analisi Matematica, Modelli e Applicazioni 27 marzo 2019 Il candidato risolva CINQUE dei seguenti problemi, e indichi chiaramente sulla prima pagina

Dettagli

CORSO DI ANALISI MATEMATICA 2 SOLUZIONI ESERCIZI PROPOSTI 18/03/2013

CORSO DI ANALISI MATEMATICA 2 SOLUZIONI ESERCIZI PROPOSTI 18/03/2013 CORSO DI ANALISI MATEMATICA SOLUZIONI ESERCIZI PROPOSTI 8/03/03 D.BARTOLUCCI, D.GUIDO. La continuità uniforme I ESERCIZIO: Dimostrare che la funzione f(x) = x 3, x A = (, ] non è uniformemente continua

Dettagli

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero Il teorema degli zeri è fondamentale per determinare se una funzione continua in un intervallo chiuso [ a ; b ] si annulla in almeno un punto interno

Dettagli

Una semplice dimostrazione del teorema fondamentale dell algebra

Una semplice dimostrazione del teorema fondamentale dell algebra Università degli Studi di Cagliari Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Matematica Una semplice dimostrazione del teorema fondamentale dell algebra Relatore Prof. Andrea

Dettagli

Matematica per le Applicazioni Economiche I, 15 Settembre 2017 Testo d esame A

Matematica per le Applicazioni Economiche I, 15 Settembre 2017 Testo d esame A Testo d esame A La prova a la durata di due ore. Le risposte non giustificate valgono 0 punti ed i passaggi delicati ce non vengono giustificati fanno valere 0 i risultati ottenuti. Esercizio [3 punti]

Dettagli

1. Calcolo Differenziale per funzioni di una variabile

1. Calcolo Differenziale per funzioni di una variabile 1. Calcolo Differenziale per funzioni di una variabile 1.1 Definizione di Derivata e prime proprietà Definizione 1.1 Sia f :]a, b[ R, x 0 ]a, b[. Allora esiste δ > 0 : x 0 + ]a, b[, 0 < < δ. Se esiste

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005

COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005 Prova scritta del 26 gennaio 2005 Esercizio 1. Posto B = x R 2 : x 2 2}, sia f n } una successione di funzioni (misurabili e) integrabili in B tali che f n f q.o. in B e, per ogni n N, f n (x) 2 x 3 per

Dettagli

Osservazione 1.1 Si verifica facilmente che esiste un unica relazione d ordine totale su Q che lo renda un campo ordinato.

Osservazione 1.1 Si verifica facilmente che esiste un unica relazione d ordine totale su Q che lo renda un campo ordinato. 1 Numeri reali Definizione 1.1 Un campo ordinato è un campo K munito di una relazione d ordine totale, compatibile con le operazioni di somma e prodotto nel senso seguente: 1. a, b, c K, a b = a + c b

Dettagli

Problemi di topologia metrica.

Problemi di topologia metrica. Problemi di topologia metrica. 1.) Sia X un insieme, munito di una distanza d : X X R +. Siano x 1 ;x ;x 3 ;x 4 quattro punti qualsiasi di X. Verificare che: d (x 1 ; x 4 ) d (x 1 ; x ) + d (x ; x 3 )

Dettagli

AM : Tracce delle lezioni- II Settimana

AM : Tracce delle lezioni- II Settimana AM210 2012-13: Tracce delle lezioni- II Settimana SPAZI METRICI Sia X un insieme. Una d : X X : [0, + ) tale che (i) 0 d(u, v), u, v R n d(u, v) = 0 u = v (positivitá) (ii) d(u, v) = d(v, u) u, v R n (simmetria)

Dettagli

Alcuni Teoremi sulle funzioni continue e uniforme continuità

Alcuni Teoremi sulle funzioni continue e uniforme continuità Alcuni Teoremi sulle funzioni continue e uniforme continuità Teorema 0. Una funzione f(x) è continua in x 0 se e solo se per ogni sucessione {x n } dom(f) con x n x 0 dom(f), risulta f(x n ) f(x 0 ). (Non

Dettagli

11.3 Teorema di esistenza e unicità della soluzione

11.3 Teorema di esistenza e unicità della soluzione 11. PROBLEMA DI CAUCHY: ESISTENZA E UNICITÀ DELLA SOLUZIONE 121 11.3 Teorema di esistenza e unicità della soluzione Ricordiamo (cfr. l esercizio 6 del capitolo 2) che, dati uno spazio vettoriale normato

Dettagli

Pag. 151 Dimostrazioni dei criteri per lo studio della convergenza di serie numeriche

Pag. 151 Dimostrazioni dei criteri per lo studio della convergenza di serie numeriche C.7 Serie Pag. 151 Dimostrazioni dei criteri per lo studio della convergenza di serie numeriche Teorema 5.29 (Criterio del confronto) Siano e due serie numeriche a termini positivi e si abbia 0, per ogni

Dettagli

Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati.

Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati. Corso di laurea: Fisica ed Astronomia Programma di Analisi Matematica 2 a.a. 2016/17 Docente: Fabio Paronetto Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati.

Dettagli

Analisi Matematica 3 (Fisica) Prova scritta del 17 febbraio 2012 Un breve svolgimento delle versioni A

Analisi Matematica 3 (Fisica) Prova scritta del 17 febbraio 2012 Un breve svolgimento delle versioni A Analisi Matematica 3 (Fisica) Prova scritta del 7 febbraio Un breve svolgimento delle versioni A Vi sarò grato per la segnalazione di eventuali errori. Esercizio. (a) Dimostrare che l equazione () (3 +

Dettagli

Analisi Matematica 2 - A

Analisi Matematica 2 - A Analisi Matematica 2 - A Soluzione Appello scritto del 29 Gennaio 2013 Esercizio 1 (10 punti Si consideri il Problema di Cauchy { y = y + y(0 = 0, dove y è la funzione incognita ed è la sua variabile.

Dettagli

Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2013/14 Docente: Fabio Paronetto

Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2013/14 Docente: Fabio Paronetto Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2013/14 Docente: Fabio Paronetto Gli argomenti denotati con un asterisco tra parentesi (e solo

Dettagli