L errore percentuale di una misura è l errore relativo moltiplicato per 100 ed espresso in percentuale. Si indica con e p e risulta: e ( e 100)%

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "L errore percentuale di una misura è l errore relativo moltiplicato per 100 ed espresso in percentuale. Si indica con e p e risulta: e ( e 100)%"

Transcript

1 UNITÀ L ELBORZIONE DEI DTI IN FISIC 1. Gli errori di misura.. Errori di sensibilità, errori casuali, errori sistematici. 3. La stima dell errore. 4. La media, la semidispersione e lo scarto quadratico medio. 5. L errore assoluto, relativo e percentuale. L errore assoluto di una misura è l errore che si coette quando si effettua la misura con uno strumento e, secondo i casi che si possono presentare, può essere uguale o all errore di sensibilità dello strumento o alla semidispersione o allo scarto quadratico medio. In generale, la grandezza fisica misurata si indica con, il valore misurato si indica con M e l errore assoluto si indica con e a. Il risultato della misura si scrive così: M ea L errore relativo di una misura è il rapporto tra l errore assoluto e il valore misurato. ea Si indica con e r e risulta che: er M L errore percentuale di una misura è l errore relativo moltiplicato per 100 ed espresso in percentuale. Si indica con e p e risulta: e ( e 100)% p r Per esempio, misurando la lunghezza di un chiodo con un righello tarato in millimetri, si ottiene il valore misurato M= 55, un errore di sensibilità di 1 e si scrive: l ( 55 1). Risulta perciò: errore assoluto e a = 1 errore relativo ea 1 er 0, 018 M 55 errore percentuale e ( e 100)% (0,018100)% 1,8 % p r 6. La precisione di una misura. La precisione di una misura coincide con il suo errore percentuale. Una misura è tanto più precisa quanto minore è il suo errore percentuale.

2 7. La propagazione degli errori. La propagazione degli errori è un problema che si presenta ogni volta che si esegue una misura indiretta e consiste nel determinare come si propagano gli errori dalle grandezze fisiche misurate con lo strumento alle grandezze fisiche calcolate con la formula. Per esempio, se si vuole misurare l area di una banconota, si utilizza un righello tarato in millimetri, si misura la base b e si ottiene un valore medio b 17 con un errore assoluto b 1. Si scrive: b b b ( 17 1) Poi si misura l altezza h e si ottiene un valore medio Si scrive: h h h ( 67 1) Successivamente si calcola il valore medio dell area utilizzando la formula: b h h 67 con un errore assoluto h 1. Per ottenere l errore assoluto dell area si può calcolare il valore massimo dell area M, il valore minimo dell area m e poi la semidifferenza tra M e m che ci darà l errore assoluto dell area Δ. M m b M b m h h M M m m Il calcolo dell area alla fine si esprime in questo modo: ( ) (85,0910 1,9410 ) (85,09 1,94) 10 Generalmente si scrive l errore con una sola cifra e si ottiene il risultato definitivo: ( 85 ) Le cifre significative di un numero decimale. Sono le cifre che hanno effettivamente significato all interno del numero. Il numero di cifre significative si determina contando le cifre da quella più a destra (qualunque sia) a quella più a sinistra diversa da zero. Esempi: 3,47 ha 3 cifre significative; 14,70 ha 4 cifre significative;,074 ha 4 cifre significative; 0,73 ha 3 cifre significative; 0,003 ha cifre significative; Gli zeri che si trovano a sinistra non sono significativi, poiché si possono eliminare scrivendo il numero in forma scientifica. 3 Per es. 0,003,310 e le cifre significative sono effettivamente due. 9. Le cifre significative di una misura diretta. Sono le cifre che vengono effettivamente lette quando si esegue la misura con uno strumento. Esse sono tutte le cifre che si misurano con certezza e la prima cifra incerta. Per esempio se si misura una lunghezza con una rotella metrica tarata in centimetri, si deve scrivere: l=36,43 m poiché i 36 m si misurano con certezza, i 4 dm si misurano con certezza e i 3 cm sono incerti poiché potrebbero essere anche o 4. Per questa misura non ha senso scrivere l=36,43 m poiché lo strumento utilizzato non permette di misurare i millimetri. D altra parte non è corretto scrivere l=36,4 m poiché lo strumento utilizzato permette di apprezzare i centimetri e bisogna indicarli.

3 10. Le cifre significative di una misura indiretta. Sono le cifre che ha senso scrivere quando si calcola il risultato di una misura indiretta. Queste cifre devono essere tante quante sono le cifre della misura meno precisa. Per esempio, se abbiamo due lunghezze: l 1,844 m e l 1,1 m e con questi valori si eseguono dei calcoli, il risultato finale deve essere scritto con tre cifre significative. addizione: sottrazione: l 1 l,844 m 1,1 m 3,964 m 3,96 m l 1 l,844 m1,1 m 1,744 m 1,74 m moltiplicazione: l l 1,844 m1,1 m 3,1858 m 3,19 m l1,844m quoziente:, , 54 l 1,1m 11. rrotondamento di un numero. È un operazione che bisogna eseguire per scrivere il risultato di una misura col giusto numero di cifre significative, eliminando quelle non significative. Se la cifra che si elimina è 0, 1,, 3, o 4, l ultima cifra che rimane si lascia invariata (arrotondamento per difetto); Se la cifra che si elimina è 5, 6, 7, 8, o 9, l ultima cifra che rimane si aumenta di una unità (arrotondamento per eccesso). Per esempio il numero 1,3764 contiene 7 cifre significative; arrotondato con 6 cifre significative diventa: 1,3764 arrotondato con 5 cifre significative diventa: 1,376 arrotondato con 4 cifre significative diventa: 1,38 arrotondato con 3 cifre significative diventa: 1,4

4 1. Il calibro ventesimale. È uno strumento formato da una scala principale fissa tarata in millimetri e una scala secondaria scorrevole, detta nonio (dal nome dell inventore portoghese). Con esso si possono misurare: 1. le dimensioni esterne di un oggetto posto tra le ganasce ;. le dimensioni interne di un oggetto posto tra le ganasce B; 3. la profondità di una cavità, mediante l asticella C. Si può notare che, quando le ganasce sono chiuse senza alcuno spessore in mezzo (Fig. 1), lo zero della scala fissa è allineato esattamente con lo zero del nonio. Inoltre, 19 divisioni sulla scala fissa, cioè 19 millimetri, corrispondono a 0 divisioni sulla scala del nonio. Ciò vuol dire che, mentre ogni divisione della scala fissa corrisponde ad 1 millimetro, ogni divisione della scala del nonio è un po più piccola e corrisponde a 19/0, infatti: Fig. 1 Calibro con le ganasce chiuse Eseguendo la misura di uno spessore d, la scala del nonio si sposta rispetto alla scala principale e la lunghezza dello spessore d è data proprio dalla distanza tra lo zero principale e lo zero del nonio. Supponiamo che, eseguendo la misura di uno spessore d, si presenti la situazione indicata in figura. Si vede che lo spessore d risulta: B C d = 1 + B Fig. Ganasce del calibro quando si misura uno spessore d. Per valutare B bisogna vedere quale tacca del nonio è allineata esattamente ad una tacca della scala principale. Tale allineamento avviene nel punto C, in corrispondenza della nona tacca del nonio, per cui risulta che: 19 B= C- BC = ,55 0, 45 0 Perciò lo spessore d risulta: d 1 0,45 1,45 Siccome è possibile sbagliare la lettura di una divisione, cioè di 1/0 = 0,05, la misura si deve scrivere col giusto numero di cifre significative in questo modo: d 1,45 0,05 (1,45 0,05) Osservare che la parte decimale del risultato si può leggere direttamente sul nonio senza eseguire calcoli, poiché la tacca del nonio meglio allineata è la tacca successiva al numero 4, che corrisponde a 0,45.

5 Supponiamo ora che, misurando la lunghezza l di un oggetto, si presenta la situazione indicata in fig. 3. La lunghezza dell oggetto é: l = 19 + B L allineamento fra la tacca del nonio e la tacca della scala principale avviene nel punto C, in corrispondenza della tredicesima tacca del nonio, per cui risulta che: B C Fig. 3 Ganasce del calibro quando si misura una lunghezza l. 19 B= C- BC = ,35 0, 65 0 Perciò la lunghezza risulta: l 19 0,65 19,65 e il risultato della misura si scrive in questo modo: l ( 19,65 0,05) Osservare che la parte decimale del risultato si può leggere direttamente sul nonio, essendo la tacca meglio allineata quella successiva al numero 6, che corrisponde proprio a 0,65. Come esercizio, valuta la lunghezza delle misure seguenti e scrivila con l errore e col giusto numero di cifre significative: l 1 l l 3

6 13. La rappresentazione dei dati sperimentali. Se due grandezze fisiche ed y sono in relazione tra loro, si può osservare che variando una di esse, per esempio, varia anche l altra, cioè y. Effettuando varie misure della e varie misure della y si possono ordinare i dati in una tabella, poi si possono rappresentare in un grafico cartesiano e infine dal grafico si può ottenere la legge fisica, cioè l equazione matematica che lega tra loro le grandezze ed y. I principali grafici che si possono ottenere sono: 1. proporzionalità diretta;. proporzionalità inversa; 3. proporzionalità quadratica diretta; 4. proporzionalità quadratica inversa; 5. relazione lineare. Per ognuno di questi tipi di grafico bisogna saper fare due cose: a) data la formula, saper disegnare il grafico; b) dato il grafico, saper ricavare la formula.

7 14. La proporzionalità diretta. La formula è del tipo: y k dove k può essere un numero qualunque. Il grafico che rappresenta questa formula è una retta che passa per l origine degli assi e il valore di k si chiama coefficiente angolare della retta. Il valore del coefficiente angolare indica la pendenza della retta: se il coefficiente angolare è grande, la retta è molto ripida (quasi verticale); se il coefficiente angolare è piccolo, la retta è poco ripida (quasi orizzontale); Esempio 1: Data la formula y disegnare il grafico. Si assegnano alla alcuni valori arbitrari e si calcolano i valori corrispondenti della y. Con questi valori si costruisce una tabella e si disegnano i punti ottenuti sugli assi cartesiani. y Esempio : Dato il grafico, ricavare la formula. Siccome è una retta che passa per l origine degli assi, si tratta di una proporzionalità diretta, perciò la formula è del tipo y k y Ricavando k si ottiene: k perciò il valore di k si ottiene considerando un punto qualsiasi del grafico e calcolando il rapporto tra l ordinata y e l ascissa. 6 Per esempio considerando il punto (;6) si ottiene: ottiene: k 3 Perciò la formula che corrisponde al grafico è: y 3

8 15. La proporzionalità inversa. k La formula è del tipo: y dove k può essere un numero qualunque. Il grafico che rappresenta questa formula è una iperbole equilatera, cioè sietrica rispetto alla bisettrice del primo e terzo quadrante. 8 Esempio 1: Data la formula y disegnare il grafico. Si assegnano alla alcuni valori arbitrari e si calcolano i valori corrispondenti della y. Con questi valori si costruisce una tabella e si disegnano i punti ottenuti sugli assi cartesiani. y Esempio : Dato il grafico, ricavare la formula. Siccome è una iperbole equilatera, si tratta di una proporzionalità inversa, perciò la formula è k del tipo y Ricavando k si ottiene: k y perciò il valore di k si ottiene considerando un punto qualsiasi del grafico e calcolando il prodotto tra l ascissa e l ordinata y. Per esempio considerando il punto (5;) si ottiene: ottiene: k 5 10 Perciò la formula che corrisponde al grafico è: 10 y

9 L PROPORZIONLIT QUDRTIC DIRETT La formula è del tipo: y k dove k può essere un numero qualunque. Il grafico che rappresenta questa formula è una parabola con il vertice nell origine degli assi. Esempio 1: Data la formula y 3 disegnare il grafico. Si assegnano alla alcuni valori arbitrari e si calcolano i valori corrispondenti della y. Con questi valori si costruisce una tabella e si disegnano i punti ottenuti sugli assi cartesiani. y Esempio : Dato il grafico, ricavare la formula. Siccome è una parabola con il vertice nell origine degli assi, si tratta di una proporzionalità quadratica diretta, perciò la formula è del tipo y k y Ricavando k si ottiene: k perciò il valore di k si ottiene considerando un punto qualsiasi del grafico e calcolando il rapporto tra l ordinata e il quadrato dell ascissa. 8 8 Per esempio considerando il punto (;8) si ottiene: ottiene: k 4 Perciò la formula che corrisponde al grafico y

10 L PROPORZIONLIT QUDRTIC INVERS k La formula è del tipo: y dove k può essere un numero qualunque. Il grafico che rappresenta questa formula è una iperbole non equilatera, cioè non sietrica rispetto alla bisettrice del primo e terzo quadrante. 8 Esempio 1: Data la formula y disegnare il grafico. Si assegnano alla alcuni valori arbitrari e si calcolano i valori corrispondenti della y. Con questi valori si costruisce una tabella e si disegnano i punti ottenuti sugli assi cartesiani. y 0, ,5 8 0,15 Esempio : Dato il grafico, ricavare la formula. Siccome è una iperbole non equilatera, si tratta di una proporzionalità quadratica inversa, perciò la formula k è del tipo y Ricavando k si ottiene: k y perciò il valore di k si ottiene considerando un punto qualsiasi del grafico e calcolando il prodotto tra il quadrato dell ascissa e l ordinata. Per esempio considerando il punto (;1) si ottiene: ottiene: k Perciò la formula che corrisponde al grafico è: y

11 L RELZIONE LINERE La formula è del tipo: y m q dove m e q sono due numeri qualsiasi. Il grafico che rappresenta questa formula è una retta che non passa per l origine degli assi. Esempio 1: Data la formula y 1 disegnare il grafico. Si assegnano alla alcuni valori arbitrari e si calcolano i valori corrispondenti della y. Con questi valori si costruisce una tabella e si disegnano i punti ottenuti sugli assi cartesiani. y Esempio : Dato il grafico, ricavare la formula. Siccome è una retta che non passa per l origine degli assi, si tratta di una relazione lineare, perciò la formula è del tipo: y m q Il numero m si chiama coefficiente angolare e indica l inclinazione della retta. Il valore di m si determina scegliendo due punti qualsiasi della retta e calcolando il rapporto tra la differenza delle ordinate e la differenza delle ascisse. 8 6 Per esempio, scegliendo i punti (0;) e (;8) si ottiene: m 3 0 Il numero q si chiama ordinata all origine e rappresenta l ordinata del punto di intersezione della retta con l asse y. Nel grafico la retta incontra l asse y nel punto (0;) di ordinata, perciò q=. La retta y m q diventa quindi y 3

Capitolo 2 Le misure delle grandezze fisiche

Capitolo 2 Le misure delle grandezze fisiche Capitolo 2 Le misure delle grandezze fisiche Gli strumenti di misura Gli errori di misura Il risultato di una misura Errore relativo ed errore percentuale Propagazione degli errori Rappresentazione di

Dettagli

Dati sperimentali Nella serie di 10 misurazioni di tempo effettuate, si sono ottenuti i seguenti valori espressi in secondi:

Dati sperimentali Nella serie di 10 misurazioni di tempo effettuate, si sono ottenuti i seguenti valori espressi in secondi: ESPERIMENTO DI LABORATORIO DI FISICA MISURE DI TEMPO Obiettivo L obiettivo dell esperimento, oltre che familiarizzare con le misure di tempo, è quello di rivelare gli errori casuali, elaborare statisticamente

Dettagli

Errori di misura Teoria

Errori di misura Teoria Errori di misura Teoria a misura operazione di misura di una grandezza fisica, anche se eseguita con uno strumento precisissimo e con tecniche e procedimenti accurati, è sempre affetta da errori. Gli errori

Dettagli

Laboratorio di Fisica

Laboratorio di Fisica Laboratorio di Fisica dott. G. Casini ARGOMENTO 1: Misura delle grandezze fisiche LDFM Laboratorio di Fisica presentazione realizzata dal prof. Antonio Covello Schema della relazione di laboratorio Strumenti

Dettagli

Quadro riassuntivo di geometria analitica

Quadro riassuntivo di geometria analitica Quadro riassuntivo di geometria analitica IL PIANO CARTESIANO (detta ascissa o coordinata x) e y quella dall'asse x (detta ordinata o coordinata y). Le coordinate di un punto P sono: entrambe positive

Dettagli

Geometria Analitica Domande e Risposte

Geometria Analitica Domande e Risposte Geometria Analitica Domande e Risposte A. Il Piano Cartesiano. Qual è la formula della distanza tra due punti nel piano cartesiano? Per calcolare la formula della distanza tra due punti nel piano cartesiano

Dettagli

Moltiplicazione. Divisione. Multipli e divisori

Moltiplicazione. Divisione. Multipli e divisori Addizione Sottrazione Potenze Moltiplicazione Divisione Multipli e divisori LE QUATTRO OPERAZIONI Una operazione aritmetica è quel procedimento che fa corrispondere ad una coppia ordinata di numeri (termini

Dettagli

Cifre significative delle misure di grandezze fisiche

Cifre significative delle misure di grandezze fisiche Cifre significative delle misure di grandezze fisiche Si definiscono grandezze fisiche tutte quelle entità con cui vengono descritti i fenomeni fisici e che sono suscettibili di una definizione quantitativa,

Dettagli

Equivalenze. Prof. A. Spagnolo IMS P. Villari - Napoli

Equivalenze. Prof. A. Spagnolo IMS P. Villari - Napoli Equivalenze 12dm 2...mm 2 ; 14037cm 2...m 2 ; 12kg...cg; 12hm 2...m 2 ; 3km/h...m/s; 12,8m/s...km/h; 5,5km/min...m/s; 6700m/h...m/s; 34m/s...m/h; 3,75m/s...km/min; 350kg/m 3...g/cm 3 ; 14,4g/cm 3...kg/m

Dettagli

1 Nozioni utili sul piano cartesiano

1 Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Il piano cartesiano è un sistema di riferimento costituito da due rette perpendicolari (una orizzontale detta asse delle ascisse x

Dettagli

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Risoluzione grafica di un equazione

Dettagli

FISICA. Elaborazione dei dati sperimentali. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

FISICA. Elaborazione dei dati sperimentali. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica FISICA Elaborazione dei dati sperimentali Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica LA MISURA GLI STRUMENTI DI MISURA Gli strumenti di misura possono essere analogici o digitali.

Dettagli

Laboratorio di Fisica-Chimica

Laboratorio di Fisica-Chimica Laboratorio di Fisica-Chimica Lezione n.1. Che cos'è la Fisica? La Fisica è una scienza che si occupa dello studio dei fenomeni che avvengono in natura. Questo studio viene compiuto tramite la definizione

Dettagli

Una funzione può essere:

Una funzione può essere: Date due grandezze variabili, variabile indipendente e y variabile dipendente, si dice che y è funzione di se esiste una legge o proprietà di qualsiasi natura che fa corrispondere a ogni valore di uno

Dettagli

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 1) PIANO CARTESIANO serve per indicare, identificare, chiamare... ogni PUNTO del piano (ente geometrico) con una coppia di valori numerici (detti COORDINATE).

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

LABORATORIO DI CIRCUITI ELETTRICI Nozioni generali e guida agli esperimenti. Rappresentazione grafica dei risultati sperimentali

LABORATORIO DI CIRCUITI ELETTRICI Nozioni generali e guida agli esperimenti. Rappresentazione grafica dei risultati sperimentali LABORATORIO DI CIRCUITI ELETTRICI Nozioni generali e guida agli esperimenti Rappresentazione grafica dei risultati sperimentali Uno strumento molto utile per comunicare e leggere risultati sperimentali

Dettagli

Importanza delle incertezze nelle misure fisiche

Importanza delle incertezze nelle misure fisiche Importanza delle incertezze nelle misure fisiche La parola errore non significa equivoco o sbaglio Essa assume il significato di incertezza da associare alla misura Nessuna grandezza fisica può essere

Dettagli

La misura e le incertezze

La misura e le incertezze 1. Gli strumenti di misura Gli strumenti di misura vengono utilizzati per effettuare la misura di una grandezza fisica. Esistono due tipologie di strumenti di misura: 1. strumenti analogici, in cui la

Dettagli

Precisione e accuratezza

Precisione e accuratezza Precisione e accuratezza Ogni misura comporta una stima! Accuratezza: quanto la misura è prossima al valore corretto Precisione: quanto le singole misure sono in accordo tra loro Le cifre significative

Dettagli

Grandezze e Misure 1

Grandezze e Misure 1 Grandezze e Misure 1 Grandezze e Misure Introduzione Il Metodo Sperimentale Unità di Misura Grandezze Fondamentali e Derivate Massa e Densità Misure dirette e indirette Strumenti di misura Errori nelle

Dettagli

EQUAZIONE DELLA RETTA

EQUAZIONE DELLA RETTA EQUAZIONE DELLA RETTA EQUAZIONE DEGLI ASSI L equazione dell asse x è 0. L equazione dell asse y è 0. EQUAZIONE DELLE RETTE PARALLELE AGLI ASSI L equazione di una retta r parallela all asse x è cioè è uguale

Dettagli

Scale Logaritmiche. Matematica con Elementi di Statistica a.a. 2015/16

Scale Logaritmiche. Matematica con Elementi di Statistica a.a. 2015/16 Scale Logaritmiche Scala Logaritmica: sull asse prescelto (ad esempio, l asse x) si rappresenta il punto di ascissa = 0 0 nella direzione positiva si rappresentano, a distanze uguali fra di loro, i punti

Dettagli

Punti nel piano cartesiano

Punti nel piano cartesiano Punti nel piano cartesiano In un piano consideriamo due rette perpendicolari che chiamiamo x e. Solitamente, disegniamo la retta x (ascisse) orizzontalmente e orientata da sinistra a destra, la retta e

Dettagli

FUNZIONI ELEMENTARI Funzione retta

FUNZIONI ELEMENTARI Funzione retta 1 FUNZIONI ELEMENTARI Funzione retta L equazione generale della funzione retta è y = a x + b dove a, b sono numeri reali fissati. Il termine b si chiama termine noto e dà l ordinata dell intersezione tra

Dettagli

1.4 Geometria analitica

1.4 Geometria analitica 1.4 Geometria analitica IL PIANO CARTESIANO Per definire un riferimento cartesiano nel piano euclideo prendiamo: Un punto detto origine i Due rette orientate passanti per. ii Due punti e per definire le

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

Esercizi di Elementi di Matematica Corso di laurea in Farmacia

Esercizi di Elementi di Matematica Corso di laurea in Farmacia Esercizi di Elementi di Matematica Corso di laurea in Farmacia dott.ssa Marilena Ligabò November 24, 2015 1 Esercizi sulla notazione scientifica Esercizio 1.1. Eseguire il seguente calcolo utilizzando

Dettagli

Verifica di Topografia

Verifica di Topografia ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI " In Memoria dei Morti per la Patria " * CHIAVARI * ANNO SCOLASTICO 2010-2011 Verifica di Topografia classe 3^ Geometri 1) In un appezzamento a forma

Dettagli

.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1

.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1 Funzioni FUNZIONI Una funzione è una relazione fra due insiemi non vuoti e, che associa ad ogni elemento uno e un solo elemento. In simboli si scrive: = oppure. A x 1. x. x 3..y 1.y.y 3 B C.y 5 x 4..y

Dettagli

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi PIANO CARTESIANO Il piano cartesiano è individuato da due rette perpendicolari (ortogonali) che si incontrano in un punto O detto origine del piano cartesiano. Si fissa sulla retta orizzontale il verso

Dettagli

SCUOLA PRIMARIA MATEMATICA (Classe 1ª)

SCUOLA PRIMARIA MATEMATICA (Classe 1ª) SCUOLA PRIMARIA MATEMATICA (Classe 1ª) Operare con i numeri nel calcolo scritto e mentale Leggere e scrivere numeri naturali in cifre e lettere. Contare in senso progressivo e regressivo. Raggruppare,

Dettagli

GEOMETRIA ANALITICA. Il Piano cartesiano

GEOMETRIA ANALITICA. Il Piano cartesiano GEOMETRIA ANALITICA La geometria analitica consente di studiare e rappresentare per via algebrica informazioni di tipo geometrico. Lo studio favorisce una più immediata visualizzazione di informazioni,

Dettagli

Piano cartesiano e Retta

Piano cartesiano e Retta Piano cartesiano e Retta 1 Piano cartesiano e Retta 1. Richiami sul piano cartesiano 2. Richiami sulla distanza tra due punti 3. Richiami punto medio di un segmento 4. La Retta (funzione lineare) 5. L

Dettagli

4 + 7 = 11. Possiamo quindi dire che:

4 + 7 = 11. Possiamo quindi dire che: Consideriamo due numeri naturali, per esempio 4 e 7. Contando successivamente, dopo le unità del primo, le unità del secondo si esegue l operazione aritmetica detta addizione, il cui simbolo è + ; 4 +

Dettagli

7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi.

7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi. NUMERI RAZIONALI Q Nell insieme dei numeri naturali e nell insieme dei numeri interi relativi non è sempre possibile effettuare l operazione di divisione. Infatti, eseguendo la divisione 7 2 si ottiene

Dettagli

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si PROBLEMA Determinare il punto simmetrico di P( ;) rispetto alla retta x y =0 Soluzione Il simmetrico di P rispetto ad una retta r è il punto P che appartiene alla retta passante per P, perpendicolare ad

Dettagli

Tutte le altre grandezze fisiche derivano da queste e sono dette grandezze DERIVATE (es. la superficie e il volume).

Tutte le altre grandezze fisiche derivano da queste e sono dette grandezze DERIVATE (es. la superficie e il volume). Grandezze fisiche e misure La fisica studia i fenomeni del mondo che ci circonda e ci aiuta a capirli. Tutte le grandezze che caratterizzano un fenomeno e che possono essere misurate sono dette GRANDEZZE

Dettagli

Programma di Matematica Classe 3^ A/L.S.U. Anno scolastico 2014/2015

Programma di Matematica Classe 3^ A/L.S.U. Anno scolastico 2014/2015 Programma di Matematica Classe 3^ A/L.S.U. Anno scolastico 2014/2015 Ripasso: le equazioni lineari. Ripasso: i prodotti notevoli. Ripasso: i sistemi lineari e il metodo della sostituzione. Ripasso: le

Dettagli

LA PARABOLA. Parabola con asse di simmetria coincidente con l asse y e passante per l origine. Equazione canonica Vertice V ( 0,0) Fuoco

LA PARABOLA. Parabola con asse di simmetria coincidente con l asse y e passante per l origine. Equazione canonica Vertice V ( 0,0) Fuoco LA PARABOLA La parabola è il luogo geometrico dei punti del piano equidistanti da un punto fisso F detto fuoco e da una retta fissa detta direttrice. Parabola con asse di simmetria coincidente con l asse

Dettagli

Numeri decimali, rapporti e proporzioni

Numeri decimali, rapporti e proporzioni Numeri decimali, rapporti e proporzioni E. Modica erasmo@galois.it Liceo Scientifico Statale S. Cannizzaro Corso P.O.N. Modelli matematici e realtà A.S. 2010/2011 Da una forma all altra... Dalla frazione

Dettagli

Sintesi degli argomenti di fisica trattati (parte uno)

Sintesi degli argomenti di fisica trattati (parte uno) Sintesi degli argomenti di fisica trattati (parte uno) La grandezza fisica è una proprietà dello spazio o della materia che può essere misurata. Fare una misura vuol dire confrontare la grandezza fisica

Dettagli

Testi verifiche 3 C 3 I a. s. 2008/2009

Testi verifiche 3 C 3 I a. s. 2008/2009 Testi verifiche 3 C 3 I a. s. 2008/2009 1) Sono assegnati i punti A(- 1; 3) C(3; 0) M ;1 a) Ricavare le coordinate del simmetrico di A rispetto a M e indicarlo con B. Verificare che il segmento congiungente

Dettagli

Test di Matematica di base

Test di Matematica di base Test di Matematica di base Geometria Il rapporto tra la superficie di un quadrato e quella di un triangolo equilatero di eguale lato è a. 4 b. 4 d. [ ] Quali sono le ascisse dei punti della curva di equazione

Dettagli

M E T R O L O G I A D O F F I C I N A (Distillazione verticale)

M E T R O L O G I A D O F F I C I N A (Distillazione verticale) 1 M E T R O L O G I A D O F F I C I N A (Distillazione verticale) OBIETTIVI: A) Conoscenza delle caratteristiche degli strumenti di misura; B) Capacità di leggere e utilizzare calibri a corsoio e micrometri

Dettagli

Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classe III C ESERCIZI ESTIVI 2013/14

Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classe III C ESERCIZI ESTIVI 2013/14 Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri Classe III C ESERCIZI ESTIVI 013/14 ALUNNO CLASSE ESEGUI TUTTI GLI ESERCIZI SU UN FOGLIO PROTOCOLLO O UN QUADERNO. Ulteriore

Dettagli

Equazioni Polinomiali II Parabola

Equazioni Polinomiali II Parabola Equazioni Polinomiali II Parabola - 0 Equazioni Polinomiali del secondo grado (Polinomi II) Forma Canonica e considerazioni La forma canonica dell equazione polinomiale di grado secondo è la seguente:

Dettagli

Accuratezza, precisione, tipi di errori e cifre significative dei dati analitici.

Accuratezza, precisione, tipi di errori e cifre significative dei dati analitici. Accuratezza, precisione, tipi di errori e cifre significative dei dati analitici. Indice: 1. Lettura della buretta pag.2 2. Precisione ed Accuratezza pag.3 3. Tipi di errori pag.4 4. Affidabilità di una

Dettagli

CORSO DI TIROCINIO FORMATIVO ATTIVO (TFA) CLASSE DI CONCORSO A033 ANNO ACCADEMICO 2014/15 PROF. GIUSEPPE NATALE

CORSO DI TIROCINIO FORMATIVO ATTIVO (TFA) CLASSE DI CONCORSO A033 ANNO ACCADEMICO 2014/15 PROF. GIUSEPPE NATALE CORSO DI TIROCINIO FORMATIVO ATTIVO (TFA) CLASSE DI CONCORSO A033 METODOLOGIE DIDATTICHE PER L INSEGNAMENTO DELLA TECNOLOGIA ANNO ACCADEMICO 2014/15 PROF. GIUSEPPE NATALE La misura delle grandezze fisiche

Dettagli

Le coniche: circonferenza, parabola, ellisse e iperbole.

Le coniche: circonferenza, parabola, ellisse e iperbole. Le coniche: circonferenza, parabola, ellisse e iperbole. Teoria in sintesi Queste curve si chiamano coniche perché sono ottenute tramite l intersezione di una superficie conica con un piano. Si possono

Dettagli

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA. PROGRAMMA DI Matematica. Classe IIIB. Anno Scolastico

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA. PROGRAMMA DI Matematica. Classe IIIB. Anno Scolastico LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI Matematica Classe IIIB Anno Scolastico 2014-2015 Insegnante: Prof.ssa La Salandra Incoronata 1 DISEQUAZIONI Disequazioni razionali intere di secondo

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

Strumenti Matematici per la Fisica

Strumenti Matematici per la Fisica Strumenti Matematici per la Fisica Strumenti Matematici per la Fisica Sistema Metrico Decimale Equivalenze Potenze di Notazione scientifica (o esponenziale) Ordine di Grandezza Approssimazioni Proporzioni

Dettagli

Mutue posizioni della parabola con gli assi cartesiani

Mutue posizioni della parabola con gli assi cartesiani Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse

Dettagli

ANALISI CHIMICO FARMACEUTICA I

ANALISI CHIMICO FARMACEUTICA I Prof. Gianluca Sbardella : 089 969770 : gsbardella@unisa.it L INCERTEZZA E LE CIFRE SIGNIFICATIVE Tutte le misure sono affette da un certo grado di incertezza la cui entità può dipendere sia dall operatore

Dettagli

Condizione di allineamento di tre punti

Condizione di allineamento di tre punti LA RETTA L equazione lineare in x e y L equazione: 0 con,,, e non contemporaneamente nulli, si dice equazione lineare nelle due variabili e. Ogni coppia ; tale che: 0 si dice soluzione dell equazione.

Dettagli

Analisi degli Errori di Misura. 08/04/2009 G.Sirri

Analisi degli Errori di Misura. 08/04/2009 G.Sirri Analisi degli Errori di Misura 08/04/2009 G.Sirri 1 Misure di grandezze fisiche La misura di una grandezza fisica è descrivibile tramite tre elementi: valore più probabile; incertezza (o errore ) ossia

Dettagli

ECONOMIA APPLICATA ALL INGEGNERIA (Docente: Prof. Ing. Donato Morea) Microeconomia Esercitazione n. 1 - I FONDAMENTI DI DOMANDA E DI OFFERTA

ECONOMIA APPLICATA ALL INGEGNERIA (Docente: Prof. Ing. Donato Morea) Microeconomia Esercitazione n. 1 - I FONDAMENTI DI DOMANDA E DI OFFERTA ESERCIZIO n. 1 - Equilibrio di mercato e spostamenti delle curve di domanda e di offerta La quantità domandata di un certo bene è descritta dalla seguente funzione: p (D) mentre la quantità offerta è descritta

Dettagli

Questo paragrafo e quello successivo trattano gli stessi argomenti del capitolo B6 relativo alla soluzione grafica dei sistemi di primo grado.

Questo paragrafo e quello successivo trattano gli stessi argomenti del capitolo B6 relativo alla soluzione grafica dei sistemi di primo grado. D1. Retta D1.1 Equazione implicita ed esplicita Ogni equazione di primo grado in due incognite rappresenta una retta sul piano cartesiano (e viceversa). Si può scrivere un equazione di primo grado in due

Dettagli

Misure di velocità con la guidovia a cuscino d aria (1)

Misure di velocità con la guidovia a cuscino d aria (1) Misure di velocità con la guidovia a cuscino d aria (1) Obiettivo: Riprodurre un moto con velocità costante utilizzando la guidovia a cuscino d aria. Ricavare la tabella oraria e il grafico orario (grafico

Dettagli

Test di autovalutazione

Test di autovalutazione Test di autovalutazione 0 10 0 30 40 50 60 70 80 90 100 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle 5 alternative. n Confronta le tue risposte con le soluzioni.

Dettagli

C I R C O N F E R E N Z A...

C I R C O N F E R E N Z A... C I R C O N F E R E N Z A... ESERCITAZIONI SVOLTE 3 Equazione della circonferenza di noto centro C e raggio r... 3 Equazione della circonferenza di centro C passante per un punto A... 3 Equazione della

Dettagli

RIPASSO DI MATEMATICA FRAZIONI

RIPASSO DI MATEMATICA FRAZIONI SOMMA a) Trovo m.c.m.tra i denominatori b) il risultato diventa il nuovo denominatore RIPASSO DI MATEMATICA FRAZIONI a) eseguo la divisione tra il nuovo denominatore con il denominatore b) moltiplico il

Dettagli

ACCURATEZZA. L accuratezza esprime la vicinanza del risultato al valore vero o accettato come tale. PRECISIONE

ACCURATEZZA. L accuratezza esprime la vicinanza del risultato al valore vero o accettato come tale. PRECISIONE 2 ACCURATEZZA L accuratezza esprime la vicinanza del risultato al valore vero o accettato come tale. PRECISIONE La precisione descrive l accordo tra due o più misure replicate. 3 NOTAZIONE SCIENTIFICA

Dettagli

LA RETTA NEL PIANO CARTESIANO

LA RETTA NEL PIANO CARTESIANO LA RETTA NEL PIANO CARTESIANO LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate cartesiane su una retta r, è necessario considerare: un punto O detto origine; un verso di percorrenza;

Dettagli

CONOSCENZE 1. i numeri decimali finiti o illimitati

CONOSCENZE 1. i numeri decimali finiti o illimitati ARITMETICA PREREQUISITI l l l conoscere le proprietaá delle quattro operazioni e saper operare con esse conoscere il sistema di numerazione decimale svolgere calcoli con le frazioni CONOSCENZE 1. i numeri

Dettagli

CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica

CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica ISTITUTO PROVINCIALE DI CULTURA E LINGUE NINNI CASSARÀ SEDE DI VIA FATTORI CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica erasmo@galois.it DEFINIZIONI Definizione. Dicesi parabola il luogo

Dettagli

Verifica di Topografia

Verifica di Topografia ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI " In Memoria dei Morti per la Patria " * CHIAVARI * ANNO SCOLASTICO 2010-2011 Verifica di Topografia classe 5^ Geometri 1) Se il seno e il coseno di

Dettagli

Rappresentazione di Dati: Scala lineare Scala logaritmica. Grafici Lin Lin Grafici Lin Log Grafici Log Log

Rappresentazione di Dati: Scala lineare Scala logaritmica. Grafici Lin Lin Grafici Lin Log Grafici Log Log Rappresentazione di Dati: Scala lineare Scala logaritmica Grafici Lin Lin Grafici Lin Log Grafici Log Log Grafici in scala lineare Grafici Lin Lin Nella rappresentazione di dati in un piano cartesiano

Dettagli

Il Sistema di numerazione decimale

Il Sistema di numerazione decimale Il Sistema di numerazione decimale Il NUMERO è un oggetto astratto, rappresentato da un simbolo (o cifra) ed è usato per contare e misurare. I numeri usati per contare, 0,1,2,3,4,5,. sono detti NUMERI

Dettagli

Funzioni... senza limiti

Funzioni... senza limiti Funzioni... senza limiti Versione del 18 aprile 2007 Propongo, in questa nota, una serie di esempi di grafici di funzioni tracciati per via elementare, senza l uso del calcolo differenziale. Una trattazione

Dettagli

= < < < < < Matematica 1

= < < < < < Matematica  1 NUMERI NATURALI N I numeri naturali sono: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,... L insieme dei numeri naturali è indicato con la lettera. Si ha cioè: N= 0,1,2,3,4,5,6,7,.... L insieme dei naturali privato

Dettagli

Rappresenta nel piano cartesiano l insieme dei punti P(x; y) le cui coordinate soddisfano le seguenti condizioni:

Rappresenta nel piano cartesiano l insieme dei punti P(x; y) le cui coordinate soddisfano le seguenti condizioni: ultima modifica /0/0 ESERCIZI PROPOSTI IL PIANO CARTESIANO LE COORDINATE DI UN PUNTO NEL PIANO CARTESIANO A Quali sono le coordinate dei punti indicati in figura? B Quali sono le coordinate dei punti indicati

Dettagli

Curricolo verticale MATEMATICA

Curricolo verticale MATEMATICA Curricolo verticale MATEMATICA Scuola dell Infanzia L alunno è in grado di identificare e nominare i numeri naturali da 0 a 10 L alunno è in grado di comprendere le quantità L alunno è in grado di contare

Dettagli

2. APPUNTI SUI FASCI DI CIRCONFERENZE (raccolti dal prof. G. Traversi)

2. APPUNTI SUI FASCI DI CIRCONFERENZE (raccolti dal prof. G. Traversi) 2. APPUNTI SUI FASCI DI CIRCONFERENZE (raccolti dal prof. G. Traversi) La circonferenza è la curva di 2^ grado che viene individuata univocamente da tre punti non allineati e possiede la seguente proprietà:

Dettagli

2. Determina l equazione della circonferenza passante per i punti A ( 2; 4), B ( 1; 3) ed avente centro sulla retta di equazione 2x 3y + 2 = 0.

2. Determina l equazione della circonferenza passante per i punti A ( 2; 4), B ( 1; 3) ed avente centro sulla retta di equazione 2x 3y + 2 = 0. CLASSE 3^ C LICEO SCIENTIFICO Novembre 01 La circonferenza 1. Ricava l equazione di ciascuna delle circonferenze rappresentate, spiegando in maniera esauriente il procedimento che seguirai, prima di svolgere

Dettagli

ESERCIZIARIO DI MATEMATICA

ESERCIZIARIO DI MATEMATICA Dipartimento di rete matematica ESERCIZIARIO DI MATEMATICA PER PREPARARSI ALLA SCUOLA SUPERIORE progetto Continuità SCUOLA SECONDARIA DI I GRADO Istituti comprensivi: Riva Riva Arco Dro Valle dei Laghi

Dettagli

Si ottiene facendo precedere i numeri naturali dal segno + o dal segno -.

Si ottiene facendo precedere i numeri naturali dal segno + o dal segno -. I numeri naturali non sono adatti per risolvere tutti i problemi. Esempio. La temperatura atmosferica di un mattino estivo, sopra lo zero, viene indicata con un numero preceduto dal segno + (+19 C, +25

Dettagli

Appunti ed esercizi di geometria analitica PRIMA PARTE

Appunti ed esercizi di geometria analitica PRIMA PARTE Appunti ed esercizi di geometria analitica PRIMA PARTE Per la teoria studiare su il libro di testo La retta e i sistemi lineari, modulo E, da pagina 594 a pagina 597. Esercizi da pagina 617 a pagina 623.

Dettagli

UNITA DIDATTICA. Conoscenze. Abilità

UNITA DIDATTICA. Conoscenze. Abilità Titolo: Problemi di geometria analitica : la parabola e l iperbole Codice: B1_S Ore previste:15 Equazione della parabola e coordinate del vertice Grafico di una parabola Equazione dell iperbole equilatera

Dettagli

FISICA. Elaborazione dei dati sperimentali. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

FISICA. Elaborazione dei dati sperimentali. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica FISICA Elaborazione dei dati sperimentali Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica LE GRANDEZZE FISICHE Una grandezza fisica è una quantità che può essere misurata con uno strumento

Dettagli

MATEMATICA LIGHT. Corso propedeutico di Matematica e Fisica non puoi non sapere! per il corso di laurea Equazioni

MATEMATICA LIGHT. Corso propedeutico di Matematica e Fisica non puoi non sapere! per il corso di laurea Equazioni MATEMATICA LIGHT Ovvero: le cose essenziali che Corso propedeutico di Matematica e Fisica non puoi non sapere! per il corso di laurea Equazioni in Infermieristica sede di Lodi Proporzioni Potenze Notazione

Dettagli

I numeri relativi. Definizioni Rappresentazione Operazioni Espressioni Esercizi. Materia: Matematica Autore: Mario De Leo

I numeri relativi. Definizioni Rappresentazione Operazioni Espressioni Esercizi. Materia: Matematica Autore: Mario De Leo I numeri relativi Definizioni Rappresentazione Operazioni Espressioni Esercizi Materia Matematica Autore Mario De Leo Definizioni I numeri relativi sono i numeri preceduti dal simbolo (positivi) o dal

Dettagli

Ricordiamo. 1. Tra le equazioni delle seguenti rette individua e disegna quelle parallele all asse delle ascisse:

Ricordiamo. 1. Tra le equazioni delle seguenti rette individua e disegna quelle parallele all asse delle ascisse: La retta Retta e le sue equazioni Equazioni di rette come luogo geometrico y = h h R equazione di una retta parallela all asse delle ascisse x = 0 equazione dell asse delle ordinate y = h h R equazione

Dettagli

Verifiche di matematica classe 3 C 2012/2013

Verifiche di matematica classe 3 C 2012/2013 Verifiche di matematica classe 3 C 2012/2013 1) È assegnato il punto P 1 (3; 1), calcolare le coordinate dei punti: P 2 simmetrico di P 1 rispetto alla bisettrice del primo e terzo quadrante P 3 simmetrico

Dettagli

PROGRAMMA DI MATEMATICA PER LA CLASSE 1^A DEL LICEO SCIENTIFICO MALPIGHI ANNO SCOLASTICO INSEGNANTE: MASCI ORNELLA

PROGRAMMA DI MATEMATICA PER LA CLASSE 1^A DEL LICEO SCIENTIFICO MALPIGHI ANNO SCOLASTICO INSEGNANTE: MASCI ORNELLA PROGRAMMA DI MATEMATICA PER LA CLASSE 1^A DEL LICEO SCIENTIFICO MALPIGHI ANNO SCOLASTICO 2014-2015 INSEGNANTE: MASCI ORNELLA ALGEBRA NUMERI NATURALI: - Ripetizione dei numeri naturali e delle quattro operazioni

Dettagli

GEOMETRIA ANALITICA 1 IL PIANO CARTESIANO

GEOMETRIA ANALITICA 1 IL PIANO CARTESIANO GEOMETRI NLITIC 1 IL PINO CRTESINO Il piano cartesiano è costituito da due rette orientate e tra loro perpendicolari chiamate assi cartesiani, generalmente una orizzontale e l altra verticale, sulle quali

Dettagli

Rappresentazione di Numeri Reali. Rappresentazione in virgola fissa (fixed-point) Rappresentazione in virgola fissa (fixed-point)

Rappresentazione di Numeri Reali. Rappresentazione in virgola fissa (fixed-point) Rappresentazione in virgola fissa (fixed-point) Rappresentazione di Numeri Reali Un numero reale è una grandezza continua Può assumere infiniti valori In una rappresentazione di lunghezza limitata, deve di solito essere approssimato. Esistono due forme

Dettagli

Anno Scolastico 2015/16 PROGRAMMAZIONE ANNUALE CLASSE SECONDA LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO ECONOMICO-SOCIALE LICEO MUSICALE

Anno Scolastico 2015/16 PROGRAMMAZIONE ANNUALE CLASSE SECONDA LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO ECONOMICO-SOCIALE LICEO MUSICALE LICEO LAURA BASSI - BOLOGNA Anno Scolastico 2015/16 PROGRAMMAZIONE ANNUALE CLASSE SECONDA LICEO LINGUISTICO LICEO DELLE SCIENZE UMANE LICEO ECONOMICO-SOCIALE LICEO MUSICALE MATEMATICA ARGOMENTI: EQUAZIONI

Dettagli

Le quattro operazioni fondamentali

Le quattro operazioni fondamentali Le quattro operazioni fondamentali ADDIZIONE Def: Si dice ADDIZIONE l operazione con la quale si calcola la somma; i numeri da addizionare si dicono ADDENDI e il risultato si dice SOMMA o TOTALE. Proprietà:

Dettagli

Relazione di fisica ESPERIMENTO N 1

Relazione di fisica ESPERIMENTO N 1 ISTITUTO SUPERIORE "B. RUSSELL" DI ROMA Relazione di fisica ESPERIMENTO N 1 1.TITOLO Misurazione indiretta della massa di un cilindretto metallico mediante i metodi della tara di J.C. Borda e della doppia

Dettagli

RICHIAMI SU RETTA, PARABOLA E DISEQUAZIONI. Angela Donatiello 1

RICHIAMI SU RETTA, PARABOLA E DISEQUAZIONI. Angela Donatiello 1 RICHIAMI SU RETTA, PARABOLA E DISEQUAZIONI Angela Donatiello 1 Una funzione del tipo f() = m + q, con m e q numeri reali, è una FUNZIONE LINEARE. Il numero q è detto INTERCETTA o ORDINATA ALL ORIGINE,

Dettagli

COMPENDIO ESPONENZIALI LOGARITMI

COMPENDIO ESPONENZIALI LOGARITMI TORINO SETTEMBRE 2010 COMPENDIO DI ESPONENZIALI E LOGARITMI di Bart VEGLIA 1 ESPONENZIALi 1 Equazioni esponenziali Un espressione in cui l incognita compare all esponente di una o più potenze si chiama

Dettagli

3 Le grandezze fisiche

3 Le grandezze fisiche 3 Le grandezze fisiche Grandezze fondamentali e grandezze derivate Tra le grandezze fisiche è possibile individuarne alcune (fondamentali) dalle quali è possibile derivare tutte le altre (derivate) Le

Dettagli

DECLINAZIONE COMPETENZE SCUOLA SECONDARIA DI PRIMO GRADO: MATEMATICA COMPETENZE CONOSCENZE ABILITA

DECLINAZIONE COMPETENZE SCUOLA SECONDARIA DI PRIMO GRADO: MATEMATICA COMPETENZE CONOSCENZE ABILITA DECLINAZIONE COMPETENZE SCUOLA SECONDARIA DI PRIMO GRADO: MATEMATICA COMPETENZE CONOSCENZE ABILITA Operare in situazioni reali e/o disciplinari con tecniche e procedure di calcolo I numeri naturali e il

Dettagli

1 L estrazione di radice

1 L estrazione di radice 1 L estrazione di radice Consideriamo la potenza 3 2 = 9 di cui conosciamo: Esponente 3 2 = 9 Valore della potenza Base L operazione di radice quadrata consiste nel chiedersi qual è quel numero x che elevato

Dettagli

Parte Seconda. Prova di selezione culturale

Parte Seconda. Prova di selezione culturale Parte Seconda Prova di selezione culturale TEORIA DEGLI INSIEMI MATEMATICA ARITMETICA Insieme = gruppo di elementi di cui si può stabilire inequivocabilmente almeno una caratteristica in comune. Esempi:

Dettagli

PIANO DI STUDIO D ISTITUTO

PIANO DI STUDIO D ISTITUTO PIANO DI STUDIO D ISTITUTO Materia: FISICA Casse 1 1 Quadrimestre Modulo 1 - LE GRANDEZZE FISICHE Saper descrivere le grandezze del S.I., i simboli e le unità di misura. Riconoscere le grandezze fisiche

Dettagli

Incertezza o errore delle misurazioni

Incertezza o errore delle misurazioni Incertezza o errore delle misurazioni In generale, ripetendo più volte la stessa misurazione si hanno valori diversi. Si misuri ad es. la lunghezza di un tavolo o di una stanza con un'asta metrica più

Dettagli

V il segmento orientato. V con VETTORI. Costruzione di un vettore bidimensionale

V il segmento orientato. V con VETTORI. Costruzione di un vettore bidimensionale VETTORI Costruzione di un vettore bidimensionale Nel piano con un righello si traccia una retta r tratteggiata Su r si disegna un segmento di lunghezza l d una delle estremità si disegni la punta di una

Dettagli