L errore percentuale di una misura è l errore relativo moltiplicato per 100 ed espresso in percentuale. Si indica con e p e risulta: e ( e 100)%

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "L errore percentuale di una misura è l errore relativo moltiplicato per 100 ed espresso in percentuale. Si indica con e p e risulta: e ( e 100)%"

Transcript

1 UNITÀ L ELBORZIONE DEI DTI IN FISIC 1. Gli errori di misura.. Errori di sensibilità, errori casuali, errori sistematici. 3. La stima dell errore. 4. La media, la semidispersione e lo scarto quadratico medio. 5. L errore assoluto, relativo e percentuale. L errore assoluto di una misura è l errore che si coette quando si effettua la misura con uno strumento e, secondo i casi che si possono presentare, può essere uguale o all errore di sensibilità dello strumento o alla semidispersione o allo scarto quadratico medio. In generale, la grandezza fisica misurata si indica con, il valore misurato si indica con M e l errore assoluto si indica con e a. Il risultato della misura si scrive così: M ea L errore relativo di una misura è il rapporto tra l errore assoluto e il valore misurato. ea Si indica con e r e risulta che: er M L errore percentuale di una misura è l errore relativo moltiplicato per 100 ed espresso in percentuale. Si indica con e p e risulta: e ( e 100)% p r Per esempio, misurando la lunghezza di un chiodo con un righello tarato in millimetri, si ottiene il valore misurato M= 55, un errore di sensibilità di 1 e si scrive: l ( 55 1). Risulta perciò: errore assoluto e a = 1 errore relativo ea 1 er 0, 018 M 55 errore percentuale e ( e 100)% (0,018100)% 1,8 % p r 6. La precisione di una misura. La precisione di una misura coincide con il suo errore percentuale. Una misura è tanto più precisa quanto minore è il suo errore percentuale.

2 7. La propagazione degli errori. La propagazione degli errori è un problema che si presenta ogni volta che si esegue una misura indiretta e consiste nel determinare come si propagano gli errori dalle grandezze fisiche misurate con lo strumento alle grandezze fisiche calcolate con la formula. Per esempio, se si vuole misurare l area di una banconota, si utilizza un righello tarato in millimetri, si misura la base b e si ottiene un valore medio b 17 con un errore assoluto b 1. Si scrive: b b b ( 17 1) Poi si misura l altezza h e si ottiene un valore medio Si scrive: h h h ( 67 1) Successivamente si calcola il valore medio dell area utilizzando la formula: b h h 67 con un errore assoluto h 1. Per ottenere l errore assoluto dell area si può calcolare il valore massimo dell area M, il valore minimo dell area m e poi la semidifferenza tra M e m che ci darà l errore assoluto dell area Δ. M m b M b m h h M M m m Il calcolo dell area alla fine si esprime in questo modo: ( ) (85,0910 1,9410 ) (85,09 1,94) 10 Generalmente si scrive l errore con una sola cifra e si ottiene il risultato definitivo: ( 85 ) Le cifre significative di un numero decimale. Sono le cifre che hanno effettivamente significato all interno del numero. Il numero di cifre significative si determina contando le cifre da quella più a destra (qualunque sia) a quella più a sinistra diversa da zero. Esempi: 3,47 ha 3 cifre significative; 14,70 ha 4 cifre significative;,074 ha 4 cifre significative; 0,73 ha 3 cifre significative; 0,003 ha cifre significative; Gli zeri che si trovano a sinistra non sono significativi, poiché si possono eliminare scrivendo il numero in forma scientifica. 3 Per es. 0,003,310 e le cifre significative sono effettivamente due. 9. Le cifre significative di una misura diretta. Sono le cifre che vengono effettivamente lette quando si esegue la misura con uno strumento. Esse sono tutte le cifre che si misurano con certezza e la prima cifra incerta. Per esempio se si misura una lunghezza con una rotella metrica tarata in centimetri, si deve scrivere: l=36,43 m poiché i 36 m si misurano con certezza, i 4 dm si misurano con certezza e i 3 cm sono incerti poiché potrebbero essere anche o 4. Per questa misura non ha senso scrivere l=36,43 m poiché lo strumento utilizzato non permette di misurare i millimetri. D altra parte non è corretto scrivere l=36,4 m poiché lo strumento utilizzato permette di apprezzare i centimetri e bisogna indicarli.

3 10. Le cifre significative di una misura indiretta. Sono le cifre che ha senso scrivere quando si calcola il risultato di una misura indiretta. Queste cifre devono essere tante quante sono le cifre della misura meno precisa. Per esempio, se abbiamo due lunghezze: l 1,844 m e l 1,1 m e con questi valori si eseguono dei calcoli, il risultato finale deve essere scritto con tre cifre significative. addizione: sottrazione: l 1 l,844 m 1,1 m 3,964 m 3,96 m l 1 l,844 m1,1 m 1,744 m 1,74 m moltiplicazione: l l 1,844 m1,1 m 3,1858 m 3,19 m l1,844m quoziente:, , 54 l 1,1m 11. rrotondamento di un numero. È un operazione che bisogna eseguire per scrivere il risultato di una misura col giusto numero di cifre significative, eliminando quelle non significative. Se la cifra che si elimina è 0, 1,, 3, o 4, l ultima cifra che rimane si lascia invariata (arrotondamento per difetto); Se la cifra che si elimina è 5, 6, 7, 8, o 9, l ultima cifra che rimane si aumenta di una unità (arrotondamento per eccesso). Per esempio il numero 1,3764 contiene 7 cifre significative; arrotondato con 6 cifre significative diventa: 1,3764 arrotondato con 5 cifre significative diventa: 1,376 arrotondato con 4 cifre significative diventa: 1,38 arrotondato con 3 cifre significative diventa: 1,4

4 1. Il calibro ventesimale. È uno strumento formato da una scala principale fissa tarata in millimetri e una scala secondaria scorrevole, detta nonio (dal nome dell inventore portoghese). Con esso si possono misurare: 1. le dimensioni esterne di un oggetto posto tra le ganasce ;. le dimensioni interne di un oggetto posto tra le ganasce B; 3. la profondità di una cavità, mediante l asticella C. Si può notare che, quando le ganasce sono chiuse senza alcuno spessore in mezzo (Fig. 1), lo zero della scala fissa è allineato esattamente con lo zero del nonio. Inoltre, 19 divisioni sulla scala fissa, cioè 19 millimetri, corrispondono a 0 divisioni sulla scala del nonio. Ciò vuol dire che, mentre ogni divisione della scala fissa corrisponde ad 1 millimetro, ogni divisione della scala del nonio è un po più piccola e corrisponde a 19/0, infatti: Fig. 1 Calibro con le ganasce chiuse Eseguendo la misura di uno spessore d, la scala del nonio si sposta rispetto alla scala principale e la lunghezza dello spessore d è data proprio dalla distanza tra lo zero principale e lo zero del nonio. Supponiamo che, eseguendo la misura di uno spessore d, si presenti la situazione indicata in figura. Si vede che lo spessore d risulta: B C d = 1 + B Fig. Ganasce del calibro quando si misura uno spessore d. Per valutare B bisogna vedere quale tacca del nonio è allineata esattamente ad una tacca della scala principale. Tale allineamento avviene nel punto C, in corrispondenza della nona tacca del nonio, per cui risulta che: 19 B= C- BC = ,55 0, 45 0 Perciò lo spessore d risulta: d 1 0,45 1,45 Siccome è possibile sbagliare la lettura di una divisione, cioè di 1/0 = 0,05, la misura si deve scrivere col giusto numero di cifre significative in questo modo: d 1,45 0,05 (1,45 0,05) Osservare che la parte decimale del risultato si può leggere direttamente sul nonio senza eseguire calcoli, poiché la tacca del nonio meglio allineata è la tacca successiva al numero 4, che corrisponde a 0,45.

5 Supponiamo ora che, misurando la lunghezza l di un oggetto, si presenta la situazione indicata in fig. 3. La lunghezza dell oggetto é: l = 19 + B L allineamento fra la tacca del nonio e la tacca della scala principale avviene nel punto C, in corrispondenza della tredicesima tacca del nonio, per cui risulta che: B C Fig. 3 Ganasce del calibro quando si misura una lunghezza l. 19 B= C- BC = ,35 0, 65 0 Perciò la lunghezza risulta: l 19 0,65 19,65 e il risultato della misura si scrive in questo modo: l ( 19,65 0,05) Osservare che la parte decimale del risultato si può leggere direttamente sul nonio, essendo la tacca meglio allineata quella successiva al numero 6, che corrisponde proprio a 0,65. Come esercizio, valuta la lunghezza delle misure seguenti e scrivila con l errore e col giusto numero di cifre significative: l 1 l l 3

6 13. La rappresentazione dei dati sperimentali. Se due grandezze fisiche ed y sono in relazione tra loro, si può osservare che variando una di esse, per esempio, varia anche l altra, cioè y. Effettuando varie misure della e varie misure della y si possono ordinare i dati in una tabella, poi si possono rappresentare in un grafico cartesiano e infine dal grafico si può ottenere la legge fisica, cioè l equazione matematica che lega tra loro le grandezze ed y. I principali grafici che si possono ottenere sono: 1. proporzionalità diretta;. proporzionalità inversa; 3. proporzionalità quadratica diretta; 4. proporzionalità quadratica inversa; 5. relazione lineare. Per ognuno di questi tipi di grafico bisogna saper fare due cose: a) data la formula, saper disegnare il grafico; b) dato il grafico, saper ricavare la formula.

7 14. La proporzionalità diretta. La formula è del tipo: y k dove k può essere un numero qualunque. Il grafico che rappresenta questa formula è una retta che passa per l origine degli assi e il valore di k si chiama coefficiente angolare della retta. Il valore del coefficiente angolare indica la pendenza della retta: se il coefficiente angolare è grande, la retta è molto ripida (quasi verticale); se il coefficiente angolare è piccolo, la retta è poco ripida (quasi orizzontale); Esempio 1: Data la formula y disegnare il grafico. Si assegnano alla alcuni valori arbitrari e si calcolano i valori corrispondenti della y. Con questi valori si costruisce una tabella e si disegnano i punti ottenuti sugli assi cartesiani. y Esempio : Dato il grafico, ricavare la formula. Siccome è una retta che passa per l origine degli assi, si tratta di una proporzionalità diretta, perciò la formula è del tipo y k y Ricavando k si ottiene: k perciò il valore di k si ottiene considerando un punto qualsiasi del grafico e calcolando il rapporto tra l ordinata y e l ascissa. 6 Per esempio considerando il punto (;6) si ottiene: ottiene: k 3 Perciò la formula che corrisponde al grafico è: y 3

8 15. La proporzionalità inversa. k La formula è del tipo: y dove k può essere un numero qualunque. Il grafico che rappresenta questa formula è una iperbole equilatera, cioè sietrica rispetto alla bisettrice del primo e terzo quadrante. 8 Esempio 1: Data la formula y disegnare il grafico. Si assegnano alla alcuni valori arbitrari e si calcolano i valori corrispondenti della y. Con questi valori si costruisce una tabella e si disegnano i punti ottenuti sugli assi cartesiani. y Esempio : Dato il grafico, ricavare la formula. Siccome è una iperbole equilatera, si tratta di una proporzionalità inversa, perciò la formula è k del tipo y Ricavando k si ottiene: k y perciò il valore di k si ottiene considerando un punto qualsiasi del grafico e calcolando il prodotto tra l ascissa e l ordinata y. Per esempio considerando il punto (5;) si ottiene: ottiene: k 5 10 Perciò la formula che corrisponde al grafico è: 10 y

9 L PROPORZIONLIT QUDRTIC DIRETT La formula è del tipo: y k dove k può essere un numero qualunque. Il grafico che rappresenta questa formula è una parabola con il vertice nell origine degli assi. Esempio 1: Data la formula y 3 disegnare il grafico. Si assegnano alla alcuni valori arbitrari e si calcolano i valori corrispondenti della y. Con questi valori si costruisce una tabella e si disegnano i punti ottenuti sugli assi cartesiani. y Esempio : Dato il grafico, ricavare la formula. Siccome è una parabola con il vertice nell origine degli assi, si tratta di una proporzionalità quadratica diretta, perciò la formula è del tipo y k y Ricavando k si ottiene: k perciò il valore di k si ottiene considerando un punto qualsiasi del grafico e calcolando il rapporto tra l ordinata e il quadrato dell ascissa. 8 8 Per esempio considerando il punto (;8) si ottiene: ottiene: k 4 Perciò la formula che corrisponde al grafico y

10 L PROPORZIONLIT QUDRTIC INVERS k La formula è del tipo: y dove k può essere un numero qualunque. Il grafico che rappresenta questa formula è una iperbole non equilatera, cioè non sietrica rispetto alla bisettrice del primo e terzo quadrante. 8 Esempio 1: Data la formula y disegnare il grafico. Si assegnano alla alcuni valori arbitrari e si calcolano i valori corrispondenti della y. Con questi valori si costruisce una tabella e si disegnano i punti ottenuti sugli assi cartesiani. y 0, ,5 8 0,15 Esempio : Dato il grafico, ricavare la formula. Siccome è una iperbole non equilatera, si tratta di una proporzionalità quadratica inversa, perciò la formula k è del tipo y Ricavando k si ottiene: k y perciò il valore di k si ottiene considerando un punto qualsiasi del grafico e calcolando il prodotto tra il quadrato dell ascissa e l ordinata. Per esempio considerando il punto (;1) si ottiene: ottiene: k Perciò la formula che corrisponde al grafico è: y

11 L RELZIONE LINERE La formula è del tipo: y m q dove m e q sono due numeri qualsiasi. Il grafico che rappresenta questa formula è una retta che non passa per l origine degli assi. Esempio 1: Data la formula y 1 disegnare il grafico. Si assegnano alla alcuni valori arbitrari e si calcolano i valori corrispondenti della y. Con questi valori si costruisce una tabella e si disegnano i punti ottenuti sugli assi cartesiani. y Esempio : Dato il grafico, ricavare la formula. Siccome è una retta che non passa per l origine degli assi, si tratta di una relazione lineare, perciò la formula è del tipo: y m q Il numero m si chiama coefficiente angolare e indica l inclinazione della retta. Il valore di m si determina scegliendo due punti qualsiasi della retta e calcolando il rapporto tra la differenza delle ordinate e la differenza delle ascisse. 8 6 Per esempio, scegliendo i punti (0;) e (;8) si ottiene: m 3 0 Il numero q si chiama ordinata all origine e rappresenta l ordinata del punto di intersezione della retta con l asse y. Nel grafico la retta incontra l asse y nel punto (0;) di ordinata, perciò q=. La retta y m q diventa quindi y 3

INDICAZIONI PER LA RICERCA DEGLI ASINTOTI VERTICALI

INDICAZIONI PER LA RICERCA DEGLI ASINTOTI VERTICALI 2.13 ASINTOTI 44 Un "asintoto", per una funzione y = f( ), è una retta alla quale il grafico della funzione "si avvicina indefinitamente", "si avvicina di tanto quanto noi vogliamo", nel senso precisato

Dettagli

ITCS Erasmo da Rotterdam. Anno Scolastico 2014/2015. CLASSE 4^ M Costruzioni, ambiente e territorio

ITCS Erasmo da Rotterdam. Anno Scolastico 2014/2015. CLASSE 4^ M Costruzioni, ambiente e territorio ITCS Erasmo da Rotterdam Anno Scolastico 014/015 CLASSE 4^ M Costruzioni, ambiente e territorio INDICAZIONI PER IL LAVORO ESTIVO DI MATEMATICA e COMPLEMENTI di MATEMATICA GLI STUDENTI CON IL DEBITO FORMATIVO

Dettagli

Esercitazioni di Reti Logiche. Lezione 1 Rappresentazione dell'informazione. Zeynep KIZILTAN zkiziltan@deis.unibo.it

Esercitazioni di Reti Logiche. Lezione 1 Rappresentazione dell'informazione. Zeynep KIZILTAN zkiziltan@deis.unibo.it Esercitazioni di Reti Logiche Lezione 1 Rappresentazione dell'informazione Zeynep KIZILTAN zkiziltan@deis.unibo.it Introduzione Zeynep KIZILTAN Si pronuncia Z come la S di Rose altrimenti, si legge come

Dettagli

METODI DI CONVERSIONE FRA MISURE

METODI DI CONVERSIONE FRA MISURE METODI DI CONVERSIONE FRA MISURE Un problema molto frequente e delicato da risolvere è la conversione tra misure, già in parte introdotto a proposito delle conversioni tra multipli e sottomultipli delle

Dettagli

Problemi di scelta ESEMPI

Problemi di scelta ESEMPI ESEMPI Risolvere i seguenti problemi 1. Una ditta deve effettuare delle spedizioni di un certo tipo di merce. Ha la possibilità di scegliere una o l altra delle due tariffe seguenti: a) 2.500 lire al quintale

Dettagli

MISURA DELLA DISTANZA FOCALE DI UNA LENTE CONVERGENTE

MISURA DELLA DISTANZA FOCALE DI UNA LENTE CONVERGENTE MISURA DELLA DISTANZA FOCALE DI UNA LENTE CONVERGENTE La distanza focale f di una lente convergente sottile è data dalla formula: da cui 1 f = 1 p + 1 q f = pq p + q dove p e q sono, rispettivamente, le

Dettagli

La disposizione estetica della lettera commerciale

La disposizione estetica della lettera commerciale La disposizione estetica della lettera commerciale Gli elementi costitutivi della lettera commerciale vengono disposti sul foglio secondo stili diversi: ogni a- zienda, infatti, caratterizza la sua immagine

Dettagli

Definizione Dati due insiemi A e B, contenuti nel campo reale R, si definisce funzione reale di variabile reale una legge f : A

Definizione Dati due insiemi A e B, contenuti nel campo reale R, si definisce funzione reale di variabile reale una legge f : A Scopo centrale, sia della teoria statistica che della economica, è proprio quello di esprimere ed analizzare le relazioni, esistenti tra le variabili statistiche ed economiche, che, in linguaggio matematico,

Dettagli

Protocollo dei saperi imprescindibili Ordine di scuola: professionale

Protocollo dei saperi imprescindibili Ordine di scuola: professionale Protocollo dei saperi imprescindibili Ordine di scuola: professionale DISCIPLINA: MATEMATICA RESPONSABILE: CAGNESCHI F. IMPERATORE D. CLASSE: prima servizi commerciali Utilizzare le tecniche e le procedure

Dettagli

GEOMETRIA ANALITICA. (*) ax+by+c=0 con a,b,c numeri reali che è detta equazione generale della retta.

GEOMETRIA ANALITICA. (*) ax+by+c=0 con a,b,c numeri reali che è detta equazione generale della retta. EQUAZIONE DELLA RETTA Teoria in sintesi GEOMETRIA ANALITICA Dati due punti A e B nel piano, essi individuano (univocamente) una retta. La retta è rappresentata da un equazione di primo grado in due variabili:

Dettagli

ANALISI MULTIVARIATA

ANALISI MULTIVARIATA ANALISI MULTIVARIATA Marcella Montico Servizio di epidemiologia e biostatistica... ancora sulla relazione tra due variabili: la regressione lineare semplice VD: quantitativa VI: quantitativa Misura la

Dettagli

LA MISURA DI GRANDI DISTANZE CON LA TRIANGOLAZIONE

LA MISURA DI GRANDI DISTANZE CON LA TRIANGOLAZIONE L MISUR DI GRNDI DISTNZE ON L TRINGOLZIONE ome si può misurare l altezza di un lampione senza doversi arrampicare su di esso? Se è una giornata di sole, è possibile sfruttare l ombra del lampione. on un

Dettagli

La Prova Invalsi 2014. per la scuola secondaria di 2 grado

La Prova Invalsi 2014. per la scuola secondaria di 2 grado La Prova Invalsi 2014 MATHES - Sezione di Roma per la scuola secondaria di 2 grado Il test che l Invalsi ha utilizzato nell anno 2014 per la rilevazione degli apprendimenti in matematica conseguiti nelle

Dettagli

Capitolo 3. Errori di misura. 3.1 L'incertezza nella misura

Capitolo 3. Errori di misura. 3.1 L'incertezza nella misura Interventi didattici integrativi Appunti di Fisica III 1 Capitolo 3 Errori di misura 3.1 L'incertezza nella misura 3.2 Le misure dirette 3.3 Serie di misure dirette 3.4 Le misure indirette 3.5 Procedimento

Dettagli

Torino 20 marzo 2013 Corso di Metrologia applicata alla Meteorologia

Torino 20 marzo 2013 Corso di Metrologia applicata alla Meteorologia Taratura di sensori meteorologici e stazioni automatiche Analisi delle incertezze Taratura Costruire la curva di taratura di uno strumento significa dare riferibilità metrologica alle misure prese da tale

Dettagli

Esempi di funzione. Scheda Tre

Esempi di funzione. Scheda Tre Scheda Tre Funzioni Consideriamo una legge f che associa ad un elemento di un insieme X al più un elemento di un insieme Y; diciamo che f è una funzione, X è l insieme di partenza e X l insieme di arrivo.

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Università degli Studi di Siena Facoltà di Economia Esercizi di Matematica Finanziaria relativi ai capitoli V-X del testo Claudio Pacati a.a. 1998 99 c Claudio Pacati tutti i diritti riservati. Il presente

Dettagli

Informatica Grafica. Un introduzione

Informatica Grafica. Un introduzione Informatica Grafica Un introduzione Rappresentare la Geometria Operabile da metodi di calcolo automatici Grafica Vettoriale Partiamo dalla rappresentazione di un punto... Spazi Vettoriale SPAZI VETTORIALI

Dettagli

Risolvere lo stesso problema ipotizzando che le scarpe siano vendute a 40 il paio e che gli scarponi siano venduti a 90 il paio.

Risolvere lo stesso problema ipotizzando che le scarpe siano vendute a 40 il paio e che gli scarponi siano venduti a 90 il paio. Problema 1 Un'industria calzaturiera produce scarpe da tennis che vende a 40 il paio e scarponi da trekking che vende a 50 il paio. Ogni paio di scarpe richiede 6 minuti di lavorazione a macchina e 5 minuti

Dettagli

ESAME DI STATO. SIMULAZIONE PROVA NAZIONALE Scuola Secondaria di I grado Classe Terza. Prova 3. Anno Scolastico 20. - 20. Classe:... Data:...

ESAME DI STATO. SIMULAZIONE PROVA NAZIONALE Scuola Secondaria di I grado Classe Terza. Prova 3. Anno Scolastico 20. - 20. Classe:... Data:... Prova Nazionale di Matematica: Simulazioni - a cura di M. Zarattini Prova ESAME DI STATO Anno Scolastico 0. - 0. SIMULAZIONE PROVA NAZIONALE Scuola Secondaria di I grado Classe Terza Classe:... Data:...

Dettagli

GRAFICI DI PROBABILITÀ Prof. Antonio Lanzotti

GRAFICI DI PROBABILITÀ Prof. Antonio Lanzotti UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II DIPARTIMENTO DI INGEGNERIA AEROSPAZIALE D.I.A.S. STATISTICA PER L INNOVAZIONE a.a. 2007/2008 GRAFICI DI PROBABILITÀ Prof. Antonio Lanzotti A cura di: Ing. Giovanna

Dettagli

Introduzione a GeoGebra

Introduzione a GeoGebra Introduzione a GeoGebra Nicola Sansonetto Istituto Sanmicheli di Verona 31 Marzo 2016 Nicola Sansonetto (Sanmicheli) Introduzione a GeoGebra 31 Marzo 2016 1 / 14 Piano dell incontro 1 Introduzione 2 Costruzioni

Dettagli

Esercizi sulla conversione tra unità di misura

Esercizi sulla conversione tra unità di misura Esercizi sulla conversione tra unità di misura Autore: Enrico Campanelli Prima stesura: Settembre 2013 Ultima revisione: Settembre 2013 Per segnalare errori o per osservazioni e suggerimenti di qualsiasi

Dettagli

1 Appunti a cura di prof.ssa MINA Maria Letizia integrati e pubblicati in data 12/10/10

1 Appunti a cura di prof.ssa MINA Maria Letizia integrati e pubblicati in data 12/10/10 FUNZIONE OMOGRAFICA ASINTOTO VERTICALE: ASINTOTO ORIZZONTALE: 1 abbiamo verificato che, applicando all iperbole equilatera base, la dilatazione verticale di coefficiente 7 e la traslazione di vettore di

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria Elementi di matematica finanziaria 1. Percentuale Si dice percentuale di una somma di denaro o di un altra grandezza, una parte di questa, calcolata in base ad un tanto per cento, che si chiama tasso percentuale.

Dettagli

CAPITOLO V. DATABASE: Il modello relazionale

CAPITOLO V. DATABASE: Il modello relazionale CAPITOLO V DATABASE: Il modello relazionale Il modello relazionale offre una rappresentazione matematica dei dati basata sul concetto di relazione normalizzata. I principi del modello relazionale furono

Dettagli

Esercitazione n. 1 del 05/04/2016 Docente: Bruno Gobbi

Esercitazione n. 1 del 05/04/2016 Docente: Bruno Gobbi Esercitazione n. 1 del 05/04/2016 Docente: Bruno Gobbi CALCOLO COMBINATORIO DISPOSIZIONI PERMUTAZIONI COMBINAZIONI Probabilità Esercitazione n. 1 Pagina 1 1) In quanti modi 8 persone possono sedersi su

Dettagli

Unità di misura di lunghezza usate in astronomia

Unità di misura di lunghezza usate in astronomia Unità di misura di lunghezza usate in astronomia In astronomia si usano unità di lunghezza un po diverse da quelle che abbiamo finora utilizzato; ciò è dovuto alle enormi distanze che separano gli oggetti

Dettagli

x log(x) + 3. f(x) =

x log(x) + 3. f(x) = Università di Bari, Corso di Laurea in Economia e Commercio Esame di Matematica per l Economia L/Z Dr. G. Taglialatela 03 giugno 05 Traccia dispari Esercizio. Calcolare Esercizio. Calcolare e cos log d

Dettagli

Calibrazione di modelli matematici

Calibrazione di modelli matematici Capitolo 4 Calibrazione di modelli matematici Supponiamo che siano disponibili conteggi o stime di una data popolazione in stagioni successive. Ad esempio, consideriamo i dati per la quantità di piante

Dettagli

UNITA DI MISURA BASE

UNITA DI MISURA BASE Revisione del 2/9/15 ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO Valdagno (VI) Corso di Fisica prof. Nardon UNITA DI MISURA BASE Richiami di teoria Il Sistema Internazionale (S.I.) di unità di misura è composto

Dettagli

Esercitazioni di statistica

Esercitazioni di statistica Esercitazioni di statistica Misure di associazione: Indipendenza assoluta e in media Stefania Spina Universitá di Napoli Federico II stefania.spina@unina.it 22 ottobre 2014 Stefania Spina Esercitazioni

Dettagli

Unione Matematica Italiana PROGETTO OLIMPIADI DI MATEMATICA. 4. Qual è la cifra delle unità di 3 (87)? (A) 1 (B) 7 (C) 3 (D) 9 (E) 5

Unione Matematica Italiana PROGETTO OLIMPIADI DI MATEMATICA. 4. Qual è la cifra delle unità di 3 (87)? (A) 1 (B) 7 (C) 3 (D) 9 (E) 5 T1 Unione Matematica Italiana PROGETTO OLIMPIADI DI MATEMATICA Ministero dell Istruzione, dell Università e della Ricerca Scuola Normale Superiore I Giochi di Archimede - Gara Biennio 25 novembre 2015

Dettagli

Esercitazione n o 3 per il corso di Ricerca Operativa

Esercitazione n o 3 per il corso di Ricerca Operativa Esercitazione n o 3 per il corso di Ricerca Operativa Ultimo aggiornamento October 17, 2011 Fornitura acqua Una città deve essere rifornita, ogni giorno, con 500 000 litri di acqua. Si richiede che l acqua

Dettagli

Regola del partitore di tensione

Regola del partitore di tensione Regola del partitore di tensione Se conosciamo la tensione ai capi di una serie di resistenze e i valori delle resistenze stesse, è possibile calcolare la caduta di tensione ai capi di ciascuna R resistenza,

Dettagli

Esperimento sull ottica

Esperimento sull ottica Esperimento sull ottica Gruppo: Valentina Sotgiu, Irene Sini, Giorgia Canetto, Federica Pitzalis, Federica Schirru, Jessica Atzeni, Martina Putzu, Veronica, Orgiu e Deborah Pilleri. Teoria di riferimento:

Dettagli

7 giorni 30 giorni 365 giorni

7 giorni 30 giorni 365 giorni Budini, torte, biscotti 7 coppie e un gruppo da tre Tutte le coppie calcolano esattamente i litri di latte necessari per le torte e per i budini. Per i biscotti (2,5 litri di latte al giorno) si hanno

Dettagli

Illustrazione 1: Telaio. Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali

Illustrazione 1: Telaio. Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali Materiale utilizzato: Telaio (carrucole,supporto,filo), pesi, goniometro o foglio con goniometro stampato, righello Premessa

Dettagli

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO Sessione Ordinaria in America 4 MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO (Americhe) ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 4 SECONDA PROVA SCRITTA

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE "GUALA" BRA SEZIONE ASSOCIATA I.T.I. ANNO SCOLASTICO 2009/2010

ISTITUTO ISTRUZIONE SUPERIORE GUALA BRA SEZIONE ASSOCIATA I.T.I. ANNO SCOLASTICO 2009/2010 PROGRAMMAZIONE ISTITUTO ISTRUZIONE SUPERIORE "GUALA" BRA SEZIONE ASSOCIATA I.T.I. ANNO SCOLASTICO 2009/2010 CLASSE 1 a F ITI Disciplina: Fisica e laboratorio Bra, 14 Settembre 2009 Elaborata e sottoscritta

Dettagli

Syllabus: argomenti di Matematica delle prove di valutazione

Syllabus: argomenti di Matematica delle prove di valutazione Syllabus: argomenti di Matematica delle prove di valutazione abcdef... ABC (senza calcolatrici, senza palmari, senza telefonini... ) Gli Argomenti A. Numeri frazioni e numeri decimali massimo comun divisore,

Dettagli

Lezione 3: Il problema del consumatore: Il

Lezione 3: Il problema del consumatore: Il Corso di Economica Politica prof. Stefano Papa Lezione 3: Il problema del consumatore: Il vincolo di bilancio Facoltà di Economia Università di Roma La Sapienza Il problema del consumatore 2 Applichiamo

Dettagli

OFFERTA DI LAVORO. p * C = M + w * L

OFFERTA DI LAVORO. p * C = M + w * L 1 OFFERTA DI LAVORO Supponiamo che il consumatore abbia inizialmente un reddito monetario M, sia che lavori o no: potrebbe trattarsi di un reddito da investimenti, di donazioni familiari, o altro. Definiamo

Dettagli

Sistemi Web per il turismo - lezione 3 -

Sistemi Web per il turismo - lezione 3 - Sistemi Web per il turismo - lezione 3 - Software Si definisce software il complesso di comandi che fanno eseguire al computer delle operazioni. Il termine si contrappone ad hardware, che invece designa

Dettagli

p k q n k = p n (k) = n 12 = 1 = 12 1 12 11 10 9 1 0,1208. q = 1 2 e si ha: p 12 (8) = 12 8 4

p k q n k = p n (k) = n 12 = 1 = 12 1 12 11 10 9 1 0,1208. q = 1 2 e si ha: p 12 (8) = 12 8 4 CAPITOLO QUARTO DISTRIBUZIONE BINOMIALE (O DI BERNOULLI) Molti degli esempi che abbiamo presentato nei capitoli precedenti possono essere pensati come casi particolari di uno schema generale di prove ripetute,

Dettagli

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione Copyright c 2009 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione

Dettagli

5 DERIVATA. 5.1 Continuità

5 DERIVATA. 5.1 Continuità 5 DERIVATA 5. Continuità Definizione 5. Sia < a < b < +, f : (a, b) R e c (a, b). Diciamo che f è continua in c se sono verificate le ue conizioni: (i) c esiste (ii) = f(c) c Si osservi che nella efinizione

Dettagli

7 Disegni sperimentali ad un solo fattore. Giulio Vidotto Raffaele Cioffi

7 Disegni sperimentali ad un solo fattore. Giulio Vidotto Raffaele Cioffi 7 Disegni sperimentali ad un solo fattore Giulio Vidotto Raffaele Cioffi Indice: 7.1 Veri esperimenti 7.2 Fattori livelli condizioni e trattamenti 7.3 Alcuni disegni sperimentali da evitare 7.4 Elementi

Dettagli

.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1

.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1 Funzioni FUNZIONI Una funzione è una relazione fra due insiemi non vuoti e, che associa ad ogni elemento uno e un solo elemento. In simboli si scrive: = oppure. x 1. x..y B C.y 5 x 4..y 4 L elemento è

Dettagli

Lezione 3: Il problema del consumatore:

Lezione 3: Il problema del consumatore: Corso di Economica Politica prof. S.Papa Lezione 3: Il problema del consumatore: scelta ottimale Facoltà di Economia Università di Roma La Sapienza Lucidi liberamente tratti dai lucidi del prof. Rodano

Dettagli

Appendice B Esempi di item di matematica

Appendice B Esempi di item di matematica Appendice B Esempi di item di matematica Esempi di item di matematica Classe quarta primaria 1 Osserva la seguente sequenza di numeri. 100, 1, 99, 2, 98, C, C, C Quali numeri devono andare nei tre riquadri?

Dettagli

SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE

SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE SESSIONE ORDINARIA 007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE PROBLEMA Si consideri la funzione f definita da f ( x) x, il cui grafico è la parabola.. Si trovi il luogo geometrico dei

Dettagli

PROGETTAZIONE DISCIPLINARE MATEMATICA classe 2^

PROGETTAZIONE DISCIPLINARE MATEMATICA classe 2^ PROGETTAZIONE DISCIPLINARE MATEMATICA classe 2^ PER RICONOSCERE, RAPPRESENTARE E RISOLVERE PROBLEMI I. Q. II. Q. CONTENUTI / ATTIVITA 1 bim. 2 bim. 3 bim. 4 bim. 1a) Individuazione di situazioni problematiche

Dettagli

SCUOLA PRIMARIA - MORI

SCUOLA PRIMARIA - MORI ISTITUTO COMPRENSIVO DI MORI Via Giovanni XXIII, n. 64-38065 MORI Cod. Fisc. 94024510227 - Tel. 0464-918669 Fax 0464-911029 www.icmori.it e-mail: segr.ic.mori@scuole.provincia.tn.it REPUBBLICA ITALIANA

Dettagli

CURRICOLO DI GEOGRAFIA. INDICATORI OBIETTIVI di APPRENDIMENTO STANDARD PER LA VALUTAZIONE DELLE COMPETENZE DELL ALUNNO

CURRICOLO DI GEOGRAFIA. INDICATORI OBIETTIVI di APPRENDIMENTO STANDARD PER LA VALUTAZIONE DELLE COMPETENZE DELL ALUNNO CURRICOLO DI GEOGRAFIA SCUOLA PRIMARIA CLASSE PRIMA Riconoscere ed indicare la posizione di oggetti nello spazio vissuto rispetto ai punti di riferimento. Utilizzare correttamente gli organizzatori spaziali.

Dettagli

Carta di credito standard. Carta di credito business. Esercitazione 12 maggio 2016

Carta di credito standard. Carta di credito business. Esercitazione 12 maggio 2016 Esercitazione 12 maggio 2016 ESERCIZIO 1 Si supponga che in un sondaggio di opinione su un campione di clienti, che utilizzano una carta di credito di tipo standard (Std) o di tipo business (Bsn), si siano

Dettagli

I problemi di questa prova

I problemi di questa prova I problemi di questa prova Categoria Problemi 3 1-2-3-4-5 4 1-2-3-4-5-6 5 1-2-3-4-5-6-7 6 7-8-9-10-11-12-13 7 8-9-10-11-12-13-14 8 8-9-10-11-12-13-14 9 10-11-12-13-14-15-16 10 10-11-12-13-14-15-16 Correzione

Dettagli

prof.a.battistelli PROIEZIONI ORTOGONALI

prof.a.battistelli PROIEZIONI ORTOGONALI PROIEZIONI ORTOGONALI PROIEZIONI ORTOGONALI È il disegno delle viste, da davanti, da sopra e di fianco di un oggetto tridimensionale disegnate in un foglio bidimensionale. Trasformiamoci in designer Per

Dettagli

Lezione 2. Sommario. Il sistema binario. La differenza Analogico/Digitale Il sistema binario

Lezione 2. Sommario. Il sistema binario. La differenza Analogico/Digitale Il sistema binario Lezione 2 Il sistema binario Sommario La differenza Analogico/Digitale Il sistema binario 1 La conoscenza del mondo Per poter parlare (ed elaborare) degli oggetti (nella visione scientifica) si deve poter

Dettagli

Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classi I C I G

Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classi I C I G Esercizi Estivi di Matematica a.s. 0/04 Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri Classi I C I G ALUNNO CLASSE Ulteriore ripasso e recupero anche nei siti www.vallauricarpi.it

Dettagli

Macroeconomia. Equilibrio in Economia Aperta. Esercitazione del 27.04.2016 (+ soluzioni) (a cura della dott.ssa Gessica Vella)

Macroeconomia. Equilibrio in Economia Aperta. Esercitazione del 27.04.2016 (+ soluzioni) (a cura della dott.ssa Gessica Vella) Dipartimento di Economia, Statistica e Finanza Corso di Laurea in ECONOMIA Esercizio 1 Macroeconomia Equilibrio in Economia Aperta Esercitazione del 27.04.2016 (+ soluzioni) (a cura della dott.ssa Gessica

Dettagli

L indagine statistica

L indagine statistica 1 L indagine statistica DEFINIZIONE. La statistica è quella disciplina che si occupa della raccolta di dati quantitativi relativi a diversi fenomeni, della loro elaborazione e del loro utilizzo a fini

Dettagli

Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI

Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Docente: DI LISCIA F. Materia: MATEMATICA CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Insiemi numerici: numeri naturali, proprietà delle operazioni aritmetiche; Potenze e loro proprietà; Criteri di divisibilità;

Dettagli

Introduzione alle macchine a stati (non definitivo)

Introduzione alle macchine a stati (non definitivo) Introduzione alle macchine a stati (non definitivo) - Introduzione Il modo migliore per affrontare un problema di automazione industriale (anche non particolarmente complesso) consiste nel dividerlo in

Dettagli

Le sezioni coniche: parabole e circonferenze.

Le sezioni coniche: parabole e circonferenze. Le sezioni coniche: parabole e circonferenze. Copyright c 2008 Pasquale Terrecuso Tutti i diritti sono riservati. un pò di storia... 2 Menecmo...............................................................

Dettagli

Programmazione per competenze del corso Matematica, Quinto anno 2015-16

Programmazione per competenze del corso Matematica, Quinto anno 2015-16 Programmazione per competenze del corso Matematica, Quinto anno 2015-16 Competenze di aree Traguardi per lo sviluppo dellle competenze Abilità Conoscenze Individuare le principali proprietà di una - Individuare

Dettagli

Cognome: Nome classe N. d ordine sul registro di classe: N. esperienza tipo(virtuale/reale)

Cognome: Nome classe N. d ordine sul registro di classe: N. esperienza tipo(virtuale/reale) Relazione di Fisica Cognome: Nome classe N. d ordine sul registro di classe: N. esperienza tipo(virtuale/reale) Iniziata il terminata il data di consegna prevista data di consegna effettiva TITOLO: LA

Dettagli

Fisica con gli smartphone. Lezioni d'autore di Claudio Cigognetti

Fisica con gli smartphone. Lezioni d'autore di Claudio Cigognetti Fisica con gli smartphone Lezioni d'autore di Claudio Cigognetti VIDEO I SENSORI IN UNO SMARTPHONE Oggi la miniaturizzazione dei sensori indicati con l acronimo inglese MEMS (sistemi microelettronici e

Dettagli

ESERCIZI DEL CORSO DI INFORMATICA

ESERCIZI DEL CORSO DI INFORMATICA ESERCIZI DEL CORSO DI INFORMTIC Questa breve raccolta di esercizi vuole mettere in luce alcuni aspetti della prima parte del corso e fornire qualche spunto di riflessione. Il contenuto del materiale seguente

Dettagli

LA SUA PROIEZIONE ORTOGONALE E SEMPRE UGUALE AD ESSA

LA SUA PROIEZIONE ORTOGONALE E SEMPRE UGUALE AD ESSA PROIEZIONI ORTOGONALI DI FIGURE PIANE Per figura piana si intende una parte di piano delimitata da una linea chiusa. Poiché questo contorno è riconducibile ad un insieme di punti, si può ottenere la proiezione

Dettagli

Normalizzazione. Definizione

Normalizzazione. Definizione Normalizzazione Definizione Le forme normali 2 Una forma normale è una proprietà di una base di dati relazionale che ne garantisce la qualità, cioè l'assenza di determinati difetti Quando una relazione

Dettagli

Spinta d Archimede - Metodi di misura diversi e compatibilità dei risultati

Spinta d Archimede - Metodi di misura diversi e compatibilità dei risultati Spinta d Archimede - Metodi di misura diversi e compatibilità dei risultati Materiali -dinamometro -bottiglia di plastica trasparente di capacità uguale o superiore a 1,5 L -cannucce -silicone -forbici

Dettagli

ˆp(1 ˆp) n 1 +n 2 totale di successi considerando i due gruppi come fossero uno solo e si costruisce z come segue ˆp 1 ˆp 2. n 1

ˆp(1 ˆp) n 1 +n 2 totale di successi considerando i due gruppi come fossero uno solo e si costruisce z come segue ˆp 1 ˆp 2. n 1 . Verifica di ipotesi: parte seconda.. Verifica di ipotesi per due campioni. Quando abbiamo due insiemi di dati possiamo chiederci, a seconda della loro natura, se i campioni sono simili oppure no. Ci

Dettagli

La fisica e la misura

La fisica e la misura La fisica e la misura La fisica è una scienza fondamentale che ha per oggetto la comprensione dei fenomeni naturali che accadono nel nostro universo. È basata su osservazioni sperimentali e misure quantitative

Dettagli

IL CALCOLO COMBINATORIO:

IL CALCOLO COMBINATORIO: 1 IL CALCOLO COMBINATORIO: l arte di contare Il calcolo combinatorio permette di stabilire, ad esempio, quanti sono gli anagrammi di una parola, in quanti modi si possono sedere dieci amici attorno a un

Dettagli

Navigazione Tattica. L intercettazione

Navigazione Tattica. L intercettazione Navigazione Tattica I problemi di navigazione tattica si distinguono in: Intercettazione, che riguarda lo studio delle procedure atte a raggiungere nel minor tempo possibile un aeromobile o un qualsiasi

Dettagli

RIDUZIONE DELLE DISTANZE

RIDUZIONE DELLE DISTANZE RIDUZIONE DELLE DISTANZE Il problema della riduzione delle distanze ad una determinata superficie di riferimento va analizzato nei suoi diversi aspetti in quanto, in relazione allo scopo della misura,

Dettagli

Agostinetti Piero (425902/IM)

Agostinetti Piero (425902/IM) UNIVERSITA DEGLI STUDI DI PADOVA FACOLTA DI INGEGNERIA Corso di Laurea in Ingegneria Meccanica LABORATORIO DI ANALISI STRUTTURALE CON ANSYS 5.6: VERIFICHE STRUTTURALI PER IL BILANCERE DELLA PIATTAFORMA

Dettagli

Corso di laurea in Statistica Statistica I Esercizi sulla regressione lineare semplice

Corso di laurea in Statistica Statistica I Esercizi sulla regressione lineare semplice Corso di laurea in Statistica Statistica I Esercizi sulla regressione lineare semplice Esercizio 1 Efficacia di un disinfettante I dati della Tabella 1 mostrano i conteggi relativi alla presenza o meno

Dettagli

Statistica Applicata all edilizia Lezione 3: i numeri indice

Statistica Applicata all edilizia Lezione 3: i numeri indice Lezione 3: i numeri indice E-mail: orietta.nicolis@unibg.it 24 marzo 2009 Programma Programma Operazioni statistiche elementari Vengono utilizzate per confrontare fenomeni nel tempo (nello stesso luogo

Dettagli

FUNZIONE. Si scrive: A B f: A B x y=f(x) (si legge: f funzione da A in B) x f y= f(x)

FUNZIONE. Si scrive: A B f: A B x y=f(x) (si legge: f funzione da A in B) x f y= f(x) 1 FUNZIONE Dati gli insiemi A e B, si definisce funzione da A in B una relazione o legge o corrispondenza che ad ogni elemento di A associa uno ed un solo elemento di B. Si scrive: A B f: A B f() (si legge:

Dettagli

Definizione unitaria delle coniche

Definizione unitaria delle coniche Autore/i: M.Maddalena Bovetti docente di matematica della Scuola Media Superione Titolo: Definizione unitaria delle coniche Collocazione: Difficoltà: Livello di scolarità: Periodo scolastico: Abstract:

Dettagli

DESCRIZIONE E VALUTAZIONE DEI BENI IMMOBILI DELL UNIVERSITA DEL SALENTO

DESCRIZIONE E VALUTAZIONE DEI BENI IMMOBILI DELL UNIVERSITA DEL SALENTO DIREZIONE RIPARTIZIONE AFFARI FINANZIARI Viale Gallipoli 49 Lecce DESCRIZIONE E VALUTAZIONE DEI BENI IMMOBILI DELL UNIVERSITA DEL SALENTO 1. PREMESSA - Finalità dell attività di ricognizione del patrimonio

Dettagli

Il sistema informativo deve essere di tipo centralizzato e accessibile mediante un computer server installato nella rete locale dell albergo.

Il sistema informativo deve essere di tipo centralizzato e accessibile mediante un computer server installato nella rete locale dell albergo. PROBLEMA. Un albergo di una grande città intende gestire in modo automatizzato sia le prenotazioni sia i soggiorni e realizzare un database. Ogni cliente viene individuato, tra l altro, con i dati anagrafici,

Dettagli

4. Funzioni elementari

4. Funzioni elementari ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 4. Funzioni elementari A. A. 2014-2015 L.Doretti 1 Funzioni elementari Sono dette elementari un insieme di funzioni dalle quali si ottengono, mediante

Dettagli

SEGNALE WIFI PRIETTATO A LUNGHE DISTANZE COSTRUIAMO L ANTENNA A BARATTOLO O CANTENNA

SEGNALE WIFI PRIETTATO A LUNGHE DISTANZE COSTRUIAMO L ANTENNA A BARATTOLO O CANTENNA SEGNALE WIFI PRIETTATO A LUNGHE DISTANZE COSTRUIAMO L ANTENNA A BARATTOLO O CANTENNA Opera a cura di Linus sotto Licenza - Introduzione La cosiddetta antenna a barattolo, nota anche come cantenna, è una

Dettagli

Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo. Calcolo Combinatorio

Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo. Calcolo Combinatorio Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo Calcolo Combinatorio Calcolo Combinatorio ü Molti dei problemi classici di calcolo delle probabilità si riducono al calcolo dei casi favorevoli e di quelli

Dettagli

Le forze. Cos è una forza? in quiete. in moto

Le forze. Cos è una forza? in quiete. in moto Le forze Ricorda che quando parli di: - corpo: ti stai riferendo all oggetto che stai studiando; - deformazione. significa che il corpo che stai studiando cambia forma (come quando pesti una scatola di

Dettagli

Esercitazioni di. LOGICA e MATEMATICA. per la preparazione della PROVA NAZIONALE INVALSI CLASSE PRIMA

Esercitazioni di. LOGICA e MATEMATICA. per la preparazione della PROVA NAZIONALE INVALSI CLASSE PRIMA Esercitazioni di LOGICA e MATEMATICA per la preparazione della PROVA NAZIONALE INVALSI CLASSE PRIMA prof.ssa Lina Migliaccio 1 I test di Bertoldino 1. In una stalla ci sono 15 pecore. Scappano tutte tranne

Dettagli

QUOTATURA. Affinché un qualsiasi oggetto disegnato possa essere esattamente realizzato deve essere perfettamente individuato in forma e dimensioni

QUOTATURA. Affinché un qualsiasi oggetto disegnato possa essere esattamente realizzato deve essere perfettamente individuato in forma e dimensioni QUOTATURA Affinché un qualsiasi oggetto disegnato possa essere esattamente realizzato deve essere perfettamente individuato in forma e dimensioni Il disegno di un oggetto è quindi completo se descrive

Dettagli

2. Variabilità mediante il confronto di valori caratteristici della

2. Variabilità mediante il confronto di valori caratteristici della 2. Variabilità mediante il confronto di valori caratteristici della distribuzione Un approccio alternativo, e spesso utile, alla misura della variabilità è quello basato sul confronto di valori caratteristici

Dettagli

Funzioni. 1. Introduzione alle funzioni. Tema C13. Che cos è una funzione?

Funzioni. 1. Introduzione alle funzioni. Tema C13. Che cos è una funzione? Funzioni Tema C. Introduzione alle funzioni STRUMENTI DIGITALI APPRFNDIMENTI RISRSE IN GEGEBRA FIGURE ANIMATE VIDELEZINI ESERCIZI INTERATTIVI Che cos è una funzione? Dati due insiemi X e Y, si definisce

Dettagli

EQUAZIONI CON VALORE ASSOLUTO DISEQUAZIONI CON VALORE ASSOLUTO

EQUAZIONI CON VALORE ASSOLUTO DISEQUAZIONI CON VALORE ASSOLUTO EQUAZIONI CON VALORE AOLUTO DIEQUAZIONI CON VALORE AOLUTO Prima di tutto: che cosa è il valore assoluto di un numero? Il valore assoluto è quella legge che ad un numero (positivo o negativo) associa sempre

Dettagli

MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A

MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A Nome e cognome Matricola I Parte OBBLIGATORIA (quesiti preliminari: 1 punto ciascuno). Riportare le soluzioni su questo foglio, mostrando i

Dettagli

Analisi. Calcolo Combinatorio. Ing. Ivano Coccorullo

Analisi. Calcolo Combinatorio. Ing. Ivano Coccorullo Analisi Ing. Ivano Coccorullo Prof. Ivano Coccorullo ü Molti dei problemi classici di calcolo delle probabilità si riducono al calcolo dei casi favorevoli e di quelli possibili. Quando le situazioni diventano

Dettagli

E un trasduttore digitale in grado di fornire una indicazione binaria della. Non sfruttano alcun principio fisico. Nei trasduttori lineari a principio

E un trasduttore digitale in grado di fornire una indicazione binaria della. Non sfruttano alcun principio fisico. Nei trasduttori lineari a principio TRASDUTTORI: ENCODER (detto anche CODIFICATORE OTTICO) E un trasduttore digitale in grado di fornire una indicazione binaria della grandezza fisica oggetto di misura ENCODER ASSOLUTO DI POSIZIONE Non sfruttano

Dettagli

ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI

ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI ISTITUTO D'ISTRUZIONE SUPERIORE A. MOTTI ISTITUTO PROFESSIONALE DI ENOGASTRONOMIA E OSPITALITA ALBERGHIERA CON I PERCORSI: ACCOGLIENZA TURISTICA, CUCINA, SALA-BAR ISTITUTO TECNICO PER IL TURISMO Sede Amministrativa:

Dettagli

ESAME 13 Gennaio 2011

ESAME 13 Gennaio 2011 ESAME 13 Gennaio 2011 Esercizio 1. Si consideri un operazione finanziaria che ha valore x 0 = 120 in t 0 = 0 e restituisce x 1 = 135 all istante t. Supponendo che l operazione in esame sia soggetta ad

Dettagli

ESERCITAZIONE 3 : PERCENTUALI

ESERCITAZIONE 3 : PERCENTUALI ESERCITAZIONE 3 : PERCENTUALI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: Lunedi 14-17 Dipartimento di Matematica, piano terra, studio 114 22 Ottobre 2013 Esercizio 1 Nel 2006,

Dettagli

Integrale e derivata Integratore e derivatore - Un analisi grafica Matematica Elettronica

Integrale e derivata Integratore e derivatore - Un analisi grafica Matematica Elettronica Integrale e derivata Integratore e derivatore - Un analisi grafica Matematica Elettronica Percorso didattico sull integratore e il derivatore svolto in compresenza dai docenti di matematica Lucia Pinzauti

Dettagli