L errore percentuale di una misura è l errore relativo moltiplicato per 100 ed espresso in percentuale. Si indica con e p e risulta: e ( e 100)%

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "L errore percentuale di una misura è l errore relativo moltiplicato per 100 ed espresso in percentuale. Si indica con e p e risulta: e ( e 100)%"

Transcript

1 UNITÀ L ELBORZIONE DEI DTI IN FISIC 1. Gli errori di misura.. Errori di sensibilità, errori casuali, errori sistematici. 3. La stima dell errore. 4. La media, la semidispersione e lo scarto quadratico medio. 5. L errore assoluto, relativo e percentuale. L errore assoluto di una misura è l errore che si coette quando si effettua la misura con uno strumento e, secondo i casi che si possono presentare, può essere uguale o all errore di sensibilità dello strumento o alla semidispersione o allo scarto quadratico medio. In generale, la grandezza fisica misurata si indica con, il valore misurato si indica con M e l errore assoluto si indica con e a. Il risultato della misura si scrive così: M ea L errore relativo di una misura è il rapporto tra l errore assoluto e il valore misurato. ea Si indica con e r e risulta che: er M L errore percentuale di una misura è l errore relativo moltiplicato per 100 ed espresso in percentuale. Si indica con e p e risulta: e ( e 100)% p r Per esempio, misurando la lunghezza di un chiodo con un righello tarato in millimetri, si ottiene il valore misurato M= 55, un errore di sensibilità di 1 e si scrive: l ( 55 1). Risulta perciò: errore assoluto e a = 1 errore relativo ea 1 er 0, 018 M 55 errore percentuale e ( e 100)% (0,018100)% 1,8 % p r 6. La precisione di una misura. La precisione di una misura coincide con il suo errore percentuale. Una misura è tanto più precisa quanto minore è il suo errore percentuale.

2 7. La propagazione degli errori. La propagazione degli errori è un problema che si presenta ogni volta che si esegue una misura indiretta e consiste nel determinare come si propagano gli errori dalle grandezze fisiche misurate con lo strumento alle grandezze fisiche calcolate con la formula. Per esempio, se si vuole misurare l area di una banconota, si utilizza un righello tarato in millimetri, si misura la base b e si ottiene un valore medio b 17 con un errore assoluto b 1. Si scrive: b b b ( 17 1) Poi si misura l altezza h e si ottiene un valore medio Si scrive: h h h ( 67 1) Successivamente si calcola il valore medio dell area utilizzando la formula: b h h 67 con un errore assoluto h 1. Per ottenere l errore assoluto dell area si può calcolare il valore massimo dell area M, il valore minimo dell area m e poi la semidifferenza tra M e m che ci darà l errore assoluto dell area Δ. M m b M b m h h M M m m Il calcolo dell area alla fine si esprime in questo modo: ( ) (85,0910 1,9410 ) (85,09 1,94) 10 Generalmente si scrive l errore con una sola cifra e si ottiene il risultato definitivo: ( 85 ) Le cifre significative di un numero decimale. Sono le cifre che hanno effettivamente significato all interno del numero. Il numero di cifre significative si determina contando le cifre da quella più a destra (qualunque sia) a quella più a sinistra diversa da zero. Esempi: 3,47 ha 3 cifre significative; 14,70 ha 4 cifre significative;,074 ha 4 cifre significative; 0,73 ha 3 cifre significative; 0,003 ha cifre significative; Gli zeri che si trovano a sinistra non sono significativi, poiché si possono eliminare scrivendo il numero in forma scientifica. 3 Per es. 0,003,310 e le cifre significative sono effettivamente due. 9. Le cifre significative di una misura diretta. Sono le cifre che vengono effettivamente lette quando si esegue la misura con uno strumento. Esse sono tutte le cifre che si misurano con certezza e la prima cifra incerta. Per esempio se si misura una lunghezza con una rotella metrica tarata in centimetri, si deve scrivere: l=36,43 m poiché i 36 m si misurano con certezza, i 4 dm si misurano con certezza e i 3 cm sono incerti poiché potrebbero essere anche o 4. Per questa misura non ha senso scrivere l=36,43 m poiché lo strumento utilizzato non permette di misurare i millimetri. D altra parte non è corretto scrivere l=36,4 m poiché lo strumento utilizzato permette di apprezzare i centimetri e bisogna indicarli.

3 10. Le cifre significative di una misura indiretta. Sono le cifre che ha senso scrivere quando si calcola il risultato di una misura indiretta. Queste cifre devono essere tante quante sono le cifre della misura meno precisa. Per esempio, se abbiamo due lunghezze: l 1,844 m e l 1,1 m e con questi valori si eseguono dei calcoli, il risultato finale deve essere scritto con tre cifre significative. addizione: sottrazione: l 1 l,844 m 1,1 m 3,964 m 3,96 m l 1 l,844 m1,1 m 1,744 m 1,74 m moltiplicazione: l l 1,844 m1,1 m 3,1858 m 3,19 m l1,844m quoziente:, , 54 l 1,1m 11. rrotondamento di un numero. È un operazione che bisogna eseguire per scrivere il risultato di una misura col giusto numero di cifre significative, eliminando quelle non significative. Se la cifra che si elimina è 0, 1,, 3, o 4, l ultima cifra che rimane si lascia invariata (arrotondamento per difetto); Se la cifra che si elimina è 5, 6, 7, 8, o 9, l ultima cifra che rimane si aumenta di una unità (arrotondamento per eccesso). Per esempio il numero 1,3764 contiene 7 cifre significative; arrotondato con 6 cifre significative diventa: 1,3764 arrotondato con 5 cifre significative diventa: 1,376 arrotondato con 4 cifre significative diventa: 1,38 arrotondato con 3 cifre significative diventa: 1,4

4 1. Il calibro ventesimale. È uno strumento formato da una scala principale fissa tarata in millimetri e una scala secondaria scorrevole, detta nonio (dal nome dell inventore portoghese). Con esso si possono misurare: 1. le dimensioni esterne di un oggetto posto tra le ganasce ;. le dimensioni interne di un oggetto posto tra le ganasce B; 3. la profondità di una cavità, mediante l asticella C. Si può notare che, quando le ganasce sono chiuse senza alcuno spessore in mezzo (Fig. 1), lo zero della scala fissa è allineato esattamente con lo zero del nonio. Inoltre, 19 divisioni sulla scala fissa, cioè 19 millimetri, corrispondono a 0 divisioni sulla scala del nonio. Ciò vuol dire che, mentre ogni divisione della scala fissa corrisponde ad 1 millimetro, ogni divisione della scala del nonio è un po più piccola e corrisponde a 19/0, infatti: Fig. 1 Calibro con le ganasce chiuse Eseguendo la misura di uno spessore d, la scala del nonio si sposta rispetto alla scala principale e la lunghezza dello spessore d è data proprio dalla distanza tra lo zero principale e lo zero del nonio. Supponiamo che, eseguendo la misura di uno spessore d, si presenti la situazione indicata in figura. Si vede che lo spessore d risulta: B C d = 1 + B Fig. Ganasce del calibro quando si misura uno spessore d. Per valutare B bisogna vedere quale tacca del nonio è allineata esattamente ad una tacca della scala principale. Tale allineamento avviene nel punto C, in corrispondenza della nona tacca del nonio, per cui risulta che: 19 B= C- BC = ,55 0, 45 0 Perciò lo spessore d risulta: d 1 0,45 1,45 Siccome è possibile sbagliare la lettura di una divisione, cioè di 1/0 = 0,05, la misura si deve scrivere col giusto numero di cifre significative in questo modo: d 1,45 0,05 (1,45 0,05) Osservare che la parte decimale del risultato si può leggere direttamente sul nonio senza eseguire calcoli, poiché la tacca del nonio meglio allineata è la tacca successiva al numero 4, che corrisponde a 0,45.

5 Supponiamo ora che, misurando la lunghezza l di un oggetto, si presenta la situazione indicata in fig. 3. La lunghezza dell oggetto é: l = 19 + B L allineamento fra la tacca del nonio e la tacca della scala principale avviene nel punto C, in corrispondenza della tredicesima tacca del nonio, per cui risulta che: B C Fig. 3 Ganasce del calibro quando si misura una lunghezza l. 19 B= C- BC = ,35 0, 65 0 Perciò la lunghezza risulta: l 19 0,65 19,65 e il risultato della misura si scrive in questo modo: l ( 19,65 0,05) Osservare che la parte decimale del risultato si può leggere direttamente sul nonio, essendo la tacca meglio allineata quella successiva al numero 6, che corrisponde proprio a 0,65. Come esercizio, valuta la lunghezza delle misure seguenti e scrivila con l errore e col giusto numero di cifre significative: l 1 l l 3

6 13. La rappresentazione dei dati sperimentali. Se due grandezze fisiche ed y sono in relazione tra loro, si può osservare che variando una di esse, per esempio, varia anche l altra, cioè y. Effettuando varie misure della e varie misure della y si possono ordinare i dati in una tabella, poi si possono rappresentare in un grafico cartesiano e infine dal grafico si può ottenere la legge fisica, cioè l equazione matematica che lega tra loro le grandezze ed y. I principali grafici che si possono ottenere sono: 1. proporzionalità diretta;. proporzionalità inversa; 3. proporzionalità quadratica diretta; 4. proporzionalità quadratica inversa; 5. relazione lineare. Per ognuno di questi tipi di grafico bisogna saper fare due cose: a) data la formula, saper disegnare il grafico; b) dato il grafico, saper ricavare la formula.

7 14. La proporzionalità diretta. La formula è del tipo: y k dove k può essere un numero qualunque. Il grafico che rappresenta questa formula è una retta che passa per l origine degli assi e il valore di k si chiama coefficiente angolare della retta. Il valore del coefficiente angolare indica la pendenza della retta: se il coefficiente angolare è grande, la retta è molto ripida (quasi verticale); se il coefficiente angolare è piccolo, la retta è poco ripida (quasi orizzontale); Esempio 1: Data la formula y disegnare il grafico. Si assegnano alla alcuni valori arbitrari e si calcolano i valori corrispondenti della y. Con questi valori si costruisce una tabella e si disegnano i punti ottenuti sugli assi cartesiani. y Esempio : Dato il grafico, ricavare la formula. Siccome è una retta che passa per l origine degli assi, si tratta di una proporzionalità diretta, perciò la formula è del tipo y k y Ricavando k si ottiene: k perciò il valore di k si ottiene considerando un punto qualsiasi del grafico e calcolando il rapporto tra l ordinata y e l ascissa. 6 Per esempio considerando il punto (;6) si ottiene: ottiene: k 3 Perciò la formula che corrisponde al grafico è: y 3

8 15. La proporzionalità inversa. k La formula è del tipo: y dove k può essere un numero qualunque. Il grafico che rappresenta questa formula è una iperbole equilatera, cioè sietrica rispetto alla bisettrice del primo e terzo quadrante. 8 Esempio 1: Data la formula y disegnare il grafico. Si assegnano alla alcuni valori arbitrari e si calcolano i valori corrispondenti della y. Con questi valori si costruisce una tabella e si disegnano i punti ottenuti sugli assi cartesiani. y Esempio : Dato il grafico, ricavare la formula. Siccome è una iperbole equilatera, si tratta di una proporzionalità inversa, perciò la formula è k del tipo y Ricavando k si ottiene: k y perciò il valore di k si ottiene considerando un punto qualsiasi del grafico e calcolando il prodotto tra l ascissa e l ordinata y. Per esempio considerando il punto (5;) si ottiene: ottiene: k 5 10 Perciò la formula che corrisponde al grafico è: 10 y

9 L PROPORZIONLIT QUDRTIC DIRETT La formula è del tipo: y k dove k può essere un numero qualunque. Il grafico che rappresenta questa formula è una parabola con il vertice nell origine degli assi. Esempio 1: Data la formula y 3 disegnare il grafico. Si assegnano alla alcuni valori arbitrari e si calcolano i valori corrispondenti della y. Con questi valori si costruisce una tabella e si disegnano i punti ottenuti sugli assi cartesiani. y Esempio : Dato il grafico, ricavare la formula. Siccome è una parabola con il vertice nell origine degli assi, si tratta di una proporzionalità quadratica diretta, perciò la formula è del tipo y k y Ricavando k si ottiene: k perciò il valore di k si ottiene considerando un punto qualsiasi del grafico e calcolando il rapporto tra l ordinata e il quadrato dell ascissa. 8 8 Per esempio considerando il punto (;8) si ottiene: ottiene: k 4 Perciò la formula che corrisponde al grafico y

10 L PROPORZIONLIT QUDRTIC INVERS k La formula è del tipo: y dove k può essere un numero qualunque. Il grafico che rappresenta questa formula è una iperbole non equilatera, cioè non sietrica rispetto alla bisettrice del primo e terzo quadrante. 8 Esempio 1: Data la formula y disegnare il grafico. Si assegnano alla alcuni valori arbitrari e si calcolano i valori corrispondenti della y. Con questi valori si costruisce una tabella e si disegnano i punti ottenuti sugli assi cartesiani. y 0, ,5 8 0,15 Esempio : Dato il grafico, ricavare la formula. Siccome è una iperbole non equilatera, si tratta di una proporzionalità quadratica inversa, perciò la formula k è del tipo y Ricavando k si ottiene: k y perciò il valore di k si ottiene considerando un punto qualsiasi del grafico e calcolando il prodotto tra il quadrato dell ascissa e l ordinata. Per esempio considerando il punto (;1) si ottiene: ottiene: k Perciò la formula che corrisponde al grafico è: y

11 L RELZIONE LINERE La formula è del tipo: y m q dove m e q sono due numeri qualsiasi. Il grafico che rappresenta questa formula è una retta che non passa per l origine degli assi. Esempio 1: Data la formula y 1 disegnare il grafico. Si assegnano alla alcuni valori arbitrari e si calcolano i valori corrispondenti della y. Con questi valori si costruisce una tabella e si disegnano i punti ottenuti sugli assi cartesiani. y Esempio : Dato il grafico, ricavare la formula. Siccome è una retta che non passa per l origine degli assi, si tratta di una relazione lineare, perciò la formula è del tipo: y m q Il numero m si chiama coefficiente angolare e indica l inclinazione della retta. Il valore di m si determina scegliendo due punti qualsiasi della retta e calcolando il rapporto tra la differenza delle ordinate e la differenza delle ascisse. 8 6 Per esempio, scegliendo i punti (0;) e (;8) si ottiene: m 3 0 Il numero q si chiama ordinata all origine e rappresenta l ordinata del punto di intersezione della retta con l asse y. Nel grafico la retta incontra l asse y nel punto (0;) di ordinata, perciò q=. La retta y m q diventa quindi y 3

Se misuriamo lo spessore di una moneta con un calibro ventesimale, 1 possiamo conoscere questo spessore con l errore di mm 0, 05mm

Se misuriamo lo spessore di una moneta con un calibro ventesimale, 1 possiamo conoscere questo spessore con l errore di mm 0, 05mm UNITÀ L ELABORAZIONE DEI DATI IN FISICA 1. Gli errori di misura. Sono gli errori che si commettono inevitabilmente quando si misura una qualunque grandezza fisica, utilizzando un qualunque strumento e

Dettagli

Capitolo 2 Le misure delle grandezze fisiche

Capitolo 2 Le misure delle grandezze fisiche Capitolo 2 Le misure delle grandezze fisiche Gli strumenti di misura Gli errori di misura Il risultato di una misura Errore relativo ed errore percentuale Propagazione degli errori Rappresentazione di

Dettagli

Dati sperimentali Nella serie di 10 misurazioni di tempo effettuate, si sono ottenuti i seguenti valori espressi in secondi:

Dati sperimentali Nella serie di 10 misurazioni di tempo effettuate, si sono ottenuti i seguenti valori espressi in secondi: ESPERIMENTO DI LABORATORIO DI FISICA MISURE DI TEMPO Obiettivo L obiettivo dell esperimento, oltre che familiarizzare con le misure di tempo, è quello di rivelare gli errori casuali, elaborare statisticamente

Dettagli

Errori di misura Teoria

Errori di misura Teoria Errori di misura Teoria a misura operazione di misura di una grandezza fisica, anche se eseguita con uno strumento precisissimo e con tecniche e procedimenti accurati, è sempre affetta da errori. Gli errori

Dettagli

Laboratorio di Fisica

Laboratorio di Fisica Laboratorio di Fisica dott. G. Casini ARGOMENTO 1: Misura delle grandezze fisiche LDFM Laboratorio di Fisica presentazione realizzata dal prof. Antonio Covello Schema della relazione di laboratorio Strumenti

Dettagli

Quadro riassuntivo di geometria analitica

Quadro riassuntivo di geometria analitica Quadro riassuntivo di geometria analitica IL PIANO CARTESIANO (detta ascissa o coordinata x) e y quella dall'asse x (detta ordinata o coordinata y). Le coordinate di un punto P sono: entrambe positive

Dettagli

Come errore prendo la semidispersione o errore massimo, cioè il valore più grande meno quello più piccolo diviso 2.

Come errore prendo la semidispersione o errore massimo, cioè il valore più grande meno quello più piccolo diviso 2. Compito di Fisica Classe 1C 9/10/010 Alunno ispondi alle seguenti domande: 1) Cosa significa misurare isurare vuol dire confrontare una grandezza con un altra grandezza omogenea scelta come unità di misura.

Dettagli

GLI ERRORI DI MISURA

GLI ERRORI DI MISURA Revisione del 26/10/15 ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO Valdagno (VI) Corso di Fisica prof. Nardon GLI ERRORI DI MISURA Richiami di teoria Caratteristiche degli strumenti di misura Portata: massimo

Dettagli

Geometria Analitica Domande e Risposte

Geometria Analitica Domande e Risposte Geometria Analitica Domande e Risposte A. Il Piano Cartesiano. Qual è la formula della distanza tra due punti nel piano cartesiano? Per calcolare la formula della distanza tra due punti nel piano cartesiano

Dettagli

Moltiplicazione. Divisione. Multipli e divisori

Moltiplicazione. Divisione. Multipli e divisori Addizione Sottrazione Potenze Moltiplicazione Divisione Multipli e divisori LE QUATTRO OPERAZIONI Una operazione aritmetica è quel procedimento che fa corrispondere ad una coppia ordinata di numeri (termini

Dettagli

Equivalenze. Prof. A. Spagnolo IMS P. Villari - Napoli

Equivalenze. Prof. A. Spagnolo IMS P. Villari - Napoli Equivalenze 12dm 2...mm 2 ; 14037cm 2...m 2 ; 12kg...cg; 12hm 2...m 2 ; 3km/h...m/s; 12,8m/s...km/h; 5,5km/min...m/s; 6700m/h...m/s; 34m/s...m/h; 3,75m/s...km/min; 350kg/m 3...g/cm 3 ; 14,4g/cm 3...kg/m

Dettagli

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Risoluzione grafica di un equazione

Dettagli

Questi appunti costituiscono soltanto una traccia sintetica del Corso di Laboratorio di Fisica, a prescindere dalle opportune spiegazioni e dai

Questi appunti costituiscono soltanto una traccia sintetica del Corso di Laboratorio di Fisica, a prescindere dalle opportune spiegazioni e dai Questi appunti costituiscono soltanto una traccia sintetica del Corso di Laboratorio di Fisica, a prescindere dalle opportune spiegazioni e dai necessari chiarimenti forniti a lezione. 1 MISURA DI UNA

Dettagli

Cifre significative delle misure di grandezze fisiche

Cifre significative delle misure di grandezze fisiche Cifre significative delle misure di grandezze fisiche Si definiscono grandezze fisiche tutte quelle entità con cui vengono descritti i fenomeni fisici e che sono suscettibili di una definizione quantitativa,

Dettagli

L equazione generica della funzione costante è y=k, il grafico è una retta parallela all asse x (asse delle ascisse). retta parallela all'asse x y

L equazione generica della funzione costante è y=k, il grafico è una retta parallela all asse x (asse delle ascisse). retta parallela all'asse x y La funzione costante L equazione generica della funzione costante è =k, il grafico è una retta parallela all asse (asse delle ascisse). Esempio di esercizio, dall equazione al grafico: =- retta parallela

Dettagli

Laboratorio di Fisica-Chimica

Laboratorio di Fisica-Chimica Laboratorio di Fisica-Chimica Lezione n.1. Che cos'è la Fisica? La Fisica è una scienza che si occupa dello studio dei fenomeni che avvengono in natura. Questo studio viene compiuto tramite la definizione

Dettagli

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 1) PIANO CARTESIANO serve per indicare, identificare, chiamare... ogni PUNTO del piano (ente geometrico) con una coppia di valori numerici (detti COORDINATE).

Dettagli

1 Nozioni utili sul piano cartesiano

1 Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Il piano cartesiano è un sistema di riferimento costituito da due rette perpendicolari (una orizzontale detta asse delle ascisse x

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

Una funzione può essere:

Una funzione può essere: Date due grandezze variabili, variabile indipendente e y variabile dipendente, si dice che y è funzione di se esiste una legge o proprietà di qualsiasi natura che fa corrispondere a ogni valore di uno

Dettagli

LABORATORIO DI CIRCUITI ELETTRICI Nozioni generali e guida agli esperimenti. Rappresentazione grafica dei risultati sperimentali

LABORATORIO DI CIRCUITI ELETTRICI Nozioni generali e guida agli esperimenti. Rappresentazione grafica dei risultati sperimentali LABORATORIO DI CIRCUITI ELETTRICI Nozioni generali e guida agli esperimenti Rappresentazione grafica dei risultati sperimentali Uno strumento molto utile per comunicare e leggere risultati sperimentali

Dettagli

Precisione e accuratezza

Precisione e accuratezza Precisione e accuratezza Ogni misura comporta una stima! Accuratezza: quanto la misura è prossima al valore corretto Precisione: quanto le singole misure sono in accordo tra loro Le cifre significative

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

FISICA. Elaborazione dei dati sperimentali. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

FISICA. Elaborazione dei dati sperimentali. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica FISICA Elaborazione dei dati sperimentali Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica LA MISURA GLI STRUMENTI DI MISURA Gli strumenti di misura possono essere analogici o digitali.

Dettagli

EQUAZIONE DELLA RETTA

EQUAZIONE DELLA RETTA EQUAZIONE DELLA RETTA EQUAZIONE DEGLI ASSI L equazione dell asse x è 0. L equazione dell asse y è 0. EQUAZIONE DELLE RETTE PARALLELE AGLI ASSI L equazione di una retta r parallela all asse x è cioè è uguale

Dettagli

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano:

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: QUESITI 1 PIANO CARTESIANO 1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: a) 6 b) 13/2 c) 12 d) 13 e) 78 2.

Dettagli

S± S [cm 2 ] h± h [cm] 79±3 12,7±0,2 201±5 5,0±0,2 314±6 3,2±0,2 452±8 2,2±0,2

S± S [cm 2 ] h± h [cm] 79±3 12,7±0,2 201±5 5,0±0,2 314±6 3,2±0,2 452±8 2,2±0,2 SOLUZIONI VERIFICA A CLASSI I^L I^F- I^D TESTO Supponiamo di avere svolto il seguente esperimento: si sono presi 4 cilindri di vetro di diametro diverso e si è versato in ciascuno di essi SEMPRE 1 LITRO

Dettagli

Scale Logaritmiche. Matematica con Elementi di Statistica a.a. 2015/16

Scale Logaritmiche. Matematica con Elementi di Statistica a.a. 2015/16 Scale Logaritmiche Scala Logaritmica: sull asse prescelto (ad esempio, l asse x) si rappresenta il punto di ascissa = 0 0 nella direzione positiva si rappresentano, a distanze uguali fra di loro, i punti

Dettagli

Esercizi di Elementi di Matematica Corso di laurea in Farmacia

Esercizi di Elementi di Matematica Corso di laurea in Farmacia Esercizi di Elementi di Matematica Corso di laurea in Farmacia dott.ssa Marilena Ligabò November 24, 2015 1 Esercizi sulla notazione scientifica Esercizio 1.1. Eseguire il seguente calcolo utilizzando

Dettagli

La misura e le incertezze

La misura e le incertezze 1. Gli strumenti di misura Gli strumenti di misura vengono utilizzati per effettuare la misura di una grandezza fisica. Esistono due tipologie di strumenti di misura: 1. strumenti analogici, in cui la

Dettagli

Esercizi di Calcolo e Biostatistica con soluzioni

Esercizi di Calcolo e Biostatistica con soluzioni 1 Esercizi di Calcolo e Biostatistica con soluzioni 1. Date le funzioni f 1 (x) = x/4 1, f 2 (x) = 3 x, f 3 (x) = x 4 2x, scrivere a parole le operazioni che, dato x in modo opportuno, permettono di calcolare

Dettagli

FUNZIONI ELEMENTARI Funzione retta

FUNZIONI ELEMENTARI Funzione retta 1 FUNZIONI ELEMENTARI Funzione retta L equazione generale della funzione retta è y = a x + b dove a, b sono numeri reali fissati. Il termine b si chiama termine noto e dà l ordinata dell intersezione tra

Dettagli

Lettura Moto uniformemente accelerato

Lettura Moto uniformemente accelerato Moto uniformemente accelerato Le cose che devi già conoscere per svolgere l attività Le definizioni di velocità media e di accelerazione media e la legge oraria del moto uniformemente accelerato. Come

Dettagli

Punti nel piano cartesiano

Punti nel piano cartesiano Punti nel piano cartesiano In un piano consideriamo due rette perpendicolari che chiamiamo x e. Solitamente, disegniamo la retta x (ascisse) orizzontalmente e orientata da sinistra a destra, la retta e

Dettagli

GEOMETRIA ANALITICA

GEOMETRIA ANALITICA GEOMETRIA ANALITICA matematica@blogscuola.it LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate cartesiane su una retta r, è necessario considerare: un punto O detto origine; un

Dettagli

Esperimenti. Emanuele Trulli I G

Esperimenti. Emanuele Trulli I G Esperimenti Emanuele Trulli I G Emanuele Trulli I G Teoria Emanuele Trulli I G IL CALIBRO DECIMALE Il calibro è uno strumento che serve a migliorare la sensibilità della riga millimetrata passando cioè

Dettagli

.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1

.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1 Funzioni FUNZIONI Una funzione è una relazione fra due insiemi non vuoti e, che associa ad ogni elemento uno e un solo elemento. In simboli si scrive: = oppure. A x 1. x. x 3..y 1.y.y 3 B C.y 5 x 4..y

Dettagli

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si PROBLEMA Determinare il punto simmetrico di P( ;) rispetto alla retta x y =0 Soluzione Il simmetrico di P rispetto ad una retta r è il punto P che appartiene alla retta passante per P, perpendicolare ad

Dettagli

Grandezze e Misure 1

Grandezze e Misure 1 Grandezze e Misure 1 Grandezze e Misure Introduzione Il Metodo Sperimentale Unità di Misura Grandezze Fondamentali e Derivate Massa e Densità Misure dirette e indirette Strumenti di misura Errori nelle

Dettagli

Programma di Matematica Classe 3^ A/L.S.U. Anno scolastico 2014/2015

Programma di Matematica Classe 3^ A/L.S.U. Anno scolastico 2014/2015 Programma di Matematica Classe 3^ A/L.S.U. Anno scolastico 2014/2015 Ripasso: le equazioni lineari. Ripasso: i prodotti notevoli. Ripasso: i sistemi lineari e il metodo della sostituzione. Ripasso: le

Dettagli

Importanza delle incertezze nelle misure fisiche

Importanza delle incertezze nelle misure fisiche Importanza delle incertezze nelle misure fisiche La parola errore non significa equivoco o sbaglio Essa assume il significato di incertezza da associare alla misura Nessuna grandezza fisica può essere

Dettagli

Verifica di Topografia

Verifica di Topografia ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI " In Memoria dei Morti per la Patria " * CHIAVARI * ANNO SCOLASTICO 2010-2011 Verifica di Topografia classe 3^ Geometri 1) In un appezzamento a forma

Dettagli

LA PARABOLA. Parabola con asse di simmetria coincidente con l asse y e passante per l origine. Equazione canonica Vertice V ( 0,0) Fuoco

LA PARABOLA. Parabola con asse di simmetria coincidente con l asse y e passante per l origine. Equazione canonica Vertice V ( 0,0) Fuoco LA PARABOLA La parabola è il luogo geometrico dei punti del piano equidistanti da un punto fisso F detto fuoco e da una retta fissa detta direttrice. Parabola con asse di simmetria coincidente con l asse

Dettagli

Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classe III C ESERCIZI ESTIVI 2013/14

Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classe III C ESERCIZI ESTIVI 2013/14 Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri Classe III C ESERCIZI ESTIVI 013/14 ALUNNO CLASSE ESEGUI TUTTI GLI ESERCIZI SU UN FOGLIO PROTOCOLLO O UN QUADERNO. Ulteriore

Dettagli

1.4 Geometria analitica

1.4 Geometria analitica 1.4 Geometria analitica IL PIANO CARTESIANO Per definire un riferimento cartesiano nel piano euclideo prendiamo: Un punto detto origine i Due rette orientate passanti per. ii Due punti e per definire le

Dettagli

Unità Didattica N 9 : La parabola

Unità Didattica N 9 : La parabola 0 Matematica Liceo \ Unità Didattica N 9 La parabola Unità Didattica N 9 : La parabola ) La parabola ad asse verticale ) La parabola ad asse orizzontale 5) Intersezione di una parabola con una retta 6)

Dettagli

Tutte le altre grandezze fisiche derivano da queste e sono dette grandezze DERIVATE (es. la superficie e il volume).

Tutte le altre grandezze fisiche derivano da queste e sono dette grandezze DERIVATE (es. la superficie e il volume). Grandezze fisiche e misure La fisica studia i fenomeni del mondo che ci circonda e ci aiuta a capirli. Tutte le grandezze che caratterizzano un fenomeno e che possono essere misurate sono dette GRANDEZZE

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

Testi verifiche 3 C 3 I a. s. 2008/2009

Testi verifiche 3 C 3 I a. s. 2008/2009 Testi verifiche 3 C 3 I a. s. 2008/2009 1) Sono assegnati i punti A(- 1; 3) C(3; 0) M ;1 a) Ricavare le coordinate del simmetrico di A rispetto a M e indicarlo con B. Verificare che il segmento congiungente

Dettagli

GEOMETRIA ANALITICA. Il Piano cartesiano

GEOMETRIA ANALITICA. Il Piano cartesiano GEOMETRIA ANALITICA La geometria analitica consente di studiare e rappresentare per via algebrica informazioni di tipo geometrico. Lo studio favorisce una più immediata visualizzazione di informazioni,

Dettagli

Matematica classe 5 C a.s. 2012/2013

Matematica classe 5 C a.s. 2012/2013 Matematica classe 5 C a.s. 2012/2013 Asintoti e grafici 1) Una funzione y = f(x) gode delle seguenti caratteristiche: D / 4, y 0 se x 0 x 2, lim, 3. Rappresentare un grafico qualitativo della funzione.

Dettagli

Test di Matematica di base

Test di Matematica di base Test di Matematica di base Geometria Il rapporto tra la superficie di un quadrato e quella di un triangolo equilatero di eguale lato è a. 4 b. 4 d. [ ] Quali sono le ascisse dei punti della curva di equazione

Dettagli

4 + 7 = 11. Possiamo quindi dire che:

4 + 7 = 11. Possiamo quindi dire che: Consideriamo due numeri naturali, per esempio 4 e 7. Contando successivamente, dopo le unità del primo, le unità del secondo si esegue l operazione aritmetica detta addizione, il cui simbolo è + ; 4 +

Dettagli

GEOMETRIA ANALITICA Prof. Erasmo Modica

GEOMETRIA ANALITICA Prof. Erasmo Modica ISTITUTO PROVINCIALE DI CULTURA E LINGUE NINNI CASSARÀ SEZIONE DISTACCATA DI CEFALÙ CLASSE V C GEOMETRIA ANALITICA Prof. Erasmo Modica LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate

Dettagli

UNITÀ DIDATTICA 5 LA RETTA

UNITÀ DIDATTICA 5 LA RETTA UNITÀ DIDATTICA 5 LA RETTA 5.1 - La retta Equazione generica della retta Dalle considerazioni emerse nel precedente capitolo abbiamo compreso come una funzione possa essere rappresentata da un insieme

Dettagli

Accuratezza, precisione, tipi di errori e cifre significative dei dati analitici.

Accuratezza, precisione, tipi di errori e cifre significative dei dati analitici. Accuratezza, precisione, tipi di errori e cifre significative dei dati analitici. Indice: 1. Lettura della buretta pag.2 2. Precisione ed Accuratezza pag.3 3. Tipi di errori pag.4 4. Affidabilità di una

Dettagli

Equazioni Polinomiali II Parabola

Equazioni Polinomiali II Parabola Equazioni Polinomiali II Parabola - 0 Equazioni Polinomiali del secondo grado (Polinomi II) Forma Canonica e considerazioni La forma canonica dell equazione polinomiale di grado secondo è la seguente:

Dettagli

Sintesi degli argomenti di fisica trattati (parte uno)

Sintesi degli argomenti di fisica trattati (parte uno) Sintesi degli argomenti di fisica trattati (parte uno) La grandezza fisica è una proprietà dello spazio o della materia che può essere misurata. Fare una misura vuol dire confrontare la grandezza fisica

Dettagli

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi PIANO CARTESIANO Il piano cartesiano è individuato da due rette perpendicolari (ortogonali) che si incontrano in un punto O detto origine del piano cartesiano. Si fissa sulla retta orizzontale il verso

Dettagli

Piano cartesiano. O asse delle ascisse

Piano cartesiano. O asse delle ascisse Piano cartesiano E costituito da due rette orientate e perpendicolari tra di loro chiamate assi di riferimento. Il loro punto di intersezione O si chiama origine del riferimento. L asse orizzontale è detto

Dettagli

7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi.

7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi. NUMERI RAZIONALI Q Nell insieme dei numeri naturali e nell insieme dei numeri interi relativi non è sempre possibile effettuare l operazione di divisione. Infatti, eseguendo la divisione 7 2 si ottiene

Dettagli

Le coniche: circonferenza, parabola, ellisse e iperbole.

Le coniche: circonferenza, parabola, ellisse e iperbole. Le coniche: circonferenza, parabola, ellisse e iperbole. Teoria in sintesi Queste curve si chiamano coniche perché sono ottenute tramite l intersezione di una superficie conica con un piano. Si possono

Dettagli

La Retta Ogni funzione di primo grado rappresenta, graficamente, una retta. L equazione della retta può essere scritta in due modi

La Retta Ogni funzione di primo grado rappresenta, graficamente, una retta. L equazione della retta può essere scritta in due modi La Retta Ogni funzione di primo grado rappresenta, graficamente, una retta. L equazione della retta può essere scritta in due modi Forma implicita Forma esplicita a x b y c 0 y m x q a c y x b b Esempio

Dettagli

Esercizio L1 L2 L3 L4 L5 L6 L7 L8. Sia f (x) = 4 x. Allora f (x + 1) f (x) è uguale a. Risposta. Risulta immediatamente

Esercizio L1 L2 L3 L4 L5 L6 L7 L8. Sia f (x) = 4 x. Allora f (x + 1) f (x) è uguale a. Risposta. Risulta immediatamente Sia f (x) = 4 x. Allora f (x + 1) f (x) è uguale a [1] 4 [2] f (x) [3] 2f (x) [4] 3f (x) [5] 4f (x) Risulta immediatamente f (x 1) f (x) = 4 x+1 4 x = 4 x 4 1 4 x = 4 x (4 1) = 3 4 x = 3f (x). E noto che

Dettagli

Piano cartesiano e Retta

Piano cartesiano e Retta Piano cartesiano e Retta 1 Piano cartesiano e Retta 1. Richiami sul piano cartesiano 2. Richiami sulla distanza tra due punti 3. Richiami punto medio di un segmento 4. La Retta (funzione lineare) 5. L

Dettagli

Sperimentazioni di Fisica I mod. A Statistica - Lezione 2

Sperimentazioni di Fisica I mod. A Statistica - Lezione 2 Sperimentazioni di Fisica I mod. A Statistica - Lezione 2 A. Garfagnini M. Mazzocco C. Sada Dipartimento di Fisica G. Galilei, Università di Padova AA 2014/2015 Elementi di Statistica Lezione 2: 1. Istogrammi

Dettagli

GEOMETRIA ANALITICA: LE CONICHE

GEOMETRIA ANALITICA: LE CONICHE DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 2013-2014 ESERCIZI DI GEOMETRIA ANALITICA: LE CONICHE Esercizio 1: Fissato su un piano un sistema di riferimento cartesiano ortogonale

Dettagli

LE COORDINATE CARTESIANE

LE COORDINATE CARTESIANE CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni GEOMETRIA ANALITICA Prof. Erasmo Modica erasmo@galois.it LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate

Dettagli

ECONOMIA APPLICATA ALL INGEGNERIA (Docente: Prof. Ing. Donato Morea) Microeconomia Esercitazione n. 1 - I FONDAMENTI DI DOMANDA E DI OFFERTA

ECONOMIA APPLICATA ALL INGEGNERIA (Docente: Prof. Ing. Donato Morea) Microeconomia Esercitazione n. 1 - I FONDAMENTI DI DOMANDA E DI OFFERTA ESERCIZIO n. 1 - Equilibrio di mercato e spostamenti delle curve di domanda e di offerta La quantità domandata di un certo bene è descritta dalla seguente funzione: p (D) mentre la quantità offerta è descritta

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

Mutue posizioni della parabola con gli assi cartesiani

Mutue posizioni della parabola con gli assi cartesiani Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse

Dettagli

Numeri decimali, rapporti e proporzioni

Numeri decimali, rapporti e proporzioni Numeri decimali, rapporti e proporzioni E. Modica erasmo@galois.it Liceo Scientifico Statale S. Cannizzaro Corso P.O.N. Modelli matematici e realtà A.S. 2010/2011 Da una forma all altra... Dalla frazione

Dettagli

ISTITUTO PROFESSIONALE DI STATO PER L INDUSTRIA E L ARTIGIANATO I.P.S.I.A. L. B. ALBERTI

ISTITUTO PROFESSIONALE DI STATO PER L INDUSTRIA E L ARTIGIANATO I.P.S.I.A. L. B. ALBERTI ISTITUTO PROFESSIONALE DI STATO PER L INDUSTRIA E L ARTIGIANATO I.P.S.I.A. L. B. ALBERTI Via Clotilde Tambroni, RIMINI ( RN ) Anno scolastico 2016-2017 Classe I A Materia: FISICA Insegnante : Prof. GIUSEPPE

Dettagli

Funzioni elementari. Tutorial di Barberis Paola - agg grafici con GEOGebra - software open source

Funzioni elementari. Tutorial di Barberis Paola - agg grafici con GEOGebra - software open source Funzioni elementari Proporzionalità diretta e inversa Retta, funzione identità e funzione costante Parabola, funzione quadratica e cubica Funzione omografica Funzione esponenziale e logaritmica Funzioni

Dettagli

SCUOLA PRIMARIA MATEMATICA (Classe 1ª)

SCUOLA PRIMARIA MATEMATICA (Classe 1ª) SCUOLA PRIMARIA MATEMATICA (Classe 1ª) Operare con i numeri nel calcolo scritto e mentale Leggere e scrivere numeri naturali in cifre e lettere. Contare in senso progressivo e regressivo. Raggruppare,

Dettagli

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA. PROGRAMMA DI Matematica. Classe IIIB. Anno Scolastico

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA. PROGRAMMA DI Matematica. Classe IIIB. Anno Scolastico LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI Matematica Classe IIIB Anno Scolastico 2014-2015 Insegnante: Prof.ssa La Salandra Incoronata 1 DISEQUAZIONI Disequazioni razionali intere di secondo

Dettagli

Equazione della retta tangente al grafico di una funzione

Equazione della retta tangente al grafico di una funzione Equazione della retta tangente al grafico di una funzione Abbiamo già visto che in un sistema di assi cartesiani ortogonali, è possibile determinare l equazione di una retta r non parallela agli assi coordinati,

Dettagli

Nome Cognome. Classe 3D 25 Febbraio Verifica di matematica

Nome Cognome. Classe 3D 25 Febbraio Verifica di matematica Nome Cognome. Classe D Febbraio Verifica di matematica ) Data l equazione: k 6 a) Scrivi per quali valori di k rappresenta un ellisse, precisando per quali valori è una circonferenza b) Scrivi per quali

Dettagli

Analisi degli Errori di Misura. 08/04/2009 G.Sirri

Analisi degli Errori di Misura. 08/04/2009 G.Sirri Analisi degli Errori di Misura 08/04/2009 G.Sirri 1 Misure di grandezze fisiche La misura di una grandezza fisica è descrivibile tramite tre elementi: valore più probabile; incertezza (o errore ) ossia

Dettagli

Strumenti Matematici per la Fisica

Strumenti Matematici per la Fisica Strumenti Matematici per la Fisica Strumenti Matematici per la Fisica Sistema Metrico Decimale Equivalenze Potenze di Notazione scientifica (o esponenziale) Ordine di Grandezza Approssimazioni Proporzioni

Dettagli

C I R C O N F E R E N Z A...

C I R C O N F E R E N Z A... C I R C O N F E R E N Z A... ESERCITAZIONI SVOLTE 3 Equazione della circonferenza di noto centro C e raggio r... 3 Equazione della circonferenza di centro C passante per un punto A... 3 Equazione della

Dettagli

CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica

CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica ISTITUTO PROVINCIALE DI CULTURA E LINGUE NINNI CASSARÀ SEDE DI VIA FATTORI CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica erasmo@galois.it DEFINIZIONI Definizione. Dicesi parabola il luogo

Dettagli

Condizione di allineamento di tre punti

Condizione di allineamento di tre punti LA RETTA L equazione lineare in x e y L equazione: 0 con,,, e non contemporaneamente nulli, si dice equazione lineare nelle due variabili e. Ogni coppia ; tale che: 0 si dice soluzione dell equazione.

Dettagli

Questo paragrafo e quello successivo trattano gli stessi argomenti del capitolo B6 relativo alla soluzione grafica dei sistemi di primo grado.

Questo paragrafo e quello successivo trattano gli stessi argomenti del capitolo B6 relativo alla soluzione grafica dei sistemi di primo grado. D1. Retta D1.1 Equazione implicita ed esplicita Ogni equazione di primo grado in due incognite rappresenta una retta sul piano cartesiano (e viceversa). Si può scrivere un equazione di primo grado in due

Dettagli

Misure di velocità con la guidovia a cuscino d aria (1)

Misure di velocità con la guidovia a cuscino d aria (1) Misure di velocità con la guidovia a cuscino d aria (1) Obiettivo: Riprodurre un moto con velocità costante utilizzando la guidovia a cuscino d aria. Ricavare la tabella oraria e il grafico orario (grafico

Dettagli

M E T R O L O G I A D O F F I C I N A (Distillazione verticale)

M E T R O L O G I A D O F F I C I N A (Distillazione verticale) 1 M E T R O L O G I A D O F F I C I N A (Distillazione verticale) OBIETTIVI: A) Conoscenza delle caratteristiche degli strumenti di misura; B) Capacità di leggere e utilizzare calibri a corsoio e micrometri

Dettagli

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA)

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) Nel presente documento sono elencati gli esercizi da svolgere nel corso delle vacanze estive 2017 da parte degli studenti

Dettagli

Incertezza sperimentale e cifre significative

Incertezza sperimentale e cifre significative Incertezza sperimentale e cifre significative q La fisica è una scienza sperimentale e le misure e l incertezza con cui vengono effettuate sono il fulcro di ogni esperimento. q Le misure possono essere

Dettagli

CONOSCENZE 1. gli enti fondamentali e le loro. 2. la posizione reciproca di punto, retta, piano 3. gli angoli e le loro proprietaá

CONOSCENZE 1. gli enti fondamentali e le loro. 2. la posizione reciproca di punto, retta, piano 3. gli angoli e le loro proprietaá GEOMETRIA PREREQUISITI l conoscere le caratteristiche del sistema decimale l conoscere le proprietaá delle quattro operazioni e operare con esse l operare con le misure angolari CONOSCENZE 1. gli enti

Dettagli

Test di autovalutazione

Test di autovalutazione Test di autovalutazione 0 10 0 30 40 50 60 70 80 90 100 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle 5 alternative. n Confronta le tue risposte con le soluzioni.

Dettagli

Funzioni numeriche elementari. y B è l'immagine dell'elemento x A

Funzioni numeriche elementari. y B è l'immagine dell'elemento x A Le funzioni numeriche (in simboli f() ), sono delle leggi, in molti casi espresse da equazioni y=f(), che associano dei numeri appartenenti a un certo insieme di partenza (A), ad altri numeri appartenenti

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. 2.8 esercizi 31 2.8 esercizi hi non risolve esercizi non impara la matematica. 1 Vero o falso? a. I punti (0, 2), (4, 4), (6, 0) e (2, 2) sono i vertici di un quadrato. V F b. Non esiste il coefficiente

Dettagli

Rappresentazione di Dati: Scala lineare Scala logaritmica. Grafici Lin Lin Grafici Lin Log Grafici Log Log

Rappresentazione di Dati: Scala lineare Scala logaritmica. Grafici Lin Lin Grafici Lin Log Grafici Log Log Rappresentazione di Dati: Scala lineare Scala logaritmica Grafici Lin Lin Grafici Lin Log Grafici Log Log Grafici in scala lineare Grafici Lin Lin Nella rappresentazione di dati in un piano cartesiano

Dettagli

Programma svolto nell'a.s. 2014/2015. Disciplina: Matematica. Classe: 3D Docente: Prof. Ezio Pignatelli. Programma sintetico.

Programma svolto nell'a.s. 2014/2015. Disciplina: Matematica. Classe: 3D Docente: Prof. Ezio Pignatelli. Programma sintetico. Programma svolto nell'a.s. 2014/2015. Disciplina: Matematica. Classe: 3D Docente: Prof. Ezio Pignatelli Programma sintetico. 1. Equazioni e disequazioni a) Equazioni e disequazioni di primo e secondo grado.

Dettagli

ACCURATEZZA. L accuratezza esprime la vicinanza del risultato al valore vero o accettato come tale. PRECISIONE

ACCURATEZZA. L accuratezza esprime la vicinanza del risultato al valore vero o accettato come tale. PRECISIONE 2 ACCURATEZZA L accuratezza esprime la vicinanza del risultato al valore vero o accettato come tale. PRECISIONE La precisione descrive l accordo tra due o più misure replicate. 3 NOTAZIONE SCIENTIFICA

Dettagli

RIPASSO DI MATEMATICA FRAZIONI

RIPASSO DI MATEMATICA FRAZIONI SOMMA a) Trovo m.c.m.tra i denominatori b) il risultato diventa il nuovo denominatore RIPASSO DI MATEMATICA FRAZIONI a) eseguo la divisione tra il nuovo denominatore con il denominatore b) moltiplico il

Dettagli

2. Determina l equazione della circonferenza passante per i punti A ( 2; 4), B ( 1; 3) ed avente centro sulla retta di equazione 2x 3y + 2 = 0.

2. Determina l equazione della circonferenza passante per i punti A ( 2; 4), B ( 1; 3) ed avente centro sulla retta di equazione 2x 3y + 2 = 0. CLASSE 3^ C LICEO SCIENTIFICO Novembre 01 La circonferenza 1. Ricava l equazione di ciascuna delle circonferenze rappresentate, spiegando in maniera esauriente il procedimento che seguirai, prima di svolgere

Dettagli

FISICA. Elaborazione dei dati sperimentali. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

FISICA. Elaborazione dei dati sperimentali. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica FISICA Elaborazione dei dati sperimentali Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica LE GRANDEZZE FISICHE Una grandezza fisica è una quantità che può essere misurata con uno strumento

Dettagli

Rappresenta nel piano cartesiano l insieme dei punti P(x; y) le cui coordinate soddisfano le seguenti condizioni:

Rappresenta nel piano cartesiano l insieme dei punti P(x; y) le cui coordinate soddisfano le seguenti condizioni: ultima modifica /0/0 ESERCIZI PROPOSTI IL PIANO CARTESIANO LE COORDINATE DI UN PUNTO NEL PIANO CARTESIANO A Quali sono le coordinate dei punti indicati in figura? B Quali sono le coordinate dei punti indicati

Dettagli

2. APPUNTI SUI FASCI DI CIRCONFERENZE (raccolti dal prof. G. Traversi)

2. APPUNTI SUI FASCI DI CIRCONFERENZE (raccolti dal prof. G. Traversi) 2. APPUNTI SUI FASCI DI CIRCONFERENZE (raccolti dal prof. G. Traversi) La circonferenza è la curva di 2^ grado che viene individuata univocamente da tre punti non allineati e possiede la seguente proprietà:

Dettagli