TECNICA DEI PRODOTTI FINANZIARI E ASSICURATIVI Corso di laurea magistrale in Economia e Finanza Prova scritta d esame 13 gennaio 2017.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "TECNICA DEI PRODOTTI FINANZIARI E ASSICURATIVI Corso di laurea magistrale in Economia e Finanza Prova scritta d esame 13 gennaio 2017."

Transcript

1 COGNOME e NOME NUMERO di MATRICOLA TECNICA DEI PRODOTTI FINANZIARI E ASSICURATIVI Corso di laurea magistrale in Economia e Finanza Prova scritta d esame 13 gennaio Dopo aver illustrato le caratteristiche e le proprietà fondamentali dei contratti future valutari (3 punti) si consideri il caso di un importatore canadese che sottoscrive in posizione lunga un contratto future sull euro. Il contratto scade fra 8 mesi, il tasso di cambio all epoca iniziale è S CAD/EUR 0 = , i tassi di interesse istantanei annui, supposti costanti per tutta la durata del contratto, sono r CAD = 0.75% e r EUR = 0.65%. Si richiede di: Calcolare il prezzo teorico del contratto future unitario F EUR/CAD 0,8. Scrivere la funzione di payoff alla scadenza e disegnarne il grafico. Calcolare il valore del contratto 4 mesi dopo la sua attivazione nell ipotesi che il dollaro canadese si sia rivalutato del 5% rispetto alla quotazione iniziale. Calcolare il tasso di cambio dollaro canadese/euro che all epoca t = 7 mesi annulla il valore del contratto attivato oggi. 2. Il prezzo di un titolo azionario che non distribuisce dividendi è regolato dalla dinamica browniana geometrica ds = µsdt + σsdw con S 0 = 100, µ = r = 0.01, σ = 0.2. Con riferimento a tale titolo azionario viene attivata una strategia che prevede l acquisto di un opzione put e la vendita di due call. Le opzioni sono di tipo europeo e hanno la medesima scadenza (T=9 mesi) ma diverso prezzo d esercizio (X put = 93 e X call = 108). I premi unitari di mercato sono p me = 3 per una put e c me = 5 per una call. Si richiede di: (a) scrivere l espressione analitica della funzione di profitto della strategia alla scadenza e disegnare tale funzione per S T [60, 130]; (b) calcolare il prezzo di Black-Scholes dell opzione call e della put e confrontarlo con il prezzo ottenuto con il modello binomiale a 3 stadi; (c) calcolare la probabilità che la strategia dia luogo a un guadagno all epoca di scadenza; 3. Un 68-enne stipula una polizza caso morte temporanea della durata di 5 anni e con capitale assicurato CA = euro. Utilizzando le tavole SIM 2015 e il tasso tecnico annuo i = 0.02, si richiede di calcolare: a Il premio unico. b Il premio periodico costante nell ipotesi di pagarne 3 (m=3). c I premi naturali e verificare che la loro somma attuariale (valutata all epoca iniziale) coincide con il premio unico. d La riserva matematica del quarto anno (V 4 ) calcolata (solo nel caso di premio unico) sia con le relazioni ricorrenti (in avanti e indietro), sia con i metodi prospettivo e retrospettivo. Visione compiti corretti GIOVEDI 19 gennaio ore o MERCOLEDI 25 ore

2 Tabella 1: Valori della funzione di distribuzione normale standardizzata (coda sinistra) P(Z z 0 ) = 1 z0 2π exp[ t2 /2]dt. z C E N N O D I S O L U Z I O N E Il prezzo teorico del contratto future sul titolo azionario ENI è F EUR/CAD 0,8 = S EUR/CAD 0 e (r CAD r EUR )t 8 = La funzione di payoff alla scadenza e( )2/3 = = K 0,T G(S T ) = S T K 0,T La rivalutazione del dollaro canadese comporta che sia S CAD/EUR 5 = S CAD/EUR = Il valore del contratto 4 mesi dopo la sua attivazione è f 4 = (K 4,T K 0,T )e (T t 4) = dollari canadesi. 2

3 Tabella 2: Estratto dalla Tavola SIM 2015 (maschi Italia) x l x x l x x l x x l x Il tasso di cambio dollaro canadese/euro che all epoca t = 7 mesi annulla il valore del contratto attivato oggi si ottiene da cioè da K EUR/CAD 7,T = K EUR/CAD 0,T S EUR/CAD 7 e ( )1/12 = e si trova S EUR/CAD 7 = e quindi S CAD/EUR 7 = La funzione di profitto della strategie alla scadenza è G(S T ) = 2 max[s T X call, 0] + max[x put S T, 0] + 2c me p me ovvero 93 S T + 7, se S T < 93; G(S T ) = 7, se 93 S T 108; 2(S T 108) + 7, se S T > 108. Figura 1: Funzione di profitto della strategia per S T [60, 140] 3

4 Il prezzo di Black-Scholes dell opzione call è c BS = S 0 N(d 1 ) X call e rt N(d 2 ) = 4.12 (d 1 = N(d 1 ) = d 2 = N(d 2 ) = ) Il prezzo di Black-Scholes dell opzione put è p BS = Xe rt N( g 2 ) S 0 N( g 1 ) = 3.48 (d 1 = 0, 5489 d 2 = 0, 3757 N(d 1 ) = 0, 7085 N(d 2 ) = 0, 6464) La strategia dà luogo a un guadagno all epoca di scadenza se S T < Si ha P rob(s T > 111.5) = e quindi la probabilità richiesta è 1 P rob(s T > 111.5) = I coefficienti moltiplicativi al rialza e al ribasso sono u = e σ T/n = e = d = I prezzi finali dell albero sono S 33 = S 32 = S 31 = S 30 = La probabilità neutrale al rischio di un rialzo è p = r p d u d = er/4 e σ T/n e σ T/n e σ T/n = Il valore medio della call alla scadenza vale ; attualizzando tale valore medio si ottiene il prezzo dell opzione calcolato con il modello binomiale. 3) Il premio unico che il 68-enne deve pagare è U = /5 A 68 = 0/1 A /1 A /1 A 68 = ( h/1a x = v h s h = I 3 premi di importo costante sono I 5 premi naturali sono: P = ) 1 l x+h 1 l x+h (1 + i) h l x U E E 68 = = v d 68 l 68 2 = v d 69 l 69 3 = v d 70 l 70 4 = v d 71 l 71 5 = v d 72 l 72 4

5 e si riferiscono rispettivamente alle epoche 0,1,2,3,4. Per il calcolo della somma dei premi naturali considerata in termini attuariali all epoca iniziale si osservi che per quanto riguarda il primo premio naturale si ha 1 = 0/1 A 68 Il secondo premio naturale 2 valutato in termini attuariali all epoca iniziale vale 1/1A 68 Analogamente per gli altri premi naturali. Con riferimento al metodo iterativo la riserva del quarto anno si può valutare calcolando in avanti (V 1, V 2, V 3 e V 4 ) o procedendo all indietro iniziando da V 5 = Con il metodo prospettico si deve calcolare la differenza (attuariale) fra gli impegni futuri della Compagnia e quelli dell assicurato. Quest ultimo nel caso del premio unico non ha impegni mentre la Compagnia dovra pagare il capitale assicurato se l assicurato, che all epoca del calcolo della riserva ha 72 anni, muore nel quinto (tra l epoca 4 e l epoca 5). 5

Scrivere la funzione di payoff alla scadenza e disegnarne il grafico.

Scrivere la funzione di payoff alla scadenza e disegnarne il grafico. Cognome, nome e n. matricola METODI E MODELLI QUANTITATIVI PER LE SCELTA FINANZIARIE Corso di laurea magistrale in sviluppo economico e dell impresa Prova scritta d esame TREVISO 25 I 2017. 1) Si consideri

Dettagli

MATEMATICA FINANZIARIA RISCHI: RAPPRESENTAZIONE E GESTIONE (CENNI)

MATEMATICA FINANZIARIA RISCHI: RAPPRESENTAZIONE E GESTIONE (CENNI) Matematica Finanziaria, a.a. 2011/2012 p. 1/315 UNIVERSITA DEGLI STUDI DI PARMA FACOLTA DI ECONOMIA MATEMATICA FINANZIARIA RISCHI: RAPPRESENTAZIONE E GESTIONE (CENNI) ANNAMARIA OLIVIERI a.a. 2011/2012

Dettagli

APPENDICE N. 1 ALLA CONVENZIONE N. 5988 POLIZZA DI ASSICURAZIONE COLLETTIVA VITA Contraente: Fondo Pensioni del Gruppo Sanpaolo IMI

APPENDICE N. 1 ALLA CONVENZIONE N. 5988 POLIZZA DI ASSICURAZIONE COLLETTIVA VITA Contraente: Fondo Pensioni del Gruppo Sanpaolo IMI APPENDICE N. 1 ALLA CONVENZIONE N. 5988 POLIZZA DI ASSICURAZIONE COLLETTIVA VITA Contraente: Fondo Pensioni del Gruppo Sanpaolo IMI Con la presente Appendice N. 1 alla convenzione 5988, ai sensi dell Art.

Dettagli

Modello Black-Scholes

Modello Black-Scholes Modello Black-Scholes R. Marfé Indice 1 Il modello Black Scholes 1.1 Formule di valutazione per le opzioni standard......... 3 1. Implementazione in VBA..................... 6 1 1 Il modello Black Scholes

Dettagli

VALUTAZIONE DEGLI STRUMENTI DERIVATI

VALUTAZIONE DEGLI STRUMENTI DERIVATI CONFINDUSTRIA- Genova VALUTAZIONE DEGLI STRUMENTI DERIVATI Simone Ligato Genova, 15 Febbraio 2017 1 COSA SONO I DERIVATI Strumenti finanziari il cui valore dipende interamente dall asset sottostante; IFRS

Dettagli

Esercitazione: La distribuzione NORMALE

Esercitazione: La distribuzione NORMALE Esercitazione: La distribuzione NORMALE Uno dei più importanti esempi di distribuzione di probabilità continua è dato dalla distribuzione Normale (curva normale o distribuzione Gaussiana); è una delle

Dettagli

LE OPZIONI: GLI ELEMENTI DI. Gino Gandolfi SDA BOCCONI

LE OPZIONI: GLI ELEMENTI DI. Gino Gandolfi SDA BOCCONI LE OPZIONI: GLI ELEMENTI DI VALUTAZIONE Gino Gandolfi SDA BOCCONI I LIMITI DI PREZZO DELLE OPZIONI Sostanzialmente, una call americana od europea dà al possessore ad acquistare l attività sottostante ad

Dettagli

23 Giugno 2003 Teoria Matematica del Portafoglio Finanziario e Modelli Matematici per i Mercati Finanziari ESERCIZIO 1

23 Giugno 2003 Teoria Matematica del Portafoglio Finanziario e Modelli Matematici per i Mercati Finanziari ESERCIZIO 1 23 Giugno 2003 Teoria Matematica del Portafoglio Finanziario e Modelli Matematici per i Mercati Finanziari In uno schema uniperiodale e in un contesto di analisi media-varianza, si consideri un mercato

Dettagli

CALCOLO DELLE PROBABILITA - 24 Giugno 2015 CdL in STAD, SIGAD Compito intero Seconda prova in itinere: esercizi 4,5,6.

CALCOLO DELLE PROBABILITA - 24 Giugno 2015 CdL in STAD, SIGAD Compito intero Seconda prova in itinere: esercizi 4,5,6. Cognome e Nome: Matricola CdS CALCOLO DELLE PROBABILITA - 4 Giugno 5 CdL in STAD, SIGAD Compito intero Seconda prova in itinere: esercizi 4,5, Motivare dettagliatamente le risposte su fogli allegati e

Dettagli

INTRODUZIONE. Le opzioni rappresentano una classe molto importante di derivati. Esse negli ultimi anni hanno riscosso notevole successo presso gli

INTRODUZIONE. Le opzioni rappresentano una classe molto importante di derivati. Esse negli ultimi anni hanno riscosso notevole successo presso gli INTRODUZIONE Le opzioni rappresentano una classe molto importante di derivati. Esse negli ultimi anni hanno riscosso notevole successo presso gli investitori. Tra le opzioni in generale, quelle che hanno

Dettagli

Esercitazione 4 del corso di Statistica (parte 2)

Esercitazione 4 del corso di Statistica (parte 2) Esercitazione 4 del corso di Statistica (parte ) Dott.ssa Paola Costantini Febbraio Esercizio n. Il tempo di percorrenza del treno che collega la stazione di Roma Termini con l aeroporto di Fiumicino è

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

CALCOLO DELLE PROBABILITA - 17 Febbraio 2014 CdL in STAD, SIGAD,

CALCOLO DELLE PROBABILITA - 17 Febbraio 2014 CdL in STAD, SIGAD, Cognome e Nome:....................................... Matricola............. CdS............. CALCOLO DELLE PROBABILITA - 7 Febbraio 4 CdL in STAD, SIGAD, Motivare dettagliatamente le risposte su fogli

Dettagli

GENERALI SETTE MASSIMA NEW No-Sel - senza questionario medico CLIENT - riservata ai già clienti CLIENT No- Sel - senza questionario medico

GENERALI SETTE MASSIMA NEW No-Sel - senza questionario medico CLIENT - riservata ai già clienti CLIENT No- Sel - senza questionario medico GENERALI SETTE MASSIMA NEW No-Sel - senza questionario medico CLIENT - riservata ai già clienti CLIENT No- Sel - senza questionario medico Assicurazione a capitale differito con controassicurazione a premio

Dettagli

Il modello binomiale ad un periodo

Il modello binomiale ad un periodo Opzioni Un opzione dà al suo possessore il diritto (ma non l obbligo) di fare qualcosa. Un opzione call (put) europea su un azione che non paga dividendi dà al possessore il diritto di comprare (vendere)

Dettagli

Esercizi svolti di statistica. Gianpaolo Gabutti

Esercizi svolti di statistica. Gianpaolo Gabutti Esercizi svolti di statistica Gianpaolo Gabutti (gabuttig@hotmail.com) 1 Introduzione Questo breve documento contiene lo svolgimento di alcuni esercizi di statistica da me svolti durante la preparazione

Dettagli

MODELLO DI BLACK SCHOLES

MODELLO DI BLACK SCHOLES MODELLO DI BLACK SCHOLES 1 Greche della Put Dalla put-call parity: C P = S Ke P = SN(d 1 ) Ke N(d ) S + Ke P = Ke (1 N(d )) S(1 N(d 1 )) quindi la FORMULA DI BLACK SCHOLES PER LA PUT è P = Ke N( d ) SN(

Dettagli

Esercitazione n. 3 - Corso di STATISTICA - Università della Basilicata - a.a. 2011/12 Prof. Roberta Siciliano

Esercitazione n. 3 - Corso di STATISTICA - Università della Basilicata - a.a. 2011/12 Prof. Roberta Siciliano Esercitazione n. 3 - Corso di STATISTICA - Università della Basilicata - a.a. 2011/12 Prof. Roberta Siciliano Esercizio 1 Una moneta viene lanciata 6 volte. Calcolare a) La probabilità che escano esattamente

Dettagli

Esame di Istituzioni di Matematiche II del 11 luglio 2001 (Corso di Laurea in Biotecnologie, Universitá degli Studi di Padova). Cognome Nome Matricola

Esame di Istituzioni di Matematiche II del 11 luglio 2001 (Corso di Laurea in Biotecnologie, Universitá degli Studi di Padova). Cognome Nome Matricola Esame di Istituzioni di Matematiche II del 11 luglio 2001 (Corso di Laurea in Biotecnologie, Universitá degli Studi di Padova). Cognome Nome Matricola Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto finale Attenzione:

Dettagli

PROVA SCRITTA DI STATISTICA. cod CLEA-CLAPI-CLEFIN-CLELI cod CLEA-CLAPI-CLEFIN-CLEMIT. 5 Novembre 2003 SOLUZIONI MOD.

PROVA SCRITTA DI STATISTICA. cod CLEA-CLAPI-CLEFIN-CLELI cod CLEA-CLAPI-CLEFIN-CLEMIT. 5 Novembre 2003 SOLUZIONI MOD. PROVA SCRITTA DI STATISTICA cod. 4038 CLEA-CLAPI-CLEFIN-CLELI cod. 5047 CLEA-CLAPI-CLEFIN-CLEMIT 5 Novembre 003 SOLUZIONI MOD. A In 8 facoltà di un ateneo italiano vengono rilevati i seguenti dati campionari

Dettagli

Opzioni su titoli che pagano dividendi: proprietà e tecniche di valutazione

Opzioni su titoli che pagano dividendi: proprietà e tecniche di valutazione Opzioni su titoli che pagano dividendi: proprietà e tecniche di valutazione Martina Nardon Paolo Pianca ipartimento di Matematica Applicata Università Ca Foscari Venezia

Dettagli

BTP Italia. Esempi di calcolo. Calcolo del Coefficiente di Indicizzazione, delle cedole e della rivalutazione del capitale

BTP Italia. Esempi di calcolo. Calcolo del Coefficiente di Indicizzazione, delle cedole e della rivalutazione del capitale BTP Italia Esempi di calcolo Calcolo del Coefficiente di Indicizzazione, delle cedole e della rivalutazione del capitale Vediamo nel dettaglio come funziona il meccanismo di costruzione del Coefficiente

Dettagli

Specifiche Funzionali per la Marginazione degli Stock Futures

Specifiche Funzionali per la Marginazione degli Stock Futures Specifiche Funzionali per la Marginazione degli Stock Futures Ufficio RM Versione 1.3 Sommario Premessa... 3 1 Margini di Variazione... 3 2 Margini Iniziali... 3 2.1 Margine Futures Straddle... 3 2.2 Margine

Dettagli

Sezione Prima Derivate di funzioni elementari: quadro riassuntivo e regole di derivazione. = ( n) lim x

Sezione Prima Derivate di funzioni elementari: quadro riassuntivo e regole di derivazione. = ( n) lim x Capitolo USO DELLE DERIVATE IN ECONOMIA Sezione Prima Derivate di funzioni elementari: quadro riassuntivo e regole di derivazione Si definisce derivata della funzione y f() nel punto 0 del suo insieme

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 75-585 278 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia/

Dettagli

Metodi Matematici Probabilità e Statistica. Correzione Compitino del

Metodi Matematici Probabilità e Statistica. Correzione Compitino del Metodi Matematici Probabilità e Statistica Correzione Compitino del.4.04 nota: Una sola risposta è esatta. 4 punti per una risposta esatta, -2 per una sbagliata, 0 per una non data. Gli esercizi sono divisi

Dettagli

Modelli Binomiali per la valutazione di opzioni

Modelli Binomiali per la valutazione di opzioni Modelli Binomiali per la valutazione di opzioni Rosa Maria Mininni a.a. 2014-2015 1 Introduzione ai modelli binomiali La valutazione degli strumenti finanziari derivati e, in particolare, la valutazione

Dettagli

Berica Doppia Formula: la nuova polizza vita multiramo

Berica Doppia Formula: la nuova polizza vita multiramo Berica Doppia Formula: la nuova polizza vita multiramo Un prodotto al passo con il trend di mercato Uno strumento per un investimento personalizzato, diversificato e flessibile Una polizza innovativa che

Dettagli

Rischi di mercato. Francesco Menoncin

Rischi di mercato. Francesco Menoncin Rischi di mercato Francesco Menoncin 6-0-0 Sommario Le risposte devono essere C.C.C (Chiare, Concise e Corrette). Il tempo a disposizione è di (due) ore. Esercizi. Su un mercato completo con tre stati

Dettagli

MATEMATICA CORSO A II COMPITINO (Tema 1) 5 Aprile 2013

MATEMATICA CORSO A II COMPITINO (Tema 1) 5 Aprile 2013 MATEMATICA CORSO A II COMPITINO (Tema 1) 5 Aprile 2013 Soluzioni 1. Due sperimentatori hanno rilevato rispettivamente 25 e 5 misure di una certa grandezza lineare e calcolato le medie che sono risultate

Dettagli

DISTRIBUZIONI DI PROBABILITA

DISTRIBUZIONI DI PROBABILITA DISTRIBUZIONI DI PROBABILITA Nell associare ai risultati di un esperimento un valore numerico si costruisce una variabile casuale (o aleatoria, o stocastica). Ogni variabile casuale ha una corrispondente

Dettagli

Le greche: Delta - Gamma - Vega Theta - Rho - Phi

Le greche: Delta - Gamma - Vega Theta - Rho - Phi Le greche: Delta - Gamma - Vega Theta - Rho - Phi Prof.ssa Eliana Angelini Titolare della Cattedra di Economia del mercato mobiliare Dipartimento di Economia Università degli Studi G. D Annunzio di Pescara

Dettagli

METODOLOGIE DI CALCOLO DELLA RISERVA AGGIUNTIVA PER RISCHIO DI TASSO DI INTERESSE GARANTITO

METODOLOGIE DI CALCOLO DELLA RISERVA AGGIUNTIVA PER RISCHIO DI TASSO DI INTERESSE GARANTITO Allegato 1 METODOLOGIE DI CALCOLO DELLA RISERVA AGGIUNTIVA PER RISCHIO DI TASSO DI INTERESSE GARANTITO Ai fini dell illustrazione delle metodologie di calcolo e della verifica delle riserve aggiuntive

Dettagli

Polizza Vita. ALLEGATO 4D Tabelle tassi di conversione (tasso tecnico 2,00%)

Polizza Vita. ALLEGATO 4D Tabelle tassi di conversione (tasso tecnico 2,00%) Polizza Vita Tariffe 75A2-76A2-77A2-79A2-71A2 Contratto di assicurazione collettiva di rendita immediata a premio unico: - vitalizia rivalutabile - certa 5 o 10 anni e successivamente vitalizia rivalutabile

Dettagli

Esercitazione 8 del corso di Statistica 2

Esercitazione 8 del corso di Statistica 2 Esercitazione 8 del corso di Statistica Prof. Domenico Vistocco Dott.ssa Paola Costantini 6 Giugno 8 Decisione vera falsa è respinta Errore di I tipo Decisione corretta non è respinta Probabilità α Decisione

Dettagli

Caratteristiche principali del contratto di assicurazione sulla vita CA Vita Valore

Caratteristiche principali del contratto di assicurazione sulla vita CA Vita Valore Caratteristiche principali del contratto di assicurazione sulla vita CA Vita Valore Denominazione Tipo Contratto Compagnia di assicurazione Durata Periodo di collocamento CA Vita Valore Contratto di assicurazione

Dettagli

Nome e Cognome... Matricola... Corso di Laurea...

Nome e Cognome... Matricola... Corso di Laurea... Università degli Studi di Perugia Facoltà di Economia Corso di Laurea in Economia dei Mercati e degli Intermediari Finanziari (EMIF) Corso di Laurea Interfacoltà in Economia (E) Corso di Laurea Interfacoltà

Dettagli

OPZIONI SU TITOLI CON DIVIDENDI

OPZIONI SU TITOLI CON DIVIDENDI OPZIONI SU IOLI CON DIVIDENDI 1 Proprietà fondamentali Si consideri un opzione call europea c, emessa su un titolo azionario S,con prezzo d esercizio X e con scadenza all epoca ; sia, inoltre, r il tasso

Dettagli

ESERCIZI OPZIONI CALCOLO VALORE

ESERCIZI OPZIONI CALCOLO VALORE ESERCIZI OPZIONI CALCOLO VALORE Si consideri un opzione CALL Europea con prezzo di esercizio (strike) pari a X = 170 Euro e scadenza T = 1 trimestre su uno stock di valore iniziale pari a 175 Euro che

Dettagli

Stabilità e retroazione

Stabilità e retroazione 0.0. 4.1 1 iagramma Stabilità e retroazione Stabilità dei sistemi dinamici lineari: Un sistema G(s) è asintoticamente stabile se tutti i suoi poli sono a parte reale negativa. Un sistema G(s) è stabile

Dettagli

Statistica. Alfonso Iodice D Enza

Statistica. Alfonso Iodice D Enza Statistica Alfonso Iodice D Enza iodicede@unina.it Università degli studi di Cassino () Statistica 1 / 27 Outline 1 () Statistica 2 / 27 Outline 1 2 () Statistica 2 / 27 Outline 1 2 3 () Statistica 2 /

Dettagli

differiticerti.notebook November 25, 2010 nov 6 17.29 nov 6 17.36 nov 6 18.55 Problemi con effetti differiti

differiticerti.notebook November 25, 2010 nov 6 17.29 nov 6 17.36 nov 6 18.55 Problemi con effetti differiti Problemi con effetti differiti sono quelli per i quali tra il momento di sostentamento dei costi ed il momento di realizzo dei ricavi intercorre un certo lasso di tempo. Nei casi in cui il vantaggio è

Dettagli

Statistica - metodologie per le scienze economiche e sociali /2e S. Borra, A. Di Ciaccio - McGraw Hill

Statistica - metodologie per le scienze economiche e sociali /2e S. Borra, A. Di Ciaccio - McGraw Hill Statistica - metodologie per le scienze economiche e sociali /e S. Borra A. Di Ciaccio - McGraw Hill s. 9. Soluzione degli esercizi del capitolo 9 In base agli arrotondamenti effettuati nei calcoli si

Dettagli

Tipo di premio Componente a premio ricorrente e a premio unico (di perfezionamento e aggiuntivo)

Tipo di premio Componente a premio ricorrente e a premio unico (di perfezionamento e aggiuntivo) Prestazioni principali Prestazione caso vita La somma dei capitali assicurati iniziali, relativi ad ogni versamento di premio, rivalutati, e il controvalore del numero di quote in caso di investimento

Dettagli

ES.2.3. è pari ad 1. Una variabile aleatoria X che assume valori su tutta la retta si dice distribuita

ES.2.3. è pari ad 1. Una variabile aleatoria X che assume valori su tutta la retta si dice distribuita ES.2.3 1 Distribuzione normale La funzione N(x; µ, σ 2 = 1 e 1 2( x µ σ 2 2πσ 2 si chiama densità di probabilità normale (o semplicemente curva normale con parametri µ e σ 2. La funzione è simmetrica rispetto

Dettagli

Gli strumenti derivati

Gli strumenti derivati Gli strumenti derivati Prof. Eliana Angelini Dipartimento di Economia Università degli Studi G. D Annunzio di Pescara www.dec.unich.it e.angelini@unich.it Gli strumenti derivati si chiamano derivati in

Dettagli

Graficazione qualitativa del luogo delle radici

Graficazione qualitativa del luogo delle radici .. 5.3 1 Graficazione qualitativa del luogo delle radici Esempio. Si faccia riferimento al seguente sistema retroazionato: d(t) G(s) r(t) e(t) K 1(s 1) s(s + 1)(s + 8s + 5) y(t) Per una graficazione qualitativa

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Indici di posizione e di variabilità Prof. Livia De Giovanni lstatistica@dis.uniroma1.it Esercizio 1 Data la seguente distribuzione unitaria del carattere X: X : 4 2 4 2 6 4

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Variabili casuali Prof. Livia De Giovanni statistica@dis.uniroma.it Esercizio Determinare se le funzioni seguenti: 0.0 se x < 0. se x = g(x) = 0.5 se x = 0.7 se x = 3 se x =

Dettagli

ESERCITAZIONE MATEMATICA FINANZIARIA OPZIONI. Matematica finanziaria Dott. Andrea Erdas Anno Accademico 2011/2012

ESERCITAZIONE MATEMATICA FINANZIARIA OPZIONI. Matematica finanziaria Dott. Andrea Erdas Anno Accademico 2011/2012 ESERCITAZIONE MATEMATICA FINANZIARIA 1 OPZIONI 2 LE OPZIONI Le opzioni sono contratti che forniscono al detentore il diritto di acquistare o vendere una certa quantità del bene sottostante a una certa

Dettagli

Teoria della probabilità Variabili casuali

Teoria della probabilità Variabili casuali Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Teoria della probabilità Variabili casuali A.A. 2008-09 Alberto Perotti DELEN-DAUIN Variabile casuale Una variabile

Dettagli

3 CERTAMEN NAZIONALE DI PROBABILITA E STATISTICA FELICE FUSATO Fase di Istituto 7 febbraio 2012

3 CERTAMEN NAZIONALE DI PROBABILITA E STATISTICA FELICE FUSATO Fase di Istituto 7 febbraio 2012 3 CERTAMEN NAZIONALE DI PROBABILITA E STATISTICA FELICE FUSATO Fase di Istituto 7 febbraio 2012 1) Non sfogliare questo fascicolo finché l insegnante non ti dice di farlo. 2) E ammesso l utilizzo di calcolatrici

Dettagli

Appendice:Materiali e metodi

Appendice:Materiali e metodi APPENDICE Appendice:Materiali e metodi FONTE DEI DATI I dati di mortalità,sono stati forniti dal Data Base delle denunce di morte che è gestito dall organo strumentale della Regione Lazio in materia sanitaria:

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematica II: Calcolo delle Probabilità e Statistica Matematica ELT A-Z Docente: dott. F. Zucca Esercitazione # 2 1 Distribuzione normale Esercizio 1 Sia X una variabile aleatoria Normale N (5, ). Facendo

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 4

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 4 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 4 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Differenze semplici medie, confronti in termini di mutua variabilità La distribuzione del prezzo

Dettagli

ANALISI MATEMATICA T-1 (C.d.L. Ing. Edile) Prova scritta totale

ANALISI MATEMATICA T-1 (C.d.L. Ing. Edile) Prova scritta totale ANALISI MATEMATICA T-1 (C.d.L. Ing. Edile) Prova scritta totale Università di Bologna - A.A. 2010/2011-14 Giugno 2011 - Prof. G.Cupini MATRICOLA: COGNOME: NOME: ORALE: I app.: Martedì 21/6 II app. E-MAIL:

Dettagli

Introduzione alberi binomiali

Introduzione alberi binomiali Introduzione alberi binomiali introduzione L albero binomiale rappresenta i possibili sentieri seguiti dal prezzo dell azione durante la vita dell opzione Il percorso partirà dal modello a uno stadio per

Dettagli

Esercizi su distribuzioni doppie, dipendenza, correlazione e regressione (Statistica I, IV Canale)

Esercizi su distribuzioni doppie, dipendenza, correlazione e regressione (Statistica I, IV Canale) Esercizi su distribuzioni doppie, dipendenza, correlazione e regressione (Statistica I, IV Canale) Esercizio 1: Un indagine su 10.000 famiglie ha dato luogo, fra le altre, alle osservazioni riportate nella

Dettagli

Coseno, seno, e pi greco

Coseno, seno, e pi greco L. Chierchia. Dipartimento di Matematica e Fisica, Università Roma Tre 1 Coseno, seno, e pi greco In queste note daremo una presentazione analitica e autocontenuta della definizione e delle proprietà fondamentali

Dettagli

FINANZA AZIENDALE Corso di Laurea Specialistica in Ingegneria Gestionale

FINANZA AZIENDALE Corso di Laurea Specialistica in Ingegneria Gestionale FINANZA AZIENDALE Corso di Laurea Specialistica in Ingegneria Gestionale 6 parte Prof. Giovanna Lo Nigro # 1 I titoli derivati # 2 Copyright 2003 - The McGraw-Hill Companies, srl Argomenti trattati Tipologie

Dettagli

LA DISTRIBUZIONE NORMALE ESERCITAZIONE

LA DISTRIBUZIONE NORMALE ESERCITAZIONE LA DISTRIBUZIONE NORMALE ESERCITAZIONE Esercizio 1 Se si suppone che, nella popolazione degli adulti, il livello di acido urico (mg/100 ml) segua una distribuzione gaussiana con media e d.s. rispettivamente

Dettagli

Scanned by CamScanner

Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Scanned by CamScanner Università di Cassino Corso di Statistica Esercitazione

Dettagli

LA DISTRIBUZIONE NORMALE (Vittorio Colagrande)

LA DISTRIBUZIONE NORMALE (Vittorio Colagrande) LA DISTRIBUZIONE NORMALE (Vittorio Colagrande) Allo scopo di interpolare un istogramma di un carattere statistico X con una funzione continua (di densità), si può far ricorso nell analisi statistica alla

Dettagli

Il campionamento e l inferenza. Il campionamento e l inferenza

Il campionamento e l inferenza. Il campionamento e l inferenza Il campionamento e l inferenza Popolazione Campione Dai dati osservati mediante scelta campionaria si giunge ad affermazioni che riguardano la popolazione da cui essi sono stati prescelti Il campionamento

Dettagli

FOGLIO INFORMATIVO FINANZIAMENTI CHIROGRAFARI AI PRIVATI

FOGLIO INFORMATIVO FINANZIAMENTI CHIROGRAFARI AI PRIVATI INFORMAZIONI SULLA BANCA Banca Popolare di Puglia e Basilicata S.c.p.a. Via Ottavio Serena, n. 13-70022 - Altamura (BA) Tel.:080/8710268 -Fax: 080/8710745 [trasparenza@bppb.it/www.bppb.it] Iscrizione all

Dettagli

Calcolo delle Probabilità 2

Calcolo delle Probabilità 2 Prova d esame di Calcolo delle Probabilità 2 Maggio 2006 Sia X una variabile aleatoria distribuita secondo la densità seguente ke x 1 x < 0 f X (x) = 1/2 0 x 1. 1. Determinare il valore del parametro reale

Dettagli

Statistica. Esercitazione 4 17 febbraio 2011 Medie condizionate. Covarianza e correlazione

Statistica. Esercitazione 4 17 febbraio 2011 Medie condizionate. Covarianza e correlazione Corso di Laurea in Scienze dell Organizzazione Facoltà di Sociologia, Università degli Studi di Milano-Bicocca a.a. 2010/2011 Statistica Esercitazione 4 17 febbraio 2011 Medie condizionate. Covarianza

Dettagli

Matricola: Corso: 1. (4 Punti) Stimare la variazione del reddito quando il prezzo del prodotto finale raddoppia.

Matricola: Corso: 1. (4 Punti) Stimare la variazione del reddito quando il prezzo del prodotto finale raddoppia. Facoltà di Economia Statistica Esame 3-12/04/2010: A Cognome, Nome: Matricola: Corso: Problema 1. Per 5 imprese imprese è stato rilevato il reddito quinquennale medio (in milioni di euro), y, e il corrispondente

Dettagli

FOGLIO INFORMATIVO FINANZIAMENTO ECOENERGY A CONDOMINI

FOGLIO INFORMATIVO FINANZIAMENTO ECOENERGY A CONDOMINI INFORMAZIONI SULLA BANCA Offerta Fuori Sede Promotore Finanziario Nome e Cognome Nr. Iscrizione Albo CHE COS È IL FINANZIAMENTO (pag. 1 di 11) PRINCIPALI CONDIZIONI ECONOMICHE 14/03/2016 1- A TASSO FISSO

Dettagli

VIII Esercitazione di Matematica Finanziaria

VIII Esercitazione di Matematica Finanziaria VIII Esercitazione di Matematica Finanziaria 7 Dicembre 200 Esercizio. Un privato decide di acquistare una nuova automobile. A tal fine ottiene da una finanziaria un anticipo per l importo S = 25.000 euro

Dettagli

DISTRIBUZIONE NORMALE (1)

DISTRIBUZIONE NORMALE (1) DISTRIBUZIONE NORMALE (1) Nella popolazione generale molte variabili presentano una distribuzione a forma di campana, bene caratterizzata da un punto di vista matematico, chiamata distribuzione normale

Dettagli

Markov Chains and Markov Chain Monte Carlo (MCMC)

Markov Chains and Markov Chain Monte Carlo (MCMC) Markov Chains and Markov Chain Monte Carlo (MCMC) Alberto Garfagnini Università degli studi di Padova December 11, 2013 Catene di Markov Discrete dato un valore x t del sistema ad un istante di tempo fissato,

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di Statistica, anno 2010-11 P.Baldi Lista di esercizi 3. Corso di Laurea in Biotecnologie Esercizio 1 Una v.a. X segue una legge N(2, ). Calcolare a1) P(X 1) a2) P(2

Dettagli

MODELLIZZAZIONE DEI TASSI DI INTERESSE

MODELLIZZAZIONE DEI TASSI DI INTERESSE MODELLIZZAZIONE DEI TASSI DI INTERESSE Derivati su obbligazioni e simili (1) Per determinare un prezzo ai derivati che hanno come sottostante una obbligazione o simili vi è bisogno di avere un modello

Dettagli

ESERCITAZIONE IV - Soluzioni

ESERCITAZIONE IV - Soluzioni umero di omicidi ESERCITAZIOE IV - Soluzioni Esercizio I. a),00 12,00 10,00 8,00 6,00 4,00 2,00 0,00 0 5 10 15 20 25 Popolazione povera (%) b) Poiché i due caratteri in analisi sono quantitativi per calcolare

Dettagli

Data un azione, le due opzioni call e put (europee, scadenza t0 ) con prezzo di esercizio X in ogni tempo t < t0 si ha

Data un azione, le due opzioni call e put (europee, scadenza t0 ) con prezzo di esercizio X in ogni tempo t < t0 si ha 0) limitazioni prezzo call Data un azione, le due opzioni call e put (europee, scadenza t0 ) con prezzo di esercizio X in ogni tempo t < t0 si ha γ(t)x + c(t) = A(t) + p(t) con A(t) prezzo dell azione,

Dettagli

STATISTICA ESERCITAZIONE. 1) Specificare la distribuzione di probabilità della variabile e rappresentarla graficamente;

STATISTICA ESERCITAZIONE. 1) Specificare la distribuzione di probabilità della variabile e rappresentarla graficamente; 0.00 0.05 0.10 0.15 0.20 STATISTICA ESERCITAZIONE Dott. Giuseppe Pandolfo 4 Maggio 2015 Esercizio 1 (Uniforme discreta) Si consideri l esperimento lancio di un dado non truccato. Sia X la variabile casuale

Dettagli

Σ (x i - x) 2 = Σ x i 2 - (Σ x i ) 2 / n Σ (y i - y) 2 = Σ y i 2 - (Σ y i ) 2 / n. 13. Regressione lineare parametrica

Σ (x i - x) 2 = Σ x i 2 - (Σ x i ) 2 / n Σ (y i - y) 2 = Σ y i 2 - (Σ y i ) 2 / n. 13. Regressione lineare parametrica 13. Regressione lineare parametrica Esistono numerose occasioni nelle quali quello che interessa è ricostruire la relazione di funzione che lega due variabili, la variabile y (variabile dipendente, in

Dettagli

Statistica. Alfonso Iodice D Enza

Statistica. Alfonso Iodice D Enza Statistica Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () Statistica 1 / 33 Outline 1 2 3 4 5 6 () Statistica 2 / 33 Misura del legame Nel caso di variabili quantitative

Dettagli

Probabilità e Statistica Prova del 29/07/2016 Traccia E TEORIA Università degli Studi di Verona Laurea in Informatica e Bioinformatica A.A.

Probabilità e Statistica Prova del 29/07/2016 Traccia E TEORIA Università degli Studi di Verona Laurea in Informatica e Bioinformatica A.A. Prova del 29/07/2016 Traccia E TEORIA ESERCIZIO 1 X f(x) 4 24 0 20 9 18 5 38 Sulla distribuzione di valori presentata in tabella, calcolare: (a) la media aritmetica, la media armonica e la media geometrica;

Dettagli

ESAME DI STATO PER L ABILITAZIONE ALL ESERCIZIO DELLA PROFESSIONE DI ATTUARIO ANNO 2012 II SESSIONE PROVA PRATICA. BUSTA N.

ESAME DI STATO PER L ABILITAZIONE ALL ESERCIZIO DELLA PROFESSIONE DI ATTUARIO ANNO 2012 II SESSIONE PROVA PRATICA. BUSTA N. ESAME DI STATO PER L ABILITAZIONE ALL ESERCIZIO DELLA PROFESSIONE DI ATTUARIO ANNO 2012 II SESSIONE PROVA PRATICA BUSTA N. 1 (estratta) Il candidato predisponga un elaborato in merito ad uno dei seguenti

Dettagli

Variabili aleatorie continue

Variabili aleatorie continue Variabili aleatorie continue Per descrivere la distribuzione di una variabile aleatoria continua, non si può più assegnare una probabilità positiva ad ogni valore possibile. Si assume allora di poter specificare

Dettagli

Derivazione Numerica

Derivazione Numerica Derivazione Numerica I metodi alle differenze finite sono basati sull approssimazione numerica di derivate parziali. Per questo consideriamo come problema iniziale quello di approssimare le derivate di

Dettagli

Capitolo 6. La distribuzione normale

Capitolo 6. La distribuzione normale Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 6 La distribuzione normale Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di Laurea Magistrale in Scienze della Nutrizione Umana Corso di Statistica Medica, anno 2015-16 P.Baldi Lista di esercizi 4, 11 febbraio 2016. Esercizio 1 Una v.a.

Dettagli

Un esempio. Ipotesi statistica: supposizione riguardante: un parametro della popolazione. la forma della distribuzione della popolazione

Un esempio. Ipotesi statistica: supposizione riguardante: un parametro della popolazione. la forma della distribuzione della popolazione La verifica delle ipotesi In molte circostanze il ricercatore si trova a dover decidere quale, tra le diverse situazioni possibili riferibili alla popolazione, è quella meglio sostenuta dalle evidenze

Dettagli

Matematica e Statistica (A-E, F-O, P-Z)

Matematica e Statistica (A-E, F-O, P-Z) Matematica e Statistica (A-E, F-O, P-Z) Prova d esame (24/06/20) Università di Verona - Laurea in Biotecnologie - A.A. 200/ Tema A Matematica e Statistica (A-E, F-O, P-Z) Prova di MATEMATICA (A-E, F-O,

Dettagli

MATEMATICA FINANZIARIA Appello del 27 settembre 2000

MATEMATICA FINANZIARIA Appello del 27 settembre 2000 MATEMATICA FINANZIARIA Appello del 27 settembre 2000 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 006/07 Esercizio 1 Prova scritta del 16/1/006 In un ufficio postale lavorano due impiegati che svolgono lo stesso compito in maniera indipendente, sbrigando

Dettagli

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Metodi per l Analisi dei Dati Sperimentali AA009/010 IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Sommario Massima Verosimiglianza Introduzione La Massima Verosimiglianza Esempio 1: una sola misura sperimentale

Dettagli

L assegnazione è coerente? SÌ NO. A e B sono stocasticamente indipendenti? SÌ NO

L assegnazione è coerente? SÌ NO. A e B sono stocasticamente indipendenti? SÌ NO CALCOLO DELLE PROBABILITÀ - gennaio 00 Scrivere le risposte negli appositi spazi Motivare dettagliatamente le risposte su fogli allegati Nuovo Ordinamento esercizi -4. Vecchio Ordinamento esercizi -6..

Dettagli

10 dicembre Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

10 dicembre Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... 10 dicembre 003 - Soluzione esame di geometria - Ingegneria gestionale - a.a. 003-004 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura 3 ore. ISTRUZIONI

Dettagli

COVERED WARRANTS BNP PARIBAS

COVERED WARRANTS BNP PARIBAS COVERED WARRANTS BNP PARIBAS COVERED WARRANTS INTRODUZIONE AI COVERED WARRANTS Un Covered Warrant è uno strumento finanziario, quotato in Borsa, che incorpora un opzione e da il diritto, ma non l obbligo,

Dettagli

Prova di AUTOVALUTAZIONE (novembre 2009). nota: l esame ha validità solo se incluso nel piano degli studi per l anno accademico corrente.

Prova di AUTOVALUTAZIONE (novembre 2009). nota: l esame ha validità solo se incluso nel piano degli studi per l anno accademico corrente. UNIVERSITA DEGLI STUDI ROMA TRE CdS in Ingegneria Informatica corso di FONDAMENTI DI TELECOMUNICAZIONI Prova di AUTOVALUTAZIONE (novembre 2009). COMPITO A nota: l esame ha validità solo se incluso nel

Dettagli

Corso di Modelli Matematici in Biologia Esame del 6 Luglio 2016

Corso di Modelli Matematici in Biologia Esame del 6 Luglio 2016 Corso di Modelli Matematici in Biologia Esame del 6 Luglio 206 Scrivere chiaramente in testa all elaborato: Nome, Cognome, numero di matricola. Risolvere tutti gli esercizi. Tempo a disposizione: DUE ORE.

Dettagli

Matematica e statistica 31 gennaio 2011

Matematica e statistica 31 gennaio 2011 Matematica e statistica 31 gennaio 2011 Compito A Cognome e nome Matricola Parte I Misurando in modo approssimato due quantità x e y si ottengono i seguenti valori: 2.98

Dettagli

( ) le colonne della matrice dei coefficienti, con. , risulta A 3 = A 1 + 4A 2 + 4A 5, A 4 = A 1 + A 2,

( ) le colonne della matrice dei coefficienti, con. , risulta A 3 = A 1 + 4A 2 + 4A 5, A 4 = A 1 + A 2, 1 Elementi di Analisi Matematica e Ricerca Operativa prova del 6 luglio 2016 1) Discutere il seguente problema di Programmazione Lineare: Trovare il massimo di p x 1, x 2, x 3, x 4 # x 2 + 4 x 3 + x 4

Dettagli

Prova di Statistica del

Prova di Statistica del Modellistica della Nutrizione. Prova di Statistica del 23. 4. 2012 1a). Un campionamento casuale della concentrazione di piombo nell aria in 11 diversi punti di Milano, effettuato il 10/4/2012, dà i seguenti

Dettagli

Distribuzione di Probabilità

Distribuzione di Probabilità Distribuzione di Probabilità Sia X variabile con valori discreti X 1, X 2,..., X N aventi probabilità p 1, p 2,..., p N ( i p i = 1) (X variabile discreta aleatoria, o stocastica, o casuale, random) Funzione

Dettagli