STUDIO di FUNZIONE. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "STUDIO di FUNZIONE. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 1"

Transcript

1 STUDIO di FUNZIONE c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 1

2 Punti di estremo: punto di massimo assoluto Def. Sia 0 dom(f) = D. Si dice che 0 è un punto di massimo assoluto per f se f( 0 ) f() dom(f) ovvero f( 0 ) è il massimo dell insieme immagine di f: f( 0 ) = maf() = ma(im(f)). D f( 0 ) im(f) f( 0 ) im(f) dom(f) 0 dom(f) 0 c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 2

3 Punto di massimo relativo Def. Sia 0 dom(f). Si dice che 0 è un punto di massimo relativo per f se esiste un intorno I( 0 ) del punto 0 tale che f( 0 ) f() f( 0 ) I( 0 ) dom(f). f( 0 ) I( 0 ) 0 0 I( 0 ) c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 3

4 Punto di minimo assoluto Sia 0 dom(f) = D. Si dice che 0 è un punto di minimo assoluto per f se f( 0 ) f() dom(f) ovvero f( 0 ) è il minimo dell insieme immagine di f: f( 0 ) = minf() = min(im(f)). D im(f) im(f) 0 0 f( 0 ) dom(f) f( 0 ) dom(f) c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 4

5 Punto di minimo relativo Def. Sia 0 dom(f). Si dice che 0 è un punto di minimo relativo per f se esiste un intorno I( 0 ) del punto 0 tale che f( 0 ) f() I( 0 ) dom(f). f( 0 ) 0 f( 0 ) I( 0 ) I( 0 ) 0 c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 5

6 Osservazioni 1 Per definire i punti di estremo NON abbiamo utilizzato il concetto di derivata, ma solo il confronto dei valori = f(). 2 I punti di massimo relativo e minimo relativo sono detti punti di estremo relativo, mentre i punti di massimo e minimo assoluto sono detti punti di estremo assoluto. 3 Un punto di estremo assoluto è anche punto di estremo relativo, il viceversa non è sempre vero. 4 In un punto di massimo o minimo relativo la funzione può non essere derivabile. 5 Punti angolosi e punti di cuspide sono sempre punti di massimo o di minimo relativo c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 6

7 Punti stazionari (o critici) Def. Un punto 0 dom(f) si dice punto stazionario (o punto critico) per f, se: - f è derivabile in 0 e - f ( 0 ) = 0, ovvero la tangente ad f in 0 è una retta orizzontale Oss. Per definire un punto stazionario serve la definizione di derivata prima. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 7

8 Esempi Tutti punti di massimo relativo e assoluto. 2 punti angolosi e 1 punto stazionario c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 8

9 Derivata di f agli estremi di un intervallo Se f è definita solo in un intorno sinistro di 0 ed esiste f ( 0) si assume che f sia derivabile in 0 e si definisce f ( 0 ) = f ( 0). (es. f (b) = f (b).) a b Se f è definita solo in un intorno destro di 0 ed esiste f +( 0 ) si assume che f sia derivabile in 0 e si definisce f ( 0 ) = f +( 0 ). (es. f (a) = f +(a)) c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 9

10 Teorema dei punti stazionari di Fermat Sia f definita in un intorno I r ( 0 ) del punto 0 e derivabile in 0. Se 0 è un punto di massimo o minimo relativo per f allora f ( 0 ) = 0, ovvero 0 è un punto stazionario per f. (La dimostrazione sarà svolta nella lezione successiva.) 0 a b a 0 b f NON è derivabile in 0 f è derivabile in 0 0 NON è punto stazionario 0 è punto stazionario In entrambi i casi 0 è un punto di minimo relativo c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 10

11 Ricerca dei punti di estremo I punti di estremo di una funzione vanno ricercati tra i punti dom(f) che sono: punti di non derivabilità (punti angolosi e cuspidi) estremi finiti (in R) del dominio. punti stazionari, f ( 0 ) = 0 (per il teorema di Fermat) =punto di non derivabilità 0 =estremo (in R) del dominio 0 =punto stazionario c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 11

12 Legame fra crescenza/decrescenza e f () Ricordiamo la def. di funzione crescente: Sia I il dominio di una funzione f reale a valori reali, oppure un intervallo contenuto nel dominio di f. Def. La funzione f si dice monotona crescente su I se 1, 2 I, 1 < 2 f( 1 ) f( 2 ). Def. La funzione f si dice monotona strettamente crescente su I se 1, 2 I, 1 < 2 f( 1 ) < f( 2 ). f( 2 ) f( 1 ) = f( 2 ) f( 1 ) I I Risulta impossibile verificare la crescenza e decrescenza di f() mediante la definizione: dovremmo verificare la propr. per infinite coppie di punti! c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 12

13 Criterio del segno della derivata prima Teorema. Sia I dom(f) un intervallo e sia f derivabile su I. Allora f () 0, I f è crescente su I e f () > 0, I f è strettamente crescente su I. (La dimostrazione sarà svolta la lezione successiva) =f() =f () segno derivata.m c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 13

14 f strett. crescente f () > 0 Esempio. f() = 3 +1 è strettamente crescente su R, ma f (0) = 0, ovvero f strett. crescente. non implica f () > c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 14

15 Crescenza/decrescenza e punti di estremo Corollario Sia f derivabile sull intervallo I e sia 0 punto stazionario interno ad I. Se f () 0 < 0 e f () 0 > 0 allora 0 è punto di ma relativo per f (figura a sinistra). Se f () 0 < 0 e f () 0 > 0 allora 0 è punto di min relativo per f (figura a destra) = 0 è p.to di ma. rel = 0 è p.to di min. rel. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 15

16 Derivata seconda Def. Se f è derivabile in 0, si dice che f è derivabile due volte in 0 e si pone f ( 0 ) := (f ) ( 0 ). f ( 0 ) è detta derivata seconda di f in 0. La funzione che associa ad il valore f (), ove questo sia definito, è detta funzione derivata seconda. Es. f() = , f () = 6 12 f () = , c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 16

17 Convessità e concavità Consideriamo la funzione f(), definita in un intorno del punto 0 e l equazione della retta t tangente ad f nel punto 0 dom(f): t : = t() = f ( 0 )( 0 )+f( 0 ). Def. La funzione f si dice convessa (o volge la concavità verso l alto) in 0 se esiste un intorno I r ( 0 ) di 0 tale che: I r ( 0 ) f() t() e si dice strettamente convessa in 0 se f() > t() 0. = f() = t() 0 c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 17

18 Def. La funzione f si dice concava in 0 se esiste un intorno I r ( 0 ) di 0 tale che: I r ( 0 ) f() t() e si dice strettamente concava in 0 se f() < t() 0. = t() = f() 0 Def. Sia I un intervallo e f derivabile su I. f si dice convessa (risp. concava) su I, se è convessa (risp. concava) in ogni punto di I. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 18

19 Criterio del segno della derivata seconda Teorema. Se f è una funzione derivabile due volte su I, si ha: f () 0, I f è convessa su I. e f () > 0, I = f è strettamente convessa su I. Osservazione. Se f è strettamente convessa su I, non è detto che f () > 0 su I. Es.: f() = 4. In = 0 si ha f (0) = 0 ed f strettamente convessa su tutto R. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 19

20 Punti di flesso Def. Sia f una funzione definita e derivabile in un intorno del punto 0. Il punto 0 si dice punto di flesso per f se esiste un intorno sinistro di 0 in cui f è concava ed esiste un intorno destro di 0 in cui f è convessa o, viceversa, se esiste un intorno sinistro di 0 in cui f è convessa ed esiste un intorno destro di 0 in cui f è concava. 0 Oss. Un punto di flesso 0 per cui si ha f ( 0 ) = 0 è detto punto di flesso a tangente orizzontale, mentre un punto di flesso 0 per cui si ha f ( 0 ) 0 è detto punto di flesso a tangente obliqua. 0 c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 20

21 Studio di funzione completo Obiettivo: disegnare il grafico di una funzione = f(). Passi da seguire. 1. Determinare il dom(f) 2. Determinare eventuali simmetrie e periodicità. 3. Determinare possibili asintoti (verticali, orizzontali, obliqui) [questo vuol dire calcolare i limiti di f agli estremi del dominio]. 4. Individuare eventuali punti di discontinuità. 5. Calcolare la derivata prima e determinare il suo dominio, individuando e classificando eventuali punti di non derivabilità. 6. Studiare il segno della derivata prima per individuare dove la funzione è crescente/decrescente. Determinare, se esistono, i punti di estremo della funzione. 7. Calcolare la derivata seconda di f. 8. Studiare il segno della derivata seconda per individuare dove la funzione è convessa/concava. Determinare, se esistono, i punti di flesso della funzione. 9. DISEGNARE IL GRAFICO DI = f() c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 21

22 Riferimenti bibliografici: Canuto Tabacco, Sez. 6.4, 6.7, 6.8, 6.9, Esercizi: Svolgere i vari passi dello studio di funzione per le funzioni elementari viste. Fare lo studio delle seguenti funzioni: 1. f() = f() = log() 3. f() = log() 4. f() = e 1/2 5. f() = e 1/ c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 22

STUDIO di FUNZIONE. c Paola Gervasio - Analisi Matematica 1 - A.A. 2018/19 Studio di funzione cap6b.pdf 1

STUDIO di FUNZIONE. c Paola Gervasio - Analisi Matematica 1 - A.A. 2018/19 Studio di funzione cap6b.pdf 1 STUDIO di FUNZIONE c Paola Gervasio - Analisi Matematica 1 - A.A. 2018/19 Studio di funzione cap6b.pdf 1 Punti di estremo: punto di massimo assoluto Def. Sia 0 dom(f) = D. Si dice che 0 è un punto di massimo

Dettagli

Gli asintoti di una funzione sono rette, quindi possono essere: rette verticali o rette orizzontali o rette oblique.

Gli asintoti di una funzione sono rette, quindi possono essere: rette verticali o rette orizzontali o rette oblique. Asintoti Gli asintoti di una funzione sono rette, quindi possono essere: rette verticali o rette orizzontali o rette oblique. Asintoti verticali Sia 0 punto di accumulazione per dom(f). La retta = 0 è

Dettagli

Esercizi di Analisi Matematica 1, utili per la preparazione all esame scritto - Seconda parte SOLUZIONI

Esercizi di Analisi Matematica 1, utili per la preparazione all esame scritto - Seconda parte SOLUZIONI Esercizi di Analisi Matematica Esercizi di Analisi Matematica, utili per la preparazione all esame scritto - Seconda parte SOLUZIONI Es. Per ognuna delle seguenti figure, dire se la curva nel piano cartesiano

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

STUDIO DEL GRAFICO DI UNA FUNZIONE

STUDIO DEL GRAFICO DI UNA FUNZIONE STUDIO DEL GRAFICO DI UNA FUNZIONE 1 Richiami Teorema 1 (Test di monotonia). Sia f : (a, b) R una funzione derivabile. Allora f è monotona crescente (risp. decrescente) in (a, b) se e solo se f () 0 (risp.

Dettagli

4.3 Teoremi sulle funzioni derivabili

4.3 Teoremi sulle funzioni derivabili 4.3 Teoremi sulle funzioni derivabili Teorema (di Fermat) Sia : [, ] ℝ una funzione derivabile in (, ) e si un punto di massimo o minimo (relativo o assoluto) per. Allora 0 si dice anche che è un punto

Dettagli

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x Studi di funzione 1) Studiare la funzione definita da f(x) = x + e (x+). Per cominciare, osserviamo che f si ottiene traslando di, nella direzione negativa dell asse x, la funzione g(x) = x e x cioè abbiamo

Dettagli

CONTINUITA. c Paola Gervasio - Analisi Matematica 1 - A.A. 2018/19 Limiti di funzioni - Funzioni continue cap3b.pdf 1

CONTINUITA. c Paola Gervasio - Analisi Matematica 1 - A.A. 2018/19 Limiti di funzioni - Funzioni continue cap3b.pdf 1 CONTINUITA c Paola Gervasio - Analisi Matematica - A.A. 208/9 Limiti di funzioni - Funzioni continue cap3b.pdf Ricordiamo la definizione di limite lim 0 f () = l R: I ε (l), I δ ( 0 ) : dom(f ) I δ ( 0

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f è crescente nell intervallo (a, b) se

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

La derivata. variabile indipendente x. Definiamo f := f(x) f(x 0 ) l incremento (positivo o negativo) della variabile dipendente.

La derivata. variabile indipendente x. Definiamo f := f(x) f(x 0 ) l incremento (positivo o negativo) della variabile dipendente. La derivata Sia f : domf R R; sia x 0 domf, f sia definita in I r (x 0 ) e sia x I r (x 0 ). ments Definiamo x := x x 0 l incremento (positivo o negativo) della f(x 0 ) + x + x) variabile indipendente

Dettagli

Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste

Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste CONCAVITA E CONVESSITA DI UNA FUNZIONE. FLESSI. SCHEMA GENERALE PER LO STUDIO DI FUNZIONE. FUNZIONI RAZIONALI E IRRAZIONALI INTERE E FRATTE. TEOREMA DI DE L HOSPITAL CON APPLICAZIONI AI LIMITI. 1 Concavit{

Dettagli

Studio del segno delle derivate. Lezione 11 del 6/12/2018

Studio del segno delle derivate. Lezione 11 del 6/12/2018 Studio del segno delle derivate Lezione 11 del 6/12/2018 Segno della derivata prima Data una funzione f(x) derivabile in un intervallo I, allora se f x > 0 x I allora la funzione f(x) è strettamente crescente

Dettagli

Corso di Analisi Matematica

Corso di Analisi Matematica Corso di Laurea in Ingegneria Edile Corso di CONVESSITÀ Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Derivata seconda Se la derivata (prima) di una funzione è definita

Dettagli

DERIVATA DI UNA FUNZIONE REALE. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR.

DERIVATA DI UNA FUNZIONE REALE. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR. DERIVATA DI UNA FUNZIONE REALE 1. Definizioni. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR. DEFINIZIONE 1. Sia x 0 un elemento di I. Per ogni x (I \ {x 0 }) consideriamo

Dettagli

Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica. x2 1 x x + 7 ; d) f (x) =

Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica. x2 1 x x + 7 ; d) f (x) = Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica 1 La retta tangente al grafico di f nel punto ( 0, f( 0 ha equazione y = f( 0 + f ( 0 ( 0. a y = 2; b y = log 2 (e( 1; c y = 1 2 + 1 4

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

Lo studio di funzione. 18 febbraio 2013

Lo studio di funzione. 18 febbraio 2013 Lo studio di funzione 18 febbraio 2013 1 Indice 1 Lo studio di funzione 3 1.1 Dominio di funzioni......................... 3 1.1.1 Domini di funzioni elementari............... 3 1.1.2 Funzioni composte,

Dettagli

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x Studi di funzione 1) Studiare la funzione definita da f(x) = x + 2 e (x+2). Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione g(x) = x e x cioè

Dettagli

STUDIO DI FUNZIONI pag. 1

STUDIO DI FUNZIONI pag. 1 STUDIO DI FUNZIONI pag. Dominio e ricerca asintoti.0. f () = 6 +.0. f () =.0.3 f () = 3.0. () = log( 5 6) + [ dom () = R \ { ±} [ dom () = R \ {, 3} f ; asintoti verticali in = e = 3; asintoto orizzontale

Dettagli

Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile

Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 41 1 Derivata

Dettagli

Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli x R che verificano le condizioni:

Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli x R che verificano le condizioni: Studi di funzione 5) Studiare la funzione definita da f() = arcsin ( ) + 3 2 +. Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli R che verificano le condizioni: () : +,

Dettagli

3. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE.

3. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE. 3. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE. Molto spesso y = f(x) rappresenta l evoluzione di un fenomeno al passare del tempo x.se siamo interessati a sapere con che rapidità il fenomeno

Dettagli

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 Esercizio. Funzione da studiare: log( 3).. Dominio: dobbiamo richiedere che il denominatore non si annulli e che il logaritmo sia ben definito. Quindi le condizioni

Dettagli

MATEMATICA. a.a. 2014/15

MATEMATICA. a.a. 2014/15 MATEMATICA a.a. 2014/15 3. DERIVATE E STUDIO DI FUNZIONE (II parte): Massimi, minimi e derivata prima. Flessi e derivata seconda. Schema per lo studio qualitativo completo di una funzione y=f(x) Crescenza

Dettagli

Corso di Analisi Matematica. Calcolo differenziale

Corso di Analisi Matematica. Calcolo differenziale a.a. 2013/14 Laurea triennale in Informatica Corso di Analisi Matematica Calcolo differenziale Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli studenti.

Dettagli

ESERCITAZIONE 6: STUDIO DI FUNZIONI

ESERCITAZIONE 6: STUDIO DI FUNZIONI ESERCITAZIONE 6: STUDIO DI FUNZIONI Tiziana Raparelli 31/03/009 1 ESERCIZI ESERCIZIO 1 Studiare le seguenti funzioni, discuterne l uniforme continuità e tracciarne un grafico qualitativo. (a) f() = log(

Dettagli

Algebra dei limiti. quando l espressione a secondo membro è definita (non si hanno forme indeterminate), si ha. lim. f (x)

Algebra dei limiti. quando l espressione a secondo membro è definita (non si hanno forme indeterminate), si ha. lim. f (x) Algebra dei limiti Teorema. Se lim f () = l R e lim g() = m R, allora, 0 0 quando l espressione a secondo membro è definita (non si hanno forme indeterminate), si ha lim (f () + g()) = lim f () + lim g()

Dettagli

14. Studio grafico completo di funzioni

14. Studio grafico completo di funzioni 14. Studio grafico completo di funzioni Davide Catania davide.catania@unibs.it Esercitazioni di Analisi Matematica 1 Studio elementare di funzioni (1) Trova il dominio. data f (x) (2) Studia la simmetria

Dettagli

Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile

Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Docente: Anna Valeria Germinario Università di Bari A.V.Germinario (Università di Bari) Analisi Matematica

Dettagli

Analisi Matematica 1 - a.a. 2017/ Quarto appello

Analisi Matematica 1 - a.a. 2017/ Quarto appello Analisi Matematica - a.a. 07/08 - Quarto appello Soluzione del test Test A E C B B C A D C C D Test B C B C E B A E E D B Test C A A D B E C A C D D Test D D B A A B E A E B D Soluzione della parte di

Dettagli

Programmazione disciplinare: Matematica 5 anno

Programmazione disciplinare: Matematica 5 anno Programmazione disciplinare: Matematica 5 anno Modulo 1/Ripasso: Funzione reale di variabile reale CONTENUTI Funzione fra due insiemi. Funzione reale di variabile reale: definizione e classificazione.

Dettagli

LICEO STATALE CARLO TENCA? MILANO

LICEO STATALE CARLO TENCA? MILANO LICEO STATALE CARLO TENCA? MILANO P. I. 80126370156 Cod. Mecc. MIPM11000D Bastioni di Porta Volta,16 20121 Milano Tel. 02.6551606 Fax 02.6554306 C. F. 80126370156 - Cod. Mecc. MIPM11000D Email: mipm11000d@istruzione.it

Dettagli

Def. L unico elemento y Y associato ad un elemento x domf si dice immagine. di x attraverso f e si scrive y = f(x) (oppure f : x y = f(x)).

Def. L unico elemento y Y associato ad un elemento x domf si dice immagine. di x attraverso f e si scrive y = f(x) (oppure f : x y = f(x)). FUNZIONI Siano X e due insiemi. Def. Una funzione f definita in X a valori in è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in. Def. L insieme è detto codominio di

Dettagli

ANALISI MATEMATICA I per Ingegneria Aerospaziale - A.A Diario delle lezioni. Mercoledì 2 ottobre 2013 (2 ore)

ANALISI MATEMATICA I per Ingegneria Aerospaziale - A.A Diario delle lezioni. Mercoledì 2 ottobre 2013 (2 ore) c Andrea Dall Aglio - Analisi Matematica: Diario delle lezioni - 8 novembre 0 ANALISI MATEMATICA I per Ingegneria Aerospaziale - A.A. 0-04 Diario delle lezioni Questo è un indice degli argomenti trattati

Dettagli

SOLUZIONI 3. f (x) = (x 2 1) 2/3 e x. (x 2 1) 2/3 e x 0 x R. x 4/3 e x = e 4/3 log x e x

SOLUZIONI 3. f (x) = (x 2 1) 2/3 e x. (x 2 1) 2/3 e x 0 x R. x 4/3 e x = e 4/3 log x e x Domanda Si consideri la funzione SOLUZIONI f x = x 2 2/ e x. Determinare il campo di esistenza, il segno, i iti alla frontiera e gli eventuali asintoti. Classificare gli eventuali punti di discontinuità

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al più un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x. (ad un numero reale associo. il suo inverso). 2 2/3... e... 0.

Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x. (ad un numero reale associo. il suo inverso). 2 2/3... e... 0. FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. PSfrag replacements X Y Def. L

Dettagli

1. Mercoledì 07/03/2018, ore: 2(2) Introduzione e presentazione del corso. Richiami: i numeri naturali, interi, razionali e reali.

1. Mercoledì 07/03/2018, ore: 2(2) Introduzione e presentazione del corso. Richiami: i numeri naturali, interi, razionali e reali. Registro delle lezioni di MATEMATICA 2 Corso di Laurea in Chimica 6 CFU - A.A. 2017/2018 docente: Francesco Demontis ultimo aggiornamento: May 17, 2018 1. Mercoledì 07/03/2018, 9 11. ore: 2(2) Introduzione

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

Mauro Saita Grafici qualitativi di funzioni reali di variabile reale

Mauro Saita Grafici qualitativi di funzioni reali di variabile reale Mauro Saita Grafici qualitativi di funzioni reali di variabile reale Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it Ottobre 2017 1 Indice 1 Qual è il grafico della

Dettagli

Istituzioni di Matematiche quarta parte

Istituzioni di Matematiche quarta parte Istituzioni di Matematiche quarta parte anno acc. 2012/2013 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Istituzioni di Matematiche 1 / 22 index Derivate 1 Derivate 2 Teoremi

Dettagli

Programmazione disciplinare: Matematica 5 anno

Programmazione disciplinare: Matematica 5 anno Programmazione disciplinare: Matematica 5 anno CONTENUTI RISULTATI DI APPRENDIMENTO (Competenze) CONOSCENZE ABILITA TEMPI (settimane) Funzione fra due insiemi. di Saper riconoscere se una relazione è anche

Dettagli

ISTITUZIONI DI ANALISI MATEMATICA Commissione P. Mannucci, A. Sommariva, a.a Corsi di laurea in Scienze Statistiche

ISTITUZIONI DI ANALISI MATEMATICA Commissione P. Mannucci, A. Sommariva, a.a Corsi di laurea in Scienze Statistiche ISTITUZIONI DI ANALISI MATEMATICA Commissione P. Mannucci, A. Sommariva, a.a. 4- Corsi di laurea in Scienze Statistiche 4 febbraio TEMA Esercizio 8 punti) Si consideri la funzione ) e f) = arctan e a)

Dettagli

Esercitazione 6 - Soluzioni

Esercitazione 6 - Soluzioni Esercitazione 6 - Soluzioni Francesco Davì 9 novembre 01 Soluzioni esercizio 1 (a) Dominio: Il dominio della funzione è D f = R, in quanto la funzione è definita R o, equivalentemente, (, + ). Intersezioni

Dettagli

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA PRIMA PARTE Intervallo limitato di numeri reali Dati due numeri reali a e b, con a

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2016/2017

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2016/2017 Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2016/201 Primitive quasi elementari = + 1 = ln + = + + 1 sin = cos+ cos = sin + 1 + " = arctan + = arcsin+ &1 " Tecnica di integrazione

Dettagli

Esercizio 1. f (x) = e 8x x2 14 ***

Esercizio 1. f (x) = e 8x x2 14 *** Esercizio Studiare la funzione f () = e 8 () *** Soluzione Insieme di definizione La funzione è definita in X = (, + ) Intersezioni con gli assi essendo γ il grafico della funzione. Inoltre: X, f () >

Dettagli

STUDIO DI UNA FUNZIONE INTEGRALE. Z x. ln t ln t 2 2 dt. f(x) =

STUDIO DI UNA FUNZIONE INTEGRALE. Z x. ln t ln t 2 2 dt. f(x) = STUDIO DI UNA FUNZIONE INTEGRALE Studiamo la funzione f di una variabile reale, a valori in R, definitada. Il dominio di f. f() = Z Denotiamo con g la funzione integranda. Allora g(t) = numeri reali tali

Dettagli

Modulo o "valore assoluto"

Modulo o valore assoluto Modulo o "valore assoluto" Dato x R definiamo modulo o valore assoluto di x il numero reale positivo x se x 0 x = x se x < 0 Sfrag replacements Es. 5 è 5. 2.34 è 2.34 Dal punto di vista geometrico x rappresenta

Dettagli

10 - Applicazioni del calcolo differenziale

10 - Applicazioni del calcolo differenziale Università degli Studi di Palermo Facoltà di Economia CdS Sviuppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 10 - Applicazioni del calcolo differenziale Anno Accademico 2015/2016

Dettagli

1. Mercoledì 07/03/2018, ore: 2(2) Introduzione e presentazione del corso. Richiami: i numeri naturali, interi, razionali e reali.

1. Mercoledì 07/03/2018, ore: 2(2) Introduzione e presentazione del corso. Richiami: i numeri naturali, interi, razionali e reali. Registro delle lezioni di MATEMATICA 2 Corso di Laurea in Chimica 6 CFU - A.A. 2017/2018 docente: Francesco Demontis ultimo aggiornamento: 28 maggio 2018 1. Mercoledì 07/03/2018, 9 11. ore: 2(2) Introduzione

Dettagli

STUDIO DI FUNZIONI pag. 1

STUDIO DI FUNZIONI pag. 1 STUDIO DI FUNZIONI pag. Dominio e ricerca asintoti REGOLA GENERALE. Individuare il dominio della unzione, cioè l insieme dei valori reali per cui () è ancora un valore reale.. Studiare i iti della unzione

Dettagli

40 ESERCIZI SUL CALCOLO DIFFERENZIALE ECONCETTICOLLEGATI

40 ESERCIZI SUL CALCOLO DIFFERENZIALE ECONCETTICOLLEGATI 40 ESERCIZI SUL CALCOLO DIFFERENZIALE ECONCETTICOLLEGATI Derivate parziali e piani tangenti Scrivere l equazione del piano tangente al grafico delle funzioni: f(, y) = (y ) + log nel punto = y = y + f(,

Dettagli

Tema 1: esercizi. 1. Studiare la funzione seguente e tracciarne un grafico qualitativo. + = Soluzione 1) Dominio x ( ) { }

Tema 1: esercizi. 1. Studiare la funzione seguente e tracciarne un grafico qualitativo. + = Soluzione 1) Dominio x ( ) { } Tema : esercizi. Studiare la funzione seguente e tracciarne un grafico qualitativo. ) Dominio ( ) { } R \ f Dom ) Intersezione con gli assi impossibile per il dominio ± e si ottiene ancora ( ) ; e ( )

Dettagli

Teorema di sostituzione o del limite di funzioni composte

Teorema di sostituzione o del limite di funzioni composte Teorema di sostituzione o del limite di funzioni composte Questo teorema serve per calcolare il limite di funzioni composte sfruttando limiti fondamentali o altri limiti già noti. TEOREMA. Se esiste lim

Dettagli

Sia y = f(x) definita in un intervallo I. x 0 è punto di massimo assoluto. x 0 è punto di minimo assoluto. x 0 è punto di massimo relativo o locale se

Sia y = f(x) definita in un intervallo I. x 0 è punto di massimo assoluto. x 0 è punto di minimo assoluto. x 0 è punto di massimo relativo o locale se PUNTI ESTREMANTI E PUNTI STAZIONARI. MASSIMI E MINIMI ASSOLUTI E RELATIVI. TEOREMI DI FERMAT, ROLLE E LAGRANGE. CONDIZIONI NECESSARIE E SUFFICIENTI PER MASSIMI E MINIMI RELATIVI. PROBLEMI DI MASSIMO E

Dettagli

Corso di laurea in Geologia Istituzioni di matematiche Esercizi n. 1617/2/5

Corso di laurea in Geologia Istituzioni di matematiche Esercizi n. 1617/2/5 Corso di laurea in Geologia Istituzioni di matematiche Esercizi n. 1617//5 Determinare il grafico delle funzioni sotto indicate, rispondendo, per quando possibile, ai seguenti punti: Dove è definita la

Dettagli

Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni

Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni Esercizi proposti 1. Calcolare la derivata prima f () per le seguenti funzioni: a) f() = c) f() = ( 1 + 1 b) f() = 1 arctan ) d) f() = cos ( ( + ) 5) e) f() = 1 + sin 1 f) f() = arcsin 1. Determinare i

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

Analisi Matematica per Informatici Esercitazione 10 a.a

Analisi Matematica per Informatici Esercitazione 10 a.a Analisi Matematica per Informatici Esercitazione a.a. 6-7 Dott. Simone Zuccher 7 Febbraio 7 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore (zuccher@sci.univr.it).

Dettagli

Analisi Matematica 1 - a.a. 2017/ Primo appello

Analisi Matematica 1 - a.a. 2017/ Primo appello Analisi Matematica - a.a. 7/8 - Primo appello Soluzione del test Test A 3 4 5 6 7 8 9 C E E C D E A B B D Test B 3 4 5 6 7 8 9 A A B E B B C D E A Test C 3 4 5 6 7 8 9 B D C A E D E C D C Test D 3 4 5

Dettagli

Studio di una funzione razionale fratta

Studio di una funzione razionale fratta Studio di una funzione razionale fratta Nella figura è rappresentata la funzione 1. Quale tra gli insiemi proposti è il suo CDE? 2. La funzione presenta un asintoto verticale di equazione... x = 0 x =

Dettagli

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 25 Gennaio Studio di Funzione

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 25 Gennaio Studio di Funzione Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 25 Gennaio 2017 Studio di Funzione 1. Si consideri la funzione reale di variabile reale così definita f() = 2 + 4. (a) Determinare

Dettagli

Matematica Lezione 19

Matematica Lezione 19 Università di Cagliari Corso di Laurea in Farmacia Matematica Lezione 19 Sonia Cannas 6/12/2018 Derivata di una funzione composta Derivata di una funzione composta La derivata di una funzione composta

Dettagli

DERIVATE. Equazione della retta tangente al grafico di f nel suo punto P(x 0 ;y 0 ):

DERIVATE. Equazione della retta tangente al grafico di f nel suo punto P(x 0 ;y 0 ): DERIVATE La derivata di una funzione in un punto c, quando esiste, rappresenta il coefficiente angolare della retta tangente al grafico della funzione nel suo punto di ascissa c: f ( c) = Df ( c) = m tg

Dettagli

Istituto Tecnico Statale per il Turismo "Francesco Algarotti" Classe: 3 Sez. A A. S. 2018/19 PROGRAMMA DI MATEMATICA

Istituto Tecnico Statale per il Turismo Francesco Algarotti Classe: 3 Sez. A A. S. 2018/19 PROGRAMMA DI MATEMATICA Classe: 3 Sez. A A. S. 2018/19 Libro di testo: Bergamini Trifone Barozzi Matematica.bianco (2 vol.) Bergamini Trifone Barozzi Matematica.rosso (vol. 3s) Volume 2 Ripasso. Scomposizione in fattori primi

Dettagli

1. Mercoledì 07/03/2018, ore: 2(2) Introduzione e presentazione del corso. Richiami: i numeri naturali, interi, razionali e reali.

1. Mercoledì 07/03/2018, ore: 2(2) Introduzione e presentazione del corso. Richiami: i numeri naturali, interi, razionali e reali. Registro delle lezioni di MATEMATICA 2 Corso di Laurea in Chimica 6 CFU - A.A. 2017/2018 docente: Francesco Demontis ultimo aggiornamento: 7 giugno 2018 1. Mercoledì 07/03/2018, 9 11. ore: 2(2) Introduzione

Dettagli

Istituto Tecnico Statale per il Turismo "Francesco Algarotti" Classe: 3 Sez. A A. S. 2017/18 PROGRAMMA DI MATEMATICA

Istituto Tecnico Statale per il Turismo Francesco Algarotti Classe: 3 Sez. A A. S. 2017/18 PROGRAMMA DI MATEMATICA Classe: 3 Sez. A A. S. 2017/18 Libro di testo: Bergamini Trifone Barozzi Matematica.bianco (2 vol.) Bergamini Trifone Barozzi Matematica.rosso (vol. 3s) Volume 2 Ripasso. Scomposizione in fattori primi

Dettagli

12/10/05 (2 ore): Esercizi vari sull ellisse, iperbole, parabola. Disequazioni in due variabili. Equazione dell iperbole equilatera. Esempi.

12/10/05 (2 ore): Esercizi vari sull ellisse, iperbole, parabola. Disequazioni in due variabili. Equazione dell iperbole equilatera. Esempi. Università degli Studi di Trento Facolta di Scienze Cognitive Corso di Laurea in Scienze e Tecniche di Psicologia Cognitiva Applicata Corso di Analisi Matematica - a.a. 2005/06 Docente: Prof. Anneliese

Dettagli

MASSIMI, MINIMI E FLESSI

MASSIMI, MINIMI E FLESSI MASSIMI, MINIMI E FLESSI N.B. Se f(x) è continua in [a;b], esistono sicuramente M e m (Teor. di Weierstrass) I punti di massimo e di minimo relativi si chiamano anche punti estremanti relativi di f(x).

Dettagli

Matematica Lezione 20

Matematica Lezione 20 Università di Cagliari Corso di Laurea in Farmacia Matematica Lezione 20 Sonia Cannas 7/12/2018 Applicazioni delle derivate: calcolo dei iti Le derivate permettono di calcolare i iti che presentano le

Dettagli

Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica), a.a. 2007/08. Insiemi numerici: sup A, inf A

Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica), a.a. 2007/08. Insiemi numerici: sup A, inf A Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica, a.a. 2007/08 Esercizi: Parte 1 Insiemi numerici: sup A, inf A 1. Verificare se A, nel caso sia non vuoto, è limitato superiormente,

Dettagli

Esercizi su serie numeriche, integrali ed equazioni differenziali utili per la preparazione all esame scritto 1

Esercizi su serie numeriche, integrali ed equazioni differenziali utili per la preparazione all esame scritto 1 Esercizi di Analisi Matematica Paola Gervasio Esercizi su serie numeriche, integrali ed equazioni differenziali utili per la preparazione all esame scritto Es Determinare il carattere delle seguenti serie

Dettagli

LICEO CLASSICO ANDREA DA PONTEDERA

LICEO CLASSICO ANDREA DA PONTEDERA ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classe 5A PROGRAMMA DI MATEMATICA svolto fino al 15 aprile (evidenziate in giallo le aggiunte rispetto al file precedente) Intervallo limitato

Dettagli

Esercizi di Matematica per le Scienze Studio di funzione

Esercizi di Matematica per le Scienze Studio di funzione Esercizi di Matematica per le Scienze Studio di funzione A.M. Bigatti e G. Tamone Esercizi Studio di funzione Esercizio 1. Disegnare il grafico di una funzione continua f che soddisfi tutte le seguenti

Dettagli

ANALISI MATEMATICA 1 Commissione L. Caravenna, V. Casarino, S. Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza

ANALISI MATEMATICA 1 Commissione L. Caravenna, V. Casarino, S. Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza ANALISI MATEMATICA Commissione L Caravenna, V Casarino, S Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza Nome, Cognome, numero di matricola: Vicenza, 7 Luglio 205 TEMA - parte B Esercizio

Dettagli

LICEO SCIENTIFICO STATALE A. Einstein

LICEO SCIENTIFICO STATALE A. Einstein LICEO SCIENTIFICO STATALE A. Einstein PROGRAMMA CONSUNTIVO MATEMATICA Classe V L Anno Scolastico 2017-2018 Docente: prof. Barbara Veronesi Ore di insegnamento: 4 settimanali Analisi matematica 1. Ripasso

Dettagli

Università degli Studi di Siena Correzione Prova intermedia di Matematica Generale (A.A ) 12 novembre 2016 Compito 1

Università degli Studi di Siena Correzione Prova intermedia di Matematica Generale (A.A ) 12 novembre 2016 Compito 1 Università degli Studi di Siena Correzione Prova intermedia di Matematica Generale (A.A. 7) novembre Compito ) ) L'espressione è equivalente a quindi sse ovvero, ma non può essere un numero negativo e

Dettagli

PROGRAMMA SVOLTO A. S. 2015/ 2016

PROGRAMMA SVOLTO A. S. 2015/ 2016 Nome docente BORGNA Giorgio Materia insegnata MATEMATICA Classe V G manutenzione e assistenza tecnica numero ore di insegnamento svolte ore complessive di insegnamento 3 33 di cui in compresenza di cui

Dettagli

1 è l estremo inferiore della funzione (inf f = 1 R) e quindi la funzione è limitata inferiormente

1 è l estremo inferiore della funzione (inf f = 1 R) e quindi la funzione è limitata inferiormente f x = x 2 1 allora Im f = [ 1, + ) 1 è l estremo inferiore della funzione (inf f = 1 R) e quindi la funzione è limitata inferiormente + è l estremo superiore della funzione (sup f = + R) e quindi la funzione

Dettagli

Analisi Matematica T1 - A.A prof.g.cupini CdL Ingegneria Edile Università di Bologna REGISTRO DELLE LEZIONI

Analisi Matematica T1 - A.A prof.g.cupini CdL Ingegneria Edile Università di Bologna REGISTRO DELLE LEZIONI Analisi Matematica T1 - A.A.2011-2012 - prof.g.cupini CdL Ingegneria Edile Università di Bologna REGISTRO DELLE LEZIONI (Grazie agli studenti del corso che comunicheranno omissioni o errori) 27 SETTEMBRE

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Appunti di Matematica 5 - Derivate - Derivate. Considero una funzione e sia e definita in un intorno completo di.

Appunti di Matematica 5 - Derivate - Derivate. Considero una funzione e sia e definita in un intorno completo di. Derivate Definizione di derivata di f(x) in x D o f Considero una funzione e sia e definita in un intorno completo di. Consideriamo il rapporto (detto rapporto incrementale ) È evidente che il rapporto

Dettagli

Limiti di funzioni a +

Limiti di funzioni a + Limiti di funzioni a + Consideriamo una funzione = f() reale a variabile reale, di dominio D R. Sia f definita in un intorno di +. Def. La funzione f tende al limite l R per tendente a + e si scrive se

Dettagli

FUNZIONI REALI DI UNA VARIABILE REALE

FUNZIONI REALI DI UNA VARIABILE REALE FUNZIONI REALI DI UNA VARIABILE REALE INTERVALLI Per definire il campo di esistenza (o dominio) di una funzione reale di variabile reale y=f()si devono indicare talvolta insiemi di numeri reali che su

Dettagli

Argomento 7 - Studi di funzioni Soluzioni Esercizi

Argomento 7 - Studi di funzioni Soluzioni Esercizi Argomento 7 - Studi di funzioni Soluzioni Esercizi Sol. E. 7. f() = log + 4 Insieme di definizione : Limiti : 4 log + = + 0 + (confronto tra infiniti in cui prevale la potenza) 4 log + = log = + + + Notiamo

Dettagli

Analisi Matematica I Primo Appello ( ) - Fila 1

Analisi Matematica I Primo Appello ( ) - Fila 1 Analisi Matematica I Primo Appello (4-11-003) - Fila 1 1. Determinare la retta tangente alla funzione f() = (1 + ) 1+ in = 0. R. f(0) = 1, mentre la derivata è f () = ( e (1+) log(1+)) ( ) = e (1+) log(1+)

Dettagli

ANALISI MATEMATICA I (Versione A) - 24 Novembre 2000 RISOLUZIONE. = 4x 2 + 8x 3 + o(x 3 )

ANALISI MATEMATICA I (Versione A) - 24 Novembre 2000 RISOLUZIONE. = 4x 2 + 8x 3 + o(x 3 ) ANALISI MATEMATICA I (Versione A) - 4 Novembre 000 RISOLUZIONE ESERCIZIO 1. Data la funzione = (e x 1) log(1 + 4x ) : 1. Calcolare lo sviluppo di ordine 3 di MacLaurin di. Scriviamo gli sviluppi di ordine

Dettagli

Argomento 6 Derivate

Argomento 6 Derivate Argomento 6 Derivate Derivata in un punto Definizione 6. Data una funzione f definita su un intervallo I e 0 incrementale di f in 0 di incremento h = 0 = il rapporto I, si chiama rapporto per = 0 + h =

Dettagli

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica Tutorial - Studio di una funzione reale di variabile reale f : x R y = f (x) R Una funzione può essere: - 1 - algebrica ( razionale o irrazionale, intera o fratta) Classificare la trascendentale ( esponenziale,

Dettagli

dato da { x i }; le rette verticali passanti per

dato da { x i }; le rette verticali passanti per Schema riepilogativo per lo studio di una funzione reale di una var. reale. Studio grafico-analitico delle funzioni reali di variabile reale y = f ( Sequenza dei passi utili allo studio di una funzione

Dettagli

Analisi e Geometria 1 Politecnico di Milano Ingegneria

Analisi e Geometria 1 Politecnico di Milano Ingegneria Analisi e Geometria Politecnico di Milano Ingegneria Esercizi Funzioni. Calcolare la derivata delle funzioni: (a f( = ln tg cos sin (b f( = + ln( + +. Dimostrare che la funzione è costante a tratti. 3.

Dettagli

Punti di estremo e Teorema di Fermat

Punti di estremo e Teorema di Fermat Punti di estremo e Teorema di Fermat Nello studio di una funzione, le derivate sono (tra le altre cose) uno strumento utile per la determinazione di intervalli di monotonia e puntidiestremo. Definizione.

Dettagli

ISTITUZIONI DI MATEMATICHE ( M.M. Porzio ) Foglio di esercizi n. 1: Limiti di funzioni e continuitá

ISTITUZIONI DI MATEMATICHE ( M.M. Porzio ) Foglio di esercizi n. 1: Limiti di funzioni e continuitá ISTITUZIONI DI MATEMATICHE ( M.M. Porzio ) Foglio di esercizi n. : Limiti di funzioni e continuitá a) Calcolare, se esistono, i seguenti limiti di funzioni: ( ) 5x. lim 3 x 8 +4x+ x +. lim x 5 4+x +x 3

Dettagli

Istituzioni di Matematica I

Istituzioni di Matematica I Istituzioni di Matematica I Le soluzioni proposte costituiscono solo una traccia di possibili soluzioni (lo studente deve giustificare i vari risultati), possono esserci altri modi, altrettanto corretti,

Dettagli