STUDIO di FUNZIONE. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "STUDIO di FUNZIONE. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 1"

Transcript

1 STUDIO di FUNZIONE c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 1

2 Punti di estremo: punto di massimo assoluto Def. Sia 0 dom(f) = D. Si dice che 0 è un punto di massimo assoluto per f se f( 0 ) f() dom(f) ovvero f( 0 ) è il massimo dell insieme immagine di f: f( 0 ) = maf() = ma(im(f)). D f( 0 ) im(f) f( 0 ) im(f) dom(f) 0 dom(f) 0 c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 2

3 Punto di massimo relativo Def. Sia 0 dom(f). Si dice che 0 è un punto di massimo relativo per f se esiste un intorno I( 0 ) del punto 0 tale che f( 0 ) f() f( 0 ) I( 0 ) dom(f). f( 0 ) I( 0 ) 0 0 I( 0 ) c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 3

4 Punto di minimo assoluto Sia 0 dom(f) = D. Si dice che 0 è un punto di minimo assoluto per f se f( 0 ) f() dom(f) ovvero f( 0 ) è il minimo dell insieme immagine di f: f( 0 ) = minf() = min(im(f)). D im(f) im(f) 0 0 f( 0 ) dom(f) f( 0 ) dom(f) c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 4

5 Punto di minimo relativo Def. Sia 0 dom(f). Si dice che 0 è un punto di minimo relativo per f se esiste un intorno I( 0 ) del punto 0 tale che f( 0 ) f() I( 0 ) dom(f). f( 0 ) 0 f( 0 ) I( 0 ) I( 0 ) 0 c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 5

6 Osservazioni 1 Per definire i punti di estremo NON abbiamo utilizzato il concetto di derivata, ma solo il confronto dei valori = f(). 2 I punti di massimo relativo e minimo relativo sono detti punti di estremo relativo, mentre i punti di massimo e minimo assoluto sono detti punti di estremo assoluto. 3 Un punto di estremo assoluto è anche punto di estremo relativo, il viceversa non è sempre vero. 4 In un punto di massimo o minimo relativo la funzione può non essere derivabile. 5 Punti angolosi e punti di cuspide sono sempre punti di massimo o di minimo relativo c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 6

7 Punti stazionari (o critici) Def. Un punto 0 dom(f) si dice punto stazionario (o punto critico) per f, se: - f è derivabile in 0 e - f ( 0 ) = 0, ovvero la tangente ad f in 0 è una retta orizzontale Oss. Per definire un punto stazionario serve la definizione di derivata prima. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 7

8 Esempi Tutti punti di massimo relativo e assoluto. 2 punti angolosi e 1 punto stazionario c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 8

9 Derivata di f agli estremi di un intervallo Se f è definita solo in un intorno sinistro di 0 ed esiste f ( 0) si assume che f sia derivabile in 0 e si definisce f ( 0 ) = f ( 0). (es. f (b) = f (b).) a b Se f è definita solo in un intorno destro di 0 ed esiste f +( 0 ) si assume che f sia derivabile in 0 e si definisce f ( 0 ) = f +( 0 ). (es. f (a) = f +(a)) c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 9

10 Teorema dei punti stazionari di Fermat Sia f definita in un intorno I r ( 0 ) del punto 0 e derivabile in 0. Se 0 è un punto di massimo o minimo relativo per f allora f ( 0 ) = 0, ovvero 0 è un punto stazionario per f. (La dimostrazione sarà svolta nella lezione successiva.) 0 a b a 0 b f NON è derivabile in 0 f è derivabile in 0 0 NON è punto stazionario 0 è punto stazionario In entrambi i casi 0 è un punto di minimo relativo c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 10

11 Ricerca dei punti di estremo I punti di estremo di una funzione vanno ricercati tra i punti dom(f) che sono: punti di non derivabilità (punti angolosi e cuspidi) estremi finiti (in R) del dominio. punti stazionari, f ( 0 ) = 0 (per il teorema di Fermat) =punto di non derivabilità 0 =estremo (in R) del dominio 0 =punto stazionario c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 11

12 Legame fra crescenza/decrescenza e f () Ricordiamo la def. di funzione crescente: Sia I il dominio di una funzione f reale a valori reali, oppure un intervallo contenuto nel dominio di f. Def. La funzione f si dice monotona crescente su I se 1, 2 I, 1 < 2 f( 1 ) f( 2 ). Def. La funzione f si dice monotona strettamente crescente su I se 1, 2 I, 1 < 2 f( 1 ) < f( 2 ). f( 2 ) f( 1 ) = f( 2 ) f( 1 ) I I Risulta impossibile verificare la crescenza e decrescenza di f() mediante la definizione: dovremmo verificare la propr. per infinite coppie di punti! c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 12

13 Criterio del segno della derivata prima Teorema. Sia I dom(f) un intervallo e sia f derivabile su I. Allora f () 0, I f è crescente su I e f () > 0, I f è strettamente crescente su I. (La dimostrazione sarà svolta la lezione successiva) =f() =f () segno derivata.m c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 13

14 f strett. crescente f () > 0 Esempio. f() = 3 +1 è strettamente crescente su R, ma f (0) = 0, ovvero f strett. crescente. non implica f () > c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 14

15 Crescenza/decrescenza e punti di estremo Corollario Sia f derivabile sull intervallo I e sia 0 punto stazionario interno ad I. Se f () 0 < 0 e f () 0 > 0 allora 0 è punto di ma relativo per f (figura a sinistra). Se f () 0 < 0 e f () 0 > 0 allora 0 è punto di min relativo per f (figura a destra) = 0 è p.to di ma. rel = 0 è p.to di min. rel. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 15

16 Derivata seconda Def. Se f è derivabile in 0, si dice che f è derivabile due volte in 0 e si pone f ( 0 ) := (f ) ( 0 ). f ( 0 ) è detta derivata seconda di f in 0. La funzione che associa ad il valore f (), ove questo sia definito, è detta funzione derivata seconda. Es. f() = , f () = 6 12 f () = , c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 16

17 Convessità e concavità Consideriamo la funzione f(), definita in un intorno del punto 0 e l equazione della retta t tangente ad f nel punto 0 dom(f): t : = t() = f ( 0 )( 0 )+f( 0 ). Def. La funzione f si dice convessa (o volge la concavità verso l alto) in 0 se esiste un intorno I r ( 0 ) di 0 tale che: I r ( 0 ) f() t() e si dice strettamente convessa in 0 se f() > t() 0. = f() = t() 0 c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 17

18 Def. La funzione f si dice concava in 0 se esiste un intorno I r ( 0 ) di 0 tale che: I r ( 0 ) f() t() e si dice strettamente concava in 0 se f() < t() 0. = t() = f() 0 Def. Sia I un intervallo e f derivabile su I. f si dice convessa (risp. concava) su I, se è convessa (risp. concava) in ogni punto di I. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 18

19 Criterio del segno della derivata seconda Teorema. Se f è una funzione derivabile due volte su I, si ha: f () 0, I f è convessa su I. e f () > 0, I = f è strettamente convessa su I. Osservazione. Se f è strettamente convessa su I, non è detto che f () > 0 su I. Es.: f() = 4. In = 0 si ha f (0) = 0 ed f strettamente convessa su tutto R. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 19

20 Punti di flesso Def. Sia f una funzione definita e derivabile in un intorno del punto 0. Il punto 0 si dice punto di flesso per f se esiste un intorno sinistro di 0 in cui f è concava ed esiste un intorno destro di 0 in cui f è convessa o, viceversa, se esiste un intorno sinistro di 0 in cui f è convessa ed esiste un intorno destro di 0 in cui f è concava. 0 Oss. Un punto di flesso 0 per cui si ha f ( 0 ) = 0 è detto punto di flesso a tangente orizzontale, mentre un punto di flesso 0 per cui si ha f ( 0 ) 0 è detto punto di flesso a tangente obliqua. 0 c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 20

21 Studio di funzione completo Obiettivo: disegnare il grafico di una funzione = f(). Passi da seguire. 1. Determinare il dom(f) 2. Determinare eventuali simmetrie e periodicità. 3. Determinare possibili asintoti (verticali, orizzontali, obliqui) [questo vuol dire calcolare i limiti di f agli estremi del dominio]. 4. Individuare eventuali punti di discontinuità. 5. Calcolare la derivata prima e determinare il suo dominio, individuando e classificando eventuali punti di non derivabilità. 6. Studiare il segno della derivata prima per individuare dove la funzione è crescente/decrescente. Determinare, se esistono, i punti di estremo della funzione. 7. Calcolare la derivata seconda di f. 8. Studiare il segno della derivata seconda per individuare dove la funzione è convessa/concava. Determinare, se esistono, i punti di flesso della funzione. 9. DISEGNARE IL GRAFICO DI = f() c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 21

22 Riferimenti bibliografici: Canuto Tabacco, Sez. 6.4, 6.7, 6.8, 6.9, Esercizi: Svolgere i vari passi dello studio di funzione per le funzioni elementari viste. Fare lo studio delle seguenti funzioni: 1. f() = f() = log() 3. f() = log() 4. f() = e 1/2 5. f() = e 1/ c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 22

Gli asintoti di una funzione sono rette, quindi possono essere: rette verticali o rette orizzontali o rette oblique.

Gli asintoti di una funzione sono rette, quindi possono essere: rette verticali o rette orizzontali o rette oblique. Asintoti Gli asintoti di una funzione sono rette, quindi possono essere: rette verticali o rette orizzontali o rette oblique. Asintoti verticali Sia 0 punto di accumulazione per dom(f). La retta = 0 è

Dettagli

Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste

Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste CONCAVITA E CONVESSITA DI UNA FUNZIONE. FLESSI. SCHEMA GENERALE PER LO STUDIO DI FUNZIONE. FUNZIONI RAZIONALI E IRRAZIONALI INTERE E FRATTE. TEOREMA DI DE L HOSPITAL CON APPLICAZIONI AI LIMITI. 1 Concavit{

Dettagli

Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile

Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 41 1 Derivata

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA PRIMA PARTE Intervallo limitato di numeri reali Dati due numeri reali a e b, con a

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

10 - Applicazioni del calcolo differenziale

10 - Applicazioni del calcolo differenziale Università degli Studi di Palermo Facoltà di Economia CdS Sviuppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 10 - Applicazioni del calcolo differenziale Anno Accademico 2015/2016

Dettagli

Argomento 6 Derivate

Argomento 6 Derivate Argomento 6 Derivate Derivata in un punto Definizione 6. Data una funzione f definita su un intervallo I e 0 incrementale di f in 0 di incremento h = 0 = il rapporto I, si chiama rapporto per = 0 + h =

Dettagli

Studio di una funzione razionale fratta

Studio di una funzione razionale fratta Studio di una funzione razionale fratta Nella figura è rappresentata la funzione 1. Quale tra gli insiemi proposti è il suo CDE? 2. La funzione presenta un asintoto verticale di equazione... x = 0 x =

Dettagli

Esercizi di Matematica per le Scienze Studio di funzione

Esercizi di Matematica per le Scienze Studio di funzione Esercizi di Matematica per le Scienze Studio di funzione A.M. Bigatti e G. Tamone Esercizi Studio di funzione Esercizio 1. Disegnare il grafico di una funzione continua f che soddisfi tutte le seguenti

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Esercizi su serie numeriche, integrali ed equazioni differenziali utili per la preparazione all esame scritto 1

Esercizi su serie numeriche, integrali ed equazioni differenziali utili per la preparazione all esame scritto 1 Esercizi di Analisi Matematica Paola Gervasio Esercizi su serie numeriche, integrali ed equazioni differenziali utili per la preparazione all esame scritto Es Determinare il carattere delle seguenti serie

Dettagli

Analisi Matematica I Primo Appello ( ) - Fila 1

Analisi Matematica I Primo Appello ( ) - Fila 1 Analisi Matematica I Primo Appello (4-11-003) - Fila 1 1. Determinare la retta tangente alla funzione f() = (1 + ) 1+ in = 0. R. f(0) = 1, mentre la derivata è f () = ( e (1+) log(1+)) ( ) = e (1+) log(1+)

Dettagli

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica Tutorial - Studio di una funzione reale di variabile reale f : x R y = f (x) R Una funzione può essere: - 1 - algebrica ( razionale o irrazionale, intera o fratta) Classificare la trascendentale ( esponenziale,

Dettagli

LIMITI DI FUNZIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Limiti di funzioni cap3a.pdf 1

LIMITI DI FUNZIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Limiti di funzioni cap3a.pdf 1 LIMITI DI FUNZIONI c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Limiti di funzioni cap3a.pdf 1 Intorni Def. Siano 0 R e r R +. Chiamiamo intorno di centro 0 e raggio r l intervallo aperto e limitato

Dettagli

Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A

Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A.2012-2013 (Grazie agli studenti del corso che comunicheranno eventuali omissioni o errori) 25 SETTEMBRE

Dettagli

Primo Compito di Analisi Matematica Corso di laurea in Informatica, corso B 18 Gennaio Soluzioni

Primo Compito di Analisi Matematica Corso di laurea in Informatica, corso B 18 Gennaio Soluzioni Primo Compito di Analisi Matematica Corso di laurea in Informatica, corso B 8 Gennaio 06 Soluzioni Esercizio Siano z e z due numeri complessi con modulo e argomento rispettivamente (ρ, θ ) e (ρ, θ ) tali

Dettagli

Calcolo Differenziale. Corsi di Laurea in Tecniche di Radiologia ecc... A.A Analisi Matematica - Calcolo Differenziale - p.

Calcolo Differenziale. Corsi di Laurea in Tecniche di Radiologia ecc... A.A Analisi Matematica - Calcolo Differenziale - p. Calcolo Differenziale Corsi di Laurea in Tecniche di Radiologia ecc... A.A. 2010-2011 - Analisi Matematica - Calcolo Differenziale - p. 1/33 Velocità istantanea Percorriamo il tratto di strada tra Udine

Dettagli

ESERCIZI DA SVOLGERE PER MAGGIO (la parte in verde, il resto lo dovreste avere già svolto).

ESERCIZI DA SVOLGERE PER MAGGIO (la parte in verde, il resto lo dovreste avere già svolto). ESERCIZI DA SVOLGERE PER MAGGIO (la parte in verde, il resto lo dovreste avere già svolto). 1. Data la funzione : x 2 e x minimo e di massimo. Determinare inoltre gli eventuali flessi e gli intervalli

Dettagli

Università degli Studi di Ancona Corso di Laurea in SS.FF.NN. Corso di MATEMATICA (A.A. 2002/2003) Docente: Prof. Piero MONTECCHIARI

Università degli Studi di Ancona Corso di Laurea in SS.FF.NN. Corso di MATEMATICA (A.A. 2002/2003) Docente: Prof. Piero MONTECCHIARI Università degli Studi di Ancona Corso di Laurea in SS.FF.NN. Corso di MATEMATICA (A.A. /3) Docente: Prof. Piero MONTECCHIARI STUDIO DI FUNZIONI Scritti dal tutore Dario GENOVESE 1 Dominio La prima cosa

Dettagli

(1;1) y=2x-1. Fig. G4.1 Retta tangente a y=x 2 nel suo punto (1;1).

(1;1) y=2x-1. Fig. G4.1 Retta tangente a y=x 2 nel suo punto (1;1). G4 Derivate G4 Significato geometrico di derivata La derivata di una funzione in un suo punto è il coefficiente angolare della sua retta tangente Esempio G4: La funzione = e la sua retta tangente per il

Dettagli

Matematica. dott. francesco giannino. a. a chiusura del corso. 1

Matematica. dott. francesco giannino. a. a chiusura del corso. 1 Matematica a. a. 2014-2015 dott. francesco giannino 99. chiusura del corso. 1 99. chiusura del corso 99. chiusura del corso. 2 Obiettivo del corso fornire strumenti matematici di base necessari nel prosieguo

Dettagli

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI MATEMATICA Classe VB Anno Scolastico 014-015 Insegnante: Prof.ssa La Salandra Incoronata 1 Nozioni di topologia su Intervalli; Estremo superiore

Dettagli

Quando non espressamente detto, intendiamo che: f : R R x 0 R è punto di accumulazione per dom(f).

Quando non espressamente detto, intendiamo che: f : R R x 0 R è punto di accumulazione per dom(f). Teoremi sui iti Quando non espressamente detto, intendiamo che: f : R R 0 R è punto di accumulazione per dom(f). Teorema di unicità del ite. Supponiamo che f ammetta ite l (finito o infinito) per 0. Allora

Dettagli

STUDIO DEL GRAFICO DI UNA FUNZIONE

STUDIO DEL GRAFICO DI UNA FUNZIONE STUDIO DEL GRAFICO DI UNA FUNZIONE PROF.SSA ROSSELLA PISCOPO 2 di 35 Indice 1 SCHEMA PER LO STUDIO DEL GRAFICO DI FUNZIONE... 4 2 ESEMPI... 11 2.1 2.2 2.3 2.4 2.5 2.6 FUNZIONE ESPONENZIALE... 11 FUNZIONE

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

Progettazione modulare Percorso di istruzione di 3 livello, Servizi Socio Sanitari Modulo n.1: Insiemi numerici e funzioni MATEMATICA

Progettazione modulare Percorso di istruzione di 3 livello, Servizi Socio Sanitari Modulo n.1: Insiemi numerici e funzioni MATEMATICA Progettazione modulare Modulo n.1: Insiemi numerici e funzioni DURATA PREVISTA Ore in presenza 12 Ore a distanza 5 Totale ore 17 individuare le caratteristiche di un insieme numerico; classificare le funzioni,

Dettagli

ESAME DI MATEMATICA PER LE APPLICAZIONI ECONOMICHE 14 GIUGNO 2016 FILA A

ESAME DI MATEMATICA PER LE APPLICAZIONI ECONOMICHE 14 GIUGNO 2016 FILA A ESAME DI MATEMATICA PER LE APPLICAZIONI ECONOMICHE 4 GIUGNO 206 FILA A Durata della prova: 2 ore e mezza. NOTA: Spiegare con molta cura le risposte. NOTAZIONE: log = ln = log e. Esercizio 5 punti) Sia

Dettagli

ANALISI MATEMATICA 1. (Ingegneria Industriale, corsi A e B) Esempi di prove scritte

ANALISI MATEMATICA 1. (Ingegneria Industriale, corsi A e B) Esempi di prove scritte ANALISI MATEMATICA 1 (Ingegneria Industriale, corsi A e B) Esempi di prove scritte Rispondere ai quesiti a risposta multipla Qi, risolvere gli esercizi Ei, enunciare le definizioni Di e svolgere le dimostrazioni

Dettagli

IV Liceo Artistico Statale A.Caravillani. Anno Scolastico 2016/2017. Programmazione Didattica. Matematica

IV Liceo Artistico Statale A.Caravillani. Anno Scolastico 2016/2017. Programmazione Didattica. Matematica IV Liceo Artistico Statale A.Caravillani Anno Scolastico 2016/2017 Programmazione Didattica Matematica Classe V sez. D Modulo 1 Modulo 2 Modulo 3 Modulo 4 Titolo Funzioni Limiti Derivate Lo studio delle

Dettagli

Diario del Corso di Analisi Matematica - a.a. 2014/15

Diario del Corso di Analisi Matematica - a.a. 2014/15 Diario del Corso di Analisi Matematica - a.a. 2014/15 1a SETTIMANA 23/09/14 (2 ore): Introduzione al corso: orario, esercitazioni, ricevimento studenti, sito web, tempi e modalità delle prove di valutazione

Dettagli

1 a Prova parziale di Analisi Matematica I (A) 16/11/2007

1 a Prova parziale di Analisi Matematica I (A) 16/11/2007 Nome a Prova parziale di Analisi Matematica I (A) 6//7 ) Data la funzione ( ) = f e Calcolare il campo di esistenza e il suo comportamento agli estremi ) Definizione di derivata prima di una funzione f()

Dettagli

SETTEMBRE OTTOBRE MBRE NOVE. Pag CLASSI 4AMM-4BME-4AE. MATEMATICA E COMPLEMENTI N 3+1 ore settimanali. Monte ore annuo 132 (99+33)

SETTEMBRE OTTOBRE MBRE NOVE. Pag CLASSI 4AMM-4BME-4AE. MATEMATICA E COMPLEMENTI N 3+1 ore settimanali. Monte ore annuo 132 (99+33) DIPARTIMENTO: PROGRAMMAZIONE COORDINATA TEMPORALMENTE CLASSI E Monte ore annuo 132 (99+33) Libro di Testo L. Sasso: Nuova Matematica a colori Edizione Verde, VOL.3-4 SETTEMBRE OTTOBRE abilità/competen

Dettagli

PROGRAMMA CONSUNTIVO

PROGRAMMA CONSUNTIVO COD. Progr.Prev. PAGINA: 1 PROGRAMMA CONSUNTIVO A.S. 2014/2015 SCUOLA Civico Liceo Linguistico A. Manzoni DOCENTE: Roberto Galimberti MATERIA: Matematica Classe 5 a Sezione F CONTENUTI DISCIPLINARI SVOLTI

Dettagli

Diario del Corso Analisi Matematica I

Diario del Corso Analisi Matematica I Diario del Corso Analisi Matematica I 1. Martedì 1 ottobre 2013 Presentazione del corso. Nozioni di Teoria degli Insiemi. Numeri Naturali, loro proprietà, rappresentazione geometrica, sommatoria, principio

Dettagli

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 1. Esercizi 3 1. Studiare la seguente funzione FINO alla derivata prima, con tracciamento di grafico ed indicazione

Dettagli

Traccia n.1 Studiare il comportamento della funzione: 3x + ex 3x e x. Svolgimento

Traccia n.1 Studiare il comportamento della funzione: 3x + ex 3x e x. Svolgimento Traccia n. Studiare il comportamento della funzione: Svolgimento f(x) = 3x + ex 3x e x Determinazione del campo di esistenza, E[f]. La funzione si presenta come rapporto di due funzioni; il campo di esistenza

Dettagli

x log(x) + 3. f(x) =

x log(x) + 3. f(x) = Università di Bari, Corso di Laurea in Economia e Commercio Esame di Matematica per l Economia L/Z Dr. G. Taglialatela 03 giugno 05 Traccia dispari Esercizio. Calcolare Esercizio. Calcolare e cos log d

Dettagli

Programmazione disciplinare per competenze (Rif.to ALLEGATI del DPR 15 marzo 2010 n. 89)

Programmazione disciplinare per competenze (Rif.to ALLEGATI del DPR 15 marzo 2010 n. 89) Programmazione disciplinare per competenze (Rif.to ALLEGATI del DPR 15 marzo 2010 n. 89) Secondo biennio Indirizzo: IPSSAR Disciplina: MATEMATICA 1. 1 Asse culturale: matematico 1. utilizzare il linguaggio

Dettagli

PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016

PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016 PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016 LE DISEQUAZIONI 1. Le disequazioni di primo e secondo grado 2. Le disequazioni di grado superiore al secondo e le disequazioni fratte

Dettagli

Università degli Studi di Siena Correzione Prova intermedia di Matematica Generale (A.A ) 11 novembre 2015 Compito

Università degli Studi di Siena Correzione Prova intermedia di Matematica Generale (A.A ) 11 novembre 2015 Compito Università degli Studi di Siena Correzione Prova intermedia di Matematica Generale (A.A. 15-16) 11 novembre 2015 Compito ) L'insieme evidenziato in rosso nella figura che segue è. ). Posto si ha che può

Dettagli

Corso di Analisi Matematica Limiti di funzioni

Corso di Analisi Matematica Limiti di funzioni Corso di Analisi Matematica Limiti di funzioni Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 39 1 Definizione di ite 2 Il calcolo dei

Dettagli

(x x 0 ) 2. Lezione del 24 ottobre

(x x 0 ) 2. Lezione del 24 ottobre Lezione del 4 ottobre 1. Premessa I fatti descritti nei punti seguenti si possono vedere come molto lontani sviluppi di alcuni fatti elementari riguardanti le funzioni polinomiali di II grado. Diamo per

Dettagli

Laurea triennale in Informatica Corso di Analisi matematica (A) a.a. 2007/08 9 giugno 2008

Laurea triennale in Informatica Corso di Analisi matematica (A) a.a. 2007/08 9 giugno 2008 9 giugno 2008 1. Data la funzione f(x) = x e 1/(x2 4), (c) stabilire se f ammette punti singolari e in caso affermativo classificarli; calcolare la derivata prima di f e utilizzarla per studiare la monotonia

Dettagli

G5. Studio di funzione - Esercizi

G5. Studio di funzione - Esercizi G5 Studio di funzione - Esercizi Tracciare il grafico delle seguenti funzioni I grafici delle seguenti funzioni sono al termine degli esercizi Per gli esercizi con l asterisco non è richiesta, date le

Dettagli

Esercizi riassuntivi per la prima prova di verifica di Analisi Matematica. n, n IN.

Esercizi riassuntivi per la prima prova di verifica di Analisi Matematica. n, n IN. Esercizi riassuntivi - B. Di Bella 1 Esercizi riassuntivi per la prima prova di verifica di Analisi Matematica 1. Sia A = n IN ] 1 n + 1, 1 [. n a) Determinare il derivato e l interno di A; b) stabilire

Dettagli

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE ROBERTO GIAMBÒ 1. DEFINIZIONI E PRIME PROPRIETÀ In queste note saranno presentate alcune proprietà principali delle funzioni convesse di una variabile

Dettagli

Argomento 6: Derivate Esercizi. I Parte - Derivate

Argomento 6: Derivate Esercizi. I Parte - Derivate 6: Derivate Esercizi I Parte - Derivate E. 6.1 Calcolare le derivate delle seguenti funzioni: 1) log 5 3 + cos ) + 3 + 4 + 3 3) 5 tan 4) ( + 3e ) sin 5) arctan( + 1) 6) log 7) 10) + + 3 8) 3 3 1 + 16 11)

Dettagli

DERIVATE. 1.Definizione di derivata.

DERIVATE. 1.Definizione di derivata. DERIVATE Definizione di derivata Sia y = f( una funzione continua Fissato un punto o appartenente all insieme di definizione della funzione y = f(,sia Po = (; f(o il punto di ascissa o appartenente al

Dettagli

Elenco moduli Argomenti Strumenti / Testi Letture / Metodi. partecipazione degli alunni. 2 Completamento equazioni e disequazioni.

Elenco moduli Argomenti Strumenti / Testi Letture / Metodi. partecipazione degli alunni. 2 Completamento equazioni e disequazioni. Pagina 1 di 5 DISCIPLINA: MATEMATICA E LABORATORIO INDIRIZZO: IGEA CLASSE: IV FM DOCENTE : Cornelio Terreni Elenco moduli Argomenti Strumenti / Testi Letture / Metodi 1 Matematica RIPASSO e COMPLETAMENTO:

Dettagli

Calcolo Combinatorio Il fattoriale, coefficienti binomiali e loro proprietà; formula del binomio di Newton

Calcolo Combinatorio Il fattoriale, coefficienti binomiali e loro proprietà; formula del binomio di Newton Programma di Analisi 1 Note: - I programmi presentati sono estratti ed integrati da Programmi previsti in diverse Università, possono pertanto contenere parti simili, o in più, dei programmi ufficiali.

Dettagli

Istituto d Istruzione Superiore A. Tilgher Ercolano (Na)

Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) LO STUDIO DI FUNZIONE Lo studio di funzione è una delle parti più interessanti dell analisi perché permette di utilizzare le numerose conoscenze acquisite nel corso degli anni in un unico elaborato. Se

Dettagli

ANALISI MATEMATICA T-1 (C.d.L. Ing. Edile) Prova scritta totale

ANALISI MATEMATICA T-1 (C.d.L. Ing. Edile) Prova scritta totale ANALISI MATEMATICA T-1 (C.d.L. Ing. Edile) Prova scritta totale Università di Bologna - A.A. 2010/2011-14 Giugno 2011 - Prof. G.Cupini MATRICOLA: COGNOME: NOME: ORALE: I app.: Martedì 21/6 II app. E-MAIL:

Dettagli

Funzioni: studio di funzione e grafico

Funzioni: studio di funzione e grafico Capitolo Funzioni: studio di funzione e grafico Esercizi Esercizio.. Disegnare il grafico di una funzione continua f che soddisfi tutte le seguenti condizioni: Il dominio di f è l i n s i e m e A =(, )

Dettagli

Secondo parziale di Matematica per l Economia (esempio)

Secondo parziale di Matematica per l Economia (esempio) Corso di Laurea in Economia e Management Secondo parziale di Matematica per l Economia (esempio) lettere E-Z, a.a. 206 207 prof. Gianluca Amato Regole generali Si svolga il primo esercizio e, a scelta

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE

ISTITUTO ISTRUZIONE SUPERIORE ISTITUTO ISTRUZIONE SUPERIORE Federico II di Svevia Indirizzi: Liceo Scientifico Classico Linguistico Artistico e Scienze Applicate Via G. Verdi, 1 85025 MELFI (PZ) Tel. 097224434/35 Cod. Min.: PZIS02700B

Dettagli

Corso di laurea: Ingegneria Civile Programma di Fondamenti di Analisi Matematica I a.a. 2011/2012 Docenti: Fabio Paronetto e Fabio Ancona

Corso di laurea: Ingegneria Civile Programma di Fondamenti di Analisi Matematica I a.a. 2011/2012 Docenti: Fabio Paronetto e Fabio Ancona Corso di laurea: Ingegneria Civile Programma di Fondamenti di Analisi Matematica I a.a. 2011/2012 Docenti: Fabio Paronetto e Fabio Ancona Gli argomenti denotati con un asterisco tra parentesi sono stati

Dettagli

PARTE 1: Elementi di base. Simboli e operazioni sugli insiemi. Simboli logici. Prodotto cartesiano.

PARTE 1: Elementi di base. Simboli e operazioni sugli insiemi. Simboli logici. Prodotto cartesiano. PROGRAMMA di Analisi Matematica 1 A.A. 2008-2009, canale 1, prof.: Francesca Albertini, Claudio Marchi Ingegneria gestionale, meccanica e meccatronica, Vicenza Testo Consigliato: Analisi Matematica, M.

Dettagli

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio Liceo Classico D. Alighieri A.S. 0-3 y Data la funzione: Studio di Funzione tracciatene il grafico nel piano cartesiano. Prof. A. Pisani Esempio ) Tipo e grado della funzione La funzione è analitica, data

Dettagli

5.1 Derivata di una funzione reale di variabile reale

5.1 Derivata di una funzione reale di variabile reale CAPITOLO 5 Calcolo differenziale 5.1 Derivata di una funzione reale di variabile reale Sia data la funzione f : X Y, e sia 0 X. Se la variabile indipendente passa dal valore 0 al valore 0 +, con molto

Dettagli

Tipologia delle funzioni studiate: 1. y= ax n + bx n y= e x 3. y= (ax + b)/ (cx + d) 4. y= (ax 2 + b) (cx + d)

Tipologia delle funzioni studiate: 1. y= ax n + bx n y= e x 3. y= (ax + b)/ (cx + d) 4. y= (ax 2 + b) (cx + d) - ricerca dei punti di flesso - ricerca dell asintoto orizzontale - ricerca dell asintoto verticale - ricerca dell asintoto obliquo - ricerca dei punti di intersezione con gli assi Tipologia delle funzioni

Dettagli

PER LA COMMISSIONE D ESAME 1E 2E 3E 4E 5E Totale

PER LA COMMISSIONE D ESAME 1E 2E 3E 4E 5E Totale Esame di Analisi Matematica Uno 31 Gennaio 2014 Fila: A 1 Università di Padova - Scuola di Ingegneria - Esame di Analisi Matematica Uno Lauree: Chimica e Materiali 31 Gennaio 2014 (Primo appello, a.a.

Dettagli

Programmazione classi quinte Sezione A Architettura

Programmazione classi quinte Sezione A Architettura Liceo Artistico Statale A. Caravillani Dipartimento di Matematica Docente Patrizia Domenicone Programmazione classi quinte Sezione A Architettura Enrico Ravà, Mare di casa, 2000 Programmazione di Matematica

Dettagli

Proposizioni. Negazione di una proposizione. Congiunzione e disgiunzione di due proposizioni. Predicati. Quantificatori.

Proposizioni. Negazione di una proposizione. Congiunzione e disgiunzione di due proposizioni. Predicati. Quantificatori. Corso di laurea in Ingegneria elettronica e informatica - A13 Programma di Analisi matematica 1 - A13106 Anno accademico 2015-2016 Prof. Giulio Starita 1 - Insiemi, logica, numeri I concetti primitivi.

Dettagli

Funzioni Monotone. una funzione f : A B. si dice

Funzioni Monotone. una funzione f : A B. si dice Funzioni Monotone una funzione f : A B si dice strettamente crescente: 1, 2 A, 1 < 2 f( 1 ) < f( 2 ). crescente: 1, 2 A, 1 < 2 f( 1 ) f( 2 ). strettamente decrescente: 1, 2 A, 1 < 2 f( 1 ) > f( 2 ). decrescente:

Dettagli

ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME

ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME a cura di Michele Scaglia FUNZIONI DERIVABILI Sia f : domf R una funzione e sia 0 domf di accumulazione per domf Chiamiamo derivata prima di

Dettagli

Lezioni sullo studio di funzione.

Lezioni sullo studio di funzione. Lezioni sullo studio di funzione. Schema. 1. Calcolare il dominio della funzione D(f).. Comportamento della funzione agli estremi del dominio. Ad esempio se D(f) = [a, b] si dovrà calcolare f(a) e f(b),

Dettagli

PROGRAMMAZIONE PREVENTIVA a.s

PROGRAMMAZIONE PREVENTIVA a.s PROGRAMMAZIONE PREVENTIVA a.s. 2009-2010 Insegnante Classe Materia preventivo Battistella Fulvia 5ST matematica 132 titolo set ott nov dic gen feb mar apr mag giu prev 5.1 TRIGONOMETRIA x x x 20 5.2 CALCOLO

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

1) D0MINIO. Determinare il dominio della funzione f (x) = ln ( x 3 4x 2 3x). Deve essere x 3 4x 2 3x > 0. Ovviamente x 0.

1) D0MINIO. Determinare il dominio della funzione f (x) = ln ( x 3 4x 2 3x). Deve essere x 3 4x 2 3x > 0. Ovviamente x 0. D0MINIO Determinare il dominio della funzione f ln 4 + Deve essere 4 + > 0 Ovviamente 0 Se > 0, 4 + 4 + quindi 0 < < > Se < 0, 4 + 4 4 e, ricordando che < 0, deve essere 4 < 0 dunque 7 < < 0 Il campo di

Dettagli

= y h. m x0 (h) = y Q y P x Q x P. f(x 0 + h) f(x 0 )

= y h. m x0 (h) = y Q y P x Q x P. f(x 0 + h) f(x 0 ) ESERCIZI DI MATEMATICA: SCHEDA n.1 su derivate: la definzione Classe 5B Sc.Soc. Data:...... Teoria in sintesi. Data una funzione y = f(x) denita intorno ad x 0 (ovverosia il dominio contiene un intervallo

Dettagli

Esercizi su: insiemi, intervalli, intorni. 4. Per ognuna delle successive coppie A e B di sottoinsiemi di Z determinare A B, A B, a) A C d) C (A B)

Esercizi su: insiemi, intervalli, intorni. 4. Per ognuna delle successive coppie A e B di sottoinsiemi di Z determinare A B, A B, a) A C d) C (A B) Esercizi su: insiemi, intervalli, intorni. Per ognuna delle successive coppie A e B di sottoinsiemi di N determinare A B, A B, A c e B c. a) A = { N + = 0}, B = { N = 6}, b) A = { N < 5}, B = { N < },

Dettagli

LICEO SCIENTIFICO PROBLEMA 1

LICEO SCIENTIFICO PROBLEMA 1 www.matefilia.it LICEO SCIENTIFICO 2015 - PROBLEMA 1 Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi

Dettagli

Programmazione per competenze del corso Matematica, Quinto anno 2015-16

Programmazione per competenze del corso Matematica, Quinto anno 2015-16 Programmazione per competenze del corso Matematica, Quinto anno 2015-16 Competenze di aree Traguardi per lo sviluppo dellle competenze Abilità Conoscenze Individuare le principali proprietà di una - Individuare

Dettagli

ESERCIZI SULLO STUDIO DI FUNZIONI

ESERCIZI SULLO STUDIO DI FUNZIONI ESERCIZI SULLO STUDIO DI FUNZIONI 0 novembre 206 Esercizi Esercizio n. Si consideri la funzione f(x) = 7 x 2 + 3 Dominio: R Intersezioni con gli assi: Intersezioni con l asse x: { y = 0 y = 7 x 2 + 3.

Dettagli

DERIV AT E. Arriviamo ora alla de nizione di derivata attraverso il concetto di rapporto incrementale.

DERIV AT E. Arriviamo ora alla de nizione di derivata attraverso il concetto di rapporto incrementale. DERIV AT E Il concetto di derivata di una funzione, è scaturito dal celebre problema della ricerca delle tangenti ad una curva in un suo punto, che ha lungamente impegnato i matematici prima di Newton

Dettagli

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2 Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in CTF - anno acc. 2013/2014 docente: Giulia Giantesio, gntgli@unife.it Esercizi 8: Studio di funzioni Studio

Dettagli

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2009/2010 Calcolo 1, Esame scritto del 19.01.2010

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2009/2010 Calcolo 1, Esame scritto del 19.01.2010 NOME:... MATRICOLA:.... Corso di Laurea in Fisica, A.A. 009/00 Calcolo, Esame scritto del 9.0.00 Data la funzione fx = e /x x x +, a determinare il dominio massimale di f ; b trovare tutti gli asintoti

Dettagli

Derivate. Rette per uno e per due punti. Rette per uno e per due punti

Derivate. Rette per uno e per due punti. Rette per uno e per due punti Introduzione Rette per uno e per due punti Rette per uno e per due punti Rette secanti e tangenti Derivata d una funzione in un punto successive Derivabilità a destra e a sinistra Rette per uno e per due

Dettagli

PROGRAMMAZIONE DIDATTICA ANNUALE

PROGRAMMAZIONE DIDATTICA ANNUALE PROGRAMMAZIONE DIDATTICA ANNUALE Anno Scolastico: 2015 / 2016 Dipartimento (1) : MATEMATICA Coordinatore (1) : TRIMBOLI SILVIA Classe: 5H Indirizzo: Servizi Socio-Sanitari Serale Ore di insegnamento settimanale:

Dettagli

NOME:... MATRICOLA:... Scienza dei Media e della Comunicazione, A.A. 2007/2008 Analisi Matematica 1, Esame scritto del 08.02.2008. x 1.

NOME:... MATRICOLA:... Scienza dei Media e della Comunicazione, A.A. 2007/2008 Analisi Matematica 1, Esame scritto del 08.02.2008. x 1. NOME:... MATRICOLA:.... Scienza dei Media e della Comunicazione, A.A. 007/008 Analisi Matematica, Esame scritto del 08.0.008 Indicare per quali R vale la seguente diseguaglianza : + >. Se y - - è il grafico

Dettagli

INSEGNANTE: Marco Cerciello FUNZIONI REALI DI VARIABILE REALE

INSEGNANTE: Marco Cerciello FUNZIONI REALI DI VARIABILE REALE Classe V H INSEGNANTE: Marco Cerciello Testo: Matematica a colori vol. 5 ed. Petrini Concetto di unzione di variabile reale FUNZIONI REALI DI VARIABILE REALE Rappresentazione analitica di una unzione,

Dettagli

1 a Prova parziale di Analisi Matematica I (1) 22/11/2006 (civili + ambientali)

1 a Prova parziale di Analisi Matematica I (1) 22/11/2006 (civili + ambientali) a Prova parziale di Analisi Matematica I () ) Data la funzione f ( ) = tg + ln( cos ) a) determinare il campo di esistenza, b) calcolare il limite lim f ( ) π ) Definizione di limite finito: lim f ( )

Dettagli

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione Copyright c 2009 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione

Dettagli

PIANO DI LAVORO E PROGRAMMAZIONE DIDATTICA. CLASSE V Scienze Applicate SEZ. A A.S.2016 /2017 OBIETTIVI E COMPETENZE

PIANO DI LAVORO E PROGRAMMAZIONE DIDATTICA. CLASSE V Scienze Applicate SEZ. A A.S.2016 /2017 OBIETTIVI E COMPETENZE PIANO DI LAVORO E PROGRAMMAZIONE DIDATTICA DISCIPLINA: Matematica DOCENTE: Dora Pastore CLASSE V Scienze Applicate SEZ. A A.S.2016 /2017 OBIETTIVI E COMPETENZE OBIETTIVI COMPORTAMENTALI Acquisizione della

Dettagli

Prima prova in itinere di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano. A.A. 2015/2016. Prof. M. Bramanti.

Prima prova in itinere di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano. A.A. 2015/2016. Prof. M. Bramanti. Prima prova in itinere di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 0/06. Prof. M. Bramanti Tema n 4 6 Tot. Cognome e nome (in stampatello) codice persona (o n di

Dettagli

variabili. se i limiti esistono e si chiamano rispettivamente derivata parziale rispetto ad x e rispetto ad y.

variabili. se i limiti esistono e si chiamano rispettivamente derivata parziale rispetto ad x e rispetto ad y. Funzioni di più variabili Derivate parziali Qui saranno considerate soltanto funzioni di due variabili, ma non c è nessuna difficoltà ad estendere le nuove nozioni a funzioni di n ( > variabili ( Definizione:

Dettagli

Esercizi sullo studio completo di una funzione

Esercizi sullo studio completo di una funzione Esercizi sullo studio completo di una funzione. Disegnare il grafico delle funzioni date, utilizzando ogni informazione utile che si può ricavare dalla funzione e dalle sue derivate prima e seconda. a.

Dettagli

y = x 3 infinitesimo per x 3 lim = l 0 allora f(x) è dello stesso ordine di g(x), ossia tendono a DEF. Una funzione y = f(x) si dice infinitesimo per

y = x 3 infinitesimo per x 3 lim = l 0 allora f(x) è dello stesso ordine di g(x), ossia tendono a DEF. Una funzione y = f(x) si dice infinitesimo per INFINITI ED INFINITESIMI. ASINTOTI DI UNA FUNZIONE. GRAFICO PROBABILE DI UNA FUNZIONE. TEOREMI SULLE FUNZIONI CONTINUE ESERCIZI SULLA CONTINUITA E SULLA CLASSIFICAZIONE DELLE DISCONTINUITA DI UNA FUNZIONE

Dettagli

PROGRAMMAZIONE DEL GRUPPO DISCIPLINARE A.S. 2015/2016 INDIRIZZO SCOLASTICO: DISCIPLINA: MATEMATICA ORE SETT.LI: 4 CLASSE: IV SIA

PROGRAMMAZIONE DEL GRUPPO DISCIPLINARE A.S. 2015/2016 INDIRIZZO SCOLASTICO: DISCIPLINA: MATEMATICA ORE SETT.LI: 4 CLASSE: IV SIA ISTITUTO D ISTRUZIONE SUPERIORE Enrico Mattei ISTITUTO TECNICO COMMERCIALE LICEO SCIENTIFICO LICEO dellescienze UMANE Via delle Rimembranze, 26 40068 San Lazzaro di Savena BO Tel. 051 464510 464545 fax

Dettagli

PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale.

PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. PROGRAMMA Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. Gli insiemi numerici oggetto del corso: numeri naturali, interi relativi, razionali. Operazioni sui numeri

Dettagli

Scritto d esame di Analisi Matematica I

Scritto d esame di Analisi Matematica I Capitolo 2: Scritti d esame 07 Pisa, 8 Gennaio 999. Studiare il comportamento della serie al variare del parametro α > /2. ( ) n n sin α n 2α 2. Sia ( ) f(x) = log + sin3 x. 2 (a) Determinare la derivata

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

Programmazione per Obiettivi Minimi. Matematica Primo anno

Programmazione per Obiettivi Minimi. Matematica Primo anno Programmazione per Obiettivi Minimi Matematica Primo anno Saper operare in N, Z e Q. Conoscere e saper applicare le proprietà delle potenze con esponente intero e relativo. Saper operare con i monomi.

Dettagli

PROGRAMMAZIONE DISCIPLINARE ISTITUTO TECNICO MATEMATICA. Competenze da conseguire alla fine del IV anno relativamente all asse culturale:

PROGRAMMAZIONE DISCIPLINARE ISTITUTO TECNICO MATEMATICA. Competenze da conseguire alla fine del IV anno relativamente all asse culturale: PROGRAMMAZIONE DISCIPLINARE PROGRAMMAZIONE DISCIPLINARE ISTITUTO TECNICO MATEMATICA Competenze da conseguire alla fine del IV anno relativamente all asse culturale: C O M P E T E N Z E ASSE DEI LINGUAGGI

Dettagli

Lezione 3 (2/10/2014)

Lezione 3 (2/10/2014) Lezione 3 (2/10/2014) Esercizi svolti a lezione Esercizio 1. Tracciando un grafico approssimativo, discutere qualitativamente l esistenza di radici reali dei seguenti polinomi, al variare del parametro

Dettagli

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni Soluzioni dello scritto di Analisi Matematica II - /7/9 C.L. in Matematica e Matematica per le Applicazioni Proff. K. Payne, C. Tarsi, M. Calanchi Esercizio. a La funzione f è limitata e essendo lim fx

Dettagli

log log, inversa: log.

log log, inversa: log. Università degli Studi di Siena Correzione Prova scritta di Matematica Generale (A.A. 14-15) 20 gennaio 2015 Compito ) : ; :, è multiplo di ed è pari; : a volte a volte, ad esempio la coppia ha prodotto

Dettagli

Unità didattica: TEOREMI FONDAMENTALI DEL CALCOLO DIFFERENZIALE

Unità didattica: TEOREMI FONDAMENTALI DEL CALCOLO DIFFERENZIALE Unità didattica: TEOREMI FONDAMENTALI DEL CALCOLO DIFFERENZIALE DESTINATARI: Allievi che frequentano il quarto anno di un Liceo Scientifico PNI. Si svolge nel corso del secondo quadrimestre. (questo da

Dettagli

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI. Giovanni Villani

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI. Giovanni Villani Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI Giovanni Villani FUNZIONI Definizione 1 Assegnati due insiemi A e B, si definisce funzione

Dettagli