Laboratorio di Elaborazione di Dati, Segnali e Immagini Biomediche (Parte 5)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Laboratorio di Elaborazione di Dati, Segnali e Immagini Biomediche (Parte 5)"

Transcript

1 Università degli Studi di Padova - Facoltà di Ingegneria Corso di Laurea in Ingegneria Biomedica A.A. 7-8 Laboratorio di Elaborazione di Dati, Segnali e Immagini Biomediche (Parte 5) Prof. Giovanni Sparacino Dipartimento di Ingegneria dell Informazione Università di Padova giovanni.sparacino@unipd.it web: http: Esempio: Si consideri il segnale sotto, riferito ad una frequenza di sampling Fs = 4 ed osservato per secondo Analisi di spettro Dal grafico (dominio del tempo) non si sa che natura attribuire a x(t), mentre dal suo spettro S x (f) (dominio della frequenza), si vede che x(t) non è altro che la somma di due sinusoidi a 5 e Hz immerse in rumore bianco time (seconds) frequency (Hz) x(t) S x (f)

2 Stima dello spettro Si parte dalla definizione di spettro di un segnale continuo, per cui, a meno di un fattore di scala, vale S x (f) X(f) dove X(f) è la trasformata di Fourier del segnale x(t) (si noti che X(f) è una funzione complessa di variabile reale f) Nei casi pratici, la stima dello spettro S x (f) dovrà essere ottenuta a partire da una sequenza di N campioni x n =x(nt s ), n=,, N- del segnale a tempo continuo x(t) (con T s e F s =/T s rispettivamente periodo e frequenza di sampling) Dalla sequenza {x(nt s )}, di lunghezza N, è immediato definire la sequenza di complessi {X(k)}, pure di lunghezza N, della DFT 3 Stima dello spettro: Metodo del Periodogramma Sia {x(), x(), x(),..., x(n-)} la sequenza degli N campioni di x(t), riferiti ad un campionamento con frequenza F s (per semplicità consideriamo N pari) Si calcola la DFT X(k), k=,,...n-, con l algoritmo di FFT, ottenendo così N campioni che attribuisco ad N frequenze equispaziate tra e F s (, Fs/N, Fs/N, 3Fs/N,, (N-)Fs/N) Si considerano quindi i primi N/ campioni della DFT e si calcola la sequenza di campioni della stima dello spettro come S x (k) = X(k) N Si attribuiscono tali N/ campioni dello spettro ad N/ valori di frequenza equispaziati tra e F s / (, Fs/N, Fs/N, 3Fs/N,, (N/-)Fs/N) (assunzione implicita: non c e aliasing) 4

3 Per calcolare la sequenza complessa DFT con l algoritmo di FFT, si applica al vettore x degli N campioni del segnale la function fft() FTx=fft(x) che restituisce in FTx un vettore complesso della stessa lunghezza N di x. Per calcolare il vettore dei moduli si usa il comando abs abs(ftx) Calcolo della DFT in Matlab 5... FTx=fft(x); S=(abs(FTx).^)/N ; f_ft=(:fs/n:fs-fs/n); Calcolo del Periodogramma in Matlab f_ft=f_ft(:n/); %elimino la seconda meta' delle stime S=S(:N/); %elimino la seconda meta' delle stime (assumo N pari) subplot() plot(f_ft,s) axis([, Fs/,, max(abs(s))]) title('densità spettrale di potenza - metodo DFT') xlabel('frequenza (Hz)') 6

4 Esercizio 5. (scaricare dati.zip e scompattarlo nella cartella di lavoro) Considerare il segnale contenuto nel file dati.mat. Farne un plot ed un analisi a vista. Da cosa sembra costituito il segnale? Passare poi all analisi nel dominio della frequenza, articolata nei seguenti passi: a) Stimare, servendosi dell istruzione fft(), la spettro del segnale b) Plottare sulla stessa finestra grafica il segnale nel dominio del tempo, nel subplot (3,,), e lo spettro fra e Fs/, nel subplot(3,,) c) Provare ad interpretare lo spettro. Da cosa sembra costituito il segnale? d) Nel subplot (3,,3) plottare lo spettro, mediante semilogy (vd help), su scala semilogaritmica e riporsi la domanda c) 7 segnale tempo (sec) 5 densità spettrale di potenza - metodo DFT frequenza (Hz) densità spettrale di potenza - metodo DFT - semilogy frequenza (Hz) 8

5 La stima dello spettro non è sempre così chiara Problemi: Problemi del Periodogramma pochi campioni del segnale pochi campioni dello spettro segnale troncato distorsione nello spettro (leakage) Di seguito toccheremo con mano il primo problema nell es.5., per il quale un rimedio (solo cosmetico perché non aumenta l informazione) è quello dello ZERO-PADDING (es. 5.3, in cui vedremo anche chiaramente evidenziarsi l errore di leakage) 9 Caso fortunato: tanti dati (N grande) e finestra di osservazione lunga (poco leakage) stima dello spettro buona 5 segnale tempo(sec) densità spettrale di potenza - metodo DFT frequenza (Hz)

6 Esercizio 5. (influenza dell intervallo di osservazione) Considerare un segnale sinusoidale a tempo continuo x(t)=sin(πf t) dove la frequenza è f =/6 Hz, corrispondente ad un periodo T =6s a) Disegnare mentalmente lo spettro del segnale Considerare la sequenza di campioni x(nt s ), n=,, N-, riferita ad un periodo di sampling T s =. Per ogni un periodo di ripetizione del segnale x(t) sono quindi raccolti 6 campioni b) Si considerino i casi in cui N vale 6, 3, 8, 3, 8, corrispondenti a,, 8,, 8 periodi completi di campionamento. Per ciascuna durata del campionamento stimare lo spettro, plottarlo fra e Fs/, e confrontarlo con quanto atteso dal punto a) influenza dell intervallo leakzp(6,,) di osservazione sinusoide frequenza.65, periodo 6, Tc=, osservata su periodi Spettro tramite periodogramma spettro dopo padding di zeri

7 leakzp(6,,) influenza dell intervallo di osservazione sinusoide frequenza.65, periodo 6, Tc=, osservata su periodi Spettro tramite periodogramma spettro dopo padding di zeri influenza dell intervallo di osservazione leakzp(6,8,) sinusoide frequenza.65, periodo 6, Tc=, osservata su 8 periodi Spettro tramite periodogramma spettro dopo padding di zeri

8 influenza dell intervallo leakzp(6,,) di osservazione sinusoide frequenza.65, periodo 6, Tc=, osservata su periodi Spettro tramite periodogramma spettro dopo padding di zeri influenza dell intervallo leakzp(6,8,) di osservazione sinusoide frequenza.65, periodo 6, Tc=, osservata su 8 periodi Spettro tramite periodogramma spettro dopo padding di zeri

9 Esercizio 5.3 (zero padding) Si riconsideri l esercizio 5. e si fissi N=3. Ricordato che in Matlab è possibile nella DFT introdurre zero-padding con l istruzione DFTx=fft(x, Nzp) (con Nzp>N, dove N è la durata di x) si stimi lo spettro con Nzp=64, 8, 56, 5 e confrontare con quanto si trovava senza zero-padding (plottare sempre lo spettro fra e Fs/) 7 Spettro senza zero-padding leakzp(6,,) sinusoide frequenza.65, periodo 6, Tc=, osservata su periodi spettro dopo padding di zeri Spettro rozzo (6 campioni in -.5Hz) Se faccio zero-padding 8

10 Spettro con zero-padding (Nzp=5) sinusoide frequenza.65, periodo 6, Tc=, osservata su periodi spettro dopo padding di 48 zeri Spettro smoothed (56 campioni in -.5Hz) Vedo comparire il sinc() (si apprezza 9 il leakage) Fs=; Ts=/Fs; T=6; np=; N=np*T; Nzp=N t=ts*(::n-)'; x=sin(*pi*t/t); subplot() stem(t,x) xlabel('tempo(sec)') title('segnale') FTx=fft(x,Nzp); S=(abs(FTx).^)/N; f_ft=(:fs/nzp:fs-fs/nzp); f_ft=f_ft(:nzp/); %elimino la seconda meta' delle stime S=S(:Nzp/); %elimino la seconda meta' delle stime subplot() plot(f_ft,s) axis([, Fs/,, max(abs(s))]) title('densità spettrale di potenza - metodo DFT') xlabel('frequenza (Hz)')

11 Esercizio 5.4 (per casa) Considerare il segnale contenuto nel file vag.dat (campionamento KHz). Farne un plot ed un analisi a vista. Passare poi alla analisi nel dominio della frequenza, articolata nei seguenti passi: Stimare, servendosi dell istruzione fft(), la densità spettrale di potenza del segnale Plottare sulla stessa finestra grafica a quattro riquadri il segnale nel dominio del tempo (nel riquadro ) e lo spettro (riquadro ) fra e Fs/ su scala semi-logaritmica per le ordinate. Servendosi delle istruzioni ellipord ed ellip, progettare un filtro passabasso ellittico, di ordine ottimo, con ripple in banda passante (< Hz) pari a.95 (su scala lineare) e attenuazione in banda oscura (>5 Hz) di almeno 9dB. Applicare il filtro al segnale e plottare il segnale filtrato nel terzo riquadro (NB: usare prima filter, poi rifare usando filtfilt). Ricalcolare lo spettro per il segnale filtrato e plottarlo nel quarto riquadro. Plottare la risposta in frequenza del filtro in figura Confrontare spettri e risposta in frequenza del filtro close all clear all load('vag.dat') Fs=; Wp=; Ws=5; Rp=-*log(.95); Rs=-*log(.); [N, Wn] = ellipord(wp/(fs/), Ws/(Fs/), Rp, Rs); [B,A] = ellip(n,rp,rs,wn); [H,f]=freqz(B,A,4, Fs); figure() plot(f,abs(h)) axis([ Fs/ max((abs(h)))]) x=vag; xf=filtfilt(b,a,x); Ts=/Fs; N=length(x); t=ts*(::n-)'; figure() subplot(4) plot(t,x) xlabel('tempo(sec)') title('segnale originale') subplot(4) plot(t,xf) xlabel('tempo(sec)') title('segnale filtrato') FTx=fft(x); S=(abs(FTx).^)/N ; f_ft=(:fs/n:fs-fs/n); f_ft=f_ft(:n/); %elimino la seconda meta' delle stime S=S(:N/); %elimino la seconda meta' delle stime FTxf=fft(xf); Sf=(abs(FTxf).^)/N ; Sf=Sf(:N/); %elimino la seconda meta' delle stime subplot(43) semilogy(f_ft,s) axis([, Fs/,, max(abs(s))]) title('densità spettrale di potenza - segnale originale') xlabel('frequenza (Hz)') subplot(44) semilogy(f_ft,sf) axis([, Fs/,, max(abs(s))]) title('densità spettrale di potenza - segnale filtrato ') xlabel('frequenza (Hz)')

12 segnale originale segnale filtrato tempo(sec) tempo(sec).5. densità spettrale.5di potenza -. segnale originale densità 3 spettrale 4 di potenza 5 - segnale 6 filtrato frequenza (Hz) frequenza (Hz)

Trasformata discreta di Fourier diunasequenzafinita: algoritmifft

Trasformata discreta di Fourier diunasequenzafinita: algoritmifft diunasequenzafinita: algoritmifft La TDF di una sequenza finita può essere calcolata utilizzando algoritmi, computazionalmente efficienti, quali gli algoritmi Fast Fourier Transform (FFT). L efficienza

Dettagli

Esercizio 1 (12 punti) Si consideri il segnale s(t) in figura e se ne calcoli la Trasformata Continua di Fourier. A vale 2 V e T è paria a 1 s.

Esercizio 1 (12 punti) Si consideri il segnale s(t) in figura e se ne calcoli la Trasformata Continua di Fourier. A vale 2 V e T è paria a 1 s. ASB 17/01/12 (270) Esercizio 1 (12 punti) Si consideri il segnale s(t) in figura e se ne calcoli la Trasformata Continua di Fourier. A vale 2 V e T è paria a 1 s. A 0 T 2T 3T t - A Si consideri il segnale

Dettagli

FONDAMENTI DI SEGNALI E TRASMISSIONE 5 Laboratorio

FONDAMENTI DI SEGNALI E TRASMISSIONE 5 Laboratorio FONDAMENTI DI SEGNALI E TRASMISSIONE 5 Laboratorio Paolo Mazzucchelli mazzucch@elet.polimi.it MATLAB: generazione di numeri casuali Il comando che permette di generare una matrice (n r,n c ) composta da

Dettagli

INFORMATICA SANITARIA (Esercitazione sulla Compressione)

INFORMATICA SANITARIA (Esercitazione sulla Compressione) Università degli Studi di Padova Corso di Laurea Specialistica in Bioingegneria A.A. 26-27 27 INFORMATICA SANITARIA (Esercitazione sulla Compressione) Giovanni Sparacino Dipartimento di Ingegneria dell

Dettagli

( e j2! ft! 0.9 j) ( e j2! ft j)

( e j2! ft! 0.9 j) ( e j2! ft j) Esercitazione Filtri IIR Si consideri il filtro dato dalla seguente equazione alle differenze y[n]+0.81y[n-2]=x[n]-x[n-2] - Determinare la funzione di trasferimento del filtro Eseguendo la Trasformata

Dettagli

Corso di Elaborazione Numerica dei Segnali Esame del 7 Luglio 2004

Corso di Elaborazione Numerica dei Segnali Esame del 7 Luglio 2004 Corso di Elaborazione Numerica dei Segnali Esame del 7 Luglio TOTALE PUNTI: L allievo é invitato a dare una ragionata e succinta risposta a tutti gli argomenti proposti, per dimostrare il livello di preparazione

Dettagli

FONDAMENTI DI SEGNALI E TRASMISSIONE 4 Laboratorio

FONDAMENTI DI SEGNALI E TRASMISSIONE 4 Laboratorio FONDAMENTI DI SEGNALI E TRASMISSIONE 4 Laboratorio Paolo Mazzucchelli mazzucch@elet.polimi.it Campionamento di segnali In MATLAB, qualunque segnale continuo è approssimato da una sequenza campionata. Si

Dettagli

Laboratorio di Elaborazione di Dati, Segnali e Immagini Biomediche (Parte 4)

Laboratorio di Elaborazione di Dati, Segnali e Immagini Biomediche (Parte 4) Università degli Studi di Padova - Facoltà di Ingegneria Corso di Laurea in Ingegneria Biomedica A.A. 7-8 Laboratorio di Elaborazione di Dati, Segnali e Immagini Biomediche (Parte ) Prof. Giovanni Sparacino

Dettagli

RICHIAMI SU PROCESSI ALEATORI E DENSITÀ SPETTRALE DI POTENZA

RICHIAMI SU PROCESSI ALEATORI E DENSITÀ SPETTRALE DI POTENZA RICHIAMI SU PROCESSI ALEATORI E DENSITÀ SPETTRALE DI POTENZA Paolo Bestagini Ph.D. Student bestagini@elet.polimi.it http://home.deib.polimi.it/bestagini Sommario 2 Segnali deterministici Continui Discreti

Dettagli

Trasformata Discreta di Fourier (DFT)

Trasformata Discreta di Fourier (DFT) Trasformata Discreta di Fourier (DFT) Con dati discreti, usare finestre temporali significa prendere in considerazione un certo numero di campioni che cadono all interno della finestra. Potremo quindi

Dettagli

FONDAMENTI DI SEGNALI E TRASMISSIONE 4 Laboratorio

FONDAMENTI DI SEGNALI E TRASMISSIONE 4 Laboratorio FONDAMENTI DI SEGNALI E TRASMISSIONE 4 Laboratorio Paolo Mazzucchelli mazzucch@elet.polimi.it MATLAB: generazione di numeri casuali Il comando che permette di generare una matrice (n r,n c ) composta da

Dettagli

SEGNALI STAZIONARI: ANALISI SPETTRALE

SEGNALI STAZIONARI: ANALISI SPETTRALE SEGNALI STAZIONARI: ANALISI SPETTRALE Analisi spettrale: rappresentazione delle componenti in frequenza di un segnale (ampiezza vs. frequenza). Fornisce maggiori dettagli rispetto all analisi temporale

Dettagli

( e j2π ft 0.9 j) ( e j2π ft j)

( e j2π ft 0.9 j) ( e j2π ft j) Esercitazione Filtri IIR Es. 1. Si consideri il filtro dato dalla seguente equazione alle differenze y[n]+0.81y[n-2]=x[n]-x[n-2] - Determinare la funzione di trasferimento del filtro Eseguendo la Trasformata

Dettagli

Campionamento e quantizzazione

Campionamento e quantizzazione Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Campionamento e quantizzazione A.A. 2008-09 Alberto Perotti DELEN-DAUIN Conversione analogico-digitale L elaborazione

Dettagli

Laboratorio II, modulo Segnali a tempo discreto (cfr.

Laboratorio II, modulo Segnali a tempo discreto (cfr. Laboratorio II, modulo 2 2012017 Segnali a tempo discreto (cfr. http://wpage.unina.it/verdoliv/tds/appunti/appunti_04.pdf e http://wpage.unina.it/verdoliv/tds/appunti/appunti_0.pdf Luise, Vitetta, D Amico

Dettagli

6 dbm, mentre il secondo ha una potenza di 3 dbm. Quale sarà la

6 dbm, mentre il secondo ha una potenza di 3 dbm. Quale sarà la DECIBEL, FILTRAGGIO, PROCESSI Esercizio 9 (sui decibel) Un segnale con potenza media di 0 dbm viene amplificato attraverso un dispositivo elettronico la cui H(f) è costante per ogni frequenza e pari a

Dettagli

UNIVERSITÀ DI PISA Corso di Laurea in Scienze Motorie. Tecnologie e strumentazione biomedica. Accenni sulla Trasformata di Fourier.

UNIVERSITÀ DI PISA Corso di Laurea in Scienze Motorie. Tecnologie e strumentazione biomedica. Accenni sulla Trasformata di Fourier. UNIVERSITÀ DI PISA Corso di Laurea in Scienze Motorie Tecnologie e strumentazione biomedica Accenni sulla Trasformata di Fourier Alberto Macerata Dipartimento di Ingegneria dell Informazione Fourier (1768-183)

Dettagli

Analisi dei segnali nel dominio delle frequenze 21/12/2006 11/01/2007

Analisi dei segnali nel dominio delle frequenze 21/12/2006 11/01/2007 Analisi dei segnali nel dominio delle frequenze 2/2/26 //27 INDICE 2 Indice Esercizio Serie di Fourier 3 2 Trasformata di Fourier 3 3 Esercizio Trasformata di Fourier 6 4 Note: finestratura 9 5 Note: averaging

Dettagli

MASB AA10/11 21/01/11 test #1 1

MASB AA10/11 21/01/11 test #1 1 MASB 0/06/11 AA010011test #1. Esercizio 1. Illustrare lo schema generale di un apparecchiatura per l acquisizione di segnali spontanei, descrivendo brevemente i diversi componenti. Fornire una descrizione

Dettagli

Conversione analogico-digitale

Conversione analogico-digitale Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Campionamento e quantizzazione A.A. 2004-05 Alberto Perotti DELEN-DAUIN Conversione analogico-digitale L elaborazione

Dettagli

1 = Processi Autoregressivi AR(1) Filtro IIR di ordine 1. (WGN White Gaussian Noise) Eq. alle differenze ricorsiva. w=randn(n,1) MATLAB:

1 = Processi Autoregressivi AR(1) Filtro IIR di ordine 1. (WGN White Gaussian Noise) Eq. alle differenze ricorsiva. w=randn(n,1) MATLAB: Processi Autoregressivi AR(1) Filtro IIR di ordine 1 Wn [ ] hn [ ] X[ n] = ρ X[ n 1] + W[ n] (WGN White Gaussian Noise) w=randn(n,1) Eq. alle differenze ricorsiva MATLAB: n hn [ ] = ρ un [ ] y=filter(b,a,x)

Dettagli

Elenco dei simboli 9. Prefazione 10

Elenco dei simboli 9. Prefazione 10 Indice Elenco dei simboli 9 Prefazione 10 1 Analisi nel dominio del tempo 11 1.1 Segnali tempo discreto... 11 1.1.1 Segnali notevoli tempo discreto... 13 1.1.2 Alcuni criteri di classificazione di segnali

Dettagli

Acquisizione ed elaborazione di segnali

Acquisizione ed elaborazione di segnali UNIVERSITÀ DI PISA Corso di Laurea in Scienze Motorie Tecnologie e strumentazione biomedica Elaborazione di segnali Alberto Macerata Dipartimento di Ingegneria dell Informazione Acquisizione ed elaborazione

Dettagli

In realtà i segnali con i quali dobbiamo confrontarci più frequentemente sono limitati nel tempo

In realtà i segnali con i quali dobbiamo confrontarci più frequentemente sono limitati nel tempo Segnali trattati sino ad ora: continui, durata infinita,.. Su essi sono stati sviluppati strumenti per analizzare output di circuiti e caratteristiche del segnale: Risposta all impulso, prodotto di convoluzione,

Dettagli

Fondamenti di Segnali e Trasmissione Quarto laboratorio

Fondamenti di Segnali e Trasmissione Quarto laboratorio Fondamenti di Segnali e Trasmissione Quarto laboratorio MATLAB: generazione di numeri casuali Il comando che permette di generare una matrice (nr,nc) composta da numeri casuali, con distribuzione di probabilità

Dettagli

Laboratorio 4 G. Bernasconi,

Laboratorio 4 G. Bernasconi, Laboratorio 4 G. Bernasconi, bernasco@elet.polimi.it Crosscorrelazione e Autocorrelazione (filtro adattato) La funzione crosscorrelazione tra due segnali continui x(t) ed y(t) è definita come: + R xy (

Dettagli

CAPITOLO 2: Algoritmo Fast Fourier Transform (FFT)

CAPITOLO 2: Algoritmo Fast Fourier Transform (FFT) CAPITOLO : Algoritmo Fast Fourier Transform () L algoritmo (Fast Fourier Transform) è decisamente uno dei più utilizzati all interno dell elaborazione dei segnali digitali. Il suo scopo è quello di calcolare

Dettagli

Unità di misura nell analisi del segnale G. D Elia. Sezione1

Unità di misura nell analisi del segnale G. D Elia. Sezione1 Unità di misura nell analisi del segnale G. D Elia Sezione1 La Serie di Fourier Si consideri una funzione x(t) periodica di periodo T = π/ω. Se sono soddisfatte opportune condizioni (condizioni di Direchlet):

Dettagli

meccanica delle vibrazioni laurea magistrale ingegneria meccanica parte 7 analisi del segnale addendum1 FFT

meccanica delle vibrazioni laurea magistrale ingegneria meccanica parte 7 analisi del segnale addendum1 FFT meccanica delle vibrazioni laurea magistrale ingegneria meccanica!! parte 7 analisi del segnale addendum1 FFT Analisi del segnale - trasformata di Fourier Supponiamo di avere un segnale del tempo campionato

Dettagli

FONDAMENTI DI INFORMATICA

FONDAMENTI DI INFORMATICA FONDAMENTI DI INFORMATICA CENNI ELEMENTARI AL TEOREMA DEL CAMPIONAMENTO E SPETTRO DI UN SEGNALE Prof. Alfredo Accattatis Fondamenti di Informatica - Alfredo Accattatis 2 Vi ricordate la slide introdotta

Dettagli

Elaborazione numerica dei segnali

Elaborazione numerica dei segnali POLITECNICO DI TORINO Elaborazione numerica dei segnali Progetto di un filtro FIR Fiandrino Claudio Matricola: 138436 18 giugno 21 Relazione sul progetto di un filtro FIR Descrizione del progetto L obbiettivo

Dettagli

Analisi di segnali in SciPy

Analisi di segnali in SciPy Analisi di segnali in SciPy Marco D. Santambrogio marco.santambrogio@polimi.it Luca Cerina luca.cerina@mail.polimi.it Emanuele Del Sozzo emanuele.delsozzo@polimi.it Lorenzo Di Tucci lorenzo.ditucci@mail.polimi.it

Dettagli

Esercitazione ENS sulle finestre (22 Aprile 2008)

Esercitazione ENS sulle finestre (22 Aprile 2008) Esercitazione ENS sulle finestre ( Aprile 008) D. Donno Esercizio : Separazione di due segnali Si consideri un segnale z(t) somma di due segnali x(t) e y(t) reali e di potenza simile, ciascuno con semi

Dettagli

( ) ( ) = ( )* ( ) Z f X f Y f. sin 2 f. 0 altrove. Esempio di Modulazione

( ) ( ) = ( )* ( ) Z f X f Y f. sin 2 f. 0 altrove. Esempio di Modulazione Esempio di Modulazione z ( t) = x( t) y ( t) dove x( t ) e y () t ammetto trasformata di Fourier X ( f ) e Y ( f ) Per z ( t ) si ha (convoluzione degli spettri): Ad esempio se: ( ) = sin( 2π f t) x t

Dettagli

Laboratorio di Elaborazione di Immagini. Esercitazione 2: TRASFORMATA DI FOURIER

Laboratorio di Elaborazione di Immagini. Esercitazione 2: TRASFORMATA DI FOURIER Laboratorio di Elaborazione di Immagini Esercitazione 2: TRASFORMATA DI FOURIER Serie di Fourier Fourier ebbe la brillante idea di rappresentare funzioni continue e periodiche come una sommatoria di funzioni

Dettagli

Analisi dei sistemi nel dominio del tempo

Analisi dei sistemi nel dominio del tempo Laboratorio di Telecomunicazioni - a.a. 2010/2011 Lezione n. 4 Analisi dei sistemi nel dominio del tempo L.Verdoliva In questa terza lezione ci occuperemo dell elaborazione di segnali tempo discreto mediante

Dettagli

Prova di AUTOVALUTAZIONE (novembre 2009). nota: l esame ha validità solo se incluso nel piano degli studi per l anno accademico corrente.

Prova di AUTOVALUTAZIONE (novembre 2009). nota: l esame ha validità solo se incluso nel piano degli studi per l anno accademico corrente. UNIVERSITA DEGLI STUDI ROMA TRE CdS in Ingegneria Informatica corso di FONDAMENTI DI TELECOMUNICAZIONI Prova di AUTOVALUTAZIONE (novembre 2009). COMPITO A nota: l esame ha validità solo se incluso nel

Dettagli

Teoria dei Segnali Discrete Fourier Transform (DFT) e Fast Fourier Transform (FFT); filtri tempo-continui

Teoria dei Segnali Discrete Fourier Transform (DFT) e Fast Fourier Transform (FFT); filtri tempo-continui Teoria dei Segnali Discrete Fourier Transform (DFT) e Fast Fourier Transform (FFT); filtri tempo-continui Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it

Dettagli

Circuiti a tempo discreto Raffaele Parisi

Circuiti a tempo discreto Raffaele Parisi Università di Roma La Sapienza Laurea specialistica in Ingegneria Elettronica Circuiti a tempo discreto Raffaele Parisi : Risposta in frequenza dei circuiti TD Rappresentazione nel dominio della frequenza,

Dettagli

Corso di Fondamenti di Segnali e Trasmissione - Recupero del 10 Settembre 2004

Corso di Fondamenti di Segnali e Trasmissione - Recupero del 10 Settembre 2004 Corso di Fondamenti di Segnali e Trasmissione - Recupero del 10 Settembre 2004 Gli esercizi devono essere risolti solo sui ogli dei colori indicati. Per esiti e soluzioni si veda il sito web del corso:

Dettagli

MASB AA10/11 21/01/11 test #1 1

MASB AA10/11 21/01/11 test #1 1 MASB 20/06/11 AA20102011test #1. Esercizio 1. Illustrare lo schema generale di un apparecchiatura per l acquisizione di segnali spontanei, descrivendo brevemente i diversi componenti. Fornire una descrizione

Dettagli

Corso di Elaborazione Numerica dei Segnali Esame del 30 settembre 2005

Corso di Elaborazione Numerica dei Segnali Esame del 30 settembre 2005 Corso di Elaborazione Numerica dei Segnali Esame del 30 settembre 005 TOTALE PUNTI: 44 L allievo é invitato a dare una ragionata e succinta risposta a tutti gli argomenti proposti, per dimostrare il livello

Dettagli

ESERCIZIO SUL CAMPIONAMENTO

ESERCIZIO SUL CAMPIONAMENTO ESERCIZIO SUL CAMPIONAMENTO Questo esercizio ha lo scopo di verificare praticamente, mediante simulazione, le proprietà frequenziali dei segnali campionati. Si consideri il segnale x() t = sin ( 2πt )

Dettagli

Nella modulazione di ampiezza, si trasmette il segnale. v R (t) = (V 0 + k I x(t)) cos (2πf 0 t).

Nella modulazione di ampiezza, si trasmette il segnale. v R (t) = (V 0 + k I x(t)) cos (2πf 0 t). Cenni alla Modulazione di Ampiezza (AM) Nella modulazione di ampiezza, si trasmette il segnale v(t) = (V 0 + k I x(t)) cos (πf 0 t), dove x(t) è il segnale di informazione, con banda B, e f 0 è la frequenza

Dettagli

Fondamenti di Elaborazione Numerica dei Segnali Anno Accademico Primo Appello 26/2/2015

Fondamenti di Elaborazione Numerica dei Segnali Anno Accademico Primo Appello 26/2/2015 Fondamenti di Elaborazione Numerica dei Segnali Anno Accademico 204-205 Primo Appello 26/2/205 Quesiti relativi alla prima parte del corso (tempo max. 90 min). Calcolare: la trasformata z di x(n) = ( )

Dettagli

Spettri e banda passante

Spettri e banda passante Banda passante - 1 Corso di Laurea in Ingegneria Meccanica Spettri e banda passante DEIS-Università di Bologna Tel. 51 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi Esempio: Altoparlante

Dettagli

Frequenza: Hertz e Ordini 1

Frequenza: Hertz e Ordini 1 Frequenza: Hertz e Ordini qi segnali vanno preparati ai ini delle elaborazioni successive. q Siamo nella ase di conversione del segnale analogico in un segnale digitale. q Il processo di digitalizzazione

Dettagli

Fondamenti di elaborazione numerica dei segnali

Fondamenti di elaborazione numerica dei segnali Esercizi per la I prova in itinere del corso: Fondamenti di elaborazione numerica dei segnali. Trasformata z di una sequenza illimitata causale Si consideri la sequenza causale ) 3 n x n = e i π 3 n, n

Dettagli

Laboratorio di Matematica Computazionale A.A Lab. 4

Laboratorio di Matematica Computazionale A.A Lab. 4 Laboratorio di Matematica Computazionale A.A. 2008-2009 Lab. 4 Complementi di Grafica 2D: Sottofinestre In Matlab si possono disegnare più grafici nella stessa finestra, suddividendola in sottofinestre

Dettagli

ANALISI SPETTRALE NUMERICA (Aspetti di misura)

ANALISI SPETTRALE NUMERICA (Aspetti di misura) ANALISI SPETTRALE NUMERICA (Aspetti di misura) ARGOMENTI Problemi di misura con la FFT Aliasing Spectral leakage (dispersione spettrale) Funzioni finestra Uso e importanza Caratteristiche Ricadute positive

Dettagli

) $ ' con T0=5s e T=2s. La funzione deve essere

) $ ' con T0=5s e T=2s. La funzione deve essere Metodi per l Analisi dei Segnali Biomedici. Esercitazioni AA 2010/2011 Esercitazione 11/03/2011 " t!t es_1.1. Disegnare la funzione rect 0 % $ ' con T0=5s e T=2s. La funzione deve essere calcolata # T

Dettagli

Esercitazione ENS su periodogramma (27 e 28 Maggio 2008) Esercizio 1: Autocorrelazione e stima della densità spettrale di potenza

Esercitazione ENS su periodogramma (27 e 28 Maggio 2008) Esercizio 1: Autocorrelazione e stima della densità spettrale di potenza sercitazione S su periodogramma (7 e 8 Maggio 008 D. Donno sercizio : Autocorrelazione e stima della densità spettrale di potenza Si consideri la sequenza x n di lunghezza = 8 campioni. x n è somma di

Dettagli

Analisi spettrale del rumore di fase

Analisi spettrale del rumore di fase 5 Analisi spettrale del rumore di fase In questo capitolo verranno illustrati i due metodi di analisi spettrale utilizzati per valutare la potenza del rumore da cui è affetta la portante sinusoidale. Come

Dettagli

MATLAB-SIMULINK. Simulink. Simulazione di un filtro passabasso RC. Ing. Alessandro Pisano.

MATLAB-SIMULINK. Simulink. Simulazione di un filtro passabasso RC. Ing. Alessandro Pisano. 1 MATLAB-SIMULINK Simulink Simulazione di un filtro passabasso RC Ing. Alessandro Pisano pisano@diee.unica.it 2 Filtro passa-basso RC V in + V out Ingredienti Simulink Esecuzione automatica dei modelli

Dettagli

Corso di Fondamenti di Segnali e Trasmissione - Esame del 21 Febbraio 2006

Corso di Fondamenti di Segnali e Trasmissione - Esame del 21 Febbraio 2006 Corso di Fondamenti di Segnali e Trasmissione - Esame del Febbraio 006 Gli esercizi devono essere risolti solo sui ogli dei colori indicati. Per esiti e soluzioni si veda il sito web del corso: http://www.elet.polimi.polimi.it/dsp/courses/st.

Dettagli

XIV esercitazione. Corso di Laurea in Informatica Calcolo Scientifico II a.a. 07/08

XIV esercitazione. Corso di Laurea in Informatica Calcolo Scientifico II a.a. 07/08 XIV esercitazione In molti problemi è richiesto il calcolo di combinazioni lineari di esponenziali, ovvero somme del tipo: S j = k I i = x k e - i jk con I sottinsieme finito di numeri naturali x k C (vettore

Dettagli

ANALISI DI FOURIER. Segnali a Tempo Discreto:

ANALISI DI FOURIER. Segnali a Tempo Discreto: ANALISI DI FOURIER Segnali a Tempo Discreto: - - Sequenza periodica - Taratura degli assi frequenziali - TDF di una sequenza finita - Campionamento in Frequenza Serie discreta di Fourier Consideriamo una

Dettagli

Spettri e banda passante

Spettri e banda passante Banda passante - Corso di Laurea in Ingegneria Meccanica Controlli Automatici L Spettri e banda passante DEIS-Università di Bologna Tel. 5 2932 Email: crossi@deis.unibo.it URL: www-lar.deis.unibo.it/~crossi

Dettagli

II Lezione: Uso della DFT e FFT

II Lezione: Uso della DFT e FFT II Lezione: Uso della DFT e FFT In questa lezione vengono proposti alcuni semplici esercizi riguardanti l uso della FFT per il calcolo della trasformata di Fourier di segnali a tempo discreto e a tempo

Dettagli

FONDAMENTI DI SEGNALI E TRASMISSIONE 2 Laboratorio

FONDAMENTI DI SEGNALI E TRASMISSIONE 2 Laboratorio FONDAMENTI DI SEGNALI E TRASMISSIONE 2 Laboratorio Paolo Mazzucchelli mazzucch@elet.polimi.it MATLAB: linguaggio di programmazione L ambiente MATLAB possiede un completo linguaggio di programmazione. Vediamo

Dettagli

MASB AA10/11 21/01/11 test #1 1

MASB AA10/11 21/01/11 test #1 1 MASB 20/06/11 AA20102011test #1. Esercizio 1. Illustrare lo schema generale di un apparecchiatura per l acquisizione di segnali spontanei, descrivendo brevemente i diversi componenti. Fornire una descrizione

Dettagli

FENS- ENS esame del 24 febbraio 2006

FENS- ENS esame del 24 febbraio 2006 FENS- ENS esame del 24 febbraio 26 L allievo é invitato a dare una ragionata e succinta risposta a tutti gli argomenti proposti, per dimostrare il livello di preparazione globale. I calcoli devono essere

Dettagli

Interpolazione. Lucia Gastaldi. DICATAM - Sez. di Matematica,

Interpolazione. Lucia Gastaldi. DICATAM - Sez. di Matematica, Interpolazione Lucia Gastaldi DICATAM - Sez. di Matematica, http://www.ing.unibs.it/gastaldi/ Indice 1 Interpolazione 2 Interpolazione polinomiale Polinomi Valutazione di un polinomio Algoritmo di Horner

Dettagli

Analisi armonica su dati campionati

Analisi armonica su dati campionati Sistemi di misura digitali Analisi armonica su dati campionati - 1 Analisi armonica su dati campionati 1 - Troncamento del segnale Distorsione di leakage L analisi di Fourier è un metodo ben noto per ottenere

Dettagli

Richiami teorici sull analisi del segnale

Richiami teorici sull analisi del segnale 7 6 5 4 3 2 9 8 7 6 5 4 3 2 Richiami teorici sull analisi del segnale Trasformata discreta di Fourier DFT viene impiegata per analizzare segnali discreti (tipicamente provenienti da un operazione di campionamento)

Dettagli

DFT con arduino. Laboratorio di Segnali e Sistemi. - Esercitazione -9 - Claudio Luci. Claudio Luci Laboratorio di Segnali e Sistemi Capitolo 9 1

DFT con arduino. Laboratorio di Segnali e Sistemi. - Esercitazione -9 - Claudio Luci. Claudio Luci Laboratorio di Segnali e Sistemi Capitolo 9 1 Laboratorio di Segnali e Sistemi DFT con arduino - Esercitazione -9 - Claudio Luci last update : 070117 Claudio Luci Laboratorio di Segnali e Sistemi Capitolo 9 1 Click Scopo to edit dell esercitazione

Dettagli

Filtro Rumore. Generare un segnale, introdurre un rumore, utilizzare la DFT e la IDFT per eliminare il rumore e ottenere il segnale pulito.

Filtro Rumore. Generare un segnale, introdurre un rumore, utilizzare la DFT e la IDFT per eliminare il rumore e ottenere il segnale pulito. 1. DESCRIZIONE DEL PROBLEMA "Filtro rumore" Generare un segnale, introdurre un rumore, utilizzare la DFT e la IDFT per eliminare il rumore e ottenere il segnale pulito. 2. DESCRIZIONE DELL ALGORITMO L

Dettagli

Elaborazione di Immagini e Suoni / Riconoscimento e Visioni Artificiali 12 c.f.u. I suoni Rappresentazione digitale

Elaborazione di Immagini e Suoni / Riconoscimento e Visioni Artificiali 12 c.f.u. I suoni Rappresentazione digitale Università degli Studi di Palermo Dipartimento di Ingegneria Informatica Elaborazione di Immagini e Suoni / Riconoscimento e Visioni Artificiali 12 c.f.u. Anno Accademico 2008/2009 Docente: ing. Salvatore

Dettagli

Prove d esame Esercizi con Matlab

Prove d esame Esercizi con Matlab Prove d esame Esercizi con Matlab Andrea Corli 16 settembre 2015 Sono qui raccolti alcuni esercizi relativi a Matlab assegnati nelle prove d esame (dal 2011 al 2014) del Corso di Analisi Matematica I (semestrale,

Dettagli

k= + M T h(kt ) = + (3)

k= + M T h(kt ) = + (3) III Lezione: Filtri numerici In questa sezione, considereremo soprattutto alcuni esercizi relativi al filtraggio dei segnali. L attenzione verrà posta al filtraggio dei segnali a tempo discreto, e si supporrà

Dettagli

Equazioni e sistemi non lineari

Equazioni e sistemi non lineari Equazioni e sistemi non lineari Lucia Gastaldi DICATAM - Sezione di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Ricerca degli zeri di una funzione Problema e definizioni Metodo di Newton-Raphson

Dettagli

CAMPIONAMENTO E RICOSTRUZIONE. Y(f) Y(f-15) Y(f+15) f[hz] Yc(f) Y(f) Y(f-17.5) Y(f+17.5) Yc(f) Esercizio 1

CAMPIONAMENTO E RICOSTRUZIONE. Y(f) Y(f-15) Y(f+15) f[hz] Yc(f) Y(f) Y(f-17.5) Y(f+17.5) Yc(f) Esercizio 1 CAMPIONAMENTO E RICOSTRUZIONE Esercizio 1 Dato il segnale y(t), con trasformata di Fourier Y(f) rappresentata in figura, rappresentare lo spettro del segnale ottenuto campionando idealmente y(t) con a)

Dettagli

Corso di Fondamenti di Segnali e Trasmissione - Esame del 7 Febbraio 2006

Corso di Fondamenti di Segnali e Trasmissione - Esame del 7 Febbraio 2006 Corso di Fondamenti di Segnali e Trasmissione - Esame del 7 Febbraio 6 Gli esercizi devono essere risolti solo sui ogli dei colori indicati. Per esiti e soluzioni si veda il sito web del corso: http://www.elet.polimi.polimi.it/dsp/courses/st.

Dettagli

Elaborazioni nel dominio della frequenza

Elaborazioni nel dominio della frequenza Elaborazione di Segnali Multimediali a.a. 2017/2018 Elaborazioni nel dominio della frequenza L.Verdoliva In questa esercitazione elaboreremo le immagini nel dominio della frequenza, in particolare realizzeremo

Dettagli

Elaborazione nel dominio della frequenza Soluzioni

Elaborazione nel dominio della frequenza Soluzioni Elaborazione dei Segnali Multimediali a.a. 2009/2010 Elaborazione nel dominio della frequenza Soluzioni 1 La trasformata discreta 1D Calcoliamo lo spettro di x(n) = R L (n) al variare di L = 2, 10, 20,

Dettagli

Interpolazione e approssimazione di funzioni

Interpolazione e approssimazione di funzioni Interpolazione e approssimazione di funzioni Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ Laboratorio - 26 febbraio 2007 Outline 1 Interpolazione polinomiale Interpolazione

Dettagli

Indice. Introduzione al problema dell acquisizione e dell analisi dei dati: definizione dei termini

Indice. Introduzione al problema dell acquisizione e dell analisi dei dati: definizione dei termini Indice Cap. 1 Introduzione al problema dell acquisizione e dell analisi dei dati: definizione dei termini 1.1 Introduzione pag. 1 1.2 Il processo di misura e il livello dei modelli 9 1.3 Segnali deterministici

Dettagli

Trasformata di fourier

Trasformata di fourier Trasformata di fourier DT=.1; % periodo di campionamento [s] Nd=32; nd=0:nd-1; Td=Nd*DT; Fd=1/Td; % numero di campioni % variabile d'appoggio per ascisse plot % lunghezza segnale in secondi % passo di

Dettagli

Elementi di. Applicazioni in Acustica. Introduzione

Elementi di. Applicazioni in Acustica. Introduzione Elementi di Analisi dei segnali Applicazioni in Acustica Paolo Bonfiglio Introduzione Perché è importante l Analisi dei Segnali? Indice Classificazione dei segnali Analisi nel dominio del tempo Analisi

Dettagli

Appunti Esercitazioni per il corso di Telecomunicazioni Stefano Savazzi

Appunti Esercitazioni per il corso di Telecomunicazioni Stefano Savazzi Appunti Esercitazioni per il corso di Telecomunicazioni Stefano Savazzi Parte 1 Trasformata discreta di Fourier - DFT per segnali sinusoidali Si calcoli la trasformata discreta di Fourier (DFT) dei primi

Dettagli

Lezione 5, 5/11/2014

Lezione 5, 5/11/2014 Lezione 5, 5/11/2014 Elena Gaburro, elenagaburro@gmail.com 1 Ordine di convergenza di un metodo Definizione 1.1. Sia {x k } una successione convergente ad α. Consideriamo l errore assoluto in modulo al

Dettagli

Corso di Fondamenti di Telecomunicazioni Esercizi Teoria dei segnali Prof. Giovanni Schembra

Corso di Fondamenti di Telecomunicazioni Esercizi Teoria dei segnali Prof. Giovanni Schembra Corso di Fondamenti di Telecomunicazioni Esercizi Teoria dei segnali Prof. Giovanni Schembra Sommario CARATTERISTICHE DEI SEGNALI DETERMINATI.... ESERCIZIO.... ESERCIZIO... 5.3 ESERCIZIO 3 CONVOLUZIONE...

Dettagli

SEZIONE 1. Trasformata Discreta di Fourier

SEZIONE 1. Trasformata Discreta di Fourier TECNICHE DI ANALISI DEL SEGNALE: IMPLEMENTAZIONE IN AMBIENTE MATLAB G. D Elia SEZIONE 1 La trasformata discreta di Fourier (DFT) é: X(k) = 1 N N 1 n=0 Trasformata Discreta di Fourier x(n)e j2π k N n (1)

Dettagli

MASB AA10/11 21/01/11 test #1 1

MASB AA10/11 21/01/11 test #1 1 MASB 20/06/11 AA20102011test #1. Esercizio 1. Illustrare lo schema generale di un apparecchiatura per l acquisizione di segnali spontanei, descrivendo brevemente i diversi componenti. Fornire una descrizione

Dettagli

Conversione analogico-digitale

Conversione analogico-digitale Conversione analogico-digitale Vantaggi dell'elaborazione digitale: -Minore sensibilità ai disturbi- bassa incertezza con costi relativamente contenuti-maggiore versatilità-compatibilità intrinseca con

Dettagli

Corso di Laurea in Ingegneria Informatica (Laurea on Line)

Corso di Laurea in Ingegneria Informatica (Laurea on Line) Milano 30/11/07 Corso di Laurea in Ingegneria Informatica (Laurea on Line) Corso di Fondamenti di Segnali e Trasmissione Prima prova Intermedia Carissimi studenti, scopo di questa prima prova intermedia

Dettagli

Elementi di informatica musicale Conservatorio G. Tartini a.a Sintesi del suono. Sintesi del suono

Elementi di informatica musicale Conservatorio G. Tartini a.a Sintesi del suono. Sintesi del suono Elementi di informatica musicale Conservatorio G. Tartini a.a. 2001-2002 Sintesi del suono Ing. Antonio Rodà Sintesi del suono E neccessaria una tecnica di sintesi, ossia un particolare procedimento per

Dettagli

Corso di Comunicazioni Elettriche - a.a Università di Udine Prof. R. Rinaldo

Corso di Comunicazioni Elettriche - a.a Università di Udine Prof. R. Rinaldo Corso di Comunicazioni Elettriche - a.a. 2003-2004 - Università di Udine Prof. R. Rinaldo 1 Esercizi al calcolatore proposti Questa raccolta contiene una serie di esercizi proposti che possono essere agevolmente

Dettagli

Esercitazione: Valutazione delle Vibrazioni - ponderazione UNI 9614

Esercitazione: Valutazione delle Vibrazioni - ponderazione UNI 9614 Laboratorio di Misura delle Vibrazioni Anno Accademico 2018-19 Esercitazione: Valutazione delle Vibrazioni - ponderazione UNI 9614 Lo scopo di questa esercitazione è quello di valutare il livello di una

Dettagli

Equazioni e sistemi non lineari

Equazioni e sistemi non lineari Equazioni e sistemi non lineari Lucia Gastaldi DICATAM - Sezione di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Ricerca degli zeri di una funzione Problema e definizioni Metodo di Newton-Raphson

Dettagli

PRBS. Pseudo Random Binary Sequence

PRBS. Pseudo Random Binary Sequence PRBS Pseudo Random Binary Sequence MARTINA FAVARO Dipartimento di Ingegneria dell Informazione, Università di Padova Lezione n.2 Che cosa é una PRBS? É noto che il segnale di input in un processo di identificazione

Dettagli

Esercitazioni ENS del 10-12/06/2008

Esercitazioni ENS del 10-12/06/2008 Esercitazioni ENS del 10-12/06/2008 M. Nicoli 1 Periodogramma: esempi in Matlab Data una sequenza x n di N campioni, suddivisa in L sottosequenze x ( ) n (con o senza sovrapposizioni) ognuna di M campioni,

Dettagli

Monitoraggio e diagnostica dei sistemi meccanici. Gianluca D Elia

Monitoraggio e diagnostica dei sistemi meccanici. Gianluca D Elia Monitoraggio e diagnostica dei sistemi meccanici Gianluca D Elia Monitoraggio o diagnostica? Dalla norma UNI ISO 13372 Monitoraggio dello stadio: Ricerca e raccolta di informazioni e di dati che indichino

Dettagli

26/08/2010. Segnale analogico. Convertitore AD. Segnale digitale. Sensore. Computer

26/08/2010. Segnale analogico. Convertitore AD. Segnale digitale. Sensore. Computer CAP 6: ACQUISIZIONE ED ANALISI DIGITALE DEI SEGNALI Che tutte le operazioni di analisi del segnale descritte nei precedenti capitoli si effettuano, quasi sempre, impiegando sistemi digitali di elaborazione

Dettagli

Comunicazioni Elettriche Esercizi

Comunicazioni Elettriche Esercizi Comunicazioni Elettriche Esercizi Alberto Perotti 9 giugno 008 Esercizio 1 Un processo casuale Gaussiano caratterizzato dai parametri (µ = 0, σ = 0.5) ha spettro nullo al di fuori dellintervallo f [1.5kHz,

Dettagli

Corso di Fondamenti di Segnali e Trasmissione - Esame del 14 Febbraio 2007

Corso di Fondamenti di Segnali e Trasmissione - Esame del 14 Febbraio 2007 Corso di Fondamenti di Segnali e Trasmissione - Esame del 4 Febbraio 007 Gliesercizidevonoessererisoltisolosuifoglideicoloriindicati,indicandoNOME,COGNOMEeMATRI- COLA in testa ad ogni foglio. Per esiti

Dettagli

Laboratorio di Elaborazione di Dati, Segnali e Immagini Biomediche (Parte 3)

Laboratorio di Elaborazione di Dati, Segnali e Immagini Biomediche (Parte 3) Università degli Studi di Padova - Facoltà di Ingegneria Corso di Laurea in Ingegneria Biomedica A.A. 7-8 Laboratorio di Elaboraione di Dati, Segnali e Immagini Biomediche (Parte 3) Prof. Giovanni Sparacino

Dettagli

Esercitazione ENS su processi casuali (13 e 14 Maggio 2008)

Esercitazione ENS su processi casuali (13 e 14 Maggio 2008) Esercitazione ES su processi casuali ( e 4 Maggio 2008) D. Donno Esercizio : Calcolo di autovalori e autovettori Si consideri un processo x n somma di un segnale e un disturbo: x n = Ae π 2 n + w n, n

Dettagli

PROGETTO DI FILTRI NUMERICI FIR CON L USO DI FINESTRE

PROGETTO DI FILTRI NUMERICI FIR CON L USO DI FINESTRE 1/14 ROGETTO DI FILTRI NUMERICI FIR CON L USO DI FINESTRE rogetto di filtri FIR con l uso di finestre 2/14 I filtri IIR offrono caratteristiche attraenti, ma anche svantaggi: se si vuole effettuare l elaborazione

Dettagli

La Trasformata di Fourier

La Trasformata di Fourier La Trasformata di Fourier Preliminari: Spazi di Hilbert Da Wikipedia In matematica uno spazio di Hilbert è uno spazio vettoriale che generalizza la nozione di spazio euclideo. Gli spazi di Hilbert sono

Dettagli