Resistenza d entrata e d uscita di un AO Saturazioni di livello in un AO Offset in un AO Polo intrinseco in un AO Slew-rate in un AO

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Resistenza d entrata e d uscita di un AO Saturazioni di livello in un AO Offset in un AO Polo intrinseco in un AO Slew-rate in un AO"

Transcript

1 C3x - Presentazione della lezione C3 /- Obiettivi esistenza d entrata e d uscita di un AO Saturazioni di livello in un AO Offset in un AO Polo intrinseco in un AO Slew-rate in un AO /6/ :4 PM L7_C3.doc rev.d Pagina di 3

2 C3a - conoscere l esistenza di d ingr. e d usc. nell AO reale /6- circuito equivalente completo di d ingresso e d uscita c u - i A ( - - ) c normalmente MΩ < i << c u < Ω C3a conoscere l esistenza di d ingr. e d usc. nell AO reale /6- applicazione al guadagno dell A enunciato n AO è utilizzato per costruire un amplificatore di tensione, mediante l uso delle resistenze di controreazione. Sono dati i valori di:,, i, c, u, A A Per il resto l AO è da considerare ideale. Calcolare il guadagno / G /6/ :4 PM L7_C3.doc rev.d Pagina di 3

3 C3a saper utilizzare i ed u nei circuiti con AO reale 3/6- applicazione al guadagno dell A circuito equivalente c - i u G c A ( - - ) C3a saper utilizzare i ed u nei circuiti con AO reale 4/6- applicazione al guadagno dell A circ. equ. semplificato I i u I G A ( - - ) /6/ :4 PM L7_C3.doc rev.d Pagina 3 di 3

4 /6/ :4 PM L7_C3.doc rev.d Pagina 4 di 3 C3a saper utilizzare i ed u nei circuiti con AO reale 5/6- applicazione al guadagno dell A capisaldi di calcolo ( ) ( ) ( ) ( ) ( ) ' ' I I I A A I I I I A I I I I u G i G i u G i G G i G i G i C3a saper utilizzare i ed u nei circuiti con AO reale 6/6- applicazione al guadagno dell A conclusione Con i normali valori dei parametri e delle resistenze di controreazione, la presenza delle resistenze d ingresso e d uscita non influisce sensibilmente sull espressione del guadagno dell amplificatore. Tuttavia può essere utile considerare la presenza di queste resistenze in occasioni particolari che si presenteranno in séguito.

5 C3b conoscere le saturazioni di livello e gli offset dell AO /5- descrizione esperienza con segnale continuo applicare agli ingressi di un AO due segnali continui in modo che la loro differenza sia variabile nell intorno dello zero al 5 A 5 I u _ A ( - - ) al C3b conoscere le saturazioni di livello e gli offset dell AO /5- risultato esperienza. () sat (µ) Si osservano i due fenomeni attesi di saturazione e di offset: verranno esaminati separatamente sat- -3 /6/ :4 PM L7_C3.doc rev.d Pagina 5 di 3

6 C3b conoscere le saturazioni dell AO e le conseg. sui segnali 3/5- su AO con alimentazioni simmetriche (µ) () al 5 A 5 - al- -5 A t i max A sat sat sat f f ( ( al al ) ) al al C3b conoscere le saturazioni dell AO e le conseg. sui segnali 4/5- su AO con alimentazioni dissimmetriche A 5 - al 5 () A sat 3 sat- - - (µ) /6/ :4 PM L7_C3.doc rev.d Pagina 6 di 3

7 C3b conoscere le saturazioni dell AO e le conseg. sui segnali 5/5- su AO con controreazione (esempio di Z T ) I G A sat f I GMAX Z f A f sat T G G sat sat f C3c conoscere gli offset dell AO /9- risultato altra esperienza con tensioni continue L entità dell offset in un AO reale può anche essere molto maggiore di quella incontrata nell esempio precedente, come nell esempio seguente. A 5 () sat±3 off.5m _. (m) /6/ :4 PM L7_C3.doc rev.d Pagina 7 di 3

8 C3c conoscere gli offset dell AO /9- risultato con tensioni sinusoidali (). (m) A 5 sat±3 off.5m C3c conoscere gli offset dell AO e le conseguenze sui segnali 3/9- circuito equivalente dell AO con offset di tensione c i d u - A d ± OFF c - /6/ :4 PM L7_C3.doc rev.d Pagina 8 di 3

9 C3c conoscere gli offset dell AO 4/9- le correnti assorbite dagli ingressi lteriori cause di offset sono le correnti assorbite dagli ingressi dell AO Si definiscono: I B ed I B- le correnti continue assorbite dai due ingressi e - dell AO IB IB I B la media delle due IB I OFF la loro differenza (in modulo) I OFF IB IB C3c conoscere gli offset dell AO 5/9- misure sull effetto delle correnti d ingresso Per isolare l effetto delle correnti, si suppone di avere un AO con OFF, I B na, I OFF na (cioè I B na I B- 9nA o viceversa). Per verificare i possibili effetti delle correnti d ingresso sull offset si descrivono le seguenti due misure, in presenza di resistenze nel circuito d ingresso. /6/ :4 PM L7_C3.doc rev.d Pagina 9 di 3

10 C3c conoscere gli offset dell AO 6/9- risultati a misura sull effetto delle correnti d ingresso. m e k na A 5 sat±3 I B na I OFF na () e 9nA _. (m) L offset d ingresso è pari alla caduta sulla e (.m) L offset d uscita è -.m*a - C3c conoscere gli offset dell AO 7/9- risultati a misura sull effetto delle correnti d ingresso. m e k na A 5 sat±3 I B na I OFF na () e 9nA _. (m) k.9 m L offset d ingresso è pari alla differenza fra le cadute sulle resistenze (.m-.9m.m) L offset d uscita è -.m*a - /6/ :4 PM L7_C3.doc rev.d Pagina di 3

11 C3c conoscere gli offset dell AO e le conseguenze sui segnali 8/9- circuito equivalente dell AO con tutti gli offset c I B d u - ± OFF I B- A d - c C3c conoscere gli offset dell AO e le conseguenze sui segnali 9/9- circuito equivalente semplificato dell AO con tutti gli offset I B d u - ± OFF I B- A d - /6/ :4 PM L7_C3.doc rev.d Pagina di 3

12 C3c saper calcolare le conseguenze degli offset sui segnali /9- esempio di calcolo dell offset d uscita: circuito dato A k B k OFF.4m I OFF na I B 5nA _ C k D k E C3c saper calcolare le conseguenze degli offset sui segnali /9- considerare la componente continua - si disegna il circuito semplificato valido per la sola componente continua A k B k _ C k D k /6/ :4 PM L7_C3.doc rev.d Pagina di 3

13 C3c saper calcolare le conseguenze degli offset sui segnali /9- semplificare il circuito all essenziale - si riduce il circuito all essenziale, con operazioni serie-parallelo, trasformazioni stella-triangolo B k _ C k D k C3c saper calcolare le conseguenze degli offset sui segnali 3/9- sostituire il circuito equivalente 3- si sostituisce all AO il suo circuito equivalente M k d 55nA M 5Ω - ±.4m 45nA 5 d M k k /6/ :4 PM L7_C3.doc rev.d Pagina 3 di 3

14 C3c saper calcolare le conseguenze degli offset sui segnali 4/9- semplificare il circuito risultante 4- si semplifica tenendo conto dei paralleli e delle serie k - d ±.4m 55nA M 45nA k k 5 d C3c saper calcolare le conseguenze degli offset sui segnali 5/9- semplificare topologicamente lo schema del circuito 5- si ridisegna il circuito per rendere più semplice l esame topologico della rete d M - k ±.4m k 55nA 45nA k 5 d /6/ :4 PM L7_C3.doc rev.d Pagina 4 di 3

15 C3c saper calcolare le conseguenze degli offset sui segnali 6/9- semplificare elettrotecnicamente lo schema del circuito 6- si ridisegna il circuito per renderne più semplice la soluzione: si riduce il numero delle maglie, applicando Thévenin sui due gruppi estremi (evidenziati) d M - k k 45nA ±.4m k 5 d 55nA C3c saper calcolare le conseguenze degli offset sui segnali 7/9- proseguire la semplificazione elettrotecnica 7- applicando Thévenin lo schema diventa d I M 8k k 45nA ±.4m.7m eq d L equazione all unica maglia fornisce -7.3m /6/ :4 PM L7_C3.doc rev.d Pagina 5 di 3

16 C3c saper calcolare le conseguenze degli offset sui segnali 8/9- ridurre al minimo l entità dell offset Se si fa in modo che entrambi gli ingressi dell AO drenino le correnti su uno stesso valore di, l offset si riduce. Si ponga, ad es., B 7kΩ: I d M 8k 8k 45nA ±.4m.79m eq d L equazione alla solita maglia fornisce -3.m C3c saper calcolare le conseguenze degli offset sui segnali 9/9- azzerare l offset in uscita al 3eq -al 3eq // /6/ :4 PM L7_C3.doc rev.d Pagina 6 di 3

17 C3d- conoscere le limitazioni di frequenza dell AO /5- descrizione esperienza guadagnof(f) isposta in frequenza di un AO specifico: A (db) G _ A G. k ω (rad/s) M - Dimostra un polo a rad/s. C3d- conoscere le limitazioni di frequenza dell AO /5- circuito equiv. e modello matem. dell AO con un polo in ω A ω A A ω ω C/ ω - A ( - - ) - A A A A A A s ω A s ω /6/ :4 PM L7_C3.doc rev.d Pagina 7 di 3

18 C3d- saper calcolare le conseguenze del polo dell AO 3/5- applicazione ad AO connesso come Z T : impostazione funzioni già individuate: I G /A A ω f I f ZT f A G ZT Zingresso A G G sostituiamo ad A la sua funzione di ω, per ottenere (per G >> f ): C3d- saper calcolare le conseguenze del polo dell AO 4/5- applicazione ad AO connesso come Z T : conclusione analitica Z Z T i f s ω A A f s ω s ω A Si osserva che la Z T ha un polo A volte maggiore del polo di A. La resistenza d ingresso presenta: - uno zero coincidente col polo di A - un polo coincidente col polo di Z T. /6/ :4 PM L7_C3.doc rev.d Pagina 8 di 3

19 C3d- saper calcolare le conseguenze del polo dell AO 5/5- applicazione ad AO connesso come Z T : conclusione grafica (db) A Z T / f - Z i / f k M ω (rad/s) C3e- conoscere lo slew-rate dell AO /8- impostazione La presenza del polo A A ω ω C/ ω - non ha come unica conseguenza la riduzione della banda passante dell AO, ma anche quella di limitare la velocità di risposta della tensione d uscita ad un valore che abbiamo già denominato slew-rate. /6/ :4 PM L7_C3.doc rev.d Pagina 9 di 3

20 C3e- conoscere lo slew-rate dell AO /8- continua impostazione Per capire le ragioni del fenomeno, supponiamo che anche A sia affetto da saturazione di livello a sat. Quando il segnale porta A in saturazione, la rete C riceve la tensione costante sat e carica C con l esponenziale sat (-e -t/c ), che ha la pendenza iniziale pari a sat /C /s. La u mostra quindi una pendenza iniziale pari ad A sat /C /s. Questa pendenza corrisponde allo slew-rate, perché non può in nessun caso essere superata. C3e- conoscere slew-rate dell AO e saperne calcolare gli effetti 3/8- prevedere quali condizioni pone lo S al i sinusoidale A ω S i /6/ :4 PM L7_C3.doc rev.d Pagina di 3

21 C3e- conoscere slew-rate dell AO e saperne calcolare gli effetti 4/8- conclusioni segnale d entrata teorica velocità della teorica d dt velocità max della teorica: condizione: i senω t senω t ω cosωt d ω dt max ω < S C3e- conoscere slew-rate dell AO e saperne calcolare gli effetti 5/8- vari altri modi di lettura della condizione S per ogni ω leggiamo la < ω < S ω < S ω S massima ampiezza di i consentita dallo S per ogni ω leggiamo la massima ampiezza di consentita dallo S per ogni i (o ) leggiamo la massima ω consentita dallo S /6/ :4 PM L7_C3.doc rev.d Pagina di 3

22 C3e- conoscere slew-rate dell AO e saperne calcolare gli effetti 6/8- caso limite per 74 connesso per A A i A ω S sat 4.6 S5/s ω 63rad/s < S ω sat < ω S sat ω S sat C3e- conoscere slew-rate dell AO e saperne calcolare gli effetti 7/8- rappresentazione grafica del caso 74 (db) A a loop aperto - u/sat A a loop chiuso k M ω (rad/s) /6/ :4 PM L7_C3.doc rev.d Pagina di 3

23 C3e- conoscere slew-rate dell AO e saperne calcolare gli effetti 8/8- osservazioni sul caso 74 Purché l ampiezza del segnale non porti in saturazione A, la massima ω trasferibile (entro l errore di 3dB) è *63.6Mrad/s. Se si vuole sfruttare tutta l ampiezza che l uscita può mettere a disposizione prima di saturare, la massima ω trasferibile è 5/4.634krad/s. /6/ :4 PM L7_C3.doc rev.d Pagina 3 di 3

SISTEMI. impostazione SISTEMI. progettazione. 2/4 Con quali componenti si compongono i circuiti amplificatori?

SISTEMI. impostazione SISTEMI. progettazione. 2/4 Con quali componenti si compongono i circuiti amplificatori? Cy - Presentazione del gruppo di lezioni C /4 Dove siamo? TEM B impostazione D componenti analogici C E componenti digitali F TEM progettazione Cy - Presentazione del gruppo di lezioni C 2/4 Con quali

Dettagli

questi sono i simboli dei componenti più diffusi

questi sono i simboli dei componenti più diffusi Cx - Presentazione del gruppo di lezioni C /3 Con quali componenti si compongono i circuiti amplificatori? u i C questi sono i simboli dei componenti più diffusi Cx - Presentazione del gruppo di lezioni

Dettagli

Amplificatori operazionali

Amplificatori operazionali Amplificatori operazionali Parte 4 www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 3-5-07) Amplificatori operazionali non ideali Il comportamento degli amplificatori operazionali reali si

Dettagli

SISTEMI SISTEMI DINAMO DATORE DI SET. B1y - Presentazione del gruppo di lezioni B. impostazione. progettazione

SISTEMI SISTEMI DINAMO DATORE DI SET. B1y - Presentazione del gruppo di lezioni B. impostazione. progettazione B1y - Presentazione del gruppo di lezioni B 1/9 - Dove siamo? A SISTEMI impostazione B componenti analogici D E componenti digitali F SISTEMI progettazione B1y - Presentazione del gruppo di lezioni B 2/9

Dettagli

Dato questo circuito, si chiede di applicare una V G sinusoidale e di determinare la funzione di trasferimento V C /V G =f(ω)

Dato questo circuito, si chiede di applicare una V G sinusoidale e di determinare la funzione di trasferimento V C /V G =f(ω) B2x- Presentazione della lezione B2 1/1- obiettivi! saper calcolare risposte f(ω) per rete attiva 2 ordine! conoscere i tipi di amplificatore B2a- saper calcolare risposte f(ω) per rete attiva 2 ordine

Dettagli

DINAMO DATORE DI SET. B2x - Presentazione del gruppo di lezioni B MOTORE ELETTRONICA DI CONTROLLO. B2x - Presentazione del gruppo di lezioni B

DINAMO DATORE DI SET. B2x - Presentazione del gruppo di lezioni B MOTORE ELETTRONICA DI CONTROLLO. B2x - Presentazione del gruppo di lezioni B B2x - Presentazione del gruppo di lezioni B 1/8 - Dove sono gli amplificatori? n' MOTORE Cf Vm=(Vn-Vn') K DINAMO Vn' Vn-Vn' n DATORE DI SET Vn ELETTRONICA DI CONTROLLO B2x - Presentazione del gruppo di

Dettagli

ELETTRONICA APPLICATA I (DU) Guida alle esercitazioni di laboratorio - AA Circuiti con Amplificatori Operazionali

ELETTRONICA APPLICATA I (DU) Guida alle esercitazioni di laboratorio - AA Circuiti con Amplificatori Operazionali Guida alle esercitazioni di laboratorio AA 19992000 Esercitazione n. 4 Circuiti con Amplificatori Operazionali 4.1 Amplificatore AC Montare il circuito riportato nello schema a lato, con alimentazione

Dettagli

Amplificatori Differenziali

Amplificatori Differenziali Amplificatori Differenziali nei simboli non si esplicitano gli alimentatori DC, cioè Normalmente i circuiti che realizzano l amplificatore differenziale e operazionale non contengono un nodo elettricamente

Dettagli

Anche questa relazione è in parte già predisposta, ma rispetto alla precedente è più ampia la parte a compilazione libera.

Anche questa relazione è in parte già predisposta, ma rispetto alla precedente è più ampia la parte a compilazione libera. Esercitazione 5 (C7-U16) Amplificatori operazionali reali Scopo dell esercitazione Gli obiettivi di questa esercitazione sono: - Analizzare il comportamento di amplificatori operazionali reali - Misurare

Dettagli

Amplificatori Differenziali

Amplificatori Differenziali Amplificatori Differenziali nei simboli non si esplicitano gli alimentatori DC, cioè Normalmente i circuiti che realizzano l amplificatore differenziale e operazionale non contengono un nodo elettricamente

Dettagli

Amplificatori operazionali

Amplificatori operazionali Amplificatori operazionali Parte 3 www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 6--) Integratore Dato che l ingresso invertente è virtualmente a massa si ha vi ( t) ir ( t) R Inoltre i

Dettagli

Elettronica delle Telecomunicazioni Esercizi cap 2: Circuiti con Ampl. Oper. 2.1 Analisi di amplificatore AC con Amplificatore Operazionale reale

Elettronica delle Telecomunicazioni Esercizi cap 2: Circuiti con Ampl. Oper. 2.1 Analisi di amplificatore AC con Amplificatore Operazionale reale 2.1 Analisi di amplificatore AC con Amplificatore Operazionale reale Un amplificatore è realizzato con un LM741, con Ad = 100 db, polo di Ad a 10 Hz. La controreazione determina un guadagno ideale pari

Dettagli

Misure su linee di trasmissione

Misure su linee di trasmissione Appendice A A-1 A-2 APPENDICE A. Misure su linee di trasmissione 1) Misurare, in trasmissione o in riflessione, la lunghezza elettrica TL della linea. 2) Dal valore di TL e dalla lunghezza geometrica calcolare

Dettagli

Amplificatori Differenziali

Amplificatori Differenziali Amplificatori Differenziali nei simboli non si esplicitano gli alimentatori DC, cioè Normalmente i circuiti che realizzano l amplificatore differenziale e operazionale non contengono un nodo elettricamente

Dettagli

Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione)

Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione) Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione) Esercizio 1 3 3 γv 5 r 1 2 2 4 V 5 3 V 1 β 4 4 1 5 V 2 α 3 4 Con riferimento al circuito di figura si assumano i seguenti valori: 1 = 2 = 3 = 3

Dettagli

AMPLIFICATORI INVERTENTI A SINGOLO TRANSISTORE

AMPLIFICATORI INVERTENTI A SINGOLO TRANSISTORE configurazione CE: AMPLIFICATORI INVERTENTI A SINGOLO TRANSISTORE configurazione CS: G. Martines 1 ANALISI IN CONTINUA Circuito di polarizzazione a quattro resistenze. NOTE: I parametri del modello a piccolo

Dettagli

2πCR 1 [R 5 (R 3 +R 4 )+R 3 R 4 ]

2πCR 1 [R 5 (R 3 +R 4 )+R 3 R 4 ] /0 ESERCIZIO. - Risposta in frequenza A. O. ideale) R 2 v s) = v s s) +v u s) +R 2 +R 2 Eguagliando v + s) = v s)): segue f z = R 2 v s s) +v u s) = v u s) +R 2 +R 2 v u s) R 3 + [ v u s) Af) = A 0 Cs

Dettagli

Tipi di amplificatori e loro parametri

Tipi di amplificatori e loro parametri Amplificatori e doppi bipoli Amplificatori e doppi bipoli Introduzione e richiami Simulatore PSPICE Amplificatori Operazionali e reazione negativa Amplificatori AC e differenziali Amplificatori Operazionali

Dettagli

Università degli Studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica DUM A.A. 2000/2001 Esame del 12 gennaio 2001

Università degli Studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica DUM A.A. 2000/2001 Esame del 12 gennaio 2001 Università degli Studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica DUM A.A. / Esame del gennaio Soluzione a cura di: Bellini Matteo Es. n Data la rete in figura determinare tutte le correnti

Dettagli

RETI LINEARI R 3 I 3 R 2 I 4

RETI LINEARI R 3 I 3 R 2 I 4 RETI LINERI 1 Leggi di Kirchoff. Metodo delle correnti di maglia R 1 R 3 I 1 I 3 E 1 J 1 J 2 J 3 I 2 I 4 R 4 I 5 R 5 I 6 R 6 J 4 R 7 Il calcolo delle correnti e delle differenze di potenziale in un circuito

Dettagli

4 Luglio 2012 Esame di Teoria dei Circuiti V 1 V 2. I R1 = 1 R 1 + R 2 (1 α) + R 3 V 1. I 2 = I R3 = 1 α 1 + β I R1 = V α

4 Luglio 2012 Esame di Teoria dei Circuiti V 1 V 2. I R1 = 1 R 1 + R 2 (1 α) + R 3 V 1. I 2 = I R3 = 1 α 1 + β I R1 = V α Esame di Teoria dei Circuiti 4 Luglio 202 () Esercizio I R R I R3 R 3 I 2 V αi R V 4 I 4 βi R3 Con riferimento al circuito di figura si assumano ( i seguenti ) valori: 0 Ω R R 3 kω, 5 kω,, α /2, β 2, V

Dettagli

9.8 Con la LKT si scrive l equazione seguente: di (1) dt La costante di tempo èτ

9.8 Con la LKT si scrive l equazione seguente: di (1) dt La costante di tempo èτ 9.8 Con la LKT si scrive l equazione seguente: di L Ri cos( t) () dt La costante di tempo èτ L / R ms / 5s ; la soluzione della () è 5t i( t) Ke Acos(t θ ) () Sia A θ il fasore corrispondente alla risposta

Dettagli

Laboratorio di Elettronica II. Esperienza 1. Misura delle NON idealità dell Op-Amp UA741

Laboratorio di Elettronica II. Esperienza 1. Misura delle NON idealità dell Op-Amp UA741 Laboratorio di Elettronica II Esperienza 1 Misura delle NON idealità dell Op-Amp UA741 Attività Misura delle principali non idealità di un Op-Amp commerciale Parte I: non-idealità statiche: - tensione

Dettagli

Corso di ELETTRONICA 1 (Elettronici N.O.) 17/06/2003

Corso di ELETTRONICA 1 (Elettronici N.O.) 17/06/2003 Corso di ELETTRONICA 1 (Elettronici N.O.) 17/06/2003 Si analizzi l amplificatore mostrato in figura, determinando: 1. il valore del guadagno di tensione a frequenze intermedie; 2. le frequenze di taglio

Dettagli

ITI M. FARADAY Programmazione modulare A.S. 2016/17

ITI M. FARADAY Programmazione modulare A.S. 2016/17 ITI M. FARADAY Programmazione modulare A.S. 2016/17 Indirizzo: ELETTROTECNICA ED ELETTRONICA Docenti: Erbaggio Maria Pia (teoria) e Vaccaro Valter (laboratorio) Disciplina: ELETTROTECNICA ED ELETTRONICA

Dettagli

Amplificatori in classe A con accoppiamento capacitivo

Amplificatori in classe A con accoppiamento capacitivo Ottobre 00 Amplificatori in classe A con accoppiamento capacitivo amplificatore in classe A di Fig. presenta lo svantaggio che il carico è percorso sia dalla componente di segnale, variabile nel tempo,

Dettagli

b) Tracciare il diagramma di Bode (modulo) di Vu/V1, su assi tarati in Hz e db, per C = 8 nf.

b) Tracciare il diagramma di Bode (modulo) di Vu/V1, su assi tarati in Hz e db, per C = 8 nf. Esercizio analogico A a) alcolare u (,) per 0, con AO ideali. b) Tracciare il diagramma di Bode (modulo) di u/, su assi tarati in Hz e db, per 8 nf. c) alcolare il guadagno in continua u/, con AO ideali,

Dettagli

ESERCIZIO Punto di riposo, R 1,R 2. Detta I C = I C1 = I C2 = 2.5mA e ipotizzando I B1 I C1,I B2 I C2, si ha

ESERCIZIO Punto di riposo, R 1,R 2. Detta I C = I C1 = I C2 = 2.5mA e ipotizzando I B1 I C1,I B2 I C2, si ha 1/16 ESERCIZIO 1 1.1 - Punto di riposo, R 1,R 2 Detta I C = I C1 = I C2 = 2.5mA e ipotizzando I B1 I C1,I B2 I C2, si ha V CE1 = V R E I E1 I E2 ) V 2R E I C = 12.0 V. 1) Nel punto di riposo si ha I B1

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2016/2017

ISTITUTO ISTRUZIONE SUPERIORE L. EINAUDI ALBA ANNO SCOLASTICO 2016/2017 ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2016/2017 CLASSE 4 I Disciplina: Elettrotecnica ed Elettronica PROGETTAZIONE DIDATTICA ANNUALE Elaborata dai docenti: Linguanti Vincenzo,

Dettagli

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I prova in itinere 1 Novembre 008 SOLUZIONE - 1 - D1. (punti 8 ) Rispondere alle seguenti domande: punto per ogni risposta corretta, - 0.5 per ogni risposta

Dettagli

ELETTROTECNICA ED ELETTRONICA (C.I.) Modulo di Elettronica. Lezione 5. a.a

ELETTROTECNICA ED ELETTRONICA (C.I.) Modulo di Elettronica. Lezione 5. a.a 32586 - ELETTROTECNICA ED ELETTRONICA (C.I.) Modulo di Elettronica Lezione 5 a.a. 2010-2011 Amplificatori Operazionali NON ideali Impedenza di gresso Differenziale e di modo comune Zd Amplificatore Differenziale

Dettagli

I Decibel (db) sono un modo per esprimere rapporti. Un rapporto K può essere espresso in decibel (G)

I Decibel (db) sono un modo per esprimere rapporti. Un rapporto K può essere espresso in decibel (G) Uso dei decibel I Decibel (db) sono un modo per esprimere rapporti Un rapporto K può essere espresso in decibel (G) G = K(dB) = 0 log 0 K Nel caso degli amplificatori i db sono utilizzabili per esprimere

Dettagli

1. Convertire il numero esadecimale 4BE7 in binario su 16 bit. 2. Il risultato della conversione precedente, letto in complemento a due, è un numero:

1. Convertire il numero esadecimale 4BE7 in binario su 16 bit. 2. Il risultato della conversione precedente, letto in complemento a due, è un numero: TEST INIZIALE (in alcuni casi, oltre a crocettare la risposta corretta, si deve anche fare un disegno o scrivere qualche valore) 1. Convertire il numero esadecimale 4BE7 in binario su 16 bit. 0100 1011

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica 22.0.206 Problema Con riferimento al circuito in figura, nel quale entrambi gli interruttori si aprono all istante t = 0, determinare l espressione di i(t) (per ogni istante di tempo t) e rappresentarne

Dettagli

Prova di Elettrotecnica I prova B

Prova di Elettrotecnica I prova B C O N S O Z O N E T T U N O Prova di Elettrotecnica 4.05.004 prova B Cognome Nome matr ESECZO l circuito in figura funziona in regime sinusoidale. Determinare l andamento della corrente che fluisce nella

Dettagli

Calcolando l equivalente Thevenin: = R 1A E 2. R eq = R R 2 = 5Ω (2) Calcolando la retta di carico: v nl = R eq i nl (3)

Calcolando l equivalente Thevenin: = R 1A E 2. R eq = R R 2 = 5Ω (2) Calcolando la retta di carico: v nl = R eq i nl (3) lettrotecnica ed lettronica Applicata - Aerospaziali Zich, 17 luglio 017 Appello, Tempo: 105 minuti isolvere riportando i passaggi principali e le soluzioni numeriche. Cognome Nome Matricola Posizione

Dettagli

FONDAMENTI DI ELETTRONICA - 2 a prova 4 febbraio 2003

FONDAMENTI DI ELETTRONICA - 2 a prova 4 febbraio 2003 Ù FONDAMENTI DI ELETTRONICA - 2 a prova 4 febbraio 2003 Esercizio 1 1) Si consideri il circuito riportato in figura. Si supponga che l amplificatore operazionale sia ideale (A, Z in, Z out =0).Si determini

Dettagli

ESERCIZIO Punto di riposo

ESERCIZIO Punto di riposo 1/8 ESERCIZIO 1 1.1 - Punto di riposo Selatensioned uscita ènulla, ènullaanchelacorrentenellaresistenza dicaricor L edunque le correnti di canale dei transistor sono uguali tra loro; pertanto, nell ipotesi

Dettagli

Appendice A. A.1 Amplificatore con transistor bjt

Appendice A. A.1 Amplificatore con transistor bjt Appendice A A.1 Amplificatore con transistor bjt Il circuito in fig. A.1 è un esempio di amplificatore a più stadi. Si utilizza una coppia differenziale di ingresso (T 1, T 2 ) con un circuito current

Dettagli

ft = 1 / 6,28 * 20*10exp3* 10exp-8 = 796 [ Hz ]

ft = 1 / 6,28 * 20*10exp3* 10exp-8 = 796 [ Hz ] 4 5 4 5 7 1 7 1 1. 1 FUNZIONE DI TRASFERIMENTO BLOCCO U1 ft = 1 / 6,28 * 20*10exp3* 10exp-8 = 796 [ Hz ] +15 +15 U1 U2 va(t) vin R1 3 2 6 vout1 R3 3 2 6 vout2 5k 1k LF351 LF351-15 R2 20k C1-15 R4 20k C2

Dettagli

Esercizi sulle reti elettriche in corrente alternata (parte 1)

Esercizi sulle reti elettriche in corrente alternata (parte 1) Esercizi sulle reti elettriche in corrente alternata (parte ) Esercizio : alcolare l andamento nel tempo delle correnti i, i 2 e i 3 del circuito in figura e verificare il bilancio delle potenze attive

Dettagli

I j e jarctag. ovvero. ESERCIZIO 7.1: Determinare le espressioni temporali sinusoidali relative alle grandezze rappresentate dai seguenti fasori.

I j e jarctag. ovvero. ESERCIZIO 7.1: Determinare le espressioni temporali sinusoidali relative alle grandezze rappresentate dai seguenti fasori. EEO 7.: Determinare le espressioni temporali sinusoidali relative alle grandezze rappresentate dai seguenti fasori. 0 8e 3+ 4 ( 5 isulta necessario applicare le trasformazioni fra espressione polare ed

Dettagli

3) Terminare la linea con una resistenza variabile ( Ω); dalla condizione di riflessione nulla verificare l impedenza caratteristica.

3) Terminare la linea con una resistenza variabile ( Ω); dalla condizione di riflessione nulla verificare l impedenza caratteristica. Appendice C 233 1) Misurare la lunghezza elettrica T L della linea. 2) Dal valore di T L e dalla lunghezza geometrica calcolare la velocità di propagazione dei segnali lungo la linea e la costante dielettrica

Dettagli

. Il modulo è I R = = A. La potenza media è 1 VR 2

. Il modulo è I R = = A. La potenza media è 1 VR 2 0.4 La corrente nel resistore vale 0. l modulo è A. La potenza media è 0 W 0.7 l circuito simbolico è mostrato di seguito. La potenza viene dissipata solo nel resistore. 0, 4 - La corrente è 4 4 0, 0,

Dettagli

Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio

Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio Parte c Partitori di tensione e di corrente Partitore di tensione: si fa riferimento ad una tensione nota che alimenta una

Dettagli

Esercitazione 3. Biagio Provinzano Aprile Esercizio 1. I BJT npn hanno la stessa area e la stessa corrente di saturazione, consideriamo

Esercitazione 3. Biagio Provinzano Aprile Esercizio 1. I BJT npn hanno la stessa area e la stessa corrente di saturazione, consideriamo Esercitazione 3 Biagio Provinzano Aprile 005 Esercizio I BJT npn hanno la stessa area e la stessa corrente di saturazione, consideriamo V A, β = 00, V BE = 0.7V in zona attiva ed infine Cπ = C µ =0pF.

Dettagli

Page 1. Elettronica delle telecomunicazioni 2003 DDC 1. Politecnico di Torino Facoltà dell Informazione. Contenuti del Gruppo A

Page 1. Elettronica delle telecomunicazioni 2003 DDC 1. Politecnico di Torino Facoltà dell Informazione. Contenuti del Gruppo A Modulo Politecnico di Torino Facoltà dell Informazione Elettronica delle telecomunicazioni Amplificatori e oscillatori A1 - Amplificatori a transistori» Punto di funzionamento,» guadagno e banda» distorsioni,

Dettagli

Politecnico di Torino - Facoltà dell Informazione Modulo Sistemi Elettronici

Politecnico di Torino - Facoltà dell Informazione Modulo Sistemi Elettronici Prova scritta del 8 Febbraio 2003 tempo: 2 ore Esercizio ) R =R2= 0kΩ R3 = 820kΩ R4 = 22kΩ R = 220kΩ R6 = 33kΩ C =C2= 00nF AO: Voff = 3mV, Ibias= 00nA (entranti) Ioff=20nA V=Asen(ωt) con A=mV V2=0.V V

Dettagli

Esame di Teoria dei Circuiti - 6 luglio 2009 (Soluzione)

Esame di Teoria dei Circuiti - 6 luglio 2009 (Soluzione) Esame di Teoria dei Circuiti - 6 luglio 009 Soluzione) Esercizio 1 C T V C T 1 Con riferimento al circuito di figura si assumano i seguenti valori: r 1kΩ, C 1µF 10 6 F, 4V, ma. Per t < t 0 0sec l interruttore

Dettagli

Indice del Volume I. Introduzione Generalità sugli impianti elettrici

Indice del Volume I. Introduzione Generalità sugli impianti elettrici Indice del Volume I Introduzione Generalità sugli impianti elettrici I.1 Produzione, trasporto, distribuzione, utilizzazione dell energia elettrica... 1 I.1.1 Impianti di produzione..... 2 I.1.2 Impianti

Dettagli

Appunti di ELETTRONICA Amplificatore operazionale (amp. Op oppure A. O.) - +

Appunti di ELETTRONICA Amplificatore operazionale (amp. Op oppure A. O.) - + Appunti di ELETTRONICA Amplificatore operazionale (amp. Op oppure A. O.) - + µa741 Cos'è l'amplificazione: Amplificare un segnale significa aumentarne il livello e di conseguenza la potenza. Il fattore

Dettagli

Misure con l oscilloscopio (e non) su circuiti con amplificatori operazionali

Misure con l oscilloscopio (e non) su circuiti con amplificatori operazionali Misure con l oscilloscopio (e non) su circuiti con amplificatori operazionali Edgardo Smerieri Laura Faè PLS - AIF - Corso Estivo di Fisica Genova 2009 Amplificatore operazionale perché? Moltiplicazione

Dettagli

Le tensioni di alimentazione +Va e Va devono essere applicate rispetto alla zona di massa.

Le tensioni di alimentazione +Va e Va devono essere applicate rispetto alla zona di massa. 4.2 Sul calcolo del guadagno di un microamplificatore Uno schema elettrico che mostra il più semplice impiego di un circuito integrato è tracciato in figura 4.4, in essa è riportato un microamplificatore

Dettagli

1 3 La reiterazione della legge di Kirchhoff delle tensioni. corrente I 2 con la relazione seguente:

1 3 La reiterazione della legge di Kirchhoff delle tensioni. corrente I 2 con la relazione seguente: PM PO N TNEE --- 9 MGGO 008 ECZO E..: Del circuito mostrato in figura, si desidera determinare: a) la corrente ; b) la potenza elettrica erogata dai tre generatori. Sono assegnati: Ω, 4 Ω, 6 Ω; ; E S 6

Dettagli

Elettronica Stella e triangolo; generatori controllati; generatore equivalente; sovrapposizione degli effetti

Elettronica Stella e triangolo; generatori controllati; generatore equivalente; sovrapposizione degli effetti Elettronica Stella e triangolo; generatori controllati; generatore equivalente; sovrapposizione degli effetti Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it

Dettagli

. Il modulo è I R = = A. La potenza media è 1 VR 2

. Il modulo è I R = = A. La potenza media è 1 VR 2 0.4 La corrente nel resistore vale 0. l modulo è A. La potenza media è P 0 W 0.7 l circuito simbolico è mostrato di seguito. La potenza viene dissipata solo nel resistore. 0, 4 - La corrente è 4 4 0, 0,

Dettagli

UNIVERSITA DEGLI STUDI DI BERGAMO Facoltà di Ingegneria

UNIVERSITA DEGLI STUDI DI BERGAMO Facoltà di Ingegneria UNIVERSITA DEGLI STUDI DI BERGAMO Facoltà di Ingegneria Corso di Elettrotecnica A.A. 2001/2002 Prova scritta del 4 settembre 1999 Esercizio n 1 Data la rete in figura, determinare tutte le correnti (4

Dettagli

Programmazione modulare A:S. 2018/19

Programmazione modulare A:S. 2018/19 Programmazione modulare A:S. 2018/19 Indirizzo: ELETTROTECNICA ED ELETTRONICA Disciplina: ELETTROTECNICA ED ELETTRONICA Docenti: Erbaggio Maria Pia (teorico) Quadrini Antonio (I.T.P.) Classe: IV A ee settimanali

Dettagli

Esonero del Corso di Elettronica I 23 aprile 2001

Esonero del Corso di Elettronica I 23 aprile 2001 Esonero del Corso di Elettronica I 23 aprile 2001 1) Nell amplificatore MO di figura k=5.10-4 A/V 2, V T = 2 V, = 10K Ω, =10V, =3V. eterminare il guadagno di tensione per un segnale applicato tra gate

Dettagli

ν S R B2 Prova n 1: V CC R C R B1 C C R S C S C L out R L Prove d'esame

ν S R B2 Prova n 1: V CC R C R B1 C C R S C S C L out R L Prove d'esame Prova n 1: Per il seguente circuito determinare: 1. R B1, R E tali che: I C = 0,5 ma; V E = 5 V; 2. Guadagno di tensione a piccolo segnale v out /v s alle medie frequenze; 3. Frequenza di taglio inferiore;

Dettagli

Modulo SISTEMI ELETTRONICI ESERCITAZIONI DI LABORATORIO - 3

Modulo SISTEMI ELETTRONICI ESERCITAZIONI DI LABORATORIO - 3 Esercitazione 3 Amplificatori operazionali con reazione 1. Introduzione Scopo dell esercitazione Gli obiettivi di questa esercitazione sono: - Analizzare il comportamento di amplificatori operazionali

Dettagli

Esercizio. Risolvere poi lo stesso quesito utilizzando la legge di Kirchhoff alle maglie.

Esercizio. Risolvere poi lo stesso quesito utilizzando la legge di Kirchhoff alle maglie. Esercizio Classe ª Elettronici Materia Elettrotecnica Argomento Reti elettriche Nel circuito di figura, utilizzando il teorema di Thevenin attraverso riduzioni successive, determinare la tensione ai capi

Dettagli

Esercizi & Domande per il Compito di Elettrotecnica del 17 settembre 2003

Esercizi & Domande per il Compito di Elettrotecnica del 17 settembre 2003 Esercizi & Domande per il Compito di Elettrotecnica del 7 settembre 003 ESERCIZIO v a i a i b v b R v 0 Nel circuito in figura determinare il valore di v o e i o Si ponga: R 6kΩ, R kω, e i o R v o ; i

Dettagli

Esame di Teoria dei Circuiti 15 Gennaio 2015 (Soluzione)

Esame di Teoria dei Circuiti 15 Gennaio 2015 (Soluzione) Esame di eoria dei Circuiti 15 ennaio 2015 (Soluzione) Esercizio 1 I 1 R 2 I R2 R 4 αi R2 βi R3 + V 3 I 3 R 1 V 2 I 4 I R3 Con riferimento al circuito di figura si assumano ( i seguenti ) valori: 3/2 3/2

Dettagli

Page 1. SisElnB1 12/4/ DDC 1 SISTEMI ELETTRONICI. Ingegneria dell Informazione. Obiettivi del gruppo di lezioni B

Page 1. SisElnB1 12/4/ DDC 1 SISTEMI ELETTRONICI. Ingegneria dell Informazione. Obiettivi del gruppo di lezioni B Ingegneria dell Informazione SISTEMI ELETTRONICI B - AMPLIFICATORI E DOPPI BIPOLI B. - Descrizione funzionale di amplificatori» Parametri di un amplificatore» Modelli di amplificatore» Amplificatori come

Dettagli

Esercitazione 3 Amplificatori operazionali con reazione

Esercitazione 3 Amplificatori operazionali con reazione Esercitazione 3 Amplificatori operazionali con reazione 1. Introduzione Scopo dell esercitazione Gli obiettivi di questa esercitazione sono: - Analizzare il comportamento di amplificatori operazionali

Dettagli

ITI M. FARADAY Programmazione modulare

ITI M. FARADAY Programmazione modulare ITI M. FARADAY Programmazione modulare A.S. 2014/15 Indirizzo: ELETTROTECNICA ed ELETTRONICA Disciplina: ELETTROTECNICA ed ELETTRONICA Classe: V A elettrotecnica Ore settimanali previste: 6 INSEGNANTI:

Dettagli

Università degli Studi di Bergamo Facoltà di Ingegneria

Università degli Studi di Bergamo Facoltà di Ingegneria Università degli Studi di Bergamo Facoltà di Ingegneria Piatti Marina _ RISOLUZIONE TEMA D ESAME CORSO DI ELETTROTECNICA A.A. 1995/96 SCRITTO 26 SETTEMBRE 1996_ Esercizio n 1 Dato il circuito in figura,

Dettagli

STABILITÀ DEI SISTEMI Metodo di Bode e Nyquist

STABILITÀ DEI SISTEMI Metodo di Bode e Nyquist I.T.I. Modesto PANETTI B A R I Via Re David, 186-70125 BARI 080-542.54.12 - Fax 080-542.64.32 Internet http://www.itispanetti.it email : BATF05000C@istruzione.it INTRODUZIONE STABILITÀ DEI SISTEMI Metodo

Dettagli

L Amplificatore Operazionale G. MARSELLA UNIVERSITÀ DEL SALENTO

L Amplificatore Operazionale G. MARSELLA UNIVERSITÀ DEL SALENTO L Amplificatore Operazionale G. MARSELLA UNIVERSITÀ DEL SALENTO ü INTRODUZIONE ü A.O INVERTENTE ü A.O NON INVERTENTE ü SLEW RATE ü A.O DIFFERENZIALE ü ESEMPI Introduzione L amplificatore operazionale (AO)

Dettagli

Soluzione: prof. Stefano Mirandola PRIMA PARTE. 1) 2) Schema a blocchi e progetto circuitale della catena di condizionamento.

Soluzione: prof. Stefano Mirandola PRIMA PARTE. 1) 2) Schema a blocchi e progetto circuitale della catena di condizionamento. ITEC - ELETTRONICA ED ELETTROTECNICA Sessione ordinaria 206 ARTICOLAZIONE ELETTRONICA Tema di: ELETTROTECNICA ED ELETTRONICA Soluzione: prof. Stefano Mirandola PRIMA PARTE ) 2) Schema a blocchi e progetto

Dettagli

APPUNTI DI ELETTRONICA AMPLIFICATORE OPERAZIONALE L amplificatore operazionale ideale

APPUNTI DI ELETTRONICA AMPLIFICATORE OPERAZIONALE L amplificatore operazionale ideale APPUNTI DI ELETTONICA AMPLIFICATOE OPEAZIONALE L amplificatore operazionale ideale Lo schema seguente è lo schema circuitale dell amplificatore operazionale (A.O.): vd v v A ( v v ) dove: è la tensione

Dettagli

SisElnB1 12/4/2002. B - AMPLIFICATORI E DOPPI BIPOLI B.1 - Descrizione funzionale di amplificatori

SisElnB1 12/4/2002. B - AMPLIFICATORI E DOPPI BIPOLI B.1 - Descrizione funzionale di amplificatori Ingegneria dell Informazione SISTEMI ELETTRONICI B - AMPLIFICATORI E DOPPI BIPOLI B. - Descrizione funzionale di amplificatori» Parametri di un amplificatore» Modelli di amplificatore» Amplificatori come

Dettagli

Il TRANSISTOR. Il primo transistor della storia

Il TRANSISTOR. Il primo transistor della storia Il TRANSISTOR Il primo transistor della storia Inventori del Transistor Il Transistor Bipolare a Giunzione (BJT) è stato inventato nei laboratori BELL nel 1948, da tre fisici: John Bardeen Walter Brattain,

Dettagli

Principi di ingegneria elettrica. Reti in regime sinusoidale. Lezione 13 a. Impedenza Ammettenza

Principi di ingegneria elettrica. Reti in regime sinusoidale. Lezione 13 a. Impedenza Ammettenza Principi di ingegneria elettrica Lezione 3 a Reti in regime sinusoidale mpedenza Ammettenza Legge di Ohm simbolica n un circuito lineare comprendente anche elementi dinamici (induttori e condensatori)

Dettagli

Laboratorio di Sistemi e Segnali AA 2017/18 Esonero 1, Soluzioni A

Laboratorio di Sistemi e Segnali AA 2017/18 Esonero 1, Soluzioni A Laboratorio di Sistemi e Segnali AA 2017/18 Esonero 1, Soluzioni A Esercizio 1 (8 punti): A media frequenza possiamo approssimare il capacitore C E con un corto. L amplificazione pertanto è g m R C dove

Dettagli

Informazioni logistiche e organizzative Applicazione di riferimento. caratteristiche e tipologie di moduli. Circuiti con operazionali reazionati

Informazioni logistiche e organizzative Applicazione di riferimento. caratteristiche e tipologie di moduli. Circuiti con operazionali reazionati Elettronica per telecomunicazioni 1 Contenuto dell unità A Informazioni logistiche e organizzative Applicazione di riferimento caratteristiche e tipologie di moduli Circuiti con operazionali reazionati

Dettagli

Politecnico di Torino - Facoltà di ingegnera dell Informazione Sistemi Elettronici Risoluzione prova scritta del 28/04/2012

Politecnico di Torino - Facoltà di ingegnera dell Informazione Sistemi Elettronici Risoluzione prova scritta del 28/04/2012 Esercizio 1 1 47 k 5 12 k 2 22 k 6 15 k 3 100 k 7 150 k 4 47 k 8 24 k 9 100 k C1 = 390 nf; C2 = 18 nf A1 e A2: Voff = 6mV, Ioff = 200 na V1 V2 2 1 C 2 C 1 A1 5 7 4 3 9 A2 6 VU 8 a) Calcolare Vu(V1,V2)

Dettagli

Amplificatore monotransistore

Amplificatore monotransistore Elettronica delle Telecomunicazioni Esercitazione 1 Amplificatore monotransistore Rev 1 980305 DDC Rev 3 000328 DDC Specifiche Progettare un amplificatore con un transistore secondo le seguenti specifiche:

Dettagli

oppure Esempio di calcolo per la conversione da STELLA a TRIANGOLO oppure da TRIANGOLO [o (delta)] a STELLA [o Y(ipsilon)] Formule da utilizzare

oppure Esempio di calcolo per la conversione da STELLA a TRIANGOLO oppure da TRIANGOLO [o (delta)] a STELLA [o Y(ipsilon)] Formule da utilizzare Es. lab LTE Conversione da STELLA a TRIANGOLO e viceversa PREMESSA Per semplificare alcuni circuiti può essere necessario effettuare la conversione di alcune maglie: da STELLA [o Y(ipsilon)] a TRIANGOLO

Dettagli

ISTITUTO D ISTRUZIONE SUPERIORE "G. VERONESE - G. MARCONI" SEZIONE ASSOCIATA G. MARCONI

ISTITUTO D ISTRUZIONE SUPERIORE G. VERONESE - G. MARCONI SEZIONE ASSOCIATA G. MARCONI ISTITUTO D ISTRUZIONE SUPERIORE "G. VERONESE - G. MARCONI" SEZIONE ASSOCIATA G. MARCONI Via T. Serafin, 15-30014 CAVARZERE (VE) Tel. 0426/51151 - Fax 0426/310911 E-mail: ipsiamarconi@ipsiamarconi.it -

Dettagli

MACCHINE ELETTRICHE 23 giugno 2005 Elettrotecnica _ Energetica _

MACCHINE ELETTRICHE 23 giugno 2005 Elettrotecnica _ Energetica _ MACCHINE ELETTRICHE 23 giugno 2005 Elettrotecnica _ Energetica _ DOMANDE DI TEORIA 1) Circuiti equivalenti di un trasformatore monofase e considerazioni relative ai vari parametri. 2) Diagramma polare

Dettagli

ESERCIZIO 1. Soluzione. Per risolvere il problema utilizzo il modello di Ebers-Moll, grazie al quale potrò calcolare L E, W, L C, infatti so che

ESERCIZIO 1. Soluzione. Per risolvere il problema utilizzo il modello di Ebers-Moll, grazie al quale potrò calcolare L E, W, L C, infatti so che ESERCIZIO Su un transistor BJT pnp caratterizzato da N E = 0 8 cm 3 N B = 0 6 cm 3 N C = 0 5 cm 3 A = mm 2 vengono effettuate le seguenti misure: Tensione V CB negativa, emettitore aperto: I C = 0nA Tensione

Dettagli

Esercitazione 4. Biagio Provinzano Maggio 2005

Esercitazione 4. Biagio Provinzano Maggio 2005 Esercitazione Biagio Provinzano Maggio 2005 Si consideri la rete riportata in Figura, con i seguenti dati: f T =0MHz (operazionale compensato internamente), R =2kΩ, R 2 =9kΩ, R F =9kΩ. I generatori i(t)

Dettagli

b) Tracciare il diagramma di Bode (modulo) di Vu/V1, su assi tarati in Hz e db, per C = 8 nf.

b) Tracciare il diagramma di Bode (modulo) di Vu/V1, su assi tarati in Hz e db, per C = 8 nf. Esercizio analogico A a) alcolare u (,) per 0, con AO ideali. b) Tracciare il diagramma di Bode (modulo) di u/, su assi tarati in Hz e db, per 8 nf. c) alcolare il guadagno in continua u/, con AO ideali,

Dettagli

Stadi Amplificatori di Base

Stadi Amplificatori di Base Stadi Amplificatori di Base Biagio Provinzano Marzo 2005 Ipotesi di lavoro: i) Transistor npn acceso ed in zona attiva v BE 1 0.7V e v C >v B ii) Consideriamo un classico schema di polarizzazione con quattro

Dettagli

Trasformazione stella triangolo esercizio n. 10

Trasformazione stella triangolo esercizio n. 10 alcolare la potenza assorbita da ogni resistore presente nel circuito, tensioni e correnti in ogni ramo. = 0 V = R = 0 Ω R = Ω R = 0 Ω R = 00 Ω R = 00 Ω Verrà utilizzata la trasformazione stella triangolo.

Dettagli

A.S. 2014/15 CLASSE 4 BEE MATERIA: ELETTROTECNICA ED ELETTRONICA

A.S. 2014/15 CLASSE 4 BEE MATERIA: ELETTROTECNICA ED ELETTRONICA A.S. 2014/15 CLASSE 4 BEE MATERIA: ELETTROTECNICA ED ELETTRONICA UNITA DI APPRENDIMENTO 1: RETI ELETTRICHE IN DC E AC Essere capace di applicare i metodi di analisi e di risoluzione riferiti alle grandezze

Dettagli

Moduli Analogici e Amplificatori Operazionali (parte B e C) -1

Moduli Analogici e Amplificatori Operazionali (parte B e C) -1 Moduli Analogici e Amplificatori Operazionali (parte B e ) -1 Esercizi (con risultati numerici) Esercizio 1-000719 a) alcolare Vu (V1, V2) per = 0, Ad = oo b) Tracciare il diagramma di Bode di Vu/V1, per

Dettagli

a.a. 2017/2018 Stefano Bifaretti Vincenzo Bonaiuto Dipartimento di Ingegneria Industriale

a.a. 2017/2018 Stefano Bifaretti Vincenzo Bonaiuto Dipartimento di Ingegneria Industriale a.a. 2017/2018 Stefano Bifaretti Vincenzo Bonaiuto Dipartimento di Ingegneria Industriale Le macchine in c.a. impiegate negli azionamenti industriali sono caratterizzate da un circuito elettrico di statore

Dettagli

V N I N. (figura - 5.1a)

V N I N. (figura - 5.1a) ESECZO 5.: Data la rete di figura 5., ottenuta dal collegamento di un trasformatore e di una resistenza, si desidera determinare il valore della resistenza equivalente sentita fra i morsetti in ingresso

Dettagli

Esame di Elettrotecnica Corso di laurea in Ingegneria Civile (sede di Foggia) Prova di Appello del 29 giugno 2011

Esame di Elettrotecnica Corso di laurea in Ingegneria Civile (sede di Foggia) Prova di Appello del 29 giugno 2011 Esame di Elettrotecnica Corso di laurea in ngegneria Civile (sede di Foggia) Prova di ppello del 9 giugno 0 Quesito n. Considerato il circuito in figura in regime sinusoidale, si determini il valore della

Dettagli

Trasformazione triangolo stella esercizio n. 10

Trasformazione triangolo stella esercizio n. 10 alcolare la potenza assorbita da ogni resistore presente nel circuito, tensioni e correnti in ogni ramo. = 30 V = 0 Ω 1 Ω 0 Ω 3 00 Ω 100 Ω Verrà utilizzata la trasformazione triangolo stella ed il teorema

Dettagli

Esercizi di Elettrotecnica

Esercizi di Elettrotecnica Esercizi di Elettrotecnica Circuiti in corrente continua Parte 1 www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 24-5-2011) Circuiti in corrente continua - 1 1 Esercizio n. 1 R 1 = 10 R 2

Dettagli

1. Serie, parallelo e partitori. ES Calcolare la

1. Serie, parallelo e partitori. ES Calcolare la Maffucci: ircuiti in regime stazionario ver-00 Serie, parallelo e partitori S - alcolare la vista ai morsetti - e quella vista ai morsetti -D S alcolare la resistenza uivalente vista ai capi del generatore

Dettagli

Classe IV specializzazione elettronica. Elettrotecnica ed elettronica

Classe IV specializzazione elettronica. Elettrotecnica ed elettronica Macro unità n 1 Classe IV specializzazione elettronica Elettrotecnica ed elettronica Reti elettriche, segnali e diodi Leggi fondamentali: legge di Ohm, principi di Kirchhoff, teorema della sovrapposizione

Dettagli

Laurea di I Livello in Ingegneria Informatica

Laurea di I Livello in Ingegneria Informatica Laurea di I Livello in Ingegneria Informatica Sede di Mantova TEORIA DEI CIRCUITI II prova in itinere 3.2.2003 Problema I Nel circuito indicato in figura si ha v 1 = 10 cos (1000 t sec ) V Determinare

Dettagli

B6a - Presentazione della lezione B6. 1/5- Obiettivi

B6a - Presentazione della lezione B6. 1/5- Obiettivi B6a - Preentazione della lezione B6 /5- Obiettivi onoere le aturazioni di livello dell amplifiatore e aper prevedere la loro influenza ui egnali onoere gli offet dell amplifiatore e aper prevedere la loro

Dettagli

SISTEMI ELETTRONICI. Ingegneria dell Informazione. Modulo. Page 1. SisElnC4 12/12/2002

SISTEMI ELETTRONICI. Ingegneria dell Informazione. Modulo. Page 1. SisElnC4 12/12/2002 Ingegneria dell Informazione Modulo SISTEMI ELETTRONICI C - AMPLIFICATORI OPERAZIONALI C.4 - Progetto di moduli con A. O.» Comportamento dinamico A.O.» Progetto di amplificatori» Come limitare gli errori»

Dettagli

Università degli Studi di Bergamo Facoltà di ingegneria. Corso di Elettrotecnica A.A. 1995/1996 Scritto 12 settembre 1996

Università degli Studi di Bergamo Facoltà di ingegneria. Corso di Elettrotecnica A.A. 1995/1996 Scritto 12 settembre 1996 Università degli Studi di Bergamo Facoltà di ingegneria Corso di Elettrotecnica A.A. 1995/1996 Scritto 12 settembre 1996 Es. 1 Dato il circuito magnetico in figura, trascurando gli effetti di bordo, calcolare

Dettagli