1 ElencodiSA. 1.1 SA con una sola operazione binaria

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "1 ElencodiSA. 1.1 SA con una sola operazione binaria"

Transcript

1 1 ElencodiSA L elenco è parziale. Un elenco esaustivo sarebbe ovviamente impossibile(le SA sono infinite... potreste comunque consultare la biblioteca di Babele!). 1.1 SA con una sola operazione binaria Spazio sostegno finito o infinito S, una operazione binaria che indichiamo con. Si sottintende la proprietà di chiusura. Quindi x y=z; x,y S,z S (1) Magma(Gruppoide) Nessun assioma Semi Gruppo Un assioma: la proprietà associativa x (y z)=(x y) z (2) Quasi Gruppo Due assiomi 1)Divisionesinistra: daticomunquea,b Sesisteunoeunsolox Stale che(soluzione di) a x=b (3) 2)Divisionedestra: daticomunquea,b S esisteunoeunsolo x S tale che(soluzione di) x a=b (4) 1

2 1.1.4 Ciclo(Loop) Sinistro (Destro) Due assiomi 1) Divisione sinistra(destra) 2)Elementoneutrosinistro(destro): u s S taleche x S (analogamente per il destro): Notabeneche u s (u d )nonpossonodipendereda x... u s x=x (5) x u d =x (6) Ciclo(loop) Tre assiomi 1) divisione sinistra 2) divisione destra 3)esisteununicoelementoneutrocheèsinistroedestro Quindi un Loop è anche quasi-gruppo e ovviamente anche loop sinistro e destro Gruppo Tre assiomi(abbiamo visto che si possono scegliere in modo diverso) 1) proprietà associativa 2) esistenza dell elemento neutro u u x=x u=x (7) 3) esistenza x S dell anti_elemento x S(inverso, opposto) che è sinistro edestro: x x=x x=u (8) Remark 1 Se vale la proprietà commutativa x y=y x (9) allora avremo ulteriori SA che chiameremo Abeliane: semi gruppi abeliani, loop abeliani, etc. 2

3 1.2 SA con due operazioni binarie Le due operazioni sono chiamate abitualmente somma e prodotto e si usano abitualmente i soliti simboli +,. Ma occorre sempre tener presente che in generale NON sono le usuali operazioni di somma e prodotto tra numeri. Sarebbe in effetti meglio usare simboli diversi(anche se quasi sempre per economia non si fa): Somma: x y (10) Prodotto: x y (11) QuindiunaSAorasaràunospaziosostegnoconquestedueoperazionibinarie(S,, ) più eventuali assiomi Anello RispettoallasommaèunGruppoAbeliano Rispetto al prodotto è un Semi_Gruppo Valelaproprietàdistributiva(sinistraedestra): x,y,z S x (y z)=(x y) (x z) (12) (x y) z=(x z) (y z) (13) Se anche il prodotto è commutativo abbiamo un Anello Commutativo(Abeliano) Corpo (S, )èungruppoabeliano (S, )èungruppo Vale la proprietà distributiva(sinistra e destra) Con S indichiamo lo spazio sostegno privato dell elemento neutro della somma(che comunemente è idicato con 0): S =S\{0} (14) 3

4 1.2.3 Campo (Field) (S, )èungruppoabeliano (S, )èungruppoabeliano Vale la proprietà distributiva(sinistra e destra) Cioè il campo è un Corpo Commutativo. Remark 2 Notare che Q(numeri razionali),r(numeri reali),c(numeri complessi) sono Campi(per gli studenti: verificare!) Ma anche i numeri algebrici, i numeri surreali e i numeri piadici sono campi... sembra proprio che se volete introdurre una nuova specie di numeri dobbiate accertarvi che con le loro operazionicostituiscanolasadicampo(oalmenodicorpodatocheiquaternioni hanno una moltiplicazione non commutativa). Per questo si parla comunemente di campo(corpo) numerico. Exercise 3 chestrutturahan?ez? Problem 4 I numeri complessi hanno come spazio sostegno le coppie ordinate di numeri reali, i quaternioni le quadruple di numeri reali. E possibile inventare operazioni di somma e prodotto tali che le terne ordinate di numeri reali abbiano la SA di un campo o almeno di un corpo? avremmo così nuovi numeri: i ternioni. Problem 5 realizzareunasa con sostegno inumeri reali chesiauncampo( oalmenouncorpo)eincui x 1 x 2 =x 3 ; x 1,x 2,x 3 R (15) x 3 =x 1 +x 2 +1 (16) (con + che indica la normale somma dei reali... avremmo quindi dei nuovi numeri-inumeristrambi-percui 2+2=5! vabbèhobarato: 2 2=5) 2 Una banale operazione binaria Indagheremo per esercizio le SA indotte sullo spazio sostegno dei numeri reali da una semplice(lineare) operazione binaria: x 1 x 2 =x 3 ; x 1,x 2,x 3 R (17) 4

5 x 3 =a+bx 1 +cx 2 (18) dove a,b,c sono tre numeri reali, scelti per ora arbitrariamente, e le operazionidisommaeprodottosonoquelleusualiperireali. LaSAsaràquindi(R,,a,b,c). Ok, dato che l operazione è ben definita avremo comunque un Magma(gruppoide). Cerchiamo altre proprietà. 2.1 é commutativa? vediamo: quindideveessere x,y x y = a+bx+cy (19) y x = a+by+cx (20) a+bx+cy=a+by+cx (21) cheèveraseesolosec=b. Quindi(R,,a,b,b)èalmenounMagmaAbeliano. 2.2 é associativa? vediamo: ma x (y z)=(x y) z (22) x (y z) = x (a+by+cz) (23) = a+bx+c(a+by+cz) (24) (x y) z = (a+bx+cy) z (25) = a+b(a+bx+cy)+cz (26) quindi deve essere a+bx+c(a+by+cz)=a+b(a+bx+cy)+cz (27) chenonèunaequazionedarisolveremaunaidentità(valida x,y,z)epperciòdeveessereveraseparatamenteperlaparteinxeinyeinzeinpiùperil termine noto. Cioè bx = b 2 x (28) cby = bcy (29) c 2 z = cz (30) a+ca = a+ba (31) 5

6 L ultima condizione da due scelte 1)a=0.Nonconsiderandocb=bc,cheèveradatocheilprodottotrareali ècommutativo,restanodasoddisfareb=b 2 ec 2 =c.quindib=0o b=1e c=0o c=1.scartandoilcasobanalea=0,b=0,c=0restanolesa (R,,0,1,1) (32) (R,,0,1,0) (33) (R,,0,0,1) (34) chequindisonosemigruppi. Notareche(R,,0,1,1)èunsemigruppoAbeliano. 2)a 0equindi c=b.sa:(r,,a,1,1)semigruppoabeliano. 2.3 ha divisione sinistra e/o destra? vediamo sinistra: laseguenteequazionehasoluzioneunicax per y,z R cioè quindi x= z by a c cheesisteedèunicasec 0. y x=z (35) a+by+cx=z (36) destra: laseguenteequazionehasoluzioneunicax per y,z R cioè quindi x= z cy a b cheesisteedèunicaseb 0. Quindi(R,,a,b 0,c 0)èunquasigruppo (37) x y=z (38) a+bx+cy=z (39) (40) 6

7 2.4 Esiste l elemento neutro sinistro e/o destro? Proviamo elementoneutrosinistrou s cioè: u s x=x; x R (41) a+bu s +cx=x (42) Attenzione: u s = (1 c)x a (43) b NON va bene perchè l elemento neutro deve essere lo stesso per x. Quindi deveesserec=1(eb 0). elementoneutrodestrou d cioè: x u d =x; x R (44) a+bx+cu d =x (45) Attenzione: u d = (1 b)x a (46) c NON va bene perchè l elemento neutro deve essere lo stesso per x. Quindi deveessereb=1(ec 0). Quindi(R,,a,b 0,1)èunloopsinistro,(R,,a,1,c 0)èunloopdestro. (R,,a,1,1)èunloop. 2.5 Esiste l anti_elemento sinistro e/o destro? sinistro: deveesistereper xun x s taleche x s x=u s (47) Implicitamente abbiamo detto che esiste u s e quindi c = 1 (e b 0) e (vedisopra)u s = a b.allora quindi a+b x s +x= a b x s = 1 b ( a b +a+x ) (48) (49) 7

8 destro: deveesistereper xun x d taleche x x=u d (50) Implicitamente abbiamo detto che esiste u d e quindi b = 1 (e c 0) e (vedisopra)u d = a c.allora quindi a+x+c x d = a c x d = 1 c ( a c +a+x ) (51) (52) Allora(R,,a,1,1)èungruppo epureabeliano Exercise 6 inventare e indagare nuove operazioni binarie non lineari. Exercise 7 interpretare la di questo capitolo come prodotto, aggiungere una vostra operazione di somma e analizzare le varie SA ottenibili sempre sul sostegno dei numeri reali. Exercise 8 (laborioso!) Lo spazio ambiente S 1 è l insieme delle coppie ordinate [x,y]; x,y R Indicheremoglielementiditalespazioconleletteremaiuscole L=[x,y] S 1 Introduciamol operazionedisommatradueelementidis 1 (sayl=[x,y],l = [x,y ])con L L = L (53) L = [x,y ] (54) x = x+x (55) y = y+y (56) Indicheremolozero(elementoneutrorispettoallasomma)con 0=[0,0] Introduciamo una ulteriore operazione binaria(prodotto) tra due elementi di S 1 (say L=[x,y],L =[x,y ])con L = L L =LL =[x,y ] (57) x = y 2 y x 2 y 2xyy +xx +xy ; (58) y = y 2 y +x 2 y +2xyy +yy +yx (59) Che struttura algebrica abbiamo? 8

definizione e notazione (direzione,verso modulo), v V, lo spazio ( insieme)

definizione e notazione (direzione,verso modulo), v V, lo spazio ( insieme) 1 Spazi vettoriali 1.1 Richiami ai vettori freccia definizione e notazione (direzione,verso modulo), v V, lo spazio ( insieme) dei vettori esiste la operazione binaria sul sostegno V che chiameremo somma(regola

Dettagli

STRUTTURE ALGEBRICHE

STRUTTURE ALGEBRICHE STRUTTURE ALGEBRICHE Operazioni in un insieme Sia A un insieme non vuoto; una funzione f : A A A si dice operazione binaria (o semplicemente operazione), oppure legge di composizione interna. Per definizione

Dettagli

4. Operazioni binarie, gruppi e campi.

4. Operazioni binarie, gruppi e campi. 1 4. Operazioni binarie, gruppi e campi. 4.1 Definizione. Diremo - operazione binaria ovunque definita in A B a valori in C ogni funzione f : A B C - operazione binaria ovunque definita in A a valori in

Dettagli

Anello commutativo. Un anello è commutativo se il prodotto è commutativo.

Anello commutativo. Un anello è commutativo se il prodotto è commutativo. Anello. Un anello (A, +, ) è un insieme A con due operazioni + e, dette somma e prodotto, tali che (A, +) è un gruppo abeliano, (A, ) è un monoide, e valgono le proprietà di distributività (a destra e

Dettagli

Esercitazioni di Reti Logiche. Lezione 2 Algebra Booleana e Porte Logiche. Zeynep KIZILTAN zkiziltan@deis.unibo.it

Esercitazioni di Reti Logiche. Lezione 2 Algebra Booleana e Porte Logiche. Zeynep KIZILTAN zkiziltan@deis.unibo.it Esercitazioni di Reti Logiche Lezione 2 Algebra Booleana e Porte Logiche Zeynep KIZILTAN zkiziltan@deis.unibo.it Argomenti Algebra booleana Funzioni booleane e loro semplificazioni Forme canoniche Porte

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

Prodotto libero di gruppi

Prodotto libero di gruppi Prodotto libero di gruppi 24 aprile 2014 Siano (A 1, +) e (A 2, +) gruppi abeliani. Sul prodotto cartesiano A 1 A 2 definiamo l operazione (x 1, y 1 ) + (x 2, y 2 ) := (x 1 + x 2, y 1 + y 2 ). Provvisto

Dettagli

Corso introduttivo pluridisciplinare Strutture algebriche

Corso introduttivo pluridisciplinare Strutture algebriche Corso introduttivo pluridisciplinare Strutture algebriche anno acc. 2013/2014 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Corso introduttivo pluridisciplinare 1 / 17 index

Dettagli

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da Data una funzione reale f di variabile reale x, definita su un sottoinsieme proprio D f di R (con questo voglio dire che il dominio di f è un sottoinsieme di R che non coincide con tutto R), ci si chiede

Dettagli

Insiemi con un operazione

Insiemi con un operazione Capitolo 3 Insiemi con un operazione 3.1 Gruppoidi, semigruppi, monoidi Definizione 309 Un operazione binaria su un insieme G è una funzione: f : G G G Quindi, un operazione binaria f su un insieme G è

Dettagli

Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI

Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI In matematica, per semplificare la stesura di un testo, si fa ricorso ad un linguaggio specifico. In questo capitolo vengono fornite in maniera sintetica le nozioni

Dettagli

Prodotto elemento per elemento, NON righe per colonne Unione: M R S

Prodotto elemento per elemento, NON righe per colonne Unione: M R S Relazioni binarie Una relazione binaria può essere rappresentata con un grafo o con una matrice di incidenza. Date due relazioni R, S A 1 A 2, la matrice di incidenza a seguito di varie operazioni si può

Dettagli

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo. DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti

Dettagli

R X X. RELAZIONE TOTALE Definizione: Si definisce relazione totale tra x e y se dati X,Y diversi dall'insieme vuoto

R X X. RELAZIONE TOTALE Definizione: Si definisce relazione totale tra x e y se dati X,Y diversi dall'insieme vuoto PRODOTTO CARTESIANO Dati due insiemi non vuoti X e Y si definisce prodotto cartesiano: X Y ={ x, y x X, y Y } attenzione che (x,y) è diverso da (y,x) perchè (x,y)={x,{y}} e (y,x)={y,{x}} invece sono uguali

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

Elementi di informatica

Elementi di informatica Elementi di informatica Sistemi di numerazione posizionali Rappresentazione dei numeri Rappresentazione dei numeri nei calcolatori rappresentazioni finalizzate ad algoritmi efficienti per le operazioni

Dettagli

Applicazioni lineari

Applicazioni lineari Applicazioni lineari Esempi di applicazioni lineari Definizione. Se V e W sono spazi vettoriali, una applicazione lineare è una funzione f: V W tale che, per ogni v, w V e per ogni a, b R si abbia f(av

Dettagli

Schemi delle Lezioni di Matematica Generale. Pierpaolo Montana

Schemi delle Lezioni di Matematica Generale. Pierpaolo Montana Schemi delle Lezioni di Matematica Generale Pierpaolo Montana Al-giabr wa al-mukabalah di Al Khuwarizmi scritto approssimativamente nel 820 D.C. Manuale arabo da cui deriviamo due nomi: Algebra Algoritmo

Dettagli

Il principio di induzione e i numeri naturali.

Il principio di induzione e i numeri naturali. Il principio di induzione e i numeri naturali. Il principio di induzione è un potente strumento di dimostrazione, al quale si ricorre ogni volta che si debba dimostrare una proprietà in un numero infinito

Dettagli

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti.

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Def. Si dice equazione differenziale lineare del secondo ordine

Dettagli

Nel seguito, senza ulteriormente specificarlo, A indicherà un anello commutativo con identità.

Nel seguito, senza ulteriormente specificarlo, A indicherà un anello commutativo con identità. 1 ANELLI Definizione 1.1. Sia A un insieme su cui sono definite due operazioni +,. (A, +, ) si dice Anello se (A, +) è un gruppo abeliano è associativa valgono le leggi distributive, cioè se a, b, c A

Dettagli

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

3 GRAFICI DI FUNZIONI

3 GRAFICI DI FUNZIONI 3 GRAFICI DI FUNZIONI Particolari sottoinsiemi di R che noi studieremo sono i grafici di funzioni. Il grafico di una funzione f (se non è specificato il dominio di definizione) è dato da {(x, y) : x dom

Dettagli

Sezione Esercizi 309. e ) a 6 + b 4 + 2a 3 b 2 Sì No f ) 25a 2 + 4b 2 20ab 2 Sì No. g ) 25a b a2 b 2 Sì No

Sezione Esercizi 309. e ) a 6 + b 4 + 2a 3 b 2 Sì No f ) 25a 2 + 4b 2 20ab 2 Sì No. g ) 25a b a2 b 2 Sì No Sezione.6. Esercizi 09.6 Esercizi.6. Esercizi dei singoli paragrafi. - Quadrato di un binomio.. Completa: x y) = x) x)y) y) =................................................ x y) = x) x)y) y) =........................................

Dettagli

risulta (x) = 1 se x < 0.

risulta (x) = 1 se x < 0. Questo file si pone come obiettivo quello di mostrarvi come lo studio di una funzione reale di una variabile reale, nella cui espressione compare un qualche valore assoluto, possa essere svolto senza necessariamente

Dettagli

Lezione 1. Gli Insiemi. La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme:

Lezione 1. Gli Insiemi. La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme: Lezione 1 Gli Insiemi La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme: degli iscritti ad un corso di laurea delle stelle in cielo dei punti di un piano

Dettagli

L Ultimo Teorema di Fermat per n = 3 e n = 4

L Ultimo Teorema di Fermat per n = 3 e n = 4 Università degli Studi di Cagliari Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Matematica L Ultimo Teorema di Fermat per n = 3 e n = 4 Relatore Prof. Andrea Loi Tesi di Laurea

Dettagli

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Andrea Bobbio Anno Accademico 2000-2001 Algebra Booleana 2 Calcolatore come rete logica Il calcolatore può essere visto come una rete logica

Dettagli

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come RICHIAMI SULLE MATRICI Una matrice di m righe e n colonne è rappresentata come A = a 11 a 12... a 1n a 21 a 22... a 2n............ a m1 a m2... a mn dove m ed n sono le dimensioni di A. La matrice A può

Dettagli

DOMINI A FATTORIZZAZIONE UNICA

DOMINI A FATTORIZZAZIONE UNICA DOMINI A FATTORIZZAZIONE UNICA CORSO DI ALGEBRA, A.A. 2012-2013 Nel seguito D indicherà sempre un dominio d integrità cioè un anello commutativo con unità privo di divisori dello zero. Indicheremo con

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione Capitolo 2 MATRICI Fra tutte le applicazioni su uno spazio vettoriale interessa esaminare quelle che mantengono la struttura di spazio vettoriale e che, per questo, vengono dette lineari La loro importanza

Dettagli

Diagonalizzazione di matrici e applicazioni lineari

Diagonalizzazione di matrici e applicazioni lineari CAPITOLO 9 Diagonalizzazione di matrici e applicazioni lineari Esercizio 9.1. Verificare che v = (1, 0, 0, 1) è autovettore dell applicazione lineare T così definita T(x 1,x 2,x 3,x 4 ) = (2x 1 2x 3, x

Dettagli

Lezione 9: Cambio di base

Lezione 9: Cambio di base Lezione 9: Cambio di base In questa lezione vogliamo affrontare uno degli argomenti piu ostici per lo studente e cioè il cambio di base all interno di uno spazio vettoriale, inoltre cercheremo di capire

Dettagli

G. Pareschi ALGEBRE DI BOOLE. 1. Algebre di Boole

G. Pareschi ALGEBRE DI BOOLE. 1. Algebre di Boole G. Pareschi ALGEBRE DI BOOLE 1. Algebre di Boole Nel file precedente abbiamo incontrato la definizione di algebra di Boole come reticolo: un algebra di Boole e un reticolo limitato, complementato e distributivo.

Dettagli

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................

Dettagli

L algebra di Boole. Cenni Corso di Reti Logiche B. Mariagiovanna Sami

L algebra di Boole. Cenni Corso di Reti Logiche B. Mariagiovanna Sami L algebra di Boole Cenni Corso di Reti Logiche B Mariagiovanna Sami Algebra Booleana: sistema algebrico Operazione: Operazione α sull'insieme S={s1,s2,...} = funzione che da SxS (prodotto cartesiano S

Dettagli

Anno 3. Classificazione delle funzioni

Anno 3. Classificazione delle funzioni nno 3 Classificazione delle funzioni 1 Introduzione In questa lezione affronteremo lo studio delle principali proprietà delle funzioni, imparando a classificarle e a compiere alcune operazioni su esse.

Dettagli

1. PRIME PROPRIETÀ 2

1. PRIME PROPRIETÀ 2 RELAZIONI 1. Prime proprietà Il significato comune del concetto di relazione è facilmente intuibile: due elementi sono in relazione se c è un legame tra loro descritto da una certa proprietà; ad esempio,

Dettagli

Un metodo per il rilevamento degli errori: la tecnica del Bit di Parità

Un metodo per il rilevamento degli errori: la tecnica del Bit di Parità Appunti: Tecniche di rilevazione e correzione degli errori 1 Tecniche di correzione degli errori Le tecniche di correzione degli errori sono catalogabili in: metodi per il rilevamento degli errori; metodi

Dettagli

11) convenzioni sulla rappresentazione grafica delle soluzioni

11) convenzioni sulla rappresentazione grafica delle soluzioni 2 PARAGRAFI TRATTATI 1)La funzione esponenziale 2) grafici della funzione esponenziale 3) proprietá delle potenze 4) i logaritmi 5) grafici della funzione logaritmica 6) principali proprietá dei logaritmi

Dettagli

I Polinomi. Michele Buizza. L'insieme dei numeri interi lo indicheremo con Z. è domenica = non vado a scuola. signica se e solo se.

I Polinomi. Michele Buizza. L'insieme dei numeri interi lo indicheremo con Z. è domenica = non vado a scuola. signica se e solo se. I Polinomi Michele Buizza 1 Insiemi In questa prima sezione ricordiamo la simbologia che useremo in questa breve dispensa. Iniziamo innanzitutto a ricordare i simboli usati per i principali insiemi numerici.

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0 Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice

Dettagli

Funzioni - Parte II. 1 Composizione di Funzioni. Antonio Lazzarini. Prerequisiti: Funzioni (Parte I).

Funzioni - Parte II. 1 Composizione di Funzioni. Antonio Lazzarini. Prerequisiti: Funzioni (Parte I). Funzioni - Parte II Antonio Lazzarini Prerequisiti: Funzioni (Parte I). 1 Composizione di Funzioni Sappiamo che é possibile denire diverse operazioni ra i numeri: addizione, sottrazione, moltiplicazione,

Dettagli

La programmazione con vincoli in breve. La programmazione con vincoli in breve

La programmazione con vincoli in breve. La programmazione con vincoli in breve Obbiettivi Introdurre la nozione di equivalenza di CSP. Dare una introduzione intuitiva dei metodi generali per la programmazione con vincoli. Introdurre il framework di base per la programmazione con

Dettagli

NORMALIZZAZIONE DI SCHEMI RELAZIONALI. Prof.ssa Rosalba Giugno

NORMALIZZAZIONE DI SCHEMI RELAZIONALI. Prof.ssa Rosalba Giugno NORMALIZZAZIONE DI SCHEMI RELAZIONALI Prof.ssa Rosalba Giugno PROBLEMA GENERALE La progettazione concettuale e logica produce uno schema relazionale che rappresenta la realta dei dati nella nostra applicazione.

Dettagli

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri.

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. A partire da questa lezione, ci occuperemo di come si riescono a codificare con sequenze binarie, quindi con sequenze di 0 e 1,

Dettagli

Equazione del calore e funzioni trigonometriche.

Equazione del calore e funzioni trigonometriche. CAPITOLO 1 Equazione del calore e funzioni trigonometriche. 1.1. Spazi vettoriali trigonometrici Il concetto di spazio vettoriale euclideo dovrebbe essere familiare al lettore di queste note. Per comodità

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

MAPPE DI KARNAUGH. Nei capitoli precedenti si è visto che è possibile associare un circuito elettronico o elettrico ad una funzione logica.

MAPPE DI KARNAUGH. Nei capitoli precedenti si è visto che è possibile associare un circuito elettronico o elettrico ad una funzione logica. MAPPE DI KARNAUGH 1. Generalità Nei capitoli precedenti si è visto che è possibile associare un circuito elettronico o elettrico ad una funzione logica. E ovvio che più semplice è la funzione e più semplice

Dettagli

Algebra di Boole ed Elementi di Logica

Algebra di Boole ed Elementi di Logica Algebra di Boole ed Elementi di Logica 53 Cenni all algebra di Boole L algebra di Boole (inventata da G. Boole, britannico, seconda metà 8), o algebra della logica, si basa su operazioni logiche Le operazioni

Dettagli

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione Alberi binari Ilaria Castelli castelli@dii.unisi.it Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione A.A. 2009/2010 I. Castelli Alberi binari, A.A. 2009/2010 1/20 Alberi binari

Dettagli

MOMENTI DI INERZIA. m i. i=1

MOMENTI DI INERZIA. m i. i=1 MOMENTI DI INEZIA Massa Ad ogni punto materiale si associa uno scalare positivo m che rappresenta la quantità di materia di cui è costituito il punto. m, la massa, è costante nel tempo. Dato un sistema

Dettagli

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali Grandezze scalari e vettoriali Esempio vettore spostamento: Esistono due tipi di grandezze fisiche. a) Grandezze scalari specificate da un valore numerico (positivo negativo o nullo) e (nel caso di grandezze

Dettagli

Capitolo 5. Funzioni. Grafici.

Capitolo 5. Funzioni. Grafici. Capitolo 5 Funzioni. Grafici. Definizione: Una funzione f di una variabile reale,, è una corrispondenza che associa ad ogni numero reale appartenente ad un insieme D f R un unico numero reale, y R, denotato

Dettagli

2 Argomenti introduttivi e generali

2 Argomenti introduttivi e generali 1 Note Oltre agli esercizi di questa lista si consiglia di svolgere quelli segnalati o assegnati sul registro e genericamente quelli presentati dal libro come esercizio o come esempio sugli argomenti svolti

Dettagli

Lezione 3. Sommario. Le operazioni aritmetiche binarie. L aritmetica binaria. La somma La sottrazione La moltiplicazione

Lezione 3. Sommario. Le operazioni aritmetiche binarie. L aritmetica binaria. La somma La sottrazione La moltiplicazione Lezione 3 Le operazioni aritmetiche binarie Sommario L aritmetica binaria La somma La sottrazione La moltiplicazione 1 Definizione Si indica con il termine bit più significativo il bit più a sinistra,

Dettagli

L espressione torna invece sempre vera (quindi la soluzione originale) se cambiamo contemporaneamente il verso: 1 < 0.

L espressione torna invece sempre vera (quindi la soluzione originale) se cambiamo contemporaneamente il verso: 1 < 0. EQUAZIONI E DISEQUAZIONI Le uguaglianze fra espressioni numeriche si chiamano equazioni. Cercare le soluzioni dell equazione vuol dire cercare quelle combinazioni delle lettere che vi compaiono che la

Dettagli

Architettura degli Elaboratori I Esercitazione 1 - Rappresentazione dei numeri

Architettura degli Elaboratori I Esercitazione 1 - Rappresentazione dei numeri Architettura degli Elaboratori I Esercitazione 1 - Rappresentazione dei numeri 1 Da base 2 a base 10 I seguenti esercizi richiedono di convertire in base 10 la medesima stringa binaria codificata rispettivamente

Dettagli

I sistemi di numerazione

I sistemi di numerazione I sistemi di numerazione 01-INFORMAZIONE E SUA RAPPRESENTAZIONE Sia dato un insieme finito di caratteri distinti, che chiameremo alfabeto. Utilizzando anche ripetutamente caratteri di un alfabeto, si possono

Dettagli

A.1 Definizione e rappresentazione di un numero complesso

A.1 Definizione e rappresentazione di un numero complesso 441 APPENDICE A4 NUMERI COMPLESSI A.1 Definizione e rappresentazione di un numero complesso Si riepilogano i concetti e le operazioni elementari relativi ai numeri complessi. Sia z un numero complesso;

Dettagli

Corrispondenze e funzioni

Corrispondenze e funzioni Corrispondenze e funzioni L attività fondamentale della mente umana consiste nello stabilire corrispondenze e relazioni tra oggetti; è anche per questo motivo che il concetto di corrispondenza è uno dei

Dettagli

Laboratorio di Informatica

Laboratorio di Informatica Laboratorio di Informatica Introduzione a Python Dottore Paolo Parisen Toldin - parisent@cs.unibo.it Argomenti trattati Che cosa è python Variabili Assegnazione Condizionale Iterazione in una lista di

Dettagli

Anno 3. Funzioni: dominio, codominio e campo di esistenza

Anno 3. Funzioni: dominio, codominio e campo di esistenza Anno 3 Funzioni: dominio, codominio e campo di esistenza 1 Introduzione In questa lezione parleremo delle funzioni. Ne daremo una definizione e impareremo a studiarne il dominio in relazione alle diverse

Dettagli

Algebra Di Boole. Definiamo ora che esiste un segnale avente valore opposto di quello assunto dalla variabile X.

Algebra Di Boole. Definiamo ora che esiste un segnale avente valore opposto di quello assunto dalla variabile X. Algebra Di Boole L algebra di Boole è un ramo della matematica basato sul calcolo logico a due valori di verità (vero, falso). Con alcune leggi particolari consente di operare su proposizioni allo stesso

Dettagli

Integrali doppi - Esercizi svolti

Integrali doppi - Esercizi svolti Integrali doppi - Esercizi svolti Integrali doppi senza cambiamento di variabili Si disegni il dominio e quindi si calcolino gli integrali multipli seguenti:... xy dx dy, con (x, y R x, y x x }; x + y

Dettagli

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali Grandezze scalari e vettoriali 01 - Grandezze scalari e grandezze vettoriali. Le grandezze fisiche, gli oggetti di cui si occupa la fisica, sono grandezze misurabili. Altri enti che non sono misurabili

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Obiettivi dell Analisi Numerica. Avviso. Risoluzione numerica di un modello. Analisi Numerica e Calcolo Scientifico

Obiettivi dell Analisi Numerica. Avviso. Risoluzione numerica di un modello. Analisi Numerica e Calcolo Scientifico M. Annunziato, DIPMAT Università di Salerno - Queste note non sono esaustive ai fini del corso p. 3/43 M. Annunziato, DIPMAT Università di Salerno - Queste note non sono esaustive ai fini del corso p.

Dettagli

Ottimizazione vincolata

Ottimizazione vincolata Ottimizazione vincolata Ricordiamo alcuni risultati provati nella scheda sulla Teoria di Dini per una funzione F : R N+M R M di classe C 1 con (x 0, y 0 ) F 1 (a), a = (a 1,, a M ), punto in cui vale l

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

APPENDICE NOZIONI BASE E VARIE

APPENDICE NOZIONI BASE E VARIE pag. 131 Appendice: Nozioni base e varie G. Gerla APPENDICE NOZIONI BASE E VARIE 1. Funzioni e relazioni di equivalenza Questi appunti sono rivolti a persone che abbiano già una conoscenza elementare della

Dettagli

Alessandro Pellegrini

Alessandro Pellegrini Esercitazione sulle Rappresentazioni Numeriche Esistono 1 tipi di persone al mondo: quelli che conoscono il codice binario e quelli che non lo conoscono Alessandro Pellegrini Cosa studiare prima Conversione

Dettagli

Algoritmi e Strutture Dati II: Parte B Anno Accademico 2004-2005. Lezione 11

Algoritmi e Strutture Dati II: Parte B Anno Accademico 2004-2005. Lezione 11 Algoritmi e Strutture Dati II: Parte B Anno Accademico 2004-2005 Docente: Ugo Vaccaro Lezione 11 In questa lezione vedremo alcune applicazioni della tecnica greedy al progetto di algoritmi on-line. Vediamo

Dettagli

09 - Funzioni reali di due variabili reali

09 - Funzioni reali di due variabili reali Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 09 - Funzioni reali di due variabili reali Anno Accademico 2013/2014

Dettagli

Le funzioni elementari. La struttura di R. Sottrazione e divisione

Le funzioni elementari. La struttura di R. Sottrazione e divisione Le funzioni elementari La struttura di R La struttura di R è definita dalle operazioni Addizione e moltiplicazione. Proprietà: Commutativa Associativa Distributiva dell addizione rispetto alla moltiplicazione

Dettagli

Rappresentazione dei numeri in un calcolatore

Rappresentazione dei numeri in un calcolatore Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri in un calcolatore Lezione 2 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione dei numeri

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ INSIEMISTICA \ TEORIA DEGLI INSIEMI (1)

APPUNTI DI MATEMATICA ALGEBRA \ INSIEMISTICA \ TEORIA DEGLI INSIEMI (1) ALGEBRA \ INSIEMISTICA \ TEORIA DEGLI INSIEMI (1) Un insieme è una collezione di oggetti. Il concetto di insieme è un concetto primitivo. Deve esistere un criterio chiaro, preciso, non ambiguo, inequivocabile,

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

Misure di base su una carta. Calcoli di distanze

Misure di base su una carta. Calcoli di distanze Misure di base su una carta Calcoli di distanze Per calcolare la distanza tra due punti su una carta disegnata si opera nel modo seguente: 1. Occorre identificare la scala della carta o ricorrendo alle

Dettagli

LA MOLTIPLICAZIONE IN CLASSE SECONDA

LA MOLTIPLICAZIONE IN CLASSE SECONDA LA MOLTIPLICAZIONE IN CLASSE SECONDA Rossana Nencini, 2013 Le fasi del lavoro: 1. Proponiamo ai bambini una situazione reale di moltiplicazione: portiamo a scuola una scatola di biscotti (. ) e diamo la

Dettagli

Algoritmi e strutture dati. Codici di Huffman

Algoritmi e strutture dati. Codici di Huffman Algoritmi e strutture dati Codici di Huffman Memorizzazione dei dati Quando un file viene memorizzato, esso va memorizzato in qualche formato binario Modo più semplice: memorizzare il codice ASCII per

Dettagli

Funzioni continue. ) della funzione calcolata in x 0, ovvero:

Funzioni continue. ) della funzione calcolata in x 0, ovvero: Funzioni continue Dal punto di vista intuitivo dire che una funzione è continua in un intervallo è come dire che nel disegnare il suo grafico non stacchiamo mai la penna dal foglio. Scriviamo adesso la

Dettagli

Calcolatori: Algebra Booleana e Reti Logiche

Calcolatori: Algebra Booleana e Reti Logiche Calcolatori: Algebra Booleana e Reti Logiche 1 Algebra Booleana e Variabili Logiche I fondamenti dell Algebra Booleana (o Algebra di Boole) furono delineati dal matematico George Boole, in un lavoro pubblicato

Dettagli

Funzioni. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Funzioni. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Funzioni Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

Un ripasso di aritmetica: Rappresentazione binaria - operazioni. riporti

Un ripasso di aritmetica: Rappresentazione binaria - operazioni. riporti Un ripasso di aritmetica: Rappresentazione binaria - operazioni A queste rappresentazioni si possono applicare le operazioni aritmetiche: riporti 1 1 0 + 1 0 = 1 0 0 24 Un ripasso di aritmetica: Rappresentazione

Dettagli

Alla pagina successiva trovate la tabella

Alla pagina successiva trovate la tabella Tabella di riepilogo per le scomposizioni Come si usa la tabella di riepilogo per le scomposizioni Premetto che, secondo me, questa tabella e' una delle pochissime cose che in matematica bisognerebbe "studiare

Dettagli

LE FUNZIONI E LE LORO PROPRIETÀ

LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI REALI DI VARIABILE REALE COSA SONO LE FUNZIONI Dati due sottoinsiemi A e B non vuoti di R, una FUNZIONE da A a B è una relazione che associa ad ogni numero reale

Dettagli

Parte II Indice. Operazioni aritmetiche tra valori rappresentati in binario puro. Rappresentazione di numeri con segno

Parte II Indice. Operazioni aritmetiche tra valori rappresentati in binario puro. Rappresentazione di numeri con segno Parte II Indice Operazioni aritmetiche tra valori rappresentati in binario puro somma sottrazione Rappresentazione di numeri con segno modulo e segno complemento a 2 esercizi Operazioni aritmetiche tra

Dettagli

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA 1. RICHIAMI SULLE PROPRIETÀ DEI NUMERI NATURALI Ho mostrato in un altra dispensa come ricavare a partire dagli assiomi di

Dettagli

1 Applicazioni Lineari tra Spazi Vettoriali

1 Applicazioni Lineari tra Spazi Vettoriali 1 Applicazioni Lineari tra Spazi Vettoriali Definizione 1 (Applicazioni lineari) Si chiama applicazione lineare una applicazione tra uno spazio vettoriale ed uno spazio vettoriale sul campo tale che "!$%!

Dettagli

1. Operazioni binarie e loro proprietà.

1. Operazioni binarie e loro proprietà. INTRODUZIONE ALLE STRUTTURE ALGEBRICHE Lo studio delle strutture algebriche astratte innanzitutto consente economia di pensiero, mediante l'unificazione in teorie generali degli esempi particolari già

Dettagli

La Logica Proposizionale. (Algebra di Boole)

La Logica Proposizionale. (Algebra di Boole) 1 ISTITUTO DI ISTRUZIONE SUPERIORE ANGIOY La Logica Proposizionale (Algebra di Boole) Prof. G. Ciaschetti 1. Cenni storici Sin dagli antichi greci, la logica è intesa come lo studio del logos, che in greco

Dettagli

Complemento al corso di Fondamenti di Informatica I corsi di laurea in ingegneria, settore dell informazione Università la Sapienza Consorzio Nettuno

Complemento al corso di Fondamenti di Informatica I corsi di laurea in ingegneria, settore dell informazione Università la Sapienza Consorzio Nettuno Rappresentazione di numeri Complemento al corso di Fondamenti di Informatica I corsi di laurea in ingegneria, settore dell informazione Università la Sapienza Consorzio Nettuno Un numero e un entità teorica,

Dettagli

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici. a Corrente Alternata. Sergio Benenti 7 settembre 2013

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici. a Corrente Alternata. Sergio Benenti 7 settembre 2013 Complementi di Analisi per nformatica *** Capitolo 2 Numeri Complessi e Circuiti Elettrici a Corrente Alternata Sergio Benenti 7 settembre 2013? ndice 2 Circuiti elettrici a corrente alternata 1 21 Circuito

Dettagli

I SISTEMI DI NUMERAZIONE

I SISTEMI DI NUMERAZIONE ISTITUTO DI ISTRUZIONE SUPERIORE G. M. ANGIOY CARBONIA I SISTEMI DI NUMERAZIONE Prof. G. Ciaschetti Fin dall antichità, l uomo ha avuto il bisogno di rappresentare le quantità in modo simbolico. Sono nati

Dettagli