T I P S T R A P S. La prezzatura di Opzioni Call e Put Europea con il metodo Montecarlo

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "T I P S T R A P S. La prezzatura di Opzioni Call e Put Europea con il metodo Montecarlo"

Transcript

1 La prezzatura di Opzioni Call e Put Europea con il metodo Montecarlo In un mercato finanziario le opzioni a comprare (Call) o a vendere (Put) un titolo costituiscono il diritto, in un determinato periodo di tempo,a comprare o a vendere il titolo stesso ad un prezzo pattuito.naturalmente questo diritto ha un prezzo che deve essere pagato a chi è viceversa costretto a vendere (Call) o a comprare (Put) il titolo.nei mercati si distinguono in particolare quelle opzioni per cui si può esercitare il diritto acquistato ad un qualsiasi istante precedente la scadenza del periodo pattuito (Opzioni Americane) e quelle per cui bisogna attendere la scadenza per poter esercitare il proprio diritto a vendere o a comprare (Opzioni Europee). Uno dei problemi che interessa maggiormente i traders è stabilire quale sia il valore di un'opzione in funzione del prezzo attuale ed atteso alla data di scadenza del titolo sottostante,nonché del prezzo pattuito e del tasso di interesse.il calcolo del prezzo di un opzione può essere condotto utilizzando modelli teorici che si basano sull'ipotesi comune di assenza di arbitraggio e differiscono per quanto riguarda il modello che descrive l'evoluzione temporale del prezzo del titolo sottostante.ne segue che per calcolare il prezzo di un'opzione bisogna fare un'ipotesi sul comportamento nel tempo del prezzo del titolo sottostante.si è verificato sperimentalmente che la quotazione di un titolo segue un moto browniano geometrico per cui è possibile scrivere un equazione del moto per il prezzo S del titolo nella forma: (1) dove r e σ rappresentano il ritorno e la volatilità del titolo mentre dx descrive un moto browniano standard. Per questa equazione si può scrivere la seguente soluzione esatta: (2) News Notes Settembre

2 che può essere scritta per un incremento temporale dt: (3) dove ε(t) è una variabile casuale distribuita secondo una distribuzione normale a media nulla e varianza unitaria.quindi una volta stimati i valori di r e s e noto S(0) è possibile calcolare il prezzo del titolo ad un qualsiasi istante di tempo utilizzando iterativamente la (3). A questo punto è possibile calcolare il valore di un opzione a vendere o a comprare un titolo ad una certa data di scadenza T ad un prezzo pattuito K (strike price).infatti un semplice ragionamento porta a concludere che il prezzo di un opzione a vendere sarà K-S(T) se S(T) è inferiore allo strike price mentre sarà nullo se vale il viceversa;sarebbe svantaggioso esercitare l'opzione rispetto a vendere il titolo direttamente sul mercato.riassumendo si può scrivere per il prezzo dell'opzione a vendere la seguente relazione: (4) Con un ragionamento analogo si può concludere che il prezzo di un'opzione a comprare è: (5) Nella pagina precedente,si riportano i grafici degli andamenti del prezzo di un opzione Call e Put alla scadenza in funzione del prezzo del titolo sottostante. A questo punto è possibile calcolare il prezzo di un opzione implementando una simulazione Monte Carlo di cui di seguito si descriverà l'algoritmo affiancato dalle relative linee di codice scritte in linguaggio Matlab. Per prima cosa è necessario generare un insieme di curve S(t) utilizzando l'equazione (3) dove si utilizza la funzione "randn" per generare il processo stocastico e(t) e quindi l'insieme delle curve che descrivono l'evoluzione del prezzo del titolo nell'intervallo di tempo in cui è valida l'opzione. La funzione "randn(m,n)" infatti genera una matrice m x n di numeri casuali distribuiti secondo una gaussiana a media nulla e variabile unitaria. function S = stockrnd(s0, r, t, sig, NUMRND) % Riordinamento dei tempi [t, torder] = sort(t(:)); NT = length(t); % Calcolo delle lunghezze degli intervalli dt a partire dal tempo 0 dt = zeros(nt,1); dt(1) = t(1); dt(2:end) = diff(t); Naturalmente alla funzione "stockrnd" è necessario passare il prezzo attuale S(0), la volatilità del titolo ed il tasso di interesse r.inoltre dobbiamo impostare il numero di cammini da generare e gli istanti di tempo in cui si conosce il prezzo del titolo. % Incremento dei parametri nel tempo logdrifts = (r - 0.5*sig.*sig).*dt; logstds = sig.*sqrt(dt); y) % logs : somma degli incrementi lungo il tempo se necessario if (NT==1) % Moltiplicazione e addizione scalare logs = logdrifts + logstds*randn(1,numrnd); else % Espansione di logdrifts e logstds ad NT per NUMRND logs = cumsum( logdrifts(:,ones(1,numrnd)) +... logstds(:,ones(1,numrnd)).*randn(nt,numrnd) ); end % Calcolo dei valori dei titoli % dalla formula: % S(t+dt)=S(t)exp((r-1/2sigma^2)dt+sigma sqrt(dt)rand) S = s0*exp(logs); % I tempi vengono riposizionati nell'ordine originale S(torder,:) = S; 22 News Notes Settembre 2000

3 Una volta generati gli andamenti del prezzo del titolo si utilizza l'insieme dei valori alla data di scadenza per calcolare il prezzo delle opzioni Put e Call P i e C i utilizzando rispettivamente le equazioni (4) e (5).Infine per calcolare il valore atteso dei prezzi P e C si calcola il Net Present Value della media aritmetica di P i e C i. Quindi con una simulazione con 5000 curve si ottiene come risultato per il valore attuale delle opzioni Call e Put: PV_call = PV_put = In fine si è voluto confrontare il risultato con quello ottenuto utilizzando la funzione "blsprice" del Financial Toolbox di Matlab che calcola i prezzi attuali delle opzioni Call e Put utilizzando il modello di Black and Scholes. [C,P]=blsprice(asset,strike, intrate,t(end),volat) C = P = %Parametri iniziali t=[0:1/365:1]; numsim=5000; strike=105; intrate=0.05; volat=0.2; asset=100; T I P S T R A P S % tempi % numero di curve % strike price % tasso di interesse %volatilità %prezzo attuale del titolo % Calcolo del prezzo del titolo nel tempo % generando un numero nsim di curve simul=stockrnd(asset,intrate,t,volat,numsim); % Per questi andamenti si calcola il prezzo % dell'opzione payoff_call=max(simul(end,:)-strike,0); payoff_put=max(strike-simul(end,:),0); % Si calcola il payoff medio per tutti gli andamenti mean_payoff_call=mean(payoff_call); mean_payoff_put=mean(payoff_put); % Si prende il valore attuale di questa media che % è il valore dell'opzione PV_call=mean_payoff_call*exp(-intrate*t(end)) PV_put=mean_payoff_put*exp(-intrate*t(end)) La discrepanza tra i valori ottenuti con la simulazione Monte Carlo e quelli ottenuti dalla funzione "blsprice" sono legati al fatto che 5000 valori del prezzo finale del titolo non sono sufficienti a costituire un campione statisticamente rappresentativo.infatti la loro distribuzione ottenuta sperimentalmente non si adagia perfettamente sulla distribuzione teorica (la distribuzione lognormale),come si può vedere nella seguente figura. Dove la curva rossa rappresenta l'andamento teorico della distribuzione lognormale ottenuta mediante la funzione "lognpdf" funzione dello Statistics Toolbox. Per concludere si è mostrato come è possibile determinare il prezzo di un'opzione a vendere o a comprare mediante una simulazione Monte Carlo partendo da alcuni principi di base della teoria che descrive l'andamento sul mercato dei prezzi di un titolo. Ringraziamenti. Ringrazio Fabrizio Sara,responsabile dell'engineering Services, per gli m-files "pricemc.m" e "stockrnd.m" riportati in questo articolo. Bibliografia. 1) David G. Luenberger, Investment Science, Oxford University Press,1998 News Notes Settembre

4 che può essere scritta per un incremento temporale dt: (3) dove ε(t) è una variabile casuale distribuita secondo una distribuzione normale a media nulla e varianza unitaria.quindi una volta stimati i valori di r e s e noto S(0) è possibile calcolare il prezzo del titolo ad un qualsiasi istante di tempo utilizzando iterativamente la (3). A questo punto è possibile calcolare il valore di un opzione a vendere o a comprare un titolo ad una certa data di scadenza T ad un prezzo pattuito K (strike price).infatti un semplice ragionamento porta a concludere che il prezzo di un opzione a vendere sarà K-S(T) se S(T) è inferiore allo strike price mentre sarà nullo se vale il viceversa;sarebbe svantaggioso esercitare l'opzione rispetto a vendere il titolo direttamente sul mercato.riassumendo si può scrivere per il prezzo dell'opzione a vendere la seguente relazione: (4) Con un ragionamento analogo si può concludere che il prezzo di un'opzione a comprare è: (5) Nella pagina precedente,si riportano i grafici degli andamenti del prezzo di un opzione Call e Put alla scadenza in funzione del prezzo del titolo sottostante. A questo punto è possibile calcolare il prezzo di un opzione implementando una simulazione Monte Carlo di cui di seguito si descriverà l'algoritmo affiancato dalle relative linee di codice scritte in linguaggio Matlab. Per prima cosa è necessario generare un insieme di curve S(t) utilizzando l'equazione (3) dove si utilizza la funzione "randn" per generare il processo stocastico e(t) e quindi l'insieme delle curve che descrivono l'evoluzione del prezzo del titolo nell'intervallo di tempo in cui è valida l'opzione. La funzione "randn(m,n)" infatti genera una matrice m x n di numeri casuali distribuiti secondo una gaussiana a media nulla e variabile unitaria. function S = stockrnd(s0, r, t, sig, NUMRND) % Riordinamento dei tempi [t, torder] = sort(t(:)); NT = length(t); % Calcolo delle lunghezze degli intervalli dt a partire dal tempo 0 dt = zeros(nt,1); dt(1) = t(1); dt(2:end) = diff(t); Naturalmente alla funzione "stockrnd" è necessario passare il prezzo attuale S(0), la volatilità del titolo ed il tasso di interesse r.inoltre dobbiamo impostare il numero di cammini da generare e gli istanti di tempo in cui si conosce il prezzo del titolo. % Incremento dei parametri nel tempo logdrifts = (r - 0.5*sig.*sig).*dt; logstds = sig.*sqrt(dt); y) % logs : somma degli incrementi lungo il tempo se necessario if (NT==1) % Moltiplicazione e addizione scalare logs = logdrifts + logstds*randn(1,numrnd); else % Espansione di logdrifts e logstds ad NT per NUMRND logs = cumsum( logdrifts(:,ones(1,numrnd)) +... logstds(:,ones(1,numrnd)).*randn(nt,numrnd) ); end % Calcolo dei valori dei titoli % dalla formula: % S(t+dt)=S(t)exp((r-1/2sigma^2)dt+sigma sqrt(dt)rand) S = s0*exp(logs); % I tempi vengono riposizionati nell'ordine originale S(torder,:) = S; 22 News Notes Settembre 2000

5 Una volta generati gli andamenti del prezzo del titolo si utilizza l'insieme dei valori alla data di scadenza per calcolare il prezzo delle opzioni Put e Call P i e C i utilizzando rispettivamente le equazioni (4) e (5).Infine per calcolare il valore atteso dei prezzi P e C si calcola il Net Present Value della media aritmetica di P i e C i. Quindi con una simulazione con 5000 curve si ottiene come risultato per il valore attuale delle opzioni Call e Put: PV_call = PV_put = In fine si è voluto confrontare il risultato con quello ottenuto utilizzando la funzione "blsprice" del Financial Toolbox di Matlab che calcola i prezzi attuali delle opzioni Call e Put utilizzando il modello di Black and Scholes. [C,P]=blsprice(asset,strike, intrate,t(end),volat) C = P = %Parametri iniziali t=[0:1/365:1]; numsim=5000; strike=105; intrate=0.05; volat=0.2; asset=100; T I P S T R A P S % tempi % numero di curve % strike price % tasso di interesse %volatilità %prezzo attuale del titolo % Calcolo del prezzo del titolo nel tempo % generando un numero nsim di curve simul=stockrnd(asset,intrate,t,volat,numsim); % Per questi andamenti si calcola il prezzo % dell'opzione payoff_call=max(simul(end,:)-strike,0); payoff_put=max(strike-simul(end,:),0); % Si calcola il payoff medio per tutti gli andamenti mean_payoff_call=mean(payoff_call); mean_payoff_put=mean(payoff_put); % Si prende il valore attuale di questa media che % è il valore dell'opzione PV_call=mean_payoff_call*exp(-intrate*t(end)) PV_put=mean_payoff_put*exp(-intrate*t(end)) La discrepanza tra i valori ottenuti con la simulazione Monte Carlo e quelli ottenuti dalla funzione "blsprice" sono legati al fatto che 5000 valori del prezzo finale del titolo non sono sufficienti a costituire un campione statisticamente rappresentativo.infatti la loro distribuzione ottenuta sperimentalmente non si adagia perfettamente sulla distribuzione teorica (la distribuzione lognormale),come si può vedere nella seguente figura. Dove la curva rossa rappresenta l'andamento teorico della distribuzione lognormale ottenuta mediante la funzione "lognpdf" funzione dello Statistics Toolbox. Per concludere si è mostrato come è possibile determinare il prezzo di un'opzione a vendere o a comprare mediante una simulazione Monte Carlo partendo da alcuni principi di base della teoria che descrive l'andamento sul mercato dei prezzi di un titolo. Ringraziamenti. Ringrazio Fabrizio Sara,responsabile dell'engineering Services, per gli m-files "pricemc.m" e "stockrnd.m" riportati in questo articolo. Bibliografia. 1) David G. Luenberger, Investment Science, Oxford University Press,1998 News Notes Settembre

I modelli della fisica e la finanza, ovvero perchè i fisici lavorano nelle banche

I modelli della fisica e la finanza, ovvero perchè i fisici lavorano nelle banche I modelli della fisica e la finanza, ovvero perchè i fisici lavorano nelle banche Mediobanca (Milano, 11 luglio 2003) Indice 1. Perché i fisici in finanza? 2. Il problema 3. I modelli della fisica in finanza

Dettagli

Il modello binomiale ad un periodo

Il modello binomiale ad un periodo Opzioni Un opzione dà al suo possessore il diritto (ma non l obbligo) di fare qualcosa. Un opzione call (put) europea su un azione che non paga dividendi dà al possessore il diritto di comprare (vendere)

Dettagli

Opzioni americane. Opzioni americane

Opzioni americane. Opzioni americane Opzioni americane Le opzioni di tipo americano sono simili a quelle europee con la differenza che possono essere esercitate durante tutto l intervallo [0, T ]. Supponiamo di avere un opzione call americana

Dettagli

Valore equo di un derivato. Contingent claim

Valore equo di un derivato. Contingent claim Contingent claim Ci occuperemo ora di determinare il prezzo equo di un prodotto derivato, come le opzioni, e di come coprire il rischio associato a questi contratti. Assumeremo come dinamica dei prezzi

Dettagli

call europea viene esercitata, consentendo un guadagno pari a

call europea viene esercitata, consentendo un guadagno pari a INTRODUZIONE Un opzione è un contratto derivato che conferisce al proprio detentore il diritto di disporre del titolo sottostante ad esso. Più precisamente, l acquisto di un opzione call (put) conferisce

Dettagli

Volatilità implicita. P(t) = S(t)Φ(d 1 ) e r(t t) K Φ(d 2 ) con. d 1 = d 2 + σ T t. d 2 =

Volatilità implicita. P(t) = S(t)Φ(d 1 ) e r(t t) K Φ(d 2 ) con. d 1 = d 2 + σ T t. d 2 = Volatilità implicita Abbiamo visto come sia possibile calcolare la volatilità di un titolo attraverso la serie dei log-return. In teoria però la volatilità di un sottostante può essere determinata dal

Dettagli

23 Giugno 2003 Teoria Matematica del Portafoglio Finanziario e Modelli Matematici per i Mercati Finanziari ESERCIZIO 1

23 Giugno 2003 Teoria Matematica del Portafoglio Finanziario e Modelli Matematici per i Mercati Finanziari ESERCIZIO 1 23 Giugno 2003 Teoria Matematica del Portafoglio Finanziario e Modelli Matematici per i Mercati Finanziari In uno schema uniperiodale e in un contesto di analisi media-varianza, si consideri un mercato

Dettagli

FINANZA AZIENDALE AVANZATO. Le opzioni e l option theory. Lezioni 14 e 15

FINANZA AZIENDALE AVANZATO. Le opzioni e l option theory. Lezioni 14 e 15 FINANZA AZIENDALE AVANZATO Le opzioni e l option theory Lezioni 14 e 15 I derivati asimmetrici ono contratti/prodotti che fissano le condizioni a cui POTRA aver luogo la compravendita futura dell attività

Dettagli

ESERCITAZIONE MATEMATICA FINANZIARIA OPZIONI. Matematica finanziaria Dott. Andrea Erdas Anno Accademico 2011/2012

ESERCITAZIONE MATEMATICA FINANZIARIA OPZIONI. Matematica finanziaria Dott. Andrea Erdas Anno Accademico 2011/2012 ESERCITAZIONE MATEMATICA FINANZIARIA 1 OPZIONI 2 LE OPZIONI Le opzioni sono contratti che forniscono al detentore il diritto di acquistare o vendere una certa quantità del bene sottostante a una certa

Dettagli

Black-Scholes: le Greche

Black-Scholes: le Greche Black-Scholes: le Greche R. Marfé Indice 1 Delta 2 2 Gamma 4 3 Theta 6 4 Vega 7 5 Rho 8 6 Applicazione in VBA 9 1 1 Delta Il delta di un opzione (o di un portafoglio di opzioni) indica la sensibilità del

Dettagli

Introduzione alberi binomiali

Introduzione alberi binomiali Introduzione alberi binomiali introduzione L albero binomiale rappresenta i possibili sentieri seguiti dal prezzo dell azione durante la vita dell opzione Il percorso partirà dal modello a uno stadio per

Dettagli

GLI STRUMENTI FINANZIARI DERIVATI

GLI STRUMENTI FINANZIARI DERIVATI GLI STRUMENTI FINANZIARI DERIVATI ABSTRACT PRINCIPI SULLE OPZIONI!A cura di Mauro Liguori!Seminario del 7 giugno 2003!V. delle Botteghe Oscure, 54 -Roma DEFINIZIONE DI OPZIONE OPZIONE DIRITTO DI ACQUISTARE

Dettagli

Introduzione alle opzioni

Introduzione alle opzioni PROGRAMMA 1) Nozioni di base di finanza aziendale 2) Opzioni 3) Valutazione delle aziende 4) Finanziamento tramite debiti 5) Risk management Introduzione alle opzioni 6) Temi speciali di finanza aziendale

Dettagli

Un introduzione all analisi Monte Carlo in Finanza

Un introduzione all analisi Monte Carlo in Finanza ASSOCIAZIONE ITALIANA FINANCIAL RISK MANAGEMENT Un introduzione all analisi Monte Carlo in Finanza Stefano Fabi Working Paper, 1/01/98 Presidenza: Fernando Metelli - Banca Popolare di Milano, Via Fara

Dettagli

Corso di Economia degli Intermediari Finanziari

Corso di Economia degli Intermediari Finanziari Corso di Economia degli Intermediari Finanziari Alcuni strumenti finanziari particolari Alcuni strumenti proposti nel panorama internazionale Gli strumenti ai quali faremo riferimento sono: i financial

Dettagli

Il modello di Black-Scholes- Merton. Giampaolo Gabbi

Il modello di Black-Scholes- Merton. Giampaolo Gabbi Il modello di Black-Scholes- Merton Giampaolo Gabbi Premessa Fra le equazioni utilizzate in finanza ne esiste una estremamente semplice. Il contributo di Black e Scholes allo sviluppo della teoria e della

Dettagli

Opzioni Barriera. Marco Evangelista Donatella Straccamore

Opzioni Barriera. Marco Evangelista Donatella Straccamore 1 Opzioni Barriera Opzioni Barriera Marco Evangelista Donatella Straccamore Un'opzione è un contratto tra due parti, A e B, che dà il diritto (ma non l'obbligo) a chi lo detiene (supponiamo A) di comprare/vendere

Dettagli

Finanza Aziendale. Teoria delle opzioni, metodologie di valutazione e implicazioni per la finanza aziendale. BMAS Capitolo 20

Finanza Aziendale. Teoria delle opzioni, metodologie di valutazione e implicazioni per la finanza aziendale. BMAS Capitolo 20 Finanza Aziendale Teoria delle opzioni, metodologie di valutazione e implicazioni per la finanza aziendale BMAS Capitolo 20 1 Le opzioni nei mercati reali e finanziari Si dicono opzioni i contratti finanziari

Dettagli

Il calore nella Finanza

Il calore nella Finanza Il calore nella Finanza Franco Moriconi Università di Perugia Facoltà di Economia Perugia, 12 Novembre 2008 Quotazioni FIAT Serie giornaliera dal 6/11/2007 al 6/11/2008 F. Moriconi, Il calore nella Finanza

Dettagli

Le opzioni. (1 parte) A cura di Stefano Zanchetta

Le opzioni. (1 parte) A cura di Stefano Zanchetta Le opzioni (1 parte) A cura di Stefano Zanchetta 1 Disclaimer La pubblicazione del presente documento non costituisce attività di sollecitazione del pubblico risparmio da parte di Borsa Italiana S.p.A.

Dettagli

FORWARD RATE AGREEMENT

FORWARD RATE AGREEMENT FORWARD RATE AGREEMENT FLAVIO ANGELINI. Definizioni In generale, un contratto a termine o forward permette una compravendita di una certa quantità di un bene differita a una data futura a un prezzo fissato

Dettagli

19-2 Argomenti trattati

19-2 Argomenti trattati Principi di finanza aziendale Capitolo 19-20 IV Edizione Richard A. Brealey Stewart C. Myers Sandro Sandri Introduzione alle opzioni e cenni al problema della valutazione 19-2 Argomenti trattati Call,

Dettagli

DERIVATI REGOLAMENTATI OPZIONI E FUTURES ORARIO DI NEGOZIAZIONE : 9,00 17,40

DERIVATI REGOLAMENTATI OPZIONI E FUTURES ORARIO DI NEGOZIAZIONE : 9,00 17,40 DERIVATI REGOLAMENTATI OPZIONI E FUTURES ORARIO DI NEGOZIAZIONE : 9,00 17,40 LE OPZIONI - Definizione Le opzioni sono contratti finanziari che danno al compratore il diritto, ma non il dovere, di comprare,

Dettagli

MODELLI IN EXCEL PER LA VALUTAZIONE DEGLI STRUMENTI FINANZIARI COMPLESSI. Calcolo del fair value e misurazione dei rischi

MODELLI IN EXCEL PER LA VALUTAZIONE DEGLI STRUMENTI FINANZIARI COMPLESSI. Calcolo del fair value e misurazione dei rischi Corso tecnico - pratico MODELLI IN EXCEL PER LA VALUTAZIONE DEGLI STRUMENTI FINANZIARI COMPLESSI Calcolo del fair value e misurazione dei rischi Modulo 1 (base): 22-23 aprile 2015 Modulo 2 (avanzato):

Dettagli

Funzioni. Funzioni /2

Funzioni. Funzioni /2 Funzioni Una funzione f è una corrispondenza tra due insiemi A e B che a ciascun elemento di A associa un unico elemento di B. Si scrive: f : A B l'insieme A si chiama il dominio della funzione f, l'insieme

Dettagli

FINANZA AZIENDALE Corso di Laurea Specialistica in Ingegneria Gestionale

FINANZA AZIENDALE Corso di Laurea Specialistica in Ingegneria Gestionale FINANZA AZIENDALE Corso di Laurea Specialistica in Ingegneria Gestionale 6 parte Prof. Giovanna Lo Nigro # 1 I titoli derivati # 2 Copyright 2003 - The McGraw-Hill Companies, srl Argomenti trattati Tipologie

Dettagli

Corso di Analisi dei Sistemi Finanziari 2 Prof. Nathan Levialdi. Derivati. Derivati. sciangula@ing.uniroma2.it

Corso di Analisi dei Sistemi Finanziari 2 Prof. Nathan Levialdi. Derivati. Derivati. sciangula@ing.uniroma2.it Dipaimento di Ingegneria dell Impresa Corso di Analisi dei Sistemi Finanziari 2 Prof. Nathan Levialdi A cura di: Ing. Fiorella Sciangula sciangula@ing.uniroma2.it 1 Opzioni: variabili Prezzo Spot, o valore

Dettagli

Gli strumenti derivati: opzioni

Gli strumenti derivati: opzioni Gli strumenti derivati: opzioni Definizione (1) L opzione è un contratto che conferisce al suo sottoscrittore un diritto e non un obbligo, ad acquistare (per una call) o a vendere (per una put) al venditore

Dettagli

Metodi Stocastici per la Finanza

Metodi Stocastici per la Finanza Metodi Stocastici per la Finanza Tiziano Vargiolu vargiolu@math.unipd.it 1 1 Università degli Studi di Padova Anno Accademico 2012-2013 Indice 1 Mercati finanziari 2 Arbitraggio 3 Conseguenze del non-arbitraggio

Dettagli

2) Calcolare il prezzo ad oggi di una Put europea con un albero a 3 periodi.

2) Calcolare il prezzo ad oggi di una Put europea con un albero a 3 periodi. 1) Calcolare il prezzo ad oggi di una Call europea con un albero a 2 periodi. tasso risk free: r =3,00%; Scadenza: 2 anni Step: n=2 Prezzo spot del sottostante: S 0 =100 Strike Price: K=98 u = 1,1 e d

Dettagli

Mercati e strumenti derivati (2): Swap e Opzioni

Mercati e strumenti derivati (2): Swap e Opzioni Mercati e strumenti derivati (2): Swap e Opzioni A.A. 2008-2009 20 maggio 2009 Agenda I contratti Swap Definizione Gli Interest Rate Swap Il mercato degli Swap Convenienza economica e finalità Le opzioni

Dettagli

Corso di FINANZA AZIENDALE AVANZATA

Corso di FINANZA AZIENDALE AVANZATA Corso di FINANZA AZIENDALE AVANZATA Teoria delle opzioni e struttura finanziaria Valutazione opzioni Non posso usare le formule di attualizzazione in quanto non riesco a trovare un accettabile tasso a

Dettagli

Mattia Zanella mattia.zanella@unife.it www.mattiazanella.eu

Mattia Zanella mattia.zanella@unife.it www.mattiazanella.eu mattia.zanella@unife.it www.mattiazanella.eu Department of Mathematics and Computer Science, University of Ferrara, Italy Ferrara, 1 Maggio 216 Programma della lezione Seminario II Equazioni differenziali

Dettagli

Prefazione. Capitolo 1 Introduzione ai contratti derivati 1 1.1 I derivati 1

Prefazione. Capitolo 1 Introduzione ai contratti derivati 1 1.1 I derivati 1 Prefazione XV Capitolo 1 Introduzione ai contratti derivati 1 1.1 I derivati 1 Capitolo 2 Il mercato delle opzioni azionarie 11 2.1 Le opzioni sui singoli titoli azionari 11 2.2 Il mercato telematico delle

Dettagli

I DERIVATI: QUALCHE NOTA CORSO PAS. Federica Miglietta Bari, luglio 2014

I DERIVATI: QUALCHE NOTA CORSO PAS. Federica Miglietta Bari, luglio 2014 I DERIVATI: QUALCHE NOTA CORSO PAS Federica Miglietta Bari, luglio 2014 GLI STRUMENTI DERIVATI Gli strumenti derivati sono così denominati perché il loro valore deriva dal prezzo di una attività sottostante,

Dettagli

Modelli finanziari per i tassi di interesse

Modelli finanziari per i tassi di interesse MEBS Lecture 3 Modelli finanziari per i tassi di interesse MEBS, lezioni Roberto Renò Università di Siena 3.1 Modelli per la struttura La ricerca di un modello finanziario che descriva l evoluzione della

Dettagli

Ambiente di riferimento

Ambiente di riferimento Ambiente di riferimento Cosideriamo un mercato finanziario di una sola azione (investimento a rischio), un titolo obbligazionario (investimento senza rischio) e un contingent claim. La dinamica dei prezzi

Dettagli

Derivati: principali vantaggi e utilizzi

Derivati: principali vantaggi e utilizzi Derivati: principali vantaggi e utilizzi Ugo Pomante, Università Commerciale Luigi Bocconi Trading Online Expo Milano 28, Marzo 2003 CONTENUTI In un mondo senza derivati I futures Le opzioni Strategie

Dettagli

Modello Black-Scholes

Modello Black-Scholes Modello Black-Scholes R. Marfé Indice 1 Il modello Black Scholes 1.1 Formule di valutazione per le opzioni standard......... 3 1. Implementazione in VBA..................... 6 1 1 Il modello Black Scholes

Dettagli

Esperienza MBG Il moto browniano geometrico. Proprietà teoriche e simulazione Monte Carlo

Esperienza MBG Il moto browniano geometrico. Proprietà teoriche e simulazione Monte Carlo Università degli Studi di Perugia Laurea specialistica in Finanza a.a. 2009-10 Corso di Laboratorio di calcolo finanziario prof. Franco Moriconi Esperienza MBG Il moto browniano geometrico. Proprietà teoriche

Dettagli

ALCUNI ESEMPI DI PROVE SCRITTE

ALCUNI ESEMPI DI PROVE SCRITTE ALCUNI ESEMPI DI PROVE SCRITTE Nota: questo file raccoglie alcuni esempi di prove scritte assegnate negli ultimi anni per gli esami di Matematica Finanziaria IIB e. I testi vanno presi come indicativi,

Dettagli

BANCA ALETTI & C. S.p.A. BONUS CERTIFICATE e BONUS CERTIFICATES DI TIPO QUANTO CONDIZIONI DEFINITIVE D OFFERTA

BANCA ALETTI & C. S.p.A. BONUS CERTIFICATE e BONUS CERTIFICATES DI TIPO QUANTO CONDIZIONI DEFINITIVE D OFFERTA BANCA ALETTI & C. S.p.A. in qualità di emittente e responsabile del collocamento del Programma di offerta al pubblico e/o di quotazione di investment certificates denominati BONUS CERTIFICATE e BONUS CERTIFICATES

Dettagli

Corso Matlab : Sesta lezione (Esercitazione, 25/10/13) Samuela Persia, Ing. PhD.

Corso Matlab : Sesta lezione (Esercitazione, 25/10/13) Samuela Persia, Ing. PhD. Advanced level Corso Matlab : Sesta lezione (Esercitazione, 25/10/13) Samuela Persia, Ing. PhD. Sommario Toolbox finance Analisi dei portafogli Analisi grafica Determinate Date Toolbox statistics Analisi

Dettagli

OPZIONI, DURATION E INTEREST RATE SWAP (IRS)

OPZIONI, DURATION E INTEREST RATE SWAP (IRS) ESERCITAZIONE MATEMATICA FINANZIARIA 1 OPZIONI, DURATION E INTEREST RATE SWAP (IRS) Valutazione delle opzioni Esercizio 1 2 ESERCIZIO 1 Il portafoglio di un investitore è composto di 520 azioni della società

Dettagli

OPZIONI ESOTICHE. Alma Mater Studiorum Università di Bologna. Tesi di Laurea in Matematica per le applicazioni economiche e finanziarie

OPZIONI ESOTICHE. Alma Mater Studiorum Università di Bologna. Tesi di Laurea in Matematica per le applicazioni economiche e finanziarie Alma Mater Studiorum Università di Bologna FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea in Matematica OPZIONI ESOTICHE Tesi di Laurea in Matematica per le applicazioni economiche

Dettagli

Financial Trend Analysis

Financial Trend Analysis Financial Trend Analysis Analisi relativa a MIB Elaborata il giorno 25/01/2013 Financial Trend Analysis srl L'autorizzazione all'accesso alle presenti informazioni è strettamente riservata ad uso personale

Dettagli

GIANCARLO CAPOZZA Dipartimento di Scienze Statistiche Carlo Cecchi, Università degli Studi di Bari

GIANCARLO CAPOZZA Dipartimento di Scienze Statistiche Carlo Cecchi, Università degli Studi di Bari GIANCARLO CAPOZZA Dipartimento di Scienze Statistiche Carlo Cecchi, Università degli Studi di Bari SULLA STRUTTURA FINANZIARIA DI CONTRATTI ASSICURATIVI LINKED CON MINIMO GARANTITO SOMMARIO 1. Introduzione

Dettagli

studi e analisi finanziarie LA PUT-CALL PARITY

studi e analisi finanziarie LA PUT-CALL PARITY LA PUT-CALL PARITY Questa relazione chiarisce se sia possibile effettuare degli arbitraggi e, quindi, guadagnare senza rischi. La put call parity è una relazione che lega tra loro: il prezzo del call,

Dettagli

Note integrative di Moneta e Finanza Internazionale. c Carmine Trecroci 2004

Note integrative di Moneta e Finanza Internazionale. c Carmine Trecroci 2004 Note integrative di Moneta e Finanza Internazionale c Carmine Trecroci 2004 1 Tassi di cambio a pronti e a termine transazioni con consegna o regolamento immediati tasso di cambio a pronti (SR, spot exchange

Dettagli

1. Modalità di pagamento. 1.1 Regolamento con bonifico. 1.2 Regolamento con rimessa documentaria. 1.3 Regolamento con apertura di credito documentario

1. Modalità di pagamento. 1.1 Regolamento con bonifico. 1.2 Regolamento con rimessa documentaria. 1.3 Regolamento con apertura di credito documentario 1. Modalità di pagamento Per il regolamento degli ordini l esportatore può richiedere diverse forme di pagamento che presentano vari profili di rischio. Nell ottica del cliente tali modalità hanno diversi

Dettagli

Francesco Menoncin. Misurare e gestire il rischio finanziario

Francesco Menoncin. Misurare e gestire il rischio finanziario Docendo discitur Francesco Menoncin Misurare e gestire il rischio finanziario Francesco Menoncin Dipartimento di Scienze Economiche Università degli Studi di Brescia ISBN 978-88-470-1146-5 Springer Milan

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Test delle ipotesi sulla varianza In un azienda che produce componenti meccaniche, è stato

Dettagli

BANCA ALETTI & C. S.p.A. PER DUE CERTIFICATE e PER DUE CERTIFICATES DI TIPO QUANTO CONDIZIONI DEFINITIVE D OFFERTA

BANCA ALETTI & C. S.p.A. PER DUE CERTIFICATE e PER DUE CERTIFICATES DI TIPO QUANTO CONDIZIONI DEFINITIVE D OFFERTA BANCA ALETTI & C. S.p.A. in qualità di emittente e responsabile del collocamento del Programma di offerta al pubblico e/o di quotazione di investment certificates denominati PER DUE CERTIFICATE e PER DUE

Dettagli

Metodi Quantitativi per la Finanza

Metodi Quantitativi per la Finanza Metodi Quantitativi per la Finanza Metodi Quantitativi per la Finanza http://www.economia.unimi.it/finance S.M. Iacus Ricevimento: Gio 9:00-12:00, III Piano DEAS stefano.iacus@unimi.it Programma del corso

Dettagli

Strategie Operative mediante Opzioni

Strategie Operative mediante Opzioni Strategie Operative mediante Opzioni Una posizione su: l opzione e il sottostante è detta hedge 2 o più opzioni dello stesso tipo è detta spread una miscela di calls e puts è detta combinazione Posizioni

Dettagli

Jacopo Ceccatelli Partner JC Associati L uso dei derivati nella gestione del Portafoglio. Milano, 12 aprile 2008

Jacopo Ceccatelli Partner JC Associati L uso dei derivati nella gestione del Portafoglio. Milano, 12 aprile 2008 Jacopo Ceccatelli Partner JC Associati L uso dei derivati nella gestione del Portafoglio Milano, 12 aprile 2008 Operare con strumenti derivati per la copertura dei rischi di portafoglio Gli strumenti derivati

Dettagli

LA TRASFORMATA DI LAPLACE: UN METODO RAPIDO ED EFFICIENTE PER IL PRICING DI OPZIONI

LA TRASFORMATA DI LAPLACE: UN METODO RAPIDO ED EFFICIENTE PER IL PRICING DI OPZIONI POLITECNICO DI MILANO SCUOLA DI INGEGNERIA INDUSTRIALE E DELL INFORMAZIONE CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MATEMATICA LA TRASFORMATA DI LAPLACE: UN METODO RAPIDO ED EFFICIENTE PER IL PRICING DI

Dettagli

Statistica Applicata all edilizia: alcune distribuzioni di probabilità

Statistica Applicata all edilizia: alcune distribuzioni di probabilità Statistica Applicata all edilizia: Alcune distribuzioni di probabilità E-mail: orietta.nicolis@unibg.it 7 marzo 20 Indice Indici di curtosi e simmetria Indici di curtosi e simmetria 2 3 Distribuzione Bernulliana

Dettagli

Indice. Notazioni generali

Indice. Notazioni generali Indice Notazioni generali XIII 1 Derivati e arbitraggi 1 1.1 Opzioni 1 1.1.1 Finalità 3 1.1.2 Problemi 4 1.1.3 Leggi di capitalizzazione 4 1.1.4 Arbitraggi e formula di Put-Call Parity 5 1.2 Prezzo neutrale

Dettagli

CENNI DI METODI STATISTICI

CENNI DI METODI STATISTICI Corso di Laurea in Ingegneria Aerospaziale CENNI DI METODI STATISTICI Docente: Page 1 Page 2 Page 3 Due eventi si dicono indipendenti quando il verificarsi di uno non influisce sulla probabilità di accadimento

Dettagli

Elementi di Risk Management Quantitativo

Elementi di Risk Management Quantitativo Elementi di Risk Management Quantitativo (marco.bee@economia.unitn.it) Marzo 2007 Indice 1 Introduzione 2 1.1 Argomenti e testi di riferimento................. 2 2 Nozioni preliminari 3 2.1 Un po di storia..........................

Dettagli

Automazione Industriale (scheduling+mms) scheduling+mms. adacher@dia.uniroma3.it

Automazione Industriale (scheduling+mms) scheduling+mms. adacher@dia.uniroma3.it Automazione Industriale (scheduling+mms) scheduling+mms adacher@dia.uniroma3.it Introduzione Sistemi e Modelli Lo studio e l analisi di sistemi tramite una rappresentazione astratta o una sua formalizzazione

Dettagli

Metodi Stocastici per la Finanza

Metodi Stocastici per la Finanza Metodi Stocastici per la Finanza Tiziano Vargiolu vargiolu@math.unipd.it 1 1 Università degli Studi di Padova Anno Accademico 2012-2013 Lezione 9 Indice 1 Opzioni su obbligazioni con modelli ad un fattore

Dettagli

Opzioni su titoli che pagano dividendi: proprietà e tecniche di valutazione

Opzioni su titoli che pagano dividendi: proprietà e tecniche di valutazione Opzioni su titoli che pagano dividendi: proprietà e tecniche di valutazione Martina Nardon Paolo Pianca ipartimento di Matematica Applicata Università Ca Foscari Venezia

Dettagli

2. Leggi finanziarie di capitalizzazione

2. Leggi finanziarie di capitalizzazione 2. Leggi finanziarie di capitalizzazione Si chiama legge finanziaria di capitalizzazione una funzione atta a definire il montante M(t accumulato al tempo generico t da un capitale C: M(t = F(C, t C t M

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08 Alberto Perotti, Roberto Garello DELEN-DAUIN Processi casuali Sono modelli probabilistici

Dettagli

Principali tipologie di rischio finanziario

Principali tipologie di rischio finanziario Principali tipologie di rischio finanziario Rischio di mercato: dovuto alla variabilità dei prezzi delle attività finanziarie Rischio di credito: dovuto alla possibilità che la controparte venga meno ai

Dettagli

Corso di Risk Management S

Corso di Risk Management S Corso di Risk Management S Marco Bee marco.bee@economia.unitn.it Dipartimento di Economia Università di Trento Anno Accademico 2007-2008 Struttura del corso Il corso può essere suddiviso come segue: 1.

Dettagli

FONDAMENTI DI PSICOMETRIA - 8 CFU

FONDAMENTI DI PSICOMETRIA - 8 CFU Ψ FONDAMENTI DI PSICOMETRIA - 8 CFU STIMA DELL ATTENDIBILITA STIMA DELL ATTENDIBILITA DEFINIZIONE DI ATTENDIBILITA (affidabilità, fedeltà) Grado di accordo tra diversi tentativi di misurare uno stesso

Dettagli

VI Esercitazione di Matematica Finanziaria

VI Esercitazione di Matematica Finanziaria VI Esercitazione di Matematica Finanziaria 2 Dicembre 200 Esercizio. Verificare la proprietà di scindibilità delle leggi del prezzo { v(t, s) = exp } 2 (s2 t 2 ) e v(t, s) = e t(s t) Soluzione. Possiamo

Dettagli

SeDeX, MOT ed EuroMOT. Mauro Giangrande Borsa Italiana Divisione FI&CW Markets

SeDeX, MOT ed EuroMOT. Mauro Giangrande Borsa Italiana Divisione FI&CW Markets SeDeX, MOT ed EuroMOT Mauro Giangrande Borsa Italiana Contenuti SeDeX MOT EuroMOT 2 Contenuti SeDeX MOT EuroMOT 3 Mercato SeDeX SeDeX: il mercato telematico dei securitised derivatives SeDeX è il mercato

Dettagli

4. Introduzione ai prodotti derivati. Stefano Di Colli

4. Introduzione ai prodotti derivati. Stefano Di Colli 4. Introduzione ai prodotti derivati Metodi Statistici per il Credito e la Finanza Stefano Di Colli Che cos è un derivato? I derivati sono strumenti il cui valore dipende dal valore di altre più fondamentali

Dettagli

Applicazione della tsvd all elaborazione di immagini

Applicazione della tsvd all elaborazione di immagini Applicazione della tsvd all elaborazione di immagini A cura di: Mauro Franceschelli Simone Secchi Indice pag Introduzione. 1 Problema diretto.. 2 Problema Inverso. 3 Simulazioni.. Introduzione Scopo di

Dettagli

ISSN 2281-4299. Modelli di option pricing: l'equazione di Black & Scholes. Giovanni Mattei Francesco Liberati

ISSN 2281-4299. Modelli di option pricing: l'equazione di Black & Scholes. Giovanni Mattei Francesco Liberati ISSN 2281-4299 Modelli di option pricing: l'equazione di Black & Scholes Giovanni Mattei Francesco Liberati Technical Report n. 11, 2013 Modelli di option pricing: l'equazione di Black & Scholes Giovanni

Dettagli

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA)

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA) Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 4: Analisi della varianza (ANOVA) Analisi della varianza Analisi della varianza (ANOVA) ANOVA ad

Dettagli

METODI MONTE CARLO PER LA VALUTAZIONE DI OPZIONI FINANZIARIE

METODI MONTE CARLO PER LA VALUTAZIONE DI OPZIONI FINANZIARIE WORKING PAPER N.02.05 Maggio 2002 METODI MONTE CARLO PER LA VALTAZIONE DI OPZIONI FINANZIARIE R. Casarin a M. Gobbo a a. GRETA, Venice. METODI MONTE CARLO PER LA VALTAZIONE DI OPZIONI FINANZIARIE Roberto

Dettagli

Gli Strumenti Finanziari secondo. i Principi Contabili Internazionali IAS 32-39

Gli Strumenti Finanziari secondo. i Principi Contabili Internazionali IAS 32-39 Gli Strumenti Finanziari secondo i Principi Contabili Internazionali IAS 32-39 Relatore: Dott. Stefano Grumolato Verona, aprile 2008 Overview dell intervento Strumenti finanziari e tecniche di valutazione

Dettagli

SCHEDA PRODOTTO: CAMBI OPZIONE VENDITA DIVISA STRUTTURA CILINDRICA

SCHEDA PRODOTTO: CAMBI OPZIONE VENDITA DIVISA STRUTTURA CILINDRICA BANCA CARIGE SpA SCHEDA PRODOTTO: CAMBI OPZIONE VENDITA DIVISA STRUTTURA CILINDRICA TIPOLOGIA DI STRUMENTO: DERIVATI SU CAMBI OBIETTIVO Il prodotto denominato Cambi Opzione Vendita Divisa Struttura Cilindrica

Dettagli

Laboratorio Complementi di Ricerca Operativa DEI, Politecnico di Milano. Stima di parametri

Laboratorio Complementi di Ricerca Operativa DEI, Politecnico di Milano. Stima di parametri Stima di parametri Il gestore di un sito turistico dove si pratica il bungee-jumping deve fornire alla sovrintendenza municipale un documento che riguarda la sicurezza del servizio fornito. Il documento

Dettagli

SCHEDA PRODOTTO: CAMBI - OPZIONE ACQUISTO DIVISA STRUTTURA CILINDRICA

SCHEDA PRODOTTO: CAMBI - OPZIONE ACQUISTO DIVISA STRUTTURA CILINDRICA BANCA CARIGE SpA SCHEDA PRODOTTO: CAMBI - OPZIONE ACQUISTO DIVISA STRUTTURA CILINDRICA TIPOLOGIA DI STRUMENTO: DERIVATI SU CAMBI OBIETTIVO Il prodotto denominato Cambi opzione acquisto divisa struttura

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 10-Il test t per un campione e la stima intervallare (vers. 1.1, 25 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia,

Dettagli

FOGLIO INFORMATIVO ANALITICO. (redatto ai sensi della disciplina in materia di trasparenza delle operazioni e dei servizi bancari)

FOGLIO INFORMATIVO ANALITICO. (redatto ai sensi della disciplina in materia di trasparenza delle operazioni e dei servizi bancari) FOGLIO INFORMATIVO ANALITICO (redatto ai sensi della disciplina in materia di trasparenza delle operazioni e dei servizi bancari) OFFERTA PUBBLICA DI SOTTOSCRIZIONE DEL PRESTITO OBBLIGAZIONARIO MEDIOBANCA

Dettagli

Domanda 1: Valutazione e Analisi di Obbligazioni

Domanda 1: Valutazione e Analisi di Obbligazioni Domanda 1: Valutazione e Analisi di Obbligazioni (41 punti) Lei ha iniziato a lavorare quale analista obbligazionario. Il primo giorno di lavoro si trova confrontato con il seguente portafoglio obbligazionario

Dettagli

Corso di FINANZA AZIENDALE AVANZATA

Corso di FINANZA AZIENDALE AVANZATA Corso di FINANZA AZIENDALE AVANZATA anno accademico 2007/2008 modulo n. 1 Lezioni 6 Corso di FINANZA AZIENDALE AVANZATA Teoria delle opzioni e struttura finanziaria LE OPTION Contratto a termine mediante

Dettagli

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE SIMULAZIONE della PROVA SCRITTA di STATISTICA 23/03/2011

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE SIMULAZIONE della PROVA SCRITTA di STATISTICA 23/03/2011 FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE SIMULAZIONE della PROVA SCRITTA di STATISTICA 23/3/2 ESERCIZIO (2+2+2+2) La seguente tabella riporta la distribuzione della variabile "Stato Civile"

Dettagli

Formulario. Legge di capitalizzazione dell Interesse semplice (CS)

Formulario. Legge di capitalizzazione dell Interesse semplice (CS) Formulario Legge di capitalizzazione dell Interesse semplice (CS) Il montante M è una funzione lineare del capitale iniziale P. Di conseguenza M cresce proporzionalmente rispetto al tempo. M = P*(1+i*t)

Dettagli

Oscillazione dei mercati valutari e percezione del cambio in fase di budgeting

Oscillazione dei mercati valutari e percezione del cambio in fase di budgeting Oscillazione dei mercati valutari e percezione del cambio in fase di budgeting di Giuseppe Zillo (*) e Elisabetta Cecchetto (**) La definizione del cambio obiettivo nell azienda industriale non è solo

Dettagli

Volatilità Implicita, Covered Warrant e Scelta degli Investitori

Volatilità Implicita, Covered Warrant e Scelta degli Investitori Marcello Minenna Volatilità Implicita, Covered Warrant e Scelta degli Investitori Orienta Finanza 22 febbraio 2002 Rimini Covered Warrant Volumi Scambiati 62.000 56.000 Controvalori Scambiati (milioni

Dettagli

REGOLE DI ESECUZIONE DELLE ISTRUZIONI

REGOLE DI ESECUZIONE DELLE ISTRUZIONI REGOLE DI ESECUZIONE DELLE ISTRUZIONI I. Disposizioni generali 1. Le presenti Regole di esecuzione delle istruzioni dei clienti riguardanti i contratti di compensazione delle differenze (CFD) e gli strumenti

Dettagli

Programmazione Disciplinare: Calcolo Classe: Quarte - Quinte

Programmazione Disciplinare: Calcolo Classe: Quarte - Quinte Istituto Tecnico Tecnologico Basilio Focaccia Salerno Programmazione Disciplinare: Calcolo Classe: Quarte - Quinte Anno scolastico 01-01 I Docenti della Disciplina Salerno, settembre 01 Anno scolastico

Dettagli

Capitolo 1. Profilo finanziario degli investimenti 1

Capitolo 1. Profilo finanziario degli investimenti 1 Indice Prefazione Introduzione XIII XV Capitolo 1. Profilo finanziario degli investimenti 1 1.1 Definizione e tipologie di investimento 1 1.1.1 Caratteristiche degli investimenti produttivi 3 1.1.2 Caratteristiche

Dettagli

Il Controllo Interno di Qualità dalla teoria alla pratica: guida passo per passo IL MODELLO TEORICO. Pasquale Iandolo

Il Controllo Interno di Qualità dalla teoria alla pratica: guida passo per passo IL MODELLO TEORICO. Pasquale Iandolo Il Controllo Interno di Qualità dalla teoria alla pratica: guida passo per passo IL MODELLO TEORICO Pasquale Iandolo Laboratorio analisi ASL 4 Chiavarese, Lavagna (GE) 42 Congresso Nazionale SIBioC Roma

Dettagli

Misure della dispersione o della variabilità

Misure della dispersione o della variabilità QUARTA UNITA Misure della dispersione o della variabilità Abbiamo visto che un punteggio di per sé non ha alcun significato e lo acquista solo quando è posto a confronto con altri punteggi o con una statistica.

Dettagli

Sommario. Presentazione dell edizione italiana... xi. efazione... xiii

Sommario. Presentazione dell edizione italiana... xi. efazione... xiii Sommario Presentazione dell edizione italiana... xi Prefazione efazione... xiii Capitolo 1 Il lato oscuro o della valutazione... 1 Definizione di un impresa tecnologica... 2 La crescita del settore tecnologico...

Dettagli

Titolo. Corso di Laurea magistrale in Economia e Finanza. Tesi di Laurea

Titolo. Corso di Laurea magistrale in Economia e Finanza. Tesi di Laurea Corso di Laurea magistrale in Economia e Finanza Tesi di Laurea Titolo Modelli della capital growth e dalla growth security nella gestione di portafoglio. Relatore Ch. Prof. Marco Corazza Laureando Alessio

Dettagli

Statistica inferenziale

Statistica inferenziale Statistica inferenziale Popolazione e campione Molto spesso siamo interessati a trarre delle conclusioni su persone che hanno determinate caratteristiche (pazienti, atleti, bambini, gestanti, ) Osserveremo

Dettagli

Un seminario sull analisi statistica di formiche virtuali

Un seminario sull analisi statistica di formiche virtuali Un seminario sull analisi statistica di formiche virtuali Dr. Andrea Fontana Universita di Pavia http://www.pv.infn.it/~fontana/formiche Numeri casuali Tests di casualita Distribuzione uniforme in C e

Dettagli

l insieme delle misure effettuate costituisce il campione statistico

l insieme delle misure effettuate costituisce il campione statistico Statistica negli esperimenti reali si effettuano sempre un numero finito di misure, ( spesso molto limitato ) l insieme delle misure effettuate costituisce il campione statistico Statistica descrittiva

Dettagli

STRUMENTI DERIVATI - CARATTERISTICHE DELLE OPZIONI

STRUMENTI DERIVATI - CARATTERISTICHE DELLE OPZIONI STRUMENTI DERIVATI - CARATTERISTICHE DELLE OPZIONI Le due principali categorie in cui si dividono le opzioni sono: opzioni call, assegna la facoltà di acquistare o non acquistare l'attività sottostante

Dettagli

Il materiale didattico di seguito riportato, disponibile online, sostituisce il paragrafo 23.5.2

Il materiale didattico di seguito riportato, disponibile online, sostituisce il paragrafo 23.5.2 Il materiale didattico di seguito riportato, disponibile online, sostituisce il paragrafo 23.5.2 Vaalore della call/azione al 15 marzo 2014 Ipotizziamo di aver acquistato 1 azione FIAT al prezzo di 5,5.

Dettagli