Appunti complementari per il Corso di Statistica

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Appunti complementari per il Corso di Statistica"

Transcript

1 Apputi complemetari per il Corso di Statistica Corsi di Laurea i Igegeria Edile e Tessile Ilia Negri 24 settembre Schemi di campioameto Co il termie campioameto si itede l operazioe di estrazioe di u certo umero di pallie da u ura. Il risultato dell estrazioe è detto campioe. L isieme di tutti i possibili campioi costituisce lo spazio campioario. Diversi esperimeti casuali possoo dare come esito uo stesso tipo di campioameto. I questa sezioe ci propoiamo di catalogare l isieme degli esiti di alcui diversi tipi di esperimeti casuali. Gli esperimeti cosistoo ell estrazioe di pallie da u ura che cotiee M pallie. Essi si distiguoo prima di tutto per il modo i cui possoo essere estratte le pallie e i secodo luogo per l importaza o meo data all ordie i cui soo estratte. L utilizzo del modello costituito dall ura e dalle pallie è fatto solo per semplicità. Come vedremo elle applicazioi tale modello può essere visto come l esemplificazioe di modelli assai più complessi. Il problema della costruzioe di Ω per questi esperimeti si riduce quidi a cercare di dare ua risposta alla domada: i quati modi si possoo estrarre pallie da u ura che e cotiee M distite? Come abbiamo già acceato il umero di modi i cui si possoo estrarre le pallie dipede da due fattori che caratterizzao l esperimeto casuale: 1. Si ripoe ell ura la pallia estratta prima dell estrazioe successiva? Dipartimeto di Igegeria Uiversità degli Studi di Bergamo Dalmie 1

2 2. Ha importaza l ordie co cui le pallie soo estratte? A secoda delle risposte date alle due domade precedeti si distiguoo 4 tipi diversi di schema di campioameto. Si suppoe che le M pallie coteute ell ura siao cotraddistite dai umeri 1, 2,..., M. U campioe di lughezza estratto dall ura può essere idicato come (a 1, a 2,..., a, dove ciascu a i per i 1, 2,... può assumere valori ell isieme {1, 2,..., M} e rappreseta il valore della i-esima estrazioe. Il umero delle -uple (a 1, a 2,..., a diverse che si possoo formare dipede dalle risposte che si dao ai due ultimi quesiti. Ad esempio ua possibile realizzazioe el gioco del totocalcio può essere vista come u campioe otteuto estraedo 13 pallie da u ura che e cotiee 3, ripoedo ell ura la pallia prima di procedere all estrazioe successiva e dado importaza all ordie co cui le 13 pallie soo estratte. Nel seguito si aalizzao i quattro schemi diversi di campioameto. Primo caso. Estrazioe co riposizioe e si da importaza all ordie. I questo caso due campioi (a 1, a 2,..., a e (b 1, b 2,..., b soo diversi tra loro o se differiscoo per il valore che assumoo le a i e le b i ovvero se queste soo tutte uguali ma cambia l ordie co cui compaioo ella -upla. Per cotare quati campioi diversi si possoo formare si ragioa el modo seguete. Nella prima estrazioe la pallia può essere scelta i M modi diversi. Nella secoda estrazioe, poiché la pallia estratta viee rimessa ell ura, questa può essere scelta di uovo i M modi diversi. Per oguo dei modi i cui è estratta la prima pallia vi soo M modi possibili di estrarre la secoda pallia, quidi i totale M 2 modi di estrarre due pallie. I geerale se si effettuao estrazioi si avrao M modi diversi di estrarre le pallie. Il umero di campioi otteuti è ache detto disposizioi co ripetizioe. Ad esempio le combiazioi possibili al gioco del totocalcio soo Si oti che i questo schema di campioameto si può avere M. Secodo caso. Estrazioe seza riposizioe e si da importaza all ordie. Per cotare quati campioi si possoo formare si osserva che la prima estrazioe può essere fatta i M modi. La secoda può essere fatta i M 1 modi i quato la pallia scelta alla prima estrazioe o viee rimessa ell ura. Per ogi scelta 2

3 della prima pallia vi soo quidi M 1 scelte della secoda. I totale le prime due scelte possoo essere effettuate i M (M 1 modi. I casi possibili se si eseguoo estrazioi soo quidi M (M 1... (M + 1. Il umero di campioi otteuti è detto disposizioi semplici. Itroduciamo la otazioe fattoriale dove co k! per k itero e maggiore di zero di itede il prodotto di tutti gli iteri da k fio a 1. Si assume per defiizioe che 0! 1. Allora il umero di casi possibili può essere scritto come (M!. Quati umeri di sei cifre tutte diverse si possoo formare? Si tratta di cotare il umero dei campioi diversi che si ottegoo facedo sei estrazioi seza riposizioe i u ura che cotiee 10 pallie. Chiaramete i questo tipo di esperimeto ha importaza l ordie co cui vegoo estratte le pallie i quato u umero i ua posizioe assume u sigificato be preciso. I casi possibili soo I quati modi possibili si possoo ordiare 12 persoe diverse? Ogi ordie possibile corrispode ad effettuare 12 estrazioi da u ura coteete 12 pallie i questo schema di campioameto. I casi possibili soo 12! Terzo caso. Estrazioe seza riposizioe e o ha importaza l ordie. Per cotare i campioi possibili i questo caso facciamo la seguete osservazioe. Due campioi dello schema precedete che differiscoo solo per l ordie delle pallie estratte ma o per le pallie estratte soo lo stesso campioe i questo schema. Per ogi estrazioe di pallie diverse vi soo! modi di ordiare queste pallie. I campioi otteuti i questo modo rappresetao u uico campioe per questo schema. I casi possibili soo duque M (M 1... (M + 1.! I pratica si applica quella che viee detta regola del pastore: per sapere quate pecore vi soo el gregge si cotao prima le zampe e poi si divide per quattro. Il umero di campioi otteuto i questo schema prede il ome di combiazioi semplici. Per idicare il umero di campioi otteuto co questo schema si utilizza 3

4 la seguete scrittura: ( M M (M 1... (M + 1! (M!!. La quatità ( M viee ache detta coefficiete biomiale. Ad esempio si suppoga di voler sapere quate ciquie si possoo formare el gioco del Lotto. I questo caso si devoo cotare i campioi possibili otteuti facedo estrazioi seza riposizioe da ura che cotiee 90 pallie. I casi possibili soo ( Quarto caso. 1 Estrazioe co riposizioe e o ha importaza l ordie. Si suppoga di idetificare le M pallie coteute ell ura co M 1 barre che dividoo M celle (la prima e l ultima cella o hao la parete a siistra e rispettivamete a destra. L estrazioe di pallie ello schema dell ura co riposizioe e seza dare importaza all ordie, corrispode all assegazioe di oggetti idistiguibili (chiamiamoli asterischi alle M celle seza esclusioe (cioè ogi cella poò coteere più asterischi. Se pesiamo agli M 1 bastocii e agli asterischi come ad M 1 + oggetti diversi, ogi cofigurazioe corrispode ad ua permutazioe di questi oggetti. Ci soo quidi (M 1 +! cofigurazioi possibili. Due permutazioi di questo tipo corrispodoo allo stesso campioe ello schema che si sta cosiderado, quado, fissate le posizioi e i valori degli asterischi, si permutao gli M 1 bastocii. I modo aalogo due permutazioi i cui soo fissate le posizioi dei bastocii rappresetao lo stesso campioe quado si permutao gli asterischi. I defiitiva i casi possibili soo (M 1 +! (M 1!! ( M 1 +. Il umero di tali campioi è detto combiazioi co ripetizioe. Ad esempio quate tessere diverse del domio si possoo formare? Tate quate il umero di estrazioi diverse che si possoo effettuare estraedo due pallie co riposizioe da u ura che e cotiee sei. I casi possibili soo ( Per i quattro schemi cosiderati abbiamo costruito lo spazio Ω degli eveti elemetari. Il umero di elemeti che appartegoo ad Ω ei quattro schemi è riassuto ella tabella 1. Se si vuole calcolare la probabilità di u particolare eveto i uo di 1 Questo caso è presetato solo per completezza ma o fa parte del programma d esame 4

5 ORDINATI NON ORDINATI ( CON RIPOSIZIONE M M 1+ SENZA RIPOSIZIONE (M! ( M Tabella 1: Numero di campioi elemetari ei differeti schemi di campioameto. questi schemi di campioameto si può supporre che ciascu eveto elemetare sia equiprobabile. Co l ipotesi fatta la probabilità degli eveti si può calcolare come umero di casi favorevoli all eveto fratto umero dei casi possibili. Esempio 1.1. Calcolare la probabilità di fare ambo avedo giocato 2 umeri su ua ruota del Lotto. I questo caso i casi possibili soo ( Metre i casi favorevoli soo ( Ifatti le ciquie favorevoli soo quelle che cotegoo i due umeri giocati e altri tre umeri qualuque scelti tra gli 88 rimasti. La probabilità richiesta è pertato p Quidi per cosiderare equo il gioco del Lotto ua vicita otteuta co l ambo dovrebbe essere pagata circa 00 volte o le 0 attuali!

Elementi di calcolo combinatorio

Elementi di calcolo combinatorio Appedice A Elemeti di calcolo combiatorio A.1 Disposizioi, combiazioi, permutazioi Il calcolo combiatorio si occupa di alcue questioi iereti allo studio delle modalità secodo cui si possoo raggruppare

Dettagli

Tutorato di Probabilità 1, foglio I a.a. 2007/2008

Tutorato di Probabilità 1, foglio I a.a. 2007/2008 Tutorato di Probabilità, foglio I a.a. 2007/2008 Esercizio. Siao A, B, C, D eveti.. Dimostrare che P(A B c ) = P(A) P(A B). 2. Calcolare P ( A (B c C) ), sapedo che P(A) = /2, P(A B) = /4 e P(A B C) =

Dettagli

Campionamento casuale da popolazione finita (caso senza reinserimento )

Campionamento casuale da popolazione finita (caso senza reinserimento ) Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori

Dettagli

Consideriamo un insieme di n oggetti di natura qualsiasi. Indicheremo questi oggetti con

Consideriamo un insieme di n oggetti di natura qualsiasi. Indicheremo questi oggetti con Calcolo Combiatorio Adolfo Scimoe pag 1 Calcolo combiatorio Cosideriamo u isieme di oggetti di atura qualsiasi. Idicheremo questi oggetti co a1 a2... a. Co questi oggetti si voglioo formare dei gruppi

Dettagli

CALCOLO COMBINATORIO

CALCOLO COMBINATORIO CALCOLO COMBINATORIO Che cosa sigifica cotare Tutti coosciamo la successioe dei umeri iteri Naturali N = {0, 1,,, } si tratta di ua struttura metale fodametale, chiaramete presete alla ostra ituizioe che

Dettagli

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino)

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino) Corso di Laurea Trieale i Matematica Calcolo delle Probabilità I doceti G. Nappo, F. Spizzichio Prova di martedì luglio tempo a disposizioe: 3 ore. Scrivere su ogi foglio NOME e COGNOME. Le risposte devoo

Dettagli

Calcolo combinatorio. Disposizioni - Permutazioni - Combinazioni Coefficienti binomiali - Binomio di Newton Disposizioni semplici.

Calcolo combinatorio. Disposizioni - Permutazioni - Combinazioni Coefficienti binomiali - Binomio di Newton Disposizioni semplici. Calcolo combiatorio. Disposizioi - Permutazioi - Combiazioi Coefficieti biomiali - Biomio di Newto Disposizioi semplici. Disposizioi semplici di oggetti di classe soo tutti gli allieameti che è possibile

Dettagli

MATEMATICA DEL DISCRETO elementi di calcolo combinatorio. anno acc. 2009/2010

MATEMATICA DEL DISCRETO elementi di calcolo combinatorio. anno acc. 2009/2010 elemeti di calcolo combiatorio ao acc. 2009/2010 Cosideriamo u isieme fiito X. Chiamiamo permutazioe su X u applicazioe biuivoca di X i sè. Ad esempio, se X = {a, b, c}, le permutazioi distite soo 6 e

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO 0. Itroduzioe Oggetto del calcolo combiatorio è quello di determiare il umero dei modi mediate i quali possoo essere associati, secodo prefissate regole, gli elemeti di uo stesso

Dettagli

Elementi di Calcolo Combinatorio

Elementi di Calcolo Combinatorio Elemeti di Calcolo Combiatorio Alessadro De Gregorio Sapieza Uiversità di Roma alessadro.degregorio@uiroma1.it Idice 1 Premessa 1 2 Permutazioi 2 3 Disposizioi 3 4 Combiazioi 4 5 Il coefficiete multiomiale

Dettagli

Qual è il numero delle bandiere tricolori a righe verticali che si possono formare con i 7 colori dell iride?

Qual è il numero delle bandiere tricolori a righe verticali che si possono formare con i 7 colori dell iride? Calcolo combiatorio sempi Qual è il umero delle badiere tricolori a righe verticali che si possoo formare co i 7 colori dell iride? Dobbiamo calcolare il umero delle disposizioi semplici di 7 oggetti di

Dettagli

Calcolo Combinatorio

Calcolo Combinatorio Uiversità degli Studi di Palermo Facoltà di Ecoomia Dip. di Scieze Ecoomiche, Aziedali e Statistiche Apputi del corso di Matematica Geerale Calcolo Combiatorio Ao Accademico 2013/201 V. Lacagia - S. Piraio

Dettagli

Calcolo combinatorio

Calcolo combinatorio Calcolo combiatorio Il pricipio fodametale del calcolo combiatorio Il pricipio fodametale del calcolo combiatorio può essere euciato così: Se dobbiamo fare N scelte e la prima scelta può essere fatta i

Dettagli

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33) Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,

Dettagli

CALCOLO COMBINATORIO

CALCOLO COMBINATORIO Pricipio fodametale del calcolo combiatorio Se u eveto E si può presetare i modi e u secodo eveto E 2 si può maifestare i 2 modi, allora l eveto composto E E 2 si può presetare i modi. 2 ORDINE/ RIPETIZIONE

Dettagli

Stima della media di una variabile X definita su una popolazione finita

Stima della media di una variabile X definita su una popolazione finita Stima della media di ua variabile X defiita su ua popolazioe fiita otazioi: popolazioe, campioe e strati Popolazioe. umerosità popolazioe; Ω {ω,..., ω } popolazioe X variabile aleatoria defiita sulla popolazioe

Dettagli

INFERENZA o STATISTICA INFERENTE

INFERENZA o STATISTICA INFERENTE INFERENZA o STATISTICA INFERENTE Le iformazioi sui parametri della popolazioe si possoo otteere sia mediate ua rilevazioe totale (o rilevazioe cesuaria) sia mediate ua rilevazioe parziale (o rilevazioe

Dettagli

ESERCITAZIONI 1 (vers. 1/11/2013)

ESERCITAZIONI 1 (vers. 1/11/2013) ESERCITAZIONI 1 (vers. 1/11/2013 Daiela De Caditiis tutoraggio MAT/06 Igegeria dell Iformazioe - sede di Latia, prima qualche richiamo di teoria... CALCOLO COMBINATORIO Il pricipio fodametale del calcolo

Dettagli

Titolo della lezione. Campionamento e Distribuzioni Campionarie

Titolo della lezione. Campionamento e Distribuzioni Campionarie Titolo della lezioe Campioameto e Distribuzioi Campioarie Itroduzioe Itrodurre le idagii campioarie Aalizzare il le teciche di costruzioe dei campioi e di rilevazioe Sviluppare il cocetto di distribuzioe

Dettagli

SULLE PARTIZIONI DI UN INSIEME

SULLE PARTIZIONI DI UN INSIEME Claudia Motemurro Ricordiamo la SULLE PRTIZIONI DI UN INSIEME Defiizioe: Ua partizioe di u isieme è ua famiglia { sottoisiemi o vuoti di X tali che: - X è l uioe degli isiemi X i (i I ), cioè X = U i X

Dettagli

Per questi argomenti ti consiglio anche di effettuare questo collegamento:

Per questi argomenti ti consiglio anche di effettuare questo collegamento: Prof. Roberto Milizia, presso Liceo Scietifico E. Ferdiado Mesage BR) UNITA 8. IL CALCOLO COMBINATORIO.. Itroduzioe al calcolo combiatorio.. I raggruppameti. 3. Esercizi vari co i raggruppameti. 4. Il

Dettagli

Lezione 4. Gruppi di permutazioni

Lezione 4. Gruppi di permutazioni Lezioe 4 Prerequisiti: Applicazioi tra isiemi Lezioi e Gruppi di permutazioi I questa lezioe itroduciamo ua classe ifiita di gruppi o abeliai Defiizioe 41 ia X u isieme o vuoto i dice permutazioe su X

Dettagli

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi:

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi: Isiemi umerici Soo oti l isieme dei umeri aturali: N {1,, 3,, l isieme dei umeri iteri relativi: Z {0, ±1, ±, ±3, N {0 ( N e, l isieme dei umeri razioali: Q {p/q : p Z, q N. Si ottiee questo ultimo isieme,

Dettagli

L INFORMAZIONE E LE CODIFICHE

L INFORMAZIONE E LE CODIFICHE L INFORMAZIONE E LE CODIFICE UN PO DI STORIA - La Teoria dell iformazioe è ata ella secoda metà del 900, sebbee il termie iformazioe sia atico (dal latio mettere i forma) - I omi più importati soo Nyquist,

Dettagli

Statistica. Lezione 5

Statistica. Lezione 5 Uiversità degli Studi del Piemote Orietale Corso di Laurea i Ifermieristica Corso itegrato i Scieze della Prevezioe e dei Servizi saitari Statistica Lezioe 5 a.a 2011-2012 Dott.ssa Daiela Ferrate daiela.ferrate@med.uipm.it

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2006/2007

Probabilità e Statistica Esercitazioni. a.a. 2006/2007 Probabilità e Statistica Esercitazioi a.a. 2006/2007 C.d.L.: Igegeria per l Ambiete ed il Territorio, Igegeria Civile, Igegeria Gestioale, Igegeria dell Iformazioe C.d.L.S.: Igegeria Civile Estrazioi-II

Dettagli

STUDIO DEL LANCIO DI 3 DADI

STUDIO DEL LANCIO DI 3 DADI Leoardo Latella STUDIO DEL LANCIO DI 3 DADI Il calcolo delle probabilità studia gli eveti casuali probabili, cioè quegli eveti che possoo o o possoo verificarsi e che dipedoo uicamete dal caso. Tale studio

Dettagli

1.2 IL PRINCIPIO FONDAMENTALE DEL CALCOLO COMBINATORIO

1.2 IL PRINCIPIO FONDAMENTALE DEL CALCOLO COMBINATORIO Aalisi combiatoria CAPITOLO 1 1.1 INTRODUZIONE Quello che segue è u tipico problema pratico che coivolge le probabilità. U sistema di comuicazioe cosiste di atee apparetemete idetiche che vegoo allieate

Dettagli

LE MISURE DI TENDENZA CENTRALE

LE MISURE DI TENDENZA CENTRALE STATISTICA DESCRITTIVA LE MISURE DI TENDENZA CENTRALE http://www.biostatistica.uich.itit OBIETTIVO Esempio: Nella tabella seguete soo riportati i valori del tasso glicemico rilevati su 0 pazieti: Idividuare

Dettagli

In questo capitolo approfondiremo le nostre conoscenze su sequenze e collezioni,

In questo capitolo approfondiremo le nostre conoscenze su sequenze e collezioni, Cotare sequeze e collezioi Coteuto Sequeze e collezioi di elemeti distiti Sequeze e collezioi arbitrarie 3 Esercizi I questo capitolo approfodiremo le ostre coosceze su sequeze e collezioi, acquisedo gli

Dettagli

GLI INSIEMI NUMERICI

GLI INSIEMI NUMERICI GLI INSIEMI NUMERICI R 2 π 2, _ -,8 2,89 Q Z N -2 2 28-87 -87 _, 7,76267 7 - e 2,7-7 -,6 _ -,627 7 6 R Numeri Reali Q Numeri Razioali Z Numeri Iteri Relativi N Numeri Naturali Dal diagramma di Eulero-Ve

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

Quesito 1. I seguenti dati si riferiscono ai tempi di reazione motori a uno stimolo luminoso, espressi in decimi di secondo, di un gruppo di piloti:

Quesito 1. I seguenti dati si riferiscono ai tempi di reazione motori a uno stimolo luminoso, espressi in decimi di secondo, di un gruppo di piloti: Quesito. I segueti dati si riferiscoo ai tempi di reazioe motori a uo stimolo lumioso, espressi i decimi di secodo, di u gruppo di piloti: 2, 6 3, 8 4, 8 5, 8 2, 6 4, 0 5, 0 7, 2 2, 6 4, 0 5, 0 7, 2 2,

Dettagli

Progetto Matematica in Rete - Numeri naturali - I numeri naturali

Progetto Matematica in Rete - Numeri naturali - I numeri naturali I umeri aturali Quali soo i umeri aturali? I umeri aturali soo : 0,1,,3,4,5,6,7,8,9,,11 I umeri aturali hao u ordie cioè dati due umeri aturali distiti a e b si può sempre stabilire qual è il loro ordie

Dettagli

Calcolo combinatorio. Introduzione. Paolo Siviglia. Calcolo combinatorio 1

Calcolo combinatorio. Introduzione. Paolo Siviglia. Calcolo combinatorio 1 Paolo Siviglia Calcolo combiatorio Itroduzioe I questa parte della matematica vegoo affrotati i problemi riguardati lo studio dei raggruppameti che si possoo realizzare co gli elemeti di u isieme. Problemi

Dettagli

ALGEBRA I MODULO PROF. VERARDI - ESERCIZI. Sezione 1 NUMERI NATURALI E INTERI

ALGEBRA I MODULO PROF. VERARDI - ESERCIZI. Sezione 1 NUMERI NATURALI E INTERI ALGEBRA I MODULO PROF. VERARDI - ESERCIZI Sezioe 1 NUMERI NATURALI E INTERI 2 1.1. Si dimostri per iduzioe la formula: N, k 2 "1( * " 3 ) " 3k +1(. 3 1.2. A) Si dimostri che per ogi a,b N +, N +, se a

Dettagli

La formula del binomio

La formula del binomio La formula del biomio Ua spiegazioe elemetare Riccardo Dossea 7 dicembre 5 I questo articolo vogliamo presetare ua dimostrazioe elemetare, che eviti espliciti riferimeti di carattere combiatorio, della

Dettagli

CENTRO SALESIANO DON BOSCO TREVIGLIO Corso di Informatica

CENTRO SALESIANO DON BOSCO TREVIGLIO Corso di Informatica Da u mazzo di carte (3 carte er quattro semi di cui due eri e due rossi, co 3 figure er ogi seme si estragga ua carta. Calcolare la robabilità che a si estragga u re ero b si estragga ua figura rossa,

Dettagli

PROPRIETÀ DELLE POTENZE IN BASE 10

PROPRIETÀ DELLE POTENZE IN BASE 10 PROPRIETÀ DELLE POTENZE IN BASE Poteze i base co espoete itero positivo Prediamo u umero qualsiasi che deotiamo co la lettera a e u umero itero positivo che deotiamo co la lettera Per defiizioe (cioè per

Dettagli

Algebra delle matrici

Algebra delle matrici Algebra delle matrici Prodotto di ua matrice per uo scalare Data ua matrice A di tipo m, e dato uo scalare r R, moltiplicado r per ciascu elemeto di A si ottiee ua uova matrice di tipo m, detta matrice

Dettagli

Popolazione e Campione

Popolazione e Campione Popolazioe e Campioe POPOLAZIONE: Isieme di tutte le iformazioi sul feomeo oggetto di studio Viee descritta mediate ua variabile casuale X: X ~ f x; = costate icogita Qual è il valore di? E verosimile

Dettagli

ALCUNI ESERCIZI SUI TEST DI IPOTESI PARAMETRICHE PARTE 1

ALCUNI ESERCIZI SUI TEST DI IPOTESI PARAMETRICHE PARTE 1 ALCUNI ESERCIZI SUI TEST DI IPOTESI PARAMETRICHE PARTE ESERCIZIO. Si vuole verificare l ipotesi, a livello di sigificatività α, che la media μ di ua variabile aleatoria X abbia u valore fissato μ. Si effettuao

Dettagli

Statistica. Esercitazione 12. Alfonso Iodice D Enza Università degli studi di Cassino. Statistica. A. Iodice

Statistica. Esercitazione 12. Alfonso Iodice D Enza Università degli studi di Cassino. Statistica. A. Iodice Esercitazioe 12 Alfoso Iodice D Eza iodicede@uicas.it Uiversità degli studi di Cassio () 1 / 15 Outlie 1 () 2 / 15 Outlie 1 2 () 2 / 15 Outlie 1 2 3 () 2 / 15 Outlie 1 2 3 4 () 2 / 15 Outlie 1 2 3 4 5

Dettagli

STATISTICA INFERENZIALE

STATISTICA INFERENZIALE STATISTICA INFERENZIALE 6 INFERENZA STATISTICA Isieme di metodi che cercao di raggiugere coclusioi sulla popolazioe, sulla base delle iformazioi coteute i u campioe estratto da quella popolazioe. INFERENZA

Dettagli

Principio di induzione: esempi ed esercizi

Principio di induzione: esempi ed esercizi Pricipio di iduzioe: esempi ed esercizi Pricipio di iduzioe: Se ua proprietà P dipedete da ua variabile itera vale per e se, per ogi vale P P + allora P vale su tutto Variate del pricipio di iduzioe: Se

Dettagli

A B C D E F. n n. Calcolo combinatorio. n n-1 n-2 n-3 n-4. n-5 6 n-k+1 k. n n-1. n n-1 n-2 n Permutazioni semplici di n oggetti

A B C D E F. n n. Calcolo combinatorio. n n-1 n-2 n-3 n-4. n-5 6 n-k+1 k. n n-1. n n-1 n-2 n Permutazioni semplici di n oggetti 1. Permutazioi semplici di oggetti Calcolo combiatorio Dato u isieme di oggetti, ad esempio lettere, si vuol sapere quati soo i possibili modi i cui esse possoo essere ordiate i ua fila. Il umero complessivo

Dettagli

Popolazione e Campione

Popolazione e Campione Popolazioe e Campioe POPOLAZIONE: Isieme di tutte le iformazioi sul feomeo oggetto di studio Viee descritta mediate ua variabile casuale X: X ~ f ( x; ϑ) θ = costate icogita Qual è il valore di θ? E verosimile

Dettagli

Calcolo combinatorio n

Calcolo combinatorio n 1. Permutazioi semplici di oggetti Calcolo combiatorio Dato u isieme di oggetti, ad esempio lettere, si vuol sapere quati soo i possibili modi i cui esse possoo essere ordiate i ua fila. Il umero complessivo

Dettagli

Passiamo ad una formula meno semplice dato che non sembra avere una facile interpretazione combinatoria. s m. m + k n r+m. (2.

Passiamo ad una formula meno semplice dato che non sembra avere una facile interpretazione combinatoria. s m. m + k n r+m. (2. 60 Cotare sequeze e collezioi Passiamo ad ua formula meo semplice dato che o sembra avere ua facile iterpretazioe combiatoria. Proposizioe. Siao r, s, m, N. Allora r s + s m ( ) =( ) m + r+m. (.) r Z Osservazioe.

Dettagli

Aritmetica 2016/2017 Esercizi svolti in classe Seconda lezione

Aritmetica 2016/2017 Esercizi svolti in classe Seconda lezione Aritmetica 06/07 Esercizi svolti i classe Secoda lezioe Dare ua formula per 3 che o coivolga sommatorie Dato che sappiamo che ( + e ( + ( + 6 vogliamo esprimere 3 mediate, e poliomi i U idea possibile

Dettagli

Teoria degli insiemi : alcuni problemi combinatorici.

Teoria degli insiemi : alcuni problemi combinatorici. Teoria degli isiemi : alcui problemi combiatorici. Il calcolo combiatorio prede i cosiderazioe degli isiemi fiiti particolari e e cota l ordie. Questo può dar luogo ad iteressati e utili applicazioi. Premettiamo

Dettagli

Esercizi di Calcolo delle Probabilità e Statistica Matematica

Esercizi di Calcolo delle Probabilità e Statistica Matematica Esercizi di Calcolo delle Probabilità e Statistica Matematica Lucio Demeio Dipartimeto di Igegeria Idustriale e Scieze Matematiche Uiversità Politecica delle Marche 1. Esercizio (31 marzo 2012. 1). Al

Dettagli

16 - Serie Numeriche

16 - Serie Numeriche Uiversità degli Studi di Palermo Facoltà di Ecoomia CdS Statistica per l Aalisi dei Dati Apputi del corso di Matematica 6 - Serie Numeriche Ao Accademico 03/04 M. Tummiello, V. Lacagia, A. Cosiglio, S.

Dettagli

3. Calcolo letterale

3. Calcolo letterale Parte Prima. Algera 1) Moomi Espressioe algerica letterale 42 Isieme di umeri relativi, talui rappresetati da lettere, legati fra loro da segi di operazioi. Moomio Espressioe algerica che o cotiee le operazioi

Dettagli

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge.

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge. Le successioi A parole ua successioe é u isieme ifiito di umeri disposti i u particolare ordie. Piú rigorosamete, ua successioe é ua legge che associa ad ogi umero aturale u altro umero (ache o aturale):

Dettagli

Università degli Studi di Cassino, Anno accademico Corso di Statistica 2, Prof. M. Furno

Università degli Studi di Cassino, Anno accademico Corso di Statistica 2, Prof. M. Furno Uiversità degli Studi di Cassio, Ao accademico 004-005 Corso di Statistica, Prof.. uro Esercitazioe del 01/03/005 dott. Claudio Coversao Esercizio 1 Si cosideri il seguete campioe casuale semplice estratto

Dettagli

poco significativo. RAPPORTI INDICI / NUMERI INDICI RAPPORTI DI COMPOSIZIONE RAPPORTI DI DENSITÀ RAPPORTI DI DURATA RAPPORTI DI RIPETIZIONE AD ESEMPIO

poco significativo. RAPPORTI INDICI / NUMERI INDICI RAPPORTI DI COMPOSIZIONE RAPPORTI DI DENSITÀ RAPPORTI DI DURATA RAPPORTI DI RIPETIZIONE AD ESEMPIO Spesso bisoga cofrotare far di loro 2 o più dati statistici che si riferiscoo a feomei rilevati o i spazi/luoghi diversi o i tempi diversi o comuque i ambiti diversi e che quidi risetoo dell UNITÀ DI MISURA

Dettagli

(1 2 3) (1 2) Lezione 10. I gruppi diedrali.

(1 2 3) (1 2) Lezione 10. I gruppi diedrali. Lezioe 0 Prerequisiti: Simmetrie di poligoi regolari. Gruppi di permutazioi. Cetro di u gruppo. Cetralizzate di u elemeto di u gruppo. Riferimeto al testo: [PC] Sezioe 5.4 I gruppi diedrali. Ogi simmetria

Dettagli

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma 1 Serie di poteze È stato dimostrato che la serie geometrica x (1.1) coverge se e solo se la ragioe x soddisfa la disuguagliaza 1 < x < 1. I realtà c è covergeza assoluta i ] 1, 1[. Per x 1 la serie diverge

Dettagli

Calcolo Combinatorio (vers. 1/10/2014)

Calcolo Combinatorio (vers. 1/10/2014) Calcolo Combiatorio (vers. 1/10/2014 Daiela De Caditiis modulo CdP di teoria dei segali Igegeria dell Iformazioe - sede di Latia, CALCOLO COMBINATORIO Pricipio Fodametale del Calcolo Combiatorio: Si realizzio

Dettagli

Sviluppi di Taylor. Andrea Corli 1 settembre Notazione o 1. 3 Formula di Taylor 3. 4 Esempi ed applicazioni 5

Sviluppi di Taylor. Andrea Corli 1 settembre Notazione o 1. 3 Formula di Taylor 3. 4 Esempi ed applicazioni 5 Sviluppi di Taylor Adrea Corli settembre 009 Idice Notazioe o Liearizzazioe di ua fuzioe 3 Formula di Taylor 3 4 Esempi ed applicazioi 5 I questo capitolo aalizziamo l approssimazioe di ua fuzioe regolare

Dettagli

1. Tra angoli e rettangoli

1. Tra angoli e rettangoli . Tra agoli e rettagoli Attività : il foglio A4 e le piegature Predi u foglio di carta A4 e piegalo a metà. Cota di volta i volta quati rettagoli si ottegoo piegado a metà più volte il foglio. Immagia

Dettagli

Sottospazi associati a matrici e forma implicita. Sottospazi associati a una matrice Dimensione e basi con riduzione Sottospazi e sistemi. Pag.

Sottospazi associati a matrici e forma implicita. Sottospazi associati a una matrice Dimensione e basi con riduzione Sottospazi e sistemi. Pag. Spazi vettoriali Sottospazi associati a ua matrice Dimesioe e basi co riduzioe Sottospazi e sistemi 2 Pag. 1 2006 Politecico di Torio 1 Spazi delle righe e delle coloe Sia A M m, ua matrice m x. Allora

Dettagli

Appendice A. Elementi di Algebra Matriciale

Appendice A. Elementi di Algebra Matriciale ppedice. Elemeti di lgebra Matriciale... 2. Defiizioi... 2.. Matrice quadrata... 2..2 Matrice diagoale... 2..3 Matrice triagolare... 3..4 Matrice riga e matrice coloa... 3..5 Matrice simmetrica e emisimmetrica...

Dettagli

Inferenza statistica. Popolazione. Camp. Statistiche campionarie basate sulle osservazioni del campione. Estrazione casuale. Parametro e statistica

Inferenza statistica. Popolazione. Camp. Statistiche campionarie basate sulle osservazioni del campione. Estrazione casuale. Parametro e statistica 6/0/0 Corso di Statistica per l impresa Prof. A. D Agostio Ifereza statistica Per fare ifereza statistica si utilizzao le iformazioi raccolte su u campioe per cooscere parametri icogiti della popolazioe

Dettagli

,5 882,5 894,5 906,5 918,5 930,5 942,5 954,5

,5 882,5 894,5 906,5 918,5 930,5 942,5 954,5 Il 16 dicembre 015 ero a Napoli. Ad u agolo di Piazza Date mi soo imbattuto el "matematico di strada", come egli si defiisce, Giuseppe Poloe immerso el suo armametario di tabelle di umeri. Il geiale persoaggio

Dettagli

Corso di Informatica

Corso di Informatica Corso di Iformatica Codifica dell Iformazioe Sistemi Numerici Per rappresetare ua certo quatità di oggetti è ecessaria ua covezioe o sistema umerico che faccia corrispodere ad ua sequeza di ua o più cifre,

Dettagli

Calcolo combinatorio Premessa Calcolo Combinatorio

Calcolo combinatorio Premessa Calcolo Combinatorio Calcolo combiatorio Premessa Calcolo Combiatorio Cosideriamo u isieme di oggetti: G={a1,a2,a3, a} co 0, di atura qualuque ma perfettamete distiguibili l uo dall altro i base a qualche caratteristica, ad

Dettagli

APPROSSIMAZIONE NORMALE. 1. Si tirano 300 dadi non truccati. Sia X la somma dei punteggi. Calcolare approssimativamente le probabilità seguenti.

APPROSSIMAZIONE NORMALE. 1. Si tirano 300 dadi non truccati. Sia X la somma dei punteggi. Calcolare approssimativamente le probabilità seguenti. AROSSIMAZIONE NORMALE 1. Si tirao 300 dadi o truccati. Sia X la somma dei puteggi. Calcolare approssimativamete le probabilità segueti. (a (X 1000; (b (1000 X 1100. 2. La quatità di eve, che cade al gioro,i

Dettagli

Matematica I, Limiti di successioni (II).

Matematica I, Limiti di successioni (II). Matematica I, 05102012 Limiti di successioi II) 1 Le successioi elemetari, cioe α, = 0, 1, 2, α R), b, = 0, 1, 2, b R), log b, = 1, 2, b > 0, b 1), si, = 0, 1, 2,, cos, = 0, 1, 2,, per + hao il seguete

Dettagli

Unità Didattica N 32 Grandezze geometriche omogenee e loro misura

Unità Didattica N 32 Grandezze geometriche omogenee e loro misura Uità Didattica N 3 Uità Didattica N 3 01) Classi di gradezze omogeee 0) Multipli e sottomultipli di ua gradezza geometrica 03) Gradezze commesurabili ed icommesurabili 04) Rapporto di due gradezze 05)

Dettagli

NUOVI CRITERI DI DIVISIBILITÀ

NUOVI CRITERI DI DIVISIBILITÀ NUOVI CRITERI DI DIVISIBILITÀ BRUNO BIZZARRI, FRANCO EUGENI, DANIELA TONDINI 1 1. Su tutti i testi scolastici di Scuola Media, oostate siao riportati i criteri di divisibilità per i umeri, 3, 4, 5, 6,

Dettagli

M. TROVATO. Fmatematica. calcolo delle probabilità. attuariale

M. TROVATO. Fmatematica. calcolo delle probabilità. attuariale M. TROVATO 8 calcolo delle probabilità 9 Fmatematica attuariale M. TROVATO 8 calcolo delle probabilità 9 Fmatematica attuariale Moduli di matematica geerale e applicata F - Ghisetti e Corvi 009 De Agostii

Dettagli

Le successioni: intro

Le successioni: intro Le successioi: itro Si cosideri la seguete sequeza di umeri:,, 2, 3, 5, 8, 3, 2, 34, 55, 89, 44, 233, detti di Fiboacci. Essa rappreseta il umero di coppie di coigli preseti ei primi 2 mesi i u allevameto!

Dettagli

Precorso di Matematica, aa , (IV)

Precorso di Matematica, aa , (IV) Precorso di Matematica, aa 01-01, (IV) Poteze, Espoeziali e Logaritmi 1. Nel campo R dei umeri reali, il umero 1 e caratterizzato dalla proprieta che 1a = a, per ogi a R; per ogi umero a 0, l equazioe

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioi di Matematica 1 - I modulo Luciao Battaia 4 dicembre 2008 L. Battaia - http://www.batmath.it Mat. 1 - I mod. Lez. del 04/12/2008 1 / 28 -2 Sottosuccessioi Grafici Ricorreza Proprietà defiitive Limiti

Dettagli

Lezione 14. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 14. A. Iodice. disuguaglianza di Markov

Lezione 14. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 14. A. Iodice. disuguaglianza di Markov Statistica Alfoso Iodice D Eza iodicede@uicas.it Uiversità degli studi di Cassio () Statistica 1 / 29 Outlie 1 2 3 4 5 6 () Statistica 2 / 29 Importati disuguagliaze Variabili casuali co distribuzioi o

Dettagli

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli

Probabilità e Statistica I

Probabilità e Statistica I Probabilità e Statistica I Elvira Di Nardo (Dipartimeto di Matematica) Uiversità degli Studi della Basilicata e-mail:diardo@uibas.it http://www.uibas.it/uteti/diardo/home.html Tel:097/05890 Prerequisiti:

Dettagli

Diagramma polare e logaritmico

Diagramma polare e logaritmico Diagramma polare e aritmico ariatori discotiui del moto di taglio Dalla relazioe π D c si ota che la velocità di taglio dipede, oltre che dal umero di giri del madrio, ache dal diametro dell elemeto rotate

Dettagli

Probabilità 1, laurea triennale in Matematica II prova scritta sessione estiva a.a. 2008/09

Probabilità 1, laurea triennale in Matematica II prova scritta sessione estiva a.a. 2008/09 Probabilità, laurea trieale i Matematica II prova scritta sessioe estiva a.a. 8/9. U ura cotiee dadi di cui la metà soo equilibrati, metre gli altri soo stati maipolati i modo che, per ciascuo di essi,

Dettagli

PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA. A. Induzione matematica: Introduzione

PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA. A. Induzione matematica: Introduzione PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA CHU WENCHANG A Iduzioe matematica: Itroduzioe La gra parte delle proposizioi della teoria dei umeri dà euciati che coivolgoo i umeri aturali; per esempio

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO Calcolo combiatorio è il termie che deota tradizioalmete la braca della matematica che studia i modi per raggruppare e/o ordiare secodo date regole gli elemeti di u isieme fiito

Dettagli

DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE

DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE 2010-11 MARCO MANETTI: 21 DICEMBRE 2010 1. Sviluppi di Laplace Proposizioe 1.1. Sia A M, (K), allora per ogi idice i = 1,..., fissato vale lo sviluppo

Dettagli

1 Esponenziale e logaritmo.

1 Esponenziale e logaritmo. Espoeziale e logaritmo.. Risultati prelimiari. Lemma a b = a b Lemma Disuguagliaza di Beroulli per ogi α e per ogi ln a k b k. k=0 + α + α Teorema Disuguagliaza delle medie Per ogi ln, per ogi upla {a

Dettagli

Proposizione 1. Due sfere di R m hanno intersezione non vuota se e solo se la somma dei loro raggi e maggiore della distanza fra i loro centri.

Proposizione 1. Due sfere di R m hanno intersezione non vuota se e solo se la somma dei loro raggi e maggiore della distanza fra i loro centri. Laboratorio di Matematica, A.A. 009-010; I modulo; Lezioi II e III - schema. Limiti e isiemi aperti; SB, Cap. 1 Successioi di vettori; SB, Par. 1.1, pp. 3-6 Itori sferici aperti. Nell aalisi i ua variabile

Dettagli

Preparazione al corso di statistica Prof.ssa Cerbara

Preparazione al corso di statistica Prof.ssa Cerbara Preparazioe al corso di statistica Prof.ssa Cerbara Esistoo molti isiemi umerici, ciascuo co caratteristiche be precise. Alcui importatissimi isiemi umerici soo: N: isieme dei umeri aturali, cioè tutti

Dettagli

1 Progressioni aritmetiche e geometriche

1 Progressioni aritmetiche e geometriche Corso di Combiatoria A Machì Dispesa I Progressioi aritmetiche e geometriche Sia u 0,u,u,,u k,u k+,,u, ( ua successioe di umeri Se la differeza u k+ u k tra due termii successivi è costate la ( prede il

Dettagli

a'. a' e b n y se e solo se x, y, divisi per n danno lo stesso resto.

a'. a' e b n y se e solo se x, y, divisi per n danno lo stesso resto. E.5. Cogrueze Nella sezioe D. (esempio (d)) abbiamo itrodotto la relazioe di cogrueza modulo : dati due umeri iteri x, y e u umero itero positivo diciamo che x è cogruo a y modulo (i formula x y se è u

Dettagli

Sperimentazioni di Fisica I mod. A Lezione 2

Sperimentazioni di Fisica I mod. A Lezione 2 La Rappresetazioe dei Numeri Sperimetazioi di Fisica I mod. A Lezioe 2 Alberto Garfagii Marco Mazzocco Cizia Sada Dipartimeto di Fisica e Astroomia G. Galilei, Uiversità degli Studi di Padova Lezioe II:

Dettagli

LEGGE DEI GRANDI NUMERI

LEGGE DEI GRANDI NUMERI LEGGE DEI GRANDI NUMERI E. DI NARDO 1. Legge empirica del caso e il teorema di Beroulli I diverse occasioi, abbiamo mezioato che la ozioe ituitiva di probabilità si basa sulla seguete assuzioe: se i sperimetazioi

Dettagli

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii)

Def. R si dice raggio di convergenza; nel caso i) R = 0, nel caso ii) Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi : Riferimeti: R.Adams, Calcolo Differeziale. -Si cosiglia vivamate di fare gli esercizi del testo. Cap. 9.5 - Serie di poteze,

Dettagli

Teorema delle progressioni di numeri primi consecutivi con distanza sei costante

Teorema delle progressioni di numeri primi consecutivi con distanza sei costante Teorema delle progressioi di umeri primi cosecutivi co distaza sei costate A cura del Gruppo Eratostee - http://www.gruppoeratostee.com/) Co la collaborazioe di Eugeio Amitrao ( http://www.atuttoportale.it/)

Dettagli

Capitolo III : Calcolo combinatorio

Capitolo III : Calcolo combinatorio Liceo Lugao 1, 2011-2012 3N (Luca Rovelli) Capitolo III : Calcolo combiatorio 1 Itroduzioe I matematica, co Combiatoria 1 si idica la disciplia che si occupa dello studio degli isiemi fiiti i cui elemeti

Dettagli

1 Sulla dimostrazione del Teorema di Carathéodory

1 Sulla dimostrazione del Teorema di Carathéodory Sulla dimostrazioe del Teorema di Carathéodory Ricordiamo che la dimostrazioe del Teorema di Carathéodory procede secodo diversi passi, riassuti dal seguete diagramma: (A, P ) (B, P ) (P (Ω), P ) (C, P

Dettagli

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57 Tracce di soluzioi di alcui esercizi di matematica - gruppo 42-57 4. Limiti di successioi Soluzioe dell Esercizio 42.. Osserviamo che a = a +6 e duque la successioe prede valori i {a,..., a 6 } e ciascu

Dettagli

Caso studio 9. Distribuzioni doppie. Esempi

Caso studio 9. Distribuzioni doppie. Esempi 7/3/16 Caso studio 9 Si cosideri la seguete tabella che riporta i dati dei Laureati el 4 dei tre pricipali gruppi di corsi di laurea, per codizioe occupazioale a tre ai dalla laurea (Fote: ISTAT, Idagie

Dettagli

Capitolo Terzo CALCOLO COMBINATORIO

Capitolo Terzo CALCOLO COMBINATORIO Capitolo Terzo CALCOLO COMBINATORIO 1. INTRDUZIONE, INSIEME PRODOTTO Il Calcolo Combiatorio è quel Capitolo della Matematica che si occupa del computo degli elemeti di u isieme fiito otteuto a partire

Dettagli

Esame di Statistica A-Di Prof. M. Romanazzi

Esame di Statistica A-Di Prof. M. Romanazzi 1 Uiversità di Veezia Esame di Statistica A-Di Prof. M. Romaazzi 12 Maggio 2014 Cogome e Nome..................................... N. Matricola.......... Valutazioe Il puteggio massimo teorico di questa

Dettagli

Domande di teoria. Chiorri, C. (2014). Fondamenti di psicometria - Risposte e soluzioni Capitolo 3

Domande di teoria. Chiorri, C. (2014). Fondamenti di psicometria - Risposte e soluzioni Capitolo 3 Chiorri, C. (0). Fodameti di psicometria - Risposte e soluzioi Capitolo Domade di teoria. Per le caratteristiche geerali vedi paragrafo. p. 79. Per le procedure di calcolo vedi per la moda pp. 79-8, per

Dettagli