Prodotto elemento per elemento, NON righe per colonne Unione: M R S

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Prodotto elemento per elemento, NON righe per colonne Unione: M R S"

Transcript

1 Relazioni binarie Una relazione binaria può essere rappresentata con un grafo o con una matrice di incidenza. Date due relazioni R, S A 1 A 2, la matrice di incidenza a seguito di varie operazioni si può calcolare nei seguenti modi. Intersezione: M R S =M R M S Prodotto elemento per elemento, NON righe per colonne Unione: M R S =M R M S Ogni elemento > 0 si pone uguale a 1 Prodotto: M RS =M R M S Prodotto righe per colonne. Ogni elemento > 0 si pone uguale a 1 In generale, il prodotto non è commutativo, perché è definito solo quando i due termini centrali sono uguali, cioè quando R A 1 A 2 e S A 2 A 3 Se R S =S R si dice che R, S sono permutabili. Il prodotto, invece, è associativo, cioè se R A 1 A 2 S A 2 A 3 T A 3 A 4 allora R S T =R S T Relazioni binarie su uno stesso insieme Relazione identica: I A ={ a, a a A} Si rappresenta con autoanelli o con 1 sulla diagonale della matrice. Relazione vuota: Relazione universale: A ={ a,b per ogni a, b A} Data R A 1 A 2 si definisce relazione inversa e si indica con R -1 la relazione sottoinsieme di A 2 A 1 data da R 1 ={ a2, a1 A 2 A 1 a 1, a 2 R} La matrice di incidenza della relazione inversa è la trasposta della matrice di incidenza: M R 1= M R T Proprietà delle relazioni Seriale Una relazione possiede la p. seriale (R è seriale) se per ogni a A esiste a ' A tale che a,a ' R (Da ogni elemento parte almeno una freccia. In M R c'è almeno un 1 per riga) Simmetrica Una relazione R possiede la p. simmetrica (R è simmetrica) se a, a ' R implica a',a R (ogni freccia del grafo ha due versi. In M R se esiste i,j=1 allora anche j,i=1, cioè la matrice è simmetrica) Riflessiva Una relazione R si dice riflessiva se per ogni a A a, a R (ogni elemento possiede un autoanello. M R al posto i,i lungo la diagonale principale c'è sempre 1) Se R è riflessiva I A R Antisimmetrica Una relazione R possiede la proprietà antisimmetrica (R è antisimmetrica) se A, b R e b,a R implica a=b (Non ci possono essere frecce con due versi, esclusi gli autoanelli. M R : se i,j=1 j,i=0 con j 1) R è antisimmetrica R R 1 I A Transitiva Una relazione R possiede la p transitiva (R è transitiva) se a,b R e b, c R implica che a, c R

2 (Se c'è la freccia da a a b e quella da b a c, ci deve essere anche quella da a a c. M R : se (i,k)=1 e (k,j)=1, allora (i,j)=1 R è transitiva R 2 R P-chiusura Sia P un elenco di proprietà di cui le relazioni binarie possono godere. Sia R una relazione R A A Si chiama chiusura di R rispetto a P (P-chiusura di R) una relazione T A A tale che: 1) R T 2) T soddisfa le proprietà in P 3) Se S A A è una relazione che soddisfa le proprietà P e contenente R, allora deve contenere anche T, quindi T è la relazione minima. OSS: Se T esiste, è unica. In altre parole, la P-chiusura di R, se esiste, è la minima relazione che contiene R e ha tutte le proprietà in P. Relazioni di equivalenza Una relazione si dice di equivalenza se gode delle proprietà riflessiva, simmetrica e transitiva. Relazioni d'ordine Una relazione binaria si dice relazione d'ordine se gode delle proprietà riflessiva, antisimmetrica e transitiva. Si dice che m A (se esiste) è minimo di A se per ogni a A si ha m a Si dice che M A (se esiste) è massimo di A se per ogni a A si ha a M Si dice che m A (se esiste) è minimale per A se a m implica a=m (in altre parole si ha a non confrontabile con m o m a ) Si dice che M A (se esiste) è massimale se a M implica a=m (in altre parole si ha a non confrontabile con m o a m ) Il minimo dei maggioranti (se esiste) si chiama estremo superiore di B. Si indica con sup(b). Il massimo dei minoranti (se esiste) si chiama estremo inferiore di B. Si indica con inf(b). Presi due elementi a, b A con A insieme parzialmente ordinato, se per ogni coppia a, b esistono inf{a, b} e sup{a, b}, A si dice reticolo. Funzioni Sia f A B una relazione tale che per ogni a A esista uno e un solo elemento b B tale che a, b f. Allora f si dice funzione (o applicazione) da A a B Se a, b f si scrive b= f a b si chiama immagine di a tramite f. a si dice controimmagine di b. Date due funzioni f : A B e g : A B, tali che f A B e g B C è possibile costruire il prodotto tra relazioni fg A C. Il prodotto tra funzioni è una funzione, detta prodotto delle funzioni f, g ed è indicata con f g Inoltre si ha f g a = g f a. f : A B si dice iniettiva se ogni elemento b B ammette al più una controimmagine. f : A B si dice suriettiva se ogni elemento b B ha almeno una controimmagine.

3 f : A B si dice biettiva (o biunivoca) se è iniettiva e suriettiva. Nota: se A=B=X (insieme finito) sono equivalenti: f è iniettiva, f è suriettiva, f è biettiva f : A B ammette inversa destra h :B A sse f è iniettiva. f : A B ammette inversa sinistra h :B A sse f è suriettiva. f : A B ammette inversa (sinistra e destra) h :B A sse f è biunivoca. Il nucleo (ker) di una funzione è una relazione definita come a 1, a 2 ker f f a 1 = f a 2 ed è la relazione che collega elementi aventi la stessa immagine. Proiezione (applicazione) canonica Presa una relazione di equivalenza ρ su A esiste sempre una funzione suriettiva : A A/ tale che ker =. La (Detta proiezione canonica di A sul suo insieme quoziente) è definita ponendo a = a =[a] ed è la funzione che associa ogni elemento alla partizione (classe) a cui appartiene. Teorema di fattorizzazione delle applicazioni Siano f : A B una funzione e ker f : A A/ ker f l'applicazione canonica di A su A/ker f. Esiste unica una funzione g: A/ ker f B tale che (nelle due formulazioni): Prima formulazione: ker f g= f. Inoltre g è iniettiva. Seconda formulazione: il seguente diagramma è commutativo (per commutativo si intende che comunque ci muoviamo lungo le direzioni permesse dal diagramma, quando arriviamo ad uno stesso punto otteniamo lo stesso risultato). A f B ρ ker f g Leggi di composizione A/ker f Dati gli insiemi A 1, A 2,, A n, A si dice legge di composizione n-aria (o di arità n) di A 1, A 2,, A n a valori in A, un'applicazione : A 1 A 2 A n A Se A 1 =A 2 = =A n = A diremo che ω è una legge di composizione interna n-aria. Strutture algebriche Si dice struttura algebrica una coppia A, formata da un insieme A, chiamato sostegno della struttura, e da un insieme non vuoto e finito di leggi di composizione interne che possono godere di particolari proprietà. Gli elementi di A si dicono elementi della struttura. La struttura si dice finita se è finito il suo sostegno. Si dice semigruppo A, un insieme A fornito di una legge di composizione interna binaria associativa.

4 Si dice monoide un semigruppo A, dotato di elemento neutro rispetto all'operazione binaria. Spesso un monoide viene indicato come A,, e per evidenziare l'elemento neutro. Si dice gruppo un monoide A,, e in cui ogni elemento ammette inverso rispetto all'operazione. I gruppi vengono spesso indicati con la notazione A,, 1,e. In altre parole, un gruppo è un insieme A con una legge di composizione binaria associativa tale che: 1. esiste un e A tale che per ogni a A si ha a e=e a=a 2. per ogni a A esiste un b A tale che a b=b a=e. Tale b viene indicato solitamente con il simbolo a -1. Un gruppo si dice abeliano se la legge di composizione binaria gode della proprietà commutativa. Si dice anello una struttura algebrica A, con due operazioni binarie denotate da + e, tali che: 1) A,+ è un gruppo additivo dell'anello 2) A, è un semigruppo detto semigruppo moltiplicativo dell'anello 3) valgono le proprietà distributive di rispetto a +, cioè per ogni a, b, c A si ha: a b c =a b a c, a b c=a c b c Un anello viene spesso denotato con A,+,, 0,-, perché ha due operazioni binarie + e, ha uno zero (elemento neutro rispetto a +) e ha opposto (operazione inversa rispetto a +). Se esiste un elemento neutro rispetto a, l'anello si dice unitario (o con unità). Se è commutativa, A si dice commutativo. Un anello si dice privo di divisori dello 0 se non esistono a, b A e diversi da 0 tali che a b=0 In un anello valgono le leggi di cancellazione se ognuna delle relazioni a b=a c e b a=c a con a, b,c A e a 0 implica b=c Un anello è privo di divisori dello zero se e solo se in esso valgono le leggi di cancellazione. Si dice corpo un anello in cui gli elementi diversi dallo 0 formano un gruppo rispetto a (cioè un anello in cui entrambe le operazioni ammettono inverso ed elemento neutro). Un corpo in cui vale la proprietà commutativa per, si dice campo. Ogni corpo finito è un campo. Sottostrutture Supponiamo di avere A, struttura algebrica, e H A Si dice che H è sottostruttura di A se H, è una struttura dello stesso tipo di A. Un sottogruppo H di un gruppo A,, 1,e si dice normale se per ogni a A e ogni h H a 1 h a H Sia I un sottoanello di A,,. I si dice ideale se a A e i I si ha: a i I i a I

5 Classe di resto modulo n Z n ={[0],[1],,[n 1]} [a] [b]=[a b] [a]=[a' ] con a'=a kn [a] [b]=[b] [a] [ a] [ b] [c]=[a ] [ b] [c] Elemento neutro: [0] Elemento opposto di [a ]: [ n a] [a] [b]=[ab] [a] ammette inverso rispetto a sse a è primo con n, ovvero MCD(a, n)=1 Z n è un campo se e solo se n è primo. Procedimento per risolvere un'equazione lineare tra classi di equivalenza modulo n [a] x = [b] in Z n Calcolare: m=mcd(a,n) Se m è divisore di a, esistono una o più soluzioni. In particolare, se m=1 la soluzione è unica. Trovare r e s tali che: a r + n s = m Calcolare t tale che: b=t m La prima soluzione è x 1 =t r Le altre soluzioni (se esistono) sono x c =x c 1 n m Equazioni lineari in [a] x=[b] Z n se a è primo con n esiste unica la soluzione x=[a] 1 [b ] se a non è primo con n l'equazione può ammettere nessuna o più soluzioni (procedere per tentativi) Relazioni di congruenza Si considerino un insieme A, una legge di composizione interna ω di arità n su A ed una relazione di equivalenza ρ su A. La relazione ρ si dice compatibile con ω se per ogni a 1,, a n A e b 1, b 2,, b n A si ha che a 1, b 1, b 2,, a n,b n implicano: a 1,,a n, b 1, b 2,,b n Data una struttura algebrica A, una relazione di equivalenza ρ su A si dice relazione di congruenza su A se è compatibile con ogni Omomorfismi Due strutture algebriche A 1, 1 e A 2, 2 si dicono simili se esiste una funzione biunivoca t tra Ω 1 e Ω 2 tale che che ω 1 e τ(ω 1 ) abbiano la stessa arità per ogni 1 Date due strutture algebriche A 1, 1 e A 2, 2 simili si dice omomorfismo di A 1, 1 in A 2, 2 una funzione f di A 1 in A 2 tale che per ogni 1 1 di arità n, posto 2 = 1, sia, per ogni a 1,,a n A 1 : f 1 a 1,,a n = 2 f a 1, f a 2,, f a n In breve si dice che un omomorfismo è una funzione f di A 1 in A 2 che conserva le operazioni. Un omomorfismo si dice monomorfismo se f è una funzione iniettiva, epimorfismo se f è suriettiva, isomorfismo se f è biunivoca.

6 Reticoli e algebre di Boole Si dice reticolo un insieme (parzialmente) ordinato (L, ) tale che per ogni a, b L esistano in L inf{a,b} e sup{a,b}. Si dice reticolo una struttura algebrica L,, con due leggi di composizione (interne) binarie che chiameremo intersezione e unione ed indicheremo con e, che gondono delle seguenti proprietà: commutativa: a, b L : a b=b A, a b=b a associativa: a, b,c L : a b c=a b c, a b c=a b c di assorbimento: a, b L : a a b =a, a a b =a Le due definizioni sono equivalenti. Si dice zero di un reticolo L,, l'elemento neutro (se esiste) rispetto all'operazione (è il minimo rispetto alla relazione d'ordine indotta) Si dice uno di un reticolo l'elemento neutro (se esiste) rispetto all'operazione (è il massimo rispetto alla relazione d'ordine indotta) Un reticolo si dice distributivo se e solo se valgono le proprietà distributive di un'operazione rispetto all'altra: a,b,c L : a b c = a b a c, a b c = a b a c Un reticolo è distributivo se e solo se non contiene sottoreticoli il cui diagramma di Hasse ha una delle seguenti forme: x u x y v y z u z Un reticolo L con 0 ed 1 si dice complementato se per ogni a L esiste un a ' L tale che a a'=0 e a a'=1. L'elemento a' (non necessariamente unico) si dice complemento di a. Un reticolo distributivo e complementato si dice unicamente complementato. Si dice algebra di Boole un reticolo con 0 ed 1, distributivo e complementato. Un'algebra di Boole viene spesso indicata con L,,,0,1,'. v Si dice atomo di un reticolo un elemento a L diverso da 0 tale che per ogni b L a b=0 o a b=a. si abbia

Strutture Algebriche Le Sottostrutture Strutture degli Insiemi Quoziente

Strutture Algebriche Le Sottostrutture Strutture degli Insiemi Quoziente ALGEBRA RELAZIONI Operazioni tra relazioni: Unione (somma logica delle matrici) Intersezione (prodotto elemento per elemento delle matrici) Prodotto (prodotto righe per colonne delle matrici) prop. Associativa,

Dettagli

Anello commutativo. Un anello è commutativo se il prodotto è commutativo.

Anello commutativo. Un anello è commutativo se il prodotto è commutativo. Anello. Un anello (A, +, ) è un insieme A con due operazioni + e, dette somma e prodotto, tali che (A, +) è un gruppo abeliano, (A, ) è un monoide, e valgono le proprietà di distributività (a destra e

Dettagli

R X X. RELAZIONE TOTALE Definizione: Si definisce relazione totale tra x e y se dati X,Y diversi dall'insieme vuoto

R X X. RELAZIONE TOTALE Definizione: Si definisce relazione totale tra x e y se dati X,Y diversi dall'insieme vuoto PRODOTTO CARTESIANO Dati due insiemi non vuoti X e Y si definisce prodotto cartesiano: X Y ={ x, y x X, y Y } attenzione che (x,y) è diverso da (y,x) perchè (x,y)={x,{y}} e (y,x)={y,{x}} invece sono uguali

Dettagli

STRUTTURE ALGEBRICHE

STRUTTURE ALGEBRICHE STRUTTURE ALGEBRICHE Operazioni in un insieme Sia A un insieme non vuoto; una funzione f : A A A si dice operazione binaria (o semplicemente operazione), oppure legge di composizione interna. Per definizione

Dettagli

RELAZIONI BINARIE. Proprietà delle relazioni Data una relazione R, definita in un insieme non vuoto U, si hanno le seguenti proprietà :

RELAZIONI BINARIE. Proprietà delle relazioni Data una relazione R, definita in un insieme non vuoto U, si hanno le seguenti proprietà : RELAZIONI INARIE Dati due insiemi non vuoti, A detto dominio e detto codominio, eventualmente coincidenti, si chiama relazione binaria (o corrispondenza) di A in, e si indica con f : A, (oppure R ) una

Dettagli

STRUTTURE ALGEBRICHE

STRUTTURE ALGEBRICHE STRUTTURE ALGEBRICHE 1. Operazioni algebriche binarie Dato un insieme M, chiamiamo operazione algebrica binaria definita su M una qualunque applicazione f che associa ad ogni coppia ordinata (a, b) di

Dettagli

ALGEBRA I: ARITMETICA MODULARE E QUOZIENTI DI ANELLI

ALGEBRA I: ARITMETICA MODULARE E QUOZIENTI DI ANELLI ALGEBRA I: ARITMETICA MODULARE E QUOZIENTI DI ANELLI 1. CLASSI DI RESTO E DIVISIBILITÀ In questa parte sarò asciuttissimo, e scriverò solo le cose essenziali. I commenti avete potuto ascoltarli a lezione.

Dettagli

1. Operazioni binarie e loro proprietà.

1. Operazioni binarie e loro proprietà. INTRODUZIONE ALLE STRUTTURE ALGEBRICHE Lo studio delle strutture algebriche astratte innanzitutto consente economia di pensiero, mediante l'unificazione in teorie generali degli esempi particolari già

Dettagli

Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI

Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI In matematica, per semplificare la stesura di un testo, si fa ricorso ad un linguaggio specifico. In questo capitolo vengono fornite in maniera sintetica le nozioni

Dettagli

Corso introduttivo pluridisciplinare Strutture algebriche

Corso introduttivo pluridisciplinare Strutture algebriche Corso introduttivo pluridisciplinare Strutture algebriche anno acc. 2013/2014 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Corso introduttivo pluridisciplinare 1 / 17 index

Dettagli

1 Insiemi e terminologia

1 Insiemi e terminologia 1 Insiemi e terminologia Assumeremo come intuitiva la nozione di insieme e ne utilizzeremo il linguaggio come strumento per studiare collezioni di oggetti. Gli Insiemi sono generalmente indicati con le

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

Algebra e Geometria. Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2)

Algebra e Geometria. Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2) Algebra e Geometria Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2) Traccia delle lezioni che saranno svolte nell anno accademico 2012/13 I seguenti appunti

Dettagli

DIARIO DEL CORSO DI ALGEBRA A.A. 2012/13 DOCENTE: ANDREA CARANTI

DIARIO DEL CORSO DI ALGEBRA A.A. 2012/13 DOCENTE: ANDREA CARANTI DIARIO DEL CORSO DI ALGEBRA A.A. 2012/13 DOCENTE: ANDREA CARANTI Lezione 1. lunedí 17 settembre 2011 (1 ora) Presentazione del corso. Esercizio: cosa succede a moltiplicare per 2, 3, 4,... il numero 052631578947368421,

Dettagli

Insiemi con un operazione

Insiemi con un operazione Capitolo 3 Insiemi con un operazione 3.1 Gruppoidi, semigruppi, monoidi Definizione 309 Un operazione binaria su un insieme G è una funzione: f : G G G Quindi, un operazione binaria f su un insieme G è

Dettagli

UNIVERSITÀ CATTOLICA DEL SACRO CUORE. Facoltà di Scienze Matematiche, Fisiche e Naturali ALGEBRA II UNITÀ. M. Chiara Tamburini

UNIVERSITÀ CATTOLICA DEL SACRO CUORE. Facoltà di Scienze Matematiche, Fisiche e Naturali ALGEBRA II UNITÀ. M. Chiara Tamburini UNIVERSITÀ CATTOLICA DEL SACRO CUORE Facoltà di Scienze Matematiche, Fisiche e Naturali ALGEBRA II UNITÀ M Chiara Tamburini Anno Accademico 2009/2010 Indice I Omomorfismi fra anelli 1 1 Ideali 1 2 Anelli

Dettagli

Figura 2.1. A sottoinsieme di B

Figura 2.1. A sottoinsieme di B G Sammito, ernardo, Formulario di matematia Insiemi F Cimolin, L arletta, L Lussardi Insiemi Generalità Un insieme è una ollezione distinguibile di oggetti, detti elementi dell'insieme Quando un elemento

Dettagli

APPUNTI DI ALGEBRA B

APPUNTI DI ALGEBRA B APPUNTI DI ALGEBRA B Prof. Gloria Rinaldi dal testo Algebra autori P.Quattrocchi, G.Rinaldi, ed. Zanichelli Dipartimento di Scienze e Metodi dell Ingegneria Università di Modena e Reggio Emilia, Via Amendola

Dettagli

G. Pareschi RELAZIONI. RELAZIONI DI EQUIVALENZA. 1. Definizione e terminologia

G. Pareschi RELAZIONI. RELAZIONI DI EQUIVALENZA. 1. Definizione e terminologia G. Pareschi RELAZIONI. RELAZIONI DI EQUIVALENZA. 1. Definizione e terminologia Definizione 1.1 Relazione. Dati due insiemi A e B un sottoisieme R A B è detto una relazione binaria tra A e B. Se A = B allora

Dettagli

Dispense di Algebra 1 - Gruppi

Dispense di Algebra 1 - Gruppi Dispense di Algebra 1 - Gruppi Dikran Dikranjan e Maria Silvia Lucido Dipartimento di Matematica e Informatica Università di Udine via delle Scienze 200, I-33100 Udine gennaio 2005 L algébre est généreuse,

Dettagli

4. Strutture algebriche. Relazioni

4. Strutture algebriche. Relazioni Relazioni Sia R una relazione definita su un insieme A (cioè R A A). R si dice riflessiva se a A : ara R si dice simmetrica se a, b A : arb = bra R si dice antisimmetrica se a, b A : arb bra = a = b R

Dettagli

Algebra Lineare e Geometria

Algebra Lineare e Geometria Algebra Lineare e Geometria Corso di Laurea in Ingegneria Elettronica A.A. 2013-2014 Prova d esame del 16/06/2014. 1) a) Determinare la matrice associata all applicazione lineare T : R 3 R 4 definita da

Dettagli

4. Operazioni binarie, gruppi e campi.

4. Operazioni binarie, gruppi e campi. 1 4. Operazioni binarie, gruppi e campi. 4.1 Definizione. Diremo - operazione binaria ovunque definita in A B a valori in C ogni funzione f : A B C - operazione binaria ovunque definita in A a valori in

Dettagli

Alcuni Preliminari. Prodotto Cartesiano

Alcuni Preliminari. Prodotto Cartesiano Alcuni Preliminari Prodotto Cartesiano Dati due insiemi A e B, si definisce il loro prodotto cartesiano A x B come l insieme di tutte le coppie ordinate (a,b) con a! A e b! B. Es: dati A= {a,b,c} e B={,2,3}

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

ALGEBRA I: MODULI. Abbiamo indicato con 0 A, 1 A lo zero e l unità nell anello A e con 0 M l elemento neutro del gruppo abeliano (M, +).

ALGEBRA I: MODULI. Abbiamo indicato con 0 A, 1 A lo zero e l unità nell anello A e con 0 M l elemento neutro del gruppo abeliano (M, +). ALGEBRA I: MODULI 1 GENERALITÀ SUGLI A-MODULI Il concetto di A-modulo generalizza quello di spazio vettoriale su un campo K Definizione 11 Sia A un anello commutativo con unità Un A-modulo è un insieme

Dettagli

MATEMATICA DEL DISCRETO elementi di teoria dei grafi. anno acc. 2009/2010

MATEMATICA DEL DISCRETO elementi di teoria dei grafi. anno acc. 2009/2010 elementi di teoria dei grafi anno acc. 2009/2010 Grafi semplici Un grafo semplice G è una coppia ordinata (V(G), L(G)), ove V(G) è un insieme finito e non vuoto di elementi detti vertici o nodi di G, mentre

Dettagli

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione Capitolo 2 MATRICI Fra tutte le applicazioni su uno spazio vettoriale interessa esaminare quelle che mantengono la struttura di spazio vettoriale e che, per questo, vengono dette lineari La loro importanza

Dettagli

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA 1. RICHIAMI SULLE PROPRIETÀ DEI NUMERI NATURALI Ho mostrato in un altra dispensa come ricavare a partire dagli assiomi di

Dettagli

Appunti di LOGICA MATEMATICA (a.a.2009-2010; A.Ursini) Algebre di Boole. 1. Definizione e proprietá

Appunti di LOGICA MATEMATICA (a.a.2009-2010; A.Ursini) Algebre di Boole. 1. Definizione e proprietá Appunti di LOGICA MATEMATICA (a.a.2009-2010; A.Ursini) [# Aii [10 pagine]] Algebre di Boole Un algebra di Boole è una struttura 1. Definizione e proprietá B =< B,,, ν, 0, 1 > in cui B è un insieme non

Dettagli

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come RICHIAMI SULLE MATRICI Una matrice di m righe e n colonne è rappresentata come A = a 11 a 12... a 1n a 21 a 22... a 2n............ a m1 a m2... a mn dove m ed n sono le dimensioni di A. La matrice A può

Dettagli

G. Pareschi ALGEBRE DI BOOLE. 1. Algebre di Boole

G. Pareschi ALGEBRE DI BOOLE. 1. Algebre di Boole G. Pareschi ALGEBRE DI BOOLE 1. Algebre di Boole Nel file precedente abbiamo incontrato la definizione di algebra di Boole come reticolo: un algebra di Boole e un reticolo limitato, complementato e distributivo.

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MATRICI E DETERMINANTI 1. MATRICI Si ha la seguente Definizione 1: Un insieme di numeri, reali o complessi, ordinati secondo righe e colonne è detto matrice di ordine m x n, ove m è il numero delle righe

Dettagli

3 Applicazioni lineari e matrici

3 Applicazioni lineari e matrici 3 Applicazioni lineari e matrici 3.1 Applicazioni lineari Definizione 3.1 Siano V e W dei K spazi vettoriali. Una funzione f : V W è detta applicazione lineare se: i u, v V, si ha f(u + v = f(u + f(v;

Dettagli

Corso di Laurea in Matematica. Dispense del corso di ALGEBRA II

Corso di Laurea in Matematica. Dispense del corso di ALGEBRA II Corso di Laurea in Matematica Dispense del corso di ALGEBRA II a.a. 2012 2013 2 Indice I GRUPPI 5 1 Operazioni 7 1.1 Operazioni associative............................ 7 1.2 Matrici.....................................

Dettagli

1. PRIME PROPRIETÀ 2

1. PRIME PROPRIETÀ 2 RELAZIONI 1. Prime proprietà Il significato comune del concetto di relazione è facilmente intuibile: due elementi sono in relazione se c è un legame tra loro descritto da una certa proprietà; ad esempio,

Dettagli

UNIVERSITÀ CATTOLICA DEL SACRO CUORE. Facoltà di Scienze Matematiche, Fisiche e Naturali

UNIVERSITÀ CATTOLICA DEL SACRO CUORE. Facoltà di Scienze Matematiche, Fisiche e Naturali UNIVERSITÀ CATTOLICA DEL SACRO CUORE Facoltà di Scienze Matematiche, Fisiche e Naturali APPROFONDIMENTI DI ALGEBRA M. Chiara Tamburini Anno Accademico 2013/2014 Indice Prefazione iii I Moduli su un anello

Dettagli

Applicazioni lineari

Applicazioni lineari Applicazioni lineari Esempi di applicazioni lineari Definizione. Se V e W sono spazi vettoriali, una applicazione lineare è una funzione f: V W tale che, per ogni v, w V e per ogni a, b R si abbia f(av

Dettagli

Lezioni del corso di Geometria e Algebra. prof. Michele Mulazzani dott. Alessia Cattabriga

Lezioni del corso di Geometria e Algebra. prof. Michele Mulazzani dott. Alessia Cattabriga Lezioni del corso di Geometria e Algebra prof Michele Mulazzani dott Alessia Cattabriga AA 20001/2002 Indice 1 Equazioni e sistemi lineari 4 11 Alcune strutture algebriche 4 12 Operazioni standard su K

Dettagli

APPENDICE NOZIONI BASE E VARIE

APPENDICE NOZIONI BASE E VARIE pag. 131 Appendice: Nozioni base e varie G. Gerla APPENDICE NOZIONI BASE E VARIE 1. Funzioni e relazioni di equivalenza Questi appunti sono rivolti a persone che abbiano già una conoscenza elementare della

Dettagli

Corso PAS Anno 2014. ESEMPIO. Per n = 3, Z 3 contiene 3 elementi:

Corso PAS Anno 2014. ESEMPIO. Per n = 3, Z 3 contiene 3 elementi: Corso PAS Anno 2014 Matematica e didattica 3 Correzione esercizi 1. Definizione. Sia n un fissato intero maggiore di 1. Dati due interi a, b si dice che a è congruo a b modulo n, e si scrive a b (mod n),

Dettagli

RELAZIONI E FUNZIONI. Per ricordare. Figura 1. Figura 2. Figura 3. Figura 4

RELAZIONI E FUNZIONI. Per ricordare. Figura 1. Figura 2. Figura 3. Figura 4 RELAZIONI E FUNZIONI 3 Per ricordare H Dati due insiemi A e B e una proposizione aperta px,y, con x 2 A e y 2 B, si dice che x eá in relazione con y, e si scrive x R y, sepx,y eá vera; si parla allora

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari

Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari Versione ottobre novembre 2008 Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari Contenuto 1. Applicazioni lineari 2. L insieme delle

Dettagli

Fondamenti di Informatica II

Fondamenti di Informatica II Fondamenti di Informatica II Ilaria Castelli castelli@dii.unisi.it Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione A.A. 2009/2010 I. Castelli Introduzione, A.A. 2009/2010 1/8

Dettagli

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA Francesco Bottacin Padova, 24 febbraio 2012 Capitolo 1 Algebra Lineare 1.1 Spazi e sottospazi vettoriali Esercizio 1.1. Sia U il sottospazio di R 4 generato dai

Dettagli

ossia fornire algoritmi, formule di calcolo e concetti di carattere generale, applicabili

ossia fornire algoritmi, formule di calcolo e concetti di carattere generale, applicabili Cap. 1 - Introduzione: l Algebra e la sua didattica Che cos è l algebra? Mi pare indubbio che gli scopi dell Algebra siano generalizzare ed unificare, ossia fornire algoritmi, formule di calcolo e concetti

Dettagli

1 Applicazioni Lineari tra Spazi Vettoriali

1 Applicazioni Lineari tra Spazi Vettoriali 1 Applicazioni Lineari tra Spazi Vettoriali Definizione 1 (Applicazioni lineari) Si chiama applicazione lineare una applicazione tra uno spazio vettoriale ed uno spazio vettoriale sul campo tale che "!$%!

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

Funzioni. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Funzioni. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Funzioni Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

APPUNTI ED ESERCIZI DI MATEMATICA DISCRETA. Margherita Roggero

APPUNTI ED ESERCIZI DI MATEMATICA DISCRETA. Margherita Roggero APPUNTI ED ESERCIZI DI MATEMATICA DISCRETA Margherita Roggero A.A. 2005/2006 M. Roggero - Appunti ed Esercizi di Matematica Discreta Introduzione Queste note contengono gli appunti del corso di Matematica

Dettagli

Geometria Superiore. A.A. 2014/2015 CdL in Matematica Università degli Studi di Salerno. March 2, 2015

Geometria Superiore. A.A. 2014/2015 CdL in Matematica Università degli Studi di Salerno. March 2, 2015 Geometria Superiore A.A. 2014/2015 CdL in Matematica Università degli Studi di Salerno Luca Vitagliano March 2, 2015 Programma Prerequisiti. Spazi affini. Anelli commutativi con unità. Ideali. Anelli quoziente.

Dettagli

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Andrea Bobbio Anno Accademico 2000-2001 Algebra Booleana 2 Calcolatore come rete logica Il calcolatore può essere visto come una rete logica

Dettagli

Esame di Geometria - 9 CFU (Appello del 28 gennaio 2013 - A)

Esame di Geometria - 9 CFU (Appello del 28 gennaio 2013 - A) Esame di Geometria - 9 CFU (Appello del 28 gennaio 23 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Nello spazio R 3, siano dati il piano e i punti P = (, 2, ), Q = (2,, ). π : x + 2y 3

Dettagli

Lezione 6. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive.

Lezione 6. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive. Lezione 6 Prerequisiti: L'insieme dei numeri interi. Lezione 5. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive. Questa è la prima lezione dedicata all'anello

Dettagli

5. La teoria astratta della misura.

5. La teoria astratta della misura. 5. La teoria astratta della misura. 5.1. σ-algebre. 5.1.1. σ-algebre e loro proprietà. Sia Ω un insieme non vuoto. Indichiamo con P(Ω la famiglia di tutti i sottoinsiemi di Ω. Inoltre, per ogni insieme

Dettagli

Se ad ogni elemento di A la relazione R associa un solo elemento di B, allora essa prende il nome di applicazione (funzione) di A in B.

Se ad ogni elemento di A la relazione R associa un solo elemento di B, allora essa prende il nome di applicazione (funzione) di A in B. 6. APPLICAZIONI o FUNZIONI Dati due insiemi A e B, sia R A B una relazione di A in B. Fissato un elemento x A può capitare che ad esso la relazione R associ un solo elemento di B, o che ne associ più di

Dettagli

Cenni di teoria dei campi finiti

Cenni di teoria dei campi finiti Cenni di teoria dei campi finiti Luca Giuzzi 31 ottobre 2011 In queste note vengono richiamati alcuni risultati di algebra relativi la teoria dei campi finiti. 1 Anelli Definizione 1. Un anello (R, +,

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

DOMINI A FATTORIZZAZIONE UNICA

DOMINI A FATTORIZZAZIONE UNICA DOMINI A FATTORIZZAZIONE UNICA CORSO DI ALGEBRA, A.A. 2012-2013 Nel seguito D indicherà sempre un dominio d integrità cioè un anello commutativo con unità privo di divisori dello zero. Indicheremo con

Dettagli

Chiusura lineare. N.B. A può essere indifferentemente un insieme, finito o no, o un sistema. Es.1. Es.2

Chiusura lineare. N.B. A può essere indifferentemente un insieme, finito o no, o un sistema. Es.1. Es.2 Chiusura lineare Def. Sia A V (K) con A. Si dice copertura lineare (o chiusura lineare) di A, e si indica con L(A), l insieme dei vettori di V che risultano combinazioni lineari di un numero finito di

Dettagli

DIARIO DEL CORSO DI ALGEBRA A.A. 2013/14 DOCENTE: ANDREA CARANTI

DIARIO DEL CORSO DI ALGEBRA A.A. 2013/14 DOCENTE: ANDREA CARANTI DIARIO DEL CORSO DI ALGEBRA A.A. 2013/14 DOCENTE: ANDREA CARANTI Lezione 1. lunedí 16 settembre 2013 (2 ore) Presentazione del corso. Esercizio: cosa succede a moltiplicare per 2, 3, 4,... il numero 142857,

Dettagli

Un introduzione all algebra lineare

Un introduzione all algebra lineare Luciano A. Lomonaco Un introduzione all algebra lineare Terza edizione ARACNE Copyright MMVI ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133 A/B 00173 Roma

Dettagli

Un po di teoria dei numeri

Un po di teoria dei numeri Un po di teoria dei numeri Applicazione alla crittografia RSA Christian Ferrari Liceo di Locarno Matematica Sommario 1 L aritmetica modulare di Z n Le congruenze L anello Z n Le potenze in Z n e algoritmo

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

Esercitazioni (a cura di R. Basili)

Esercitazioni (a cura di R. Basili) Esercitazioni (a cura di R. Basili) E1. Elementi di Algebra Insiemi Nozione intuitiva di insieme L'insieme vuoto Operazioni tra insiemi Domini Prodotto Cartesiano Proprieta' delle operazioni tra insiemi

Dettagli

ALGEBRA E LOGICA (v1.5)

ALGEBRA E LOGICA (v1.5) ALGEBRA E LOGICA (v1.5) Iniettività e suriettività: Per dimostrare che una funzione è iniettiva basta provare che se a1 = a2 => f(a1) = f(a2) per ogni valore di a (la cardinalità del codominio è maggiore

Dettagli

definizione e notazione (direzione,verso modulo), v V, lo spazio ( insieme)

definizione e notazione (direzione,verso modulo), v V, lo spazio ( insieme) 1 Spazi vettoriali 1.1 Richiami ai vettori freccia definizione e notazione (direzione,verso modulo), v V, lo spazio ( insieme) dei vettori esiste la operazione binaria sul sostegno V che chiameremo somma(regola

Dettagli

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Esame di Geometria (Prof. F. Tovena) Argomenti: Proprietà di nucleo e immagine di una applicazione lineare. dim V = dim

Dettagli

RELAZIONI E PROPRIETA 1

RELAZIONI E PROPRIETA 1 C. De Fusco Relazioni e loro proprietà 1 RELAZIONI E PROPRIETA 1 Generalità. 2 Relazioni particolari tra insiemi.. 3 Relazioni tra numeri 6 Proprietà delle relazioni in un insieme 9 Relazioni di equivalenza.

Dettagli

Elementi di teoria degli insiemi

Elementi di teoria degli insiemi Elementi di teoria degli insiemi 1 Insiemi e loro elementi 11 Sottoinsiemi Insieme vuoto Abbiamo già osservato che ogni numero naturale è anche razionale assoluto o, in altre parole, che l insieme dei

Dettagli

Anno 1. Le relazioni fondamentali (equivalenza, d'ordine, inverse, fra insiemi)

Anno 1. Le relazioni fondamentali (equivalenza, d'ordine, inverse, fra insiemi) Anno 1 Le relazioni fondamentali (equivalenza, d'ordine, inverse, fra insiemi) 1 Introduzione In questa lezione imparerai a utilizzare le diverse tipologie di relazione e a distinguerle a seconda delle

Dettagli

Nel seguito, senza ulteriormente specificarlo, A indicherà un anello commutativo con identità.

Nel seguito, senza ulteriormente specificarlo, A indicherà un anello commutativo con identità. 1 ANELLI Definizione 1.1. Sia A un insieme su cui sono definite due operazioni +,. (A, +, ) si dice Anello se (A, +) è un gruppo abeliano è associativa valgono le leggi distributive, cioè se a, b, c A

Dettagli

APPLICAZIONI LINEARI. B si definisce surriettiva. 9 quando ogni elemento di. B risulta IMMAGINE di. almeno un elemento di A.

APPLICAZIONI LINEARI. B si definisce surriettiva. 9 quando ogni elemento di. B risulta IMMAGINE di. almeno un elemento di A. APPLICAZIONI LINEARI Siano V e W due spazi vettoriali, di dimensione m ed n sullo stesso campo di scalari R. Una APPLICAZIONE ƒ : V W viene definita APPLICAZIONE LINEARE od OMOMORFISMO se risulta, per

Dettagli

Lezioni di Geometria e Algebra. Fulvio Bisi, Francesco Bonsante, Sonia Brivio

Lezioni di Geometria e Algebra. Fulvio Bisi, Francesco Bonsante, Sonia Brivio Lezioni di Geometria e Algebra Fulvio Bisi, Francesco Bonsante, Sonia Brivio CAPITOLO 0 Preliminari.. Insiemistica e logica Il presente Capitolo introduttivo ha lo scopo di ripassare alcuni argomenti

Dettagli

Esame di Matematica Discreta Laurea Triennale in Informatica e Comunicazione Digitale Sede di Taranto 28/9/2005

Esame di Matematica Discreta Laurea Triennale in Informatica e Comunicazione Digitale Sede di Taranto 28/9/2005 Sede di Taranto 28/9/2005 1. Dati gli insiemi A = {1, 2, 3, 4, 5} e B = {a, b, c}, determinare tutte le applicazioni surgettive f : A B tali che f(2) = f(3) = a f(x) a per x {2, 3}. 2. Risolvere il sistema

Dettagli

Prodotto libero di gruppi

Prodotto libero di gruppi Prodotto libero di gruppi 24 aprile 2014 Siano (A 1, +) e (A 2, +) gruppi abeliani. Sul prodotto cartesiano A 1 A 2 definiamo l operazione (x 1, y 1 ) + (x 2, y 2 ) := (x 1 + x 2, y 1 + y 2 ). Provvisto

Dettagli

Parte 6. Applicazioni lineari

Parte 6. Applicazioni lineari Parte 6 Applicazioni lineari A Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Applicazioni fra insiemi, 2 Applicazioni lineari tra spazi vettoriali, 2 3 Applicazioni lineari da R n a R

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso

Dettagli

Lezione 1. Gli Insiemi. La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme:

Lezione 1. Gli Insiemi. La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme: Lezione 1 Gli Insiemi La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme: degli iscritti ad un corso di laurea delle stelle in cielo dei punti di un piano

Dettagli

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali.

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. CAPITOLO 7 Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. Esercizio 7.1. Determinare il rango delle seguenti matrici al variare del parametro t R. 1 4 2 1 4 2 A 1 = 0 t+1 1 A 2 = 0 t+1 1

Dettagli

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2))

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2)) Algebra Lineare e Geometria Analitica Politecnico di Milano Ingegneria Applicazioni Lineari 1. Sia f : R 3 R 3 l applicazione lineare definita da f(x, y, z) = (x + ky + z, x y + 2z, x + y z) per ogni (x,

Dettagli

Elementi di topologia della retta

Elementi di topologia della retta Elementi di topologia della retta nome insieme definizione l insieme è un concetto primitivo che si accetta come intuitivamente noto secondo George Cantor, il padre della teoria degli insiemi: Per insieme

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

LE FUNZIONI E LE LORO PROPRIETÀ

LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI REALI DI VARIABILE REALE COSA SONO LE FUNZIONI Dati due sottoinsiemi A e B non vuoti di R, una FUNZIONE da A a B è una relazione che associa ad ogni numero reale

Dettagli

ALGEBRA COMPUTAZIONALE

ALGEBRA COMPUTAZIONALE ALGEBRA COMPUTAZIONALE Capitolo I. TERMINOLOGIA Lo scopo di queste pagine è di richiamare le nozioni algebriche che verranno usate nel corso, illustrandole con qualche esempio di riferimento. Le dimostrazioni,

Dettagli

STRUTTURE DISCRETE. Appunti del corso a cura della dott.ssa E. Francot

STRUTTURE DISCRETE. Appunti del corso a cura della dott.ssa E. Francot STRUTTURE DISCRETE Appunti del corso a cura della dott.ssa E. Francot 1 Nozioni preliminari Definizione 1.1 Una Struttura di Incidenza è una tripla (V, B, I) con V, B, I insiemi tali che V B =, I V B.

Dettagli

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

Linguaggi, Modelli, Complessità

Linguaggi, Modelli, Complessità Linguaggi, Modelli, Complessità Giorgio Ausiello Università di Roma La Sapienza Fabrizio d Amore Università di Roma La Sapienza Giorgio Gambosi Università di Roma Tor Vergata Questo documento è stato scritto

Dettagli

Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. L : V W

Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. L : V W Matematica B - a.a 2006/07 p. 1 Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. Definizione 1. La funzione L : V W si dice una applicazione

Dettagli

2 FUNZIONI REALI DI VARIABILE REALE

2 FUNZIONI REALI DI VARIABILE REALE 2 FUNZIONI REALI DI VARIABILE REALE 2.1 CONCETTO DI FUNZIONE Definizione 2.1 Siano A e B due insiemi. Una funzione (o applicazione) f con dominio A a valori in B è una legge che associa ad ogni elemento

Dettagli

Variabili logiche e circuiti combinatori

Variabili logiche e circuiti combinatori Variabili logiche e circuiti combinatori Si definisce variabile logica binaria una variabile che può assumere solo due valori a cui si fa corrispondere, convenzionalmente, lo stato logico 0 e lo stato

Dettagli

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali 1 Numeri naturali La successione di tutti i numeri del tipo: 0,1, 2, 3, 4,..., n,... forma l'insieme dei numeri naturali, che si indica con il simbolo N. Tale insieme si può disporre in maniera ordinata

Dettagli

Appunti del corso di Matematica Discreta Corso di Laurea di base in Matematica. Norberto Gavioli

Appunti del corso di Matematica Discreta Corso di Laurea di base in Matematica. Norberto Gavioli Appunti del corso di Matematica Discreta Corso di Laurea di base in Matematica Norberto Gavioli A.A. 2002/2003 Capitolo 1 Classi di resto e loro aritmetica Prerequisiti: numeri interi, relazioni di equivalenza.

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

Alcune nozioni preliminari di teoria elementare di insiemi e funzioni

Alcune nozioni preliminari di teoria elementare di insiemi e funzioni Alcune nozioni preliminari di teoria elementare di insiemi e funzioni Alberto Pinto Corso di Matematica - NUCT 1 Insiemi 1.1 Generalità Diamo la definizione di insieme secondo Georg Cantor, matematico

Dettagli

DIARIO DEL CORSO DI ALGEBRA A.A. 2015/16 DOCENTE: ANDREA CARANTI

DIARIO DEL CORSO DI ALGEBRA A.A. 2015/16 DOCENTE: ANDREA CARANTI DIARIO DEL CORSO DI ALGEBRA A.A. 2015/16 DOCENTE: ANDREA CARANTI Nota. L eventuale descrizione di lezioni non ancora svolte si deve intendere come una previsione/pianificazione. Lezione 1. martedí 15 settembre

Dettagli

Elementi di teoria dei moduli

Elementi di teoria dei moduli MATeXp Teorie di riferimento 7 Capitolo T25: Elementi di teoria dei moduli Contenuti delle sezioni a. Moduli su anelli, sottomoduli e somme dirette p.1 b. Moduli: indipendenza lineare e basi p.6 c. Moduli

Dettagli