L equilibrio della variazione di entalpia del sistema aria+garza risulta quindi: Dalla definizione di mixing ratio :

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "L equilibrio della variazione di entalpia del sistema aria+garza risulta quindi: Dalla definizione di mixing ratio :"

Transcript

1 Strumenti di misur dell umidità relti: psicrometro bulbo bgnto e entilto. Deduzione dell equzione psicrometric. Tempertur del bulbo bgnto e umidità relti. Relzione con il punto di ruggid. Lo psicrometro è uno strumento che sere misurre l umidità relti. E costituito d due termometri di cui uno fornisce l tempertur mbiente, ed h il bulbo sciutto, mentre l ltro è olto d un grz che dee essere costntemente mntenut bgnt. Ciò iene ottenuto immergendo un estremità dell grz (lontn dl bulbo!) in cqu preferibilmente distillt; l grz, per cpillrità, rimne pertnto costntemente impregnt di cqu. Definizione dell tempertur del bulbo bgnto L tempertur misurt con il termometro bulbo bgnto è l tempertur più bss che l ri può rggiungere per eporzione dell cqu nel suo seno. Il termometro bulbo bgnto dee essere posizionto in un corrente di ri tempertur mbiente, nel luogo doe si effettu l misur. Le due condizioni soprcitte, grz imbeut e entilzione continu sono fondmentle per il corretto funzionmento dello strumento e per ottenere un risultto ffidbile. Il sistem termodinmico sotto studio e quindi il sistem formto d: grz imbeut + ri immeditmente circostnte. Assumendo che questo sistem si isolto, il processo è dibtico (scmbi di clore esclusimente ll interno del sistem grz+ri) e pressione costnte (pressione tmosferic). Un processo di queste crtteristiche (dibtico e isobrico) si dice nche isentlpico, oero, entlpi costnte. Qundo il termometro bulbo bgnto h rggiunto l tempertur minim o tempertur del bulbo bgnto (T B ), per le condizioni presenti nel luogo doe si effettu l misur, oero, regime rggiunto, dee lere quindi che l rizione di entlpi dell ri umid (m non stur) che si rffredd qundo pss sopr il bulbo bgnto, più l rizione dell entlpi del pore cqueo presente nell ri e che si rffredd nch esso ll T B, si ugule ll rizione di entlpi di porizzzione dell mss di cqu che epor dll grz ll tempertur T B. Si f notre che, mentre un olt rggiunto l equilibrio termico (l T B non scende più) l tempertur del bulbo bgnto rimne costnte, il processo sotto studio non è ll equilibrio dl punto di ist dell eporzione. Essendo l grz sempre 1

2 bgnt, il sistem continu d eporre, dl momento che non si rggiunge mi l sturzione (escluso il cso in cui l umidità relti è pri l 100%) e quindi il processo è spontneo e irreersibile, l quntità di pore cqueo (in mss) continu d umentre, c è eporzione nett di cqu che pss llo stto di pore, umentndo così il mixing rtio, cioè, il rpporto tr l mss di pore presente e l mss di ri secc. Definimo: T tempertur mbiente (quell del bulbo sciutto) T B tempertur del bulbo bgnto mss d ri secc che si rffredd d T (T mbiente) T B (T del bulbo bgnto) mss di pore presente nell ri e che si rffredd d T T B w mss di cqu che epor dll grz T B W mixing rtio / Ws s / mixing rtio ll sturzione, ll T B,e ll pressione tmosferic L equilibrio dell rizione di entlpi del sistem ri+grz risult quindi: + w(1) Dll definizione di mixing rtio : w es( T) ws ε p t (2) Doe e s (T) è l pressione di pore sturo ll tempertur T e ll pressione tmosferic, Pt, ε è definito d: 2

3 ε R R d d 0,622 E R d e R sono, rispettimente, le costnti specifiche del gs per l ri e per il pore cqueo. D ltr prte, l quntità di cqu che epor dll grz si può ricre come: W ( w w) S L rizione di entlpi dell ri secc iene dt d: c.( T TB) doe è l mss di ri secc e c pd è il clore specifico pressione costnte per l ri secc. L rizione di entlpi del pore presente nell ri iene dt d: doe è l mss di pore e c p è il clore specifico pressione costnte per il pore cqueo. Infine, l rizione di entlpi dell cqu che epor dll grz T B iene dt d: w doe w è l mss di cqu eport e L è il clore ltente di porizzzione dell cqu. pd c p.( T TB) w L w c p.( T T ) B Con un pò di lgebr possimo scriere: 3

4 h ( w w) L w s Sostituendo nell Eq.(1) ottenimo: ( c + w c ) ( T T ) L( w w) pd p B s Che iene chimt equzione psicrometric dello psicrometro entilto. D quest equzione possimo ricre: w L w c p s c ( T pd T ( T T B ) + L B ) W s si ottiene dll espressione pprossimt (2). D quest espressione possimo ricre il mixing rtio, w, e ricto il mixing rtio ll sturzione ll tempertur T B, w s (T B ), dll espressione (2), ottenere l umidità relti come: RH w/w s. Vedimo un clcolo d dti rccolti in lbortorio: T 22 C T B 15 C P t 975,9 mbr 975,9 hp Δ T T B 7 C Vlori noti: C pd 1, J kg -1 K -1 C p 1, J kg -1 K -1 L (clore ltente di porizzzione dell cqu) 2, J Kg -1 4

5 R 461,5Jkg -1 K -1 Il mixing rtio ll sturzione T T si ottiene come w S o e( TB) e(15c) 17,05hP ( TB) 0,622 0,622 0,622 0,0108 p p 975,9hP Dll espressione per w ottenimo, sostituendo nell equzione psicrometric: w 0,0079 e quindi un umidità relti di RH0,0079/0, % D questo lore dell umidità relti, sfruttndo l equzione di Clusius-Clpeyron, doremmo ricre il punto di ruggid. L equzione di Clusius-Clpeyron, scritt in termini di RH è: T T dew RTT l dew lnr (r RH 0,47 47%) D qui ottenimo: 6 lt 2,50 10 Jkg Tdew 1 TR lnr L ( ) K 461,5Jkg K ( ) K ln(0,47) 2, Jkg 1 283K 10 o C Usndo i lori tbulti per l pressione di pore sturo in funzione dell tempertur, mmesso che questo fosse il lore del punto di ruggid, otterremmo: RH e( T e( T D ) ) 12,28hP 26,44hP 0,46 46% In ottimo ccordo con il lore misurto con un differenz di solo un 2%. 5

6 Fccimo notre che T d 10 C < T B 15 C e che entrmbe forniscono il lore dell umidità relti, pur rppresentndo due temperture differenti, in qunto si rggiungono con processi fisici differenti. L tempertur del bulbo bgnto, come detto prim, è l tempertur minim che l ri può rggiungere per eporzione di cqu nel suo seno. E un processo irreersibile, isobrico e dibtico. Il rffreddmento dell ri iene per eporzione di cqu, tempertur costnte (quell che segn il bulbo bgnto), e mixing rtio ribile: c è un pssggio costnte di cqu dllo stto liquido quello di pore, oero, un rte di eporzione costnte). In tmosfer questo processo iene qundo l pioggi che cde epor prim di rrire terr così rffreddndo l ri che ttrers. D ltr prte, il punto di ruggid è l tempertur ll qule l ri si dee rffreddre per rggiungere l sturzione per un quntità fiss di pore cqueo (oero, per un mixing rtio fisso). In tmosfer questo processo iene qundo, l ri si rffredd per irrggimento, o dell ri stess o dell superficie con l qule st conttto (generlmente l terr) e rggiunge l sturzione (condens) perchè, pur rimnendo costnte l quntità di pore cqueo, l pressione di pore diminuisce l diminuire dell tempertur (cur di Clusius-Clpeyron). 6

TERMODINAMICA E TERMOFLUIDODINAMICA. Cap. 13 LA TERMODINAMICA DELL ARIA UMIDA

TERMODINAMICA E TERMOFLUIDODINAMICA. Cap. 13 LA TERMODINAMICA DELL ARIA UMIDA TERMODINAMICA E TERMOFLUIDODINAMICA Cp. 13 LA TERMODINAMICA DELL ARIA UMIDA T bu T ARIA UMIDA gocce d cqu liquid (rugid) T

Dettagli

Aria Umida Proprietà, Trasformazioni, Diagramma Psicrometrico

Aria Umida Proprietà, Trasformazioni, Diagramma Psicrometrico Lezione 11 Ari Umid Proprietà, Trsformzioni, Digrmm Psicrometrico Prte I Il clcolo delle proprietà dell Ari Umid ed il Digrmm Psicrometrico Ari Umid, Climtizzzione ed Inolucro Edilizio Autori: L. Belli,

Dettagli

TERMODINAMICA DELL ARIA UMIDA

TERMODINAMICA DELL ARIA UMIDA Corso di Fisic tecnic e mbientle.. 0/0 - Docente: Prof. Crlo Isetti TERMODINAMICA DELL ARIA UMIDA. GENERALITÀ Nell'ri è sempre presente un piccol quntità di por d'cqu, indictimente circ % in mss, per cui

Dettagli

P t V = n t R T. P v = n v R T / V

P t V = n t R T. P v = n v R T / V Corso di Impiti Tecnici.. 009/00 Docente: Prof. C. Isetti CAPITOLO TERMODINAMICA DELL ARIA UMIDA. Generlità Nell'ri è sempre presente un piccol quntità di por d'cqu, indictimente circ % in mss, per cui

Dettagli

Fisica Tecnica Ambientale

Fisica Tecnica Ambientale Università degli Studi di Perugi Sezione di Fisic Tecnic Fisic Tecnic Ambientle Lezione del 11 mrzo 2015 Ing. Frncesco D Alessndro dlessndro.unipg@cirif.it Corso di Lure in Ingegneri Edile e Architettur

Dettagli

L entalpia è una funzione di stato di un sistema ed esprime la quantità di energia che esso può scambiare con l'ambiente.

L entalpia è una funzione di stato di un sistema ed esprime la quantità di energia che esso può scambiare con l'ambiente. L entlpi è un funzione di stto di un sistem ed esprime l quntità di energi che esso può scmire con l'miente. L definizione formle dell'entlpi è: H = U + PV dove U rppresent l'energi intern del sistem,

Dettagli

APPUNTI DALLE LEZIONI UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II POLO DELLE SCIENZE E DELLE TECNOLOGIE FACOLTÀ DI ARCHITETTURA A.A.

APPUNTI DALLE LEZIONI UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II POLO DELLE SCIENZE E DELLE TECNOLOGIE FACOLTÀ DI ARCHITETTURA A.A. UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II POLO DELLE SCIENZE E DELLE TECNOLOGIE FACOLTÀ DI ARCHITETTURA A.A. 007 008 CORSO DI LAUREA IN SCIENZE DELL ARCHITETTURA INSEGNAMENTO DI FISICA TECNICA PROFF.

Dettagli

Problema Q & SOLUZIONE

Problema Q & SOLUZIONE Problem 2..2.2 Un portt di,00 0 4 m / di ri umid, inizilmente ll tempertur di 2,0 C con umidità reltiv del 60% viene rffreddt e deumidifict. L tempertur in ucit è di 0,0 C ed il grdo igrometrico del 00%

Dettagli

Moto in due dimensioni

Moto in due dimensioni INGEGNERIA GESTIONALE corso di Fisic Generle Prof. E. Puddu LEZIONE DEL 24 SETTEMBRE 2008 Moto in due dimensioni Spostmento e velocità Posizione e spostmento L posizione di un punto mterile nel pino è

Dettagli

ARIA ATMOSFERICA o ARIA UMIDA /1

ARIA ATMOSFERICA o ARIA UMIDA /1 ARIA ATMSFERICA o ARIA UMIDA / Ari secc: (ssigeno) N (ssigeno) A (Argon) C (Anidride crbonic) Ari uid Ari secc Vore d cqu ( ) L cqu tosferic è llo stto di ore surriscldto rossie quelle di ore sturo secco

Dettagli

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante Prof.. Di Muro Moto rettilineo uniformemente ccelerto ( m.r.u.. ) Il moto rettilineo uniformemente ccelerto è un moto che iene su un rett con ccelerzione costnte. Dll definizione di ccelerzione t t t t

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

Soluzione a) La forza esercitata dall acqua varia con la profondita` secondo la legge di Stevino: H H

Soluzione a) La forza esercitata dall acqua varia con la profondita` secondo la legge di Stevino: H H eccnic Un bcino d cqu, profondo, e` contenuto d un prti verticle di lunghezz (orizzontle, lungo y) L, vincolt l terreno nel punto B. Per sostenere l prti si usno lcuni pli fissti d un estremit` sull prti,

Dettagli

4 π. dm 28 s. m s M T. dm dt. Esercizio B2.1 Analisi del processo di fonderia SOLUZIONE

4 π. dm 28 s. m s M T. dm dt. Esercizio B2.1 Analisi del processo di fonderia SOLUZIONE Esercizio B. Anlisi del processo di fonderi Si deve fricre un getto in ghis del peso di 50 kg e densità pri 7, kg/dm. Dimensionre il dimetro del cnle di colt spendo che il dislivello fr il cino e gli ttcchi

Dettagli

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento Questionrio Risolvi quttro degli otto quesiti: L Città dello sport è un struttur sportiv progettt dll rchitetto Sntigo Cltrv e mi complett, situt sud di Rom Rispetto l sistem di riferimento indicto in

Dettagli

H = U + PV. dove U rappresenta l'energia interna del sistema, P la pressione, e V il volume.

H = U + PV. dove U rappresenta l'energia interna del sistema, P la pressione, e V il volume. L energi potenzile, l energi di legme, contenut d ogni sostnz, viene definit ENTALPIA ed indict con H. L entlpi è un funzione di stto di un sistem ed esprime l quntità di energi che esso può scmire con

Dettagli

Un carrello del supermercato viene lanciato con velocità iniziale

Un carrello del supermercato viene lanciato con velocità iniziale Esempio 44 Un utomobile procede lungo l utostrd ll velocità costnte di m/s, ed inizi d ccelerre in vnti di m/s.5 proprio nell istnte in cui super un cmion fermo in un re di sost. In quel preciso momento

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

L aria umida. Fabio Peron. aria umida = aria secca + vapore d acqua. Cosa è l aria umida. Una miscela di interesse pratico

L aria umida. Fabio Peron. aria umida = aria secca + vapore d acqua. Cosa è l aria umida. Una miscela di interesse pratico Corso di Progettzione Abientle rof. Fbio Peron Cos è l ri uid L iscel di gs che costituisce l troosfer è definit tecnicente ri uid. L ri uid E iortnte conoscerne le rorietà e il coortento dto che ess è

Dettagli

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo Lure triennle in Scienze dell Ntur.. 2009/200 Regole di Clcolo In queste note esminimo lcune conseguenze degli ssiomi reltivi lle operzioni e ll ordinmento nell insieme R dei numeri reli. L obiettivo principle

Dettagli

ESERCITAZIONE SECONDO PREESAME

ESERCITAZIONE SECONDO PREESAME ESERCITAZIE SECD REESAME 1) Clcolre il peso molecolre di un sostnz A poco voltile che form un soluzione con il benzene spendo che qundo 18.5 g di A sono sciolti in 85.8 g di benzene, l soluzione congel

Dettagli

2. Teoremi per eseguire operazioni con i limiti in forma determinata

2. Teoremi per eseguire operazioni con i limiti in forma determinata . Teoremi per eseguire operzioni con i iti in form determint Vedimo dunque i teoremi che consentono il clcolo dei iti, ttrverso i quli si riconducono le situzioni rticolte semplici operzioni lgebriche

Dettagli

Esercitazioni Capitolo 12 Carichi termici estivi attraverso il perimetro

Esercitazioni Capitolo 12 Carichi termici estivi attraverso il perimetro Esercitzioni Cpitolo 12 Crichi termici estivi ttrverso il perimetro 1) Si vluti il crico termico estivo trsmesso il 21 luglio lle ore 6.00 e lle ore 15.00, ttrverso un prete con esposizione Ovest e Est

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

Richiami sulle miscele di aria vapore e cenni di condizionamento d aria

Richiami sulle miscele di aria vapore e cenni di condizionamento d aria Richimi sulle miscele di ri ore e cenni di condizionmento d ri Miscele di gs ideli. L mss di un miscel di gs è ri ll somm delle msse dei suoi comonenti Il numero di moli di un miscel di gs che non regiscono

Dettagli

Dinamica Relativistica

Dinamica Relativistica L Generlizzzione Reltiistic delle Leggi dell Meccnic Principio d inerzi ereditto dll meccnic clssic: Dinmic Reltiistic Reltiità Energi e Ambiente Fossombrone PU Polo Scolstico L. Donti 3 mggio http://www.ondzioneocchilini.it

Dettagli

8 Controllo di un antenna

8 Controllo di un antenna 8 Controllo di un ntenn L ntenn prbolic di un rdr mobile è montt in modo d consentire un elevzione compres tr e =2. Il momento d inerzi dell ntenn, Je, ed il coefficiente di ttrito viscoso, f e, che crtterizzno

Dettagli

Verifica di Fisica 04/12/2014 Argomenti trattati durante il corso:

Verifica di Fisica 04/12/2014 Argomenti trattati durante il corso: Liceo Scientifico Augusto Righi, Cesen Corso di Fisic Generle, AS 2014/15, Clsse 1C Verific di Fisic 04/12/2014 Argomenti trttti durnte il corso: Grndezze fisiche: fondmentli e derivte Notzione scientific

Dettagli

GESTIONE DELL ENERGIA A.A II PROVA INTERMEDIA, 11 Luglio 2007

GESTIONE DELL ENERGIA A.A II PROVA INTERMEDIA, 11 Luglio 2007 II PROVA INTERMEDIA, 11 Luglio 2007 1- Economi bst su risorse non rinnovbili. Illustrre l influenz sul prezzo del petrolio dei costi di estrzione in generle e nel cso di costi di estrzione costnti ricvre

Dettagli

Esercitazione Dicembre 2014

Esercitazione Dicembre 2014 Esercitzione 10 17 Dicembre 2014 Esercizio 1 Un economi chius è crtterizzt di seguenti dti: A = 400 M = 250 γ = 1.5 (moltiplictore dell politic fiscle) β = 0.8 moltiplictore dell politic monetri z = 0.25

Dettagli

Rapporti e proporzioni numeriche

Rapporti e proporzioni numeriche Rpporti e proporzioni numeriche Rpporti. Per rpporto tr due numeri e b, di cui il secondo diverso d zero, s intende il quoziente estto dell divisione dei due numeri dti, cioè :b oppure /b. Ad esempio dire

Dettagli

La costante (p 0 0 /273) la si riesprime come n R dove R è una costante universale il cui valore dipende solo dalle unità di misura usate: R8.31 Joule/(K mole) e n è il numero di moli L equazione di stato

Dettagli

CONDIZIONAMENTO DELL ARIA

CONDIZIONAMENTO DELL ARIA Corso di Impinti Tecnici.. 009/00 Docente: Prof. C. Isetti CAPITOLO 7 7. Generlità Come si ricorderà, per condizionmento dell ri si intende un intervento volto relizzre il controllo dell tempertur e del

Dettagli

Miscele di aria e vapore d acqua

Miscele di aria e vapore d acqua Brbr Gherri mtr. 4544 Lezione del 20/2/02 or 8:0-0:0 iscele di ri e ore d cqu L esigenz di studire le miscele ri ore deri dll grnde imortnz che esse riestono er il benessere termoigrometrico dell uomo

Dettagli

Area del Trapezoide. f(x) A f(a) f(b) f(x)

Area del Trapezoide. f(x) A f(a) f(b) f(x) Are del Trpezoide y o A f() trpezoide h B f() f() L're del trpezoide S puo' essere pprossimt dll're del trpezio AB. Per vere un migliore pprossimzione possimo suddividere il trpezio in trpezi piu' piccoli.

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi.

Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi. Corso di Anlisi: Algebr di Bse ^ Lezione Rdicli. Proprietà dei rdicli. Equzioni irrzionli. Disequzioni irrzionli. Allegto Esercizi. RADICALI : Considerto un numero rele ed un numero intero positivo n,

Dettagli

2. PROPRIETÀ E TRASFORMAZIONI DELL ARIA

2. PROPRIETÀ E TRASFORMAZIONI DELL ARIA 2. PROPRIETÀ E TRASFORMAZIONI DELL ARIA UMIDA 2.1. Ari Atmosferic L'ri tmosferic é costituit d un insieme di componenti gssosi (N 2, O 2, Ar, CO 2, Ne, He, ) e d ltre sostnze che possono presentrsi in

Dettagli

Il moto uniformemente accelerato

Il moto uniformemente accelerato Il moto uniformemente ccelerto Viene detto uniformemente ccelerto un moto nel qule l ccelerzione rimng costnte in intensità e direzione. Alle volte esso viene distinto dl moto uniformemente vrio nel qule

Dettagli

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino

Dettagli

Corso di Fisica tecnica ambientale e Impianti tecnici a.a. 2008/2009

Corso di Fisica tecnica ambientale e Impianti tecnici a.a. 2008/2009 Corso di Fisic tecnic mbientle e Impinti tecnici.. 008/009 CAPITOLO. Generlità Come si ricorderà, per condizionmento dell ri si intende un intervento volto relizzre il controllo dell tempertur e del contenuto

Dettagli

Classe 4 G dicembre 2010.

Classe 4 G dicembre 2010. Clsse 4 G dicembe 2010. Legge di Newton pe il ffeddmento (iscldmento). Due copi tempetu diffeente se posti in conttto temico si scmbino cloe. L'ossevzione speimentle indic che essi si potno d un tempetu

Dettagli

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y Differenzile Considerimo l vrizione finit, dell vriile indipendente cui corrisponde un vrizione finit dell funzione f, f y Δf 1 Δ 2 L vrizione dell vriile dipendente puo' essere molto piccol, infinitesim

Dettagli

Il Primo Principio della Termodinamica non fornisce alcuna indicazione riguardo ad alcuni aspetti pratici.

Il Primo Principio della Termodinamica non fornisce alcuna indicazione riguardo ad alcuni aspetti pratici. Il Primo Principio dell Termodinmic non fornisce lcun indiczione rigurdo d lcuni spetti prtici. l evoluzione spontne delle trsformzioni; non individu cioè il verso in cui esse possono vvenire. Pistr cld

Dettagli

Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è:

Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è: Titolzione Acido Debole Bse Forte L rezione che vviene nell titolzione di un cido debole HA con un bse forte NOH è: HA(q) NOH(q) N (q) A (q) HO Per quest rezione l costnte di equilibrio è: 1 = = >>1 w

Dettagli

VOLUMI, MASSE, DENSITÀ

VOLUMI, MASSE, DENSITÀ VOLUMI, MASSE, DENSITÀ In clsse è già stt ftt un'esperienz di misur dell densità prtire d misure di mss e di volume. In quel cso è stt misurt l mss in mnier dirett con un bilnci, e il volume in mnier indirett.

Dettagli

C A 10 [HA] C 0 > 100 K

C A 10 [HA] C 0 > 100 K Soluzioni Tmpone Le soluzioni tmpone sono soluzioni in cui sono presenti un cido debole e l su bse coniugt sotto form di sle molto solubile. Hnno l crtteristic di mntenere il ph qusi costnte nche se d

Dettagli

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli:

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli: Acidi Deboli Si definisce cido debole un cido con < 1 che risult perciò solo przilmente dissocito in soluzione. Esempi di cidi deboli: Acido cetico (H OOH) 1.75 1-5 Acido scorbico (vitmin ) 1 6.76 1-5.5

Dettagli

BREVE APPENDICE SULLE UNITA' LOGARITMICHE

BREVE APPENDICE SULLE UNITA' LOGARITMICHE BREVE APPENDICE SULLE UNITA' LOGARITMICHE Per esprimere gudgni e ttenuzioni, nonché cifre di rumore e rpporti segnle-rumore si usno frequentemente le unità logritmiche. Come risultto, l grndezz in questione

Dettagli

L aria umida. per il vapor d acqua

L aria umida. per il vapor d acqua L ri umid 10.1 Generlità e definizioni L'ri tmosferic che resirimo è costituit d un insieme di comonenti gssosi e d ltre sostnze, in genere inquinnti, che ossono resentrsi o in fse eriforme (fumi), o come

Dettagli

Cinetica chimica. Studia la velocità ed i meccanismi con cui avvengono le reazioni chimiche.

Cinetica chimica. Studia la velocità ed i meccanismi con cui avvengono le reazioni chimiche. Cinetic chimic Studi l velocità ed i meccnismi con cui vvengono le rezioni chimiche. Velocità con cui vri l concentrzione dei regenti o dei prodotti nel tempo: scomprs dei regenti e comprs dei prodotti

Dettagli

Note sul moto circolare uniforme.

Note sul moto circolare uniforme. Note sul moto circolre uniforme. Muro Sit e-mil: murosit@tisclinet.it Versione proisori, ottobre 2012. Indice 1 Il moto circolre uniforme in sintesi. 1 2 L ide di Hmilton 2 3 Esercizi 5 3.1 Risposte.......................................

Dettagli

ipotenusa cateto adiacente ad α cateto opposto ad α ipotenusa cateto adiacente ad α ipotenusa cateto adiacente ad α

ipotenusa cateto adiacente ad α cateto opposto ad α ipotenusa cateto adiacente ad α ipotenusa cateto adiacente ad α Trigonometri I In quest prim prte dell trigonometri denimo le funzioni trigonometriche seno, coseno e tngente e le loro funzioni inverse. Vedremo nche come utilizzrle nell risoluzione dei tringoli. Comincimo

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

7. Relazione fra velocità e spazio percorso

7. Relazione fra velocità e spazio percorso 7. Relzione fr elocità e spzio percorso ( t) 0 Ricndo il tempo dll legge orri dell elocità, t ed inserendolo nell legge orri dell posizione si ottiene un ltr relzione fr elocità, ccelerzione e spzio: 0

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero

Dettagli

1 Equazioni e disequazioni di secondo grado

1 Equazioni e disequazioni di secondo grado UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Fcoltà di Frmci e Medicin - Corso di Lure in CTF 1 Equzioni e disequzioni di secondo grdo Sino 0, b e c tre numeri reli noti, risolvere un equzione di secondo

Dettagli

Corso di Componenti e Impianti termotecnici IL PROGETTO TERMOTECNICO PARTE SECONDA

Corso di Componenti e Impianti termotecnici IL PROGETTO TERMOTECNICO PARTE SECONDA IL PROGETTO TERMOTECNICO PARTE ECONDA 1 I ponti termici Il ponte termico può essere definito come: un elemento di elevt conduttività inserito in un prete o elemento di prete di minore conduttività. I ponti

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI ESPONENZIALI E LOGARITMI RICHIAMI DI TEORIA dom f Im f grfico Funzioni esponenzili y=^ con > Funzioni esponenzili y=^ con

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

7. Derivate Definizione 1

7. Derivate Definizione 1 7. Derivte Il concetto di derivt è importntissimo e molto nturle. Per vere un esempio concreto, penste l moto di un mcchin: se f(t) è l funzione che esprime qunt strd vete percorso fino d un certo istnte

Dettagli

{ 3 x y=4. { x=2. Sistemi di equazioni

{ 3 x y=4. { x=2. Sistemi di equazioni Sistemi di equzioni Definizione Un sistem è un insieme di equzioni che devono essere verificte contempornemente, cioè devono vere contempornemente le stesse soluzioni. Definimo grdo di un sistem il prodotto

Dettagli

1 Integrale delle funzioni a scala

1 Integrale delle funzioni a scala INTEGRALE DELLE FUNZIONI DI UNA VARIABILE Teori di Riemnn 1 Integrle delle funzioni scl (1.1) Definizione Si dice suddivisione di un intervllo chiuso e limitto [, b] un sottoinsieme {,..., n } di [, b]

Dettagli

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1 APITOLO 3 LE SIMMETRIE 3. Richimi di teori Definizione. Si dto un punto del pino; si chim simmetri centrle di centro (che si indic con il simbolo s ) l corrispondenz dl pino in sé che d ogni punto P del

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

PROGRAMMAZIONE DI FISICA PRIMO BIENNIO CLASSI SECONDE

PROGRAMMAZIONE DI FISICA PRIMO BIENNIO CLASSI SECONDE PROGRAMMAZIONE DI FISICA PRIMO BIENNIO CLASSI SECONDE Nel pino di lvoro sono indicte con i numeri d 1 5 le competenze di bse che ciscun unit' didttic concorre sviluppre, secondo l legend riportt di seguito.

Dettagli

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi:

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: ppunti di nlisi mtemtic: Integrle efinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle efinito lcolo delle ree di fig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le

Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le Sched Sei ESPONENZIALI E LOGARITMI L funzione esponenzile Assegnto un numero rele >0, si dice funzione esponenzile in bse l funzione Grfici dell funzione esponenzile Se = l funzione esponenzile è costnte:

Dettagli

LEZIONE 13 MINIMIZZAZIONE DEI COSTI. Condizione per la minimizzazione dei costi. Efficienza tecnica ed efficienza economica

LEZIONE 13 MINIMIZZAZIONE DEI COSTI. Condizione per la minimizzazione dei costi. Efficienza tecnica ed efficienza economica LEZIONE 3 MINIMIZZAZIONE DEI COSTI Lungo periodo Soluzione nlitic Condizione per l minimizzzione dei costi Efficienz tecnic ed efficienz economic Rppresentzione grfic Isocosto ed isoqunto Sentiero di espnsione

Dettagli

Corso di Idraulica per allievi Ingegneri Civili

Corso di Idraulica per allievi Ingegneri Civili Corso di Idrulic per llievi Ingegneri Civili Esercitzione n 1 I due sertoi e B in Figur 1, venti lrghezz comune pri, sono in comuniczione ttrverso l luce di fondo pert nel setto divisorio. Il primo,, contiene

Dettagli

Liceo Scientifico Statale Leonardo da Vinci Via Possidonea Reggio Calabria Anno Scolastico 2008/2009 Classe III Sezione G

Liceo Scientifico Statale Leonardo da Vinci Via Possidonea Reggio Calabria Anno Scolastico 2008/2009 Classe III Sezione G Liceo Scientifico Sttle Leonrdo d Vinci Vi Possidone 14 8915 Reggio Clbri Anno Scolstico 008/009 Clsse III Sezione G Dirigente scolstico: Preside Prof. ss Vincenzin Mzzuc Professore coordintore del progetto:

Dettagli

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli

Introduzione e strumenti

Introduzione e strumenti Controlli utomtici Introduzione e strumenti Convenzioni generli ed elementi di bse Dll equzione ll rppresentzione grfic L lgebr dei blocchi Clcolo di funzioni di trsferimento di schemi interconnessi 2

Dettagli

POLITECNICO DI MILANO IV FACOLTÀ Ingegneria Aerospaziale I Appello di Fisica Sperimentale A+B 17 Luglio 2006

POLITECNICO DI MILANO IV FACOLTÀ Ingegneria Aerospaziale I Appello di Fisica Sperimentale A+B 17 Luglio 2006 POLITECNICO DI MILANO IV FACOLTÀ Ingegneri Aerospzile I Appello di Fisic Sperimentle A+B 7 Luglio 6 Giustificre le risposte e scrivere in modo chiro e leggibile. Sostituire i vlori numerici solo ll fine,

Dettagli

Appunti di calcolo integrale

Appunti di calcolo integrale prte II Integrle definito Liceo Scientifico A. Volt - Milno 23 mrzo 2017 Integrle definito Si y = f (x) un funzione continu in I = [, b]. Si chim trpezoide l figur curviline pin delimitt: dl grfico dell

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

Controlli Automatici. Trasformate L e Z e schemi a blocchi. Esercizi sulle trasformate L e Z

Controlli Automatici. Trasformate L e Z e schemi a blocchi. Esercizi sulle trasformate L e Z Controlli Automtici Trsformte L e Z e schemi blocchi Esercizi sulle trsformte L e Z Esercizi sulle trsformte L e Z Proposte di esercizi e soluzioni in tempo rele trsformt L di y(t) dt trsformt Z di y(i)

Dettagli

6. L aria umida e le sue trasformazioni

6. L aria umida e le sue trasformazioni 6. L ri uid e le sue trsforzioni 6.1 L iscel di gs e ore d cqu dett ri uid Per lcune iortnti nlisi nel co dell fisic tecnic bientle (studio delle condizioni di benessere teroigroetrico, rogettzione dei

Dettagli

P8 Ponti radio terrestri e satellitari

P8 Ponti radio terrestri e satellitari P8 Ponti rdio terrestri e stellitri P8.1 Un collegmento in ponte rdio 11 GHz impieg due ntenne prboliche uguli venti gudgno G 40 db ed efficienz η 0,5. Gli pprti di ricetrsmissione sono collegti lle rispettive

Dettagli

Superfici di Riferimento (1/4)

Superfici di Riferimento (1/4) Superfici di Riferimento (1/4) L definizione di un superficie di riferimento nsce dll necessità di vere un supporto mtemtico su cui sviluppre il rilievo eseguito sull superficie terrestre. Tle superficie

Dettagli

FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI

FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI Considerimo un funzione f : I R, dove I è un intervllo di R. Si c un punto interno I in cui f è discontinu. Diremo che c è un punto di discontinuità di prim

Dettagli

Esercitazione 2-15 Ottobre Equilibrio idrostatico

Esercitazione 2-15 Ottobre Equilibrio idrostatico Esercitione di Meccnic dei fluidi con Fondmenti di Ingegneri Chimic Esercitione 2-15 Ottobre 2015 Equilibrio idrosttico È stt ricvt leione l equione fondmentle dell sttic dei fluidi pesnti e incomprimibili,

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

Scambiatori di calore

Scambiatori di calore Appunti di ISIA ENIA Scmbitori di clore Introduzione... Progetto e scelt di uno scmbitore di clore... ipi più comuni di scmbitori di clore... Differenz medi di tempertur...3 Medi logritmic delle differenze

Dettagli

Ingegneria dei Sistemi Elettrici_2 a (ultima modifica 08/03/2010)

Ingegneria dei Sistemi Elettrici_2 a (ultima modifica 08/03/2010) Ingegneri dei Sistemi Elettrici_2 (ultim modific 08/03/2010) Prim di definire le grndee di bse e le costnti universli del modello elettromgnetico per poter sviluppre i vri temi dell elettromgnetismo, si

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

CAPITOLO 8 Crescita economica II: la tecnologia, i dati empirici e la politica economica

CAPITOLO 8 Crescita economica II: la tecnologia, i dati empirici e la politica economica CAPITOLO 8 Crescit economic II: l tecnologi, i dti empirici e l politic economic Domnde di ripsso 1. Secondo il modello di Solow solo il progresso tecnologico può influenzre il tsso di crescit di stto

Dettagli

Pesca 1 1/3 Raccolta frutta

Pesca 1 1/3 Raccolta frutta Vntggi Comprti rendimo due esi e dove si producno 2 beni utilizzndo un solo fttore produttivo il Lvoro ese Attività esc /3 Rccolt frutt /6 /3 Ore di lvoro (20 ) necessrie per pescre un kg di pesce in 3

Dettagli

ECONOMIA POLITICA II - ESERCITAZIONE 8 Curva di Phillips Legge di Okun - AD

ECONOMIA POLITICA II - ESERCITAZIONE 8 Curva di Phillips Legge di Okun - AD ECOOMIA POLITICA II - ESERCITAZIOE 8 Curv di Phillips Legge di Okun - AD Esercizio 1 Sino β = 0.5, α = 1, u = u n = 6%, λ = 0.5, g y = 0.03. Supponee che nell nno 0 l disoccupzione si 6% e che l bnc cenrle

Dettagli

Le equazioni di grado superiore al secondo

Le equazioni di grado superiore al secondo Le equzioni di grdo superiore l secondo ITIS Feltrinelli nno scolstico 007-008 R. Folgieri 007-008 1 Teorem fondmentle dell lger Ogni equzione lgeric di grdo n h sempre n soluzioni, che possono essere

Dettagli

ELEMENTI MECCANICI ROTANTI CON FUNZIONE DI IMMAGAZZINAMENTO O TRASFERIMENO DI ENERGIA

ELEMENTI MECCANICI ROTANTI CON FUNZIONE DI IMMAGAZZINAMENTO O TRASFERIMENO DI ENERGIA Freni e frizioni ELEMENTI MECCANICI ROTANTI CON FUNZIONE DI IMMAGAZZINAMENTO O TRASFERIMENO DI ENERGIA 1. forz di ttuzione del meccnismo. coppi trsmess 3. perdit di energi 4. incremento di tempertur 1

Dettagli

Esercizi sugli urti tra punti materiali e corpi rigidi

Esercizi sugli urti tra punti materiali e corpi rigidi Esercizi sugli urti tr punti mterili e corpi rigidi Un st omogene di mss 0.9 kg e di lunghezz 0. m è incerniert nel suo punto di mezzo in un pino orizzontle ed è inizilmente erm. Un proiettile di mss m100g

Dettagli

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale.

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale. 1 Integrli dipendenti d un prmetro e derivzione sotto il segno di integrle. Considerimo l funzione f(x, t) : A [, b] R definit nel rettngolo A [, b], essendo A un sottoinsieme perto di R e [, b] un intervllo

Dettagli

Elementi Finiti SPRING, TRUSS, BEAM

Elementi Finiti SPRING, TRUSS, BEAM Progettione Assistit dl Clcoltore Elementi initi SPRING, TRUSS, BEA Elementi initi SPRING Sono elementi finiti monodimensionli costititi d de nodi di estremità. I risltti che si possono ottenere d elementi

Dettagli

La parabola LA PARABOLA È IL LUOGO DEI PUNTI DEL PIANO EQUIDI- STANTI DA UN PUNTO DETTO FUOCO E DA UNA RETTA CHE NON LO CONTIENE DETTA DIRETTRICE.

La parabola LA PARABOLA È IL LUOGO DEI PUNTI DEL PIANO EQUIDI- STANTI DA UN PUNTO DETTO FUOCO E DA UNA RETTA CHE NON LO CONTIENE DETTA DIRETTRICE. L prol In figur è trccito il grfico di un prol con sse di simmetri verticle. Si vede suito dl grfico ce: l curv è simmetric rispetto l suo sse di simmetri il suo punto più in sso è il vertice il vertice

Dettagli

CELLE GALVANICHE E TITOLAZIONI POTENZIOMETRICHE

CELLE GALVANICHE E TITOLAZIONI POTENZIOMETRICHE CLL GALVANICH TITOLAZIONI POTNZIOMTRICH Rezione di ossidoriduzione spontne del Zinco metllico conttto con un soluzione di Solfto di Rme Cu (q.) Zn(s) Cu(s) Zn (q) Costnte di equilibrio dell rezione 5 C

Dettagli

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi Equzioni di grdo Definizioni Equzioni incomplete Equzione complet Relzioni tr i coefficienti dell equzione e le sue soluzioni Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Un equzione è: Un uguglinz

Dettagli

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi Equzioni grdo Definizioni Clssificzione Risoluzione Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Prendimo in esme le due espressioni numeriche 8 entrmbe sono uguli 7, e l scrittur si chim uguglinz

Dettagli

COLPO D ARIETE: MANOVRE DI CHIUSURA

COLPO D ARIETE: MANOVRE DI CHIUSURA Università degli studi di Rom Tor Vergt Corso di Idrulic. Prof. P. Smmrco COLPO D ARIETE: MANOVRE DI CHIUSURA Appunti integrtivi l testo E. Mrchi, A. Rubtt - Meccnic dei Fluidi dlle lezioni del prof. P.

Dettagli