Statica del corpo rigido: esercizi svolti dai compitini degli anni precedenti

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Statica del corpo rigido: esercizi svolti dai compitini degli anni precedenti"

Transcript

1 Statica de corpo riido: eercizi voti dai compitini dei anni precedenti II COMPITIO Un ae di eno orizzontae omoenea, di maa M0 k e unhezza L m, è appoiata u due cavaetti. L ae pore di 60 cm otre i cavaetto di initra e di 5 cm otre i cavaetto di detra. Quanto vae, in, a forza che ae eercita u cavaetto di initra? 9) f E quea u cavaetto di detra? 0) f 9.07 F P Svoimento Le forze eterne che aicono u ae di eno ono a Forza peo (in moduo F P M) che i può penare che aica u centro di maa de ae (punto di mezzo), e e due forze normai e eercitate a contatto con i cavaetti. Per i terzo principio dea dinamica a forza che ae eercita u cavaetto di initra è F - e quea u cavaetto di detra è F -. Vanno dunque determinate e. Ee i trovano dae condizioni di equiibrio: A) a riutante dee forze eterne deve eere nua; b) a omma dei momenti dee forze ripetto ad un punto di rotazione (per empicità prendiamo i centro di maa) deve eere nua. a) M ( 0.6) b) 0 ; + r r 0.4 ( 0.05) Sotituendo nea (a): M + r r ( + r) M ; II compitino Un ae di eno orizzontae omoenea, di maa 0 k e unhezza m, è appoiata u due cavaetti. I cavaetto di initra è a fio con etremità de ae, mentre i cavaetto di detra eercita u ae una reazione vincoare 75. Di quanto pore ae ripetto a cavaetto di detra? (Coniderare 9.8) 7) x m Svoimento Queto probema i impota in modo anaoo a precedente. Le forze eterne che aicono u ae di eno ono a Forza peo (in moduo F P M) che i può penare che aica u centro di maa de ae (punto di mezzo), e e due forze normai (cavaetto di initra) e (cavaetto di detra) eercitate a contatto con i cavaetti. L ae non pore ripetto a cavaetto di initra ma pore di x m (inconita) ripetto a cavaetto di detra. La reazione vincoare 75 è data da probema. Le randezze in ioco devono oddifare e condizioni di equiibrio: a) a riutante dee forze eterne deve eere nua; b) a omma dei momenti dee forze ripetto ad un punto di rotazione (per empicità prendiamo i centro di maa) deve eere nua. a) M M

2 b) + 0 ( ) ( ); L ( ) combinando (a) e (b): ( ) ( M) m m / 0k ( ) m IV compitino Un ae di eno di maa 0 k e una m è appoiata u due cavaetti ditanti m uno da atro. L ae pore 84 cm da cavaetto di initra. Quanto vae a forza che i cavaetto di detra eercita u ae? 5) f 5.7 (anaoo: II compitino Un ae di eno di maa 0 k e una m è appoiata u due cavaetti ditanti m uno da atro. L ae pore 30 cm da cavaetto di initra. Quanto vae a forza che i cavaetto di detra eercita u ae? 8) f 68.6 ) (anaoo: II compitino Un ae di eno di maa 0 k e una m è appoiata u due cavaetti ditanti m uno da atro. L ae pore 40 cm da cavaetto di initra. Quanto vae a forza che i cavaetto di detra eercita u ae? 9) f 58.8 ) (anaoo: II compitino Un ae di eno di maa 0 k e una m è appoiata u due cavaetti ditanti m uno da atro. L ae pore 45 cm da cavaetto di initra. Quanto vae a forza che i cavaetto di detra eercita u ae? 6) f 53.9 ) Svoimento (IV compitino , e.5) Queto probema i impota in modo anaoo a quei precedenti. Le forze eterne che aicono u ae di eno ono a Forza peo (in moduo F P M) che i può penare che aica u centro di maa de ae (punto di mezzo), e e due forze normai e eercitate dai cavaetti. Conideriamo i cao più enerae con ae uno L( m) che pore (84 cm) a initra e a detra e i due cavaetti ditanti d(m). Aora avremo Ld+ +. A detra aora porerà L-d- (--0.84)0.6 m. Impotiamo e condizioni di condizioni di equiibrio: a) a riutante dee forze eterne deve eere nua; b) a omma dei momenti dee forze ripetto ad un punto di rotazione (per empicità prendiamo i centro di maa) deve eere nua. a) M ( 0.84) b) 0 ; + r r ( 0.6) Sotituendo nea (a): M (0) *9.8 + r.905 r ( + r) M 8.3 ;

3 II compitino Un ae di eno orizzontae, omoenea, di maa 0 k e una m, è appoiata ai uoi etremi u due oteni. A 03 cm da oteno di initra è appoiato un corpo di maa 6 k. Quanto vae a forza che ae eercita u oteno di detra? 0) f 79.4 (anaoo: II compitino Un ae di eno orizzontae, omoenea, di maa 0 k e unhezza m, è appoiata ai uoi etremi u due oteni. A 50 cm da oteno di initra è appoiato un corpo di maa 8 k. Quanto vae, in, a forza che ae eercita u oteno di detra? 4) f ) (anaoo: II compitino Un ae di eno orizzontae, omoenea, di maa 0 k e una m, è appoiata ai uoi etremi u due oteni. A 50 cm da oteno di initra è appoiato un corpo di maa 4 k. Qua è a forza, in, che ae eercita u oteno di detra? f ) (anaoo: II compitino Un ae di eno orizzontae, omoenea, di maa 0 k e una m, è appoiata ai uoi etremi u due oteni. A 50 cm da oteno di initra è appoiato un corpo di maa 6 k. 3) Qua è a forza, in, che ae eercita u oteno di detra? f ) Svoimento (II compitino e.0) Queto probema i impota in modo anaoo a quei precedenti, ma va aiunto i contributo dea forza peo de corpo di maa m6 k poto a d03 cm da oteno di initra. In più e forze eterne che aicono u ae di eno ono a Forza peo aociata a ae (in moduo F P M) che i può penare che aica u centro di maa de ae (punto di mezzo), e e due forze normai e eercitate dai cavaetti. Ripetto ai probemi precedenti, a ituazione è più empie, perché ae è appoiata ai uoi etremi, quindi 0 Impotiamo e condizioni di condizioni di equiibrio: a) a riutante dee forze eterne deve eere nua; b) a omma dei momenti dee forze ripetto ad un punto di rotazione (per empicità prendiamo come riferimento per i momento dee forze eremità initra de ae, che è i punto dove è appicato oteno di initra) deve eere nua. Si ricorda che per a condizione (b) i può ceiere come riferimento de ae oni punto de ae, per eempio avremmo potuto prendere i centro di maa o ato etremo e i riutato arebbe tato o teo (provare per eercizio). a) M m b) M m( d ) + ( L) 0 + M + m L ( d ) d.03m M + m 9.8m k L m

4 II compitino Una caa una m e di maa 0 k poia con etremità inferiore u pavimento, con etremità uperiore contro un perfettamente icio. I coefficiente di attrito tatico µ tra pavimento e caa vae Cacoare anoo minimo che a caa può formare co pavimento. 7) ϑmin Se anoo vae proprio ϑmin, quanto vae a reazione vincoare de? 8) (anaoo: II compitino Una caa una m e di maa 0 k poia con etremità inferiore u pavimento, con etremità uperiore contro un. I è perfettamente icio, mentre i coefficiente di attrito tra pavimento e caa µ vae Cacoare anoo minimo che a caa può formare co pavimento. 5) ϑmin 5.3 Per queto anoo, quanto vae a reazione vincoare de? 6) 39. ) (anaoo: II compitino Un ae di eno, una m e di maa 5 k, viene appoiata contro un perfettamente icio. I coefficiente di attrito tatico tra ae e pavimento vae µ 0.4. Quanto vae anoo più rande che ae può fare con a verticae? ) α ) (anaoo:ii compitino Una caa una m e di maa 0 k poia con etremità inferiore u pavimento, con etremità uperiore contro un. I è perfettamente icio, mentre i coefficiente di attrito tra pavimento e caa è µ Cacoare anoo minimo che a caa può formare co pavimento. 3) ϑmin 39.8 ) (anaoo: II compitino Un ae di eno, una m e di maa 5 k, viene appoiata contro un perfettamente icio. I coefficiente di attrito tatico tra ae e pavimento vae µ Quanto vae anoo più rande che ae può fare con a verticae? ) α 40.7 Quanto vae a reazione vincoare de in quete condizioni? 3) 63. ) (anaoo: II compitino Un ae di eno, una m e di maa 5 k, è appoiata contro un perfettamente icio. I coefficiente di attrito tatico tra ae e pavimento vae µ 0, 8. L ae forma un anoo di 70 con i pavimento. 4) Quanto vae a reazione vincoare de? ) (anaoo: III compitino Una caa una m e di maa 0 k poia con etremità inferiore u pavimento, con etremità uperiore contro un. I è perfettamente icio, mentre i coefficiente di attrito tra pavimento e caa vae 0,6. Cacoare anoo minimo che a caa può formare co pavimento. 8) ϑmin ) (anaoo: III compitino Una caa una m e di maa 0 k poia con etremità inferiore u pavimento,con etremità uperiore contro un. I è perfettamente icio, mentre i coefficiente di attrito tatico µ tra pavimento e caa vae 0,7. Cacoare anoo minimo che a caa può formare co pavimento. 8) ϑ )

5 θ F P θ uoo F attrito-tatico Svoimento (II compitino e7-8) I probema vede un ae di eno omoenea di unhezza L m e maa M0 k appoiata a muto (a vote nei teti i conidera una caa, ma per i probema di tatica a riouzione è anaoa). I è privo di attrito, mentre i pavimento ha un attrito tatico di µ0.70. L anoo formato con i uoo è θ, che è identico a anoo che c e fra a normae de e ae di eno (ono anoi aterni interni). A vote i probemi chiedono anoo α formato ripetto aa verticae (cioè ripetto aa parete), invece de anoo con i uoo: i vede che απ/-θ. In queto tipo di probemi i chiede di cacoare anoo minimo che può formare con i uoo, retando in condizioni di equiibrio e a reazione vincoare de ne cao in cui ci i trovi nee condizioni di θ minimo. Le forze in ioco ono: a forza peo F P (in moduo M) che i conidera che aica come e foe appicata ne centro di maa de ae (quindi a metà ae), a reazione vincoare (normae) de, a forza normae eercitata da uoo e a forza di attrito tatica f che, opponendoi ao civoamento de ae, nea fiura opra riportata aice vero initra. Condizioni necearie per equiibrio ono: a) a riutante dee forze eterne deve eere nua (nee componenti x e y); b) a omma dei momenti dee forze ripetto ad un punto di rotazione (per empicità prendiamo come riferimento i punto O, contatto con i uoo) deve eere nua. Avremo quindi che a) b) F F y x 0 f 0 uoo + M uoo f M M τ O 0 inθ + M coθ tθ Qua è anoo minimo poibie? Sarà quando ae arà proimo a cadere, e cioè quando a forza di attrito tatico è maima e quindi (daa (a)) è maimo e quindi (daa (b)) t(θ) è minimo. La forza di attrito tatica raiune i uo vaore maimo che è dato da: f µ S _ uoo Abbiamo quindi che M M M M tθ min θ min at 0.60rad ( ) ( f ) uoo M µ µ µ µ O Se anoo vae proprio θ min, a reazione vincoare de è f µ µ M 0.7 (9.8m / ) 0k S uoo S _ Varianti de probema precedente poono vedere a caa appoiata aa parete con perone che i trovano ua caa a µ o

6 varie ditanze da etremità inferiore oppure un ae con un etremità ua quae è tato inchiodato un corpo di maa M. La ouzione di tae probema è eermente più compeo de precedente, ma i impota neo teo modo. Facciamo eempio di un ae aa cui etremità uperiore (quea in contatto con a parete) i trova inchiodato un corpo di maa m (anaoo ad una caa ua cui ommità ta un uomo di maa m). Le condizioni di equiibrio ono: Fx 0 f + f a) F 0 M m ( M + m) b) y uoo uoo τ O 0 inθ + M coθ + m coθ tθ Abbiamo quindi che ( M + m) tθ min ( ) ( M + m) ( f ) ( M + m) ( M + m) µ µ ( M + m) ( M + m) ( M + m) ( M m) uoo µ + θ min at µ ( M + m) ( M + m) iccome aromento de acrotanente è più rande che ne cao precedente, inifica che a condizione di equiibrio in queto cao è oddifatta oo per anoi più randi. Quindi attenzione a aire u una caa e incinazione è piccoa ripetto a uoo: e equiibrio tiene quando a caa è appoiata da oa, non è detto che tena quando iete aiti aa ua ommità!!

Esercizi sul moto del proiettile

Esercizi sul moto del proiettile Eercizi ul moto del proiettile Riolvi li eercizi ul quaderno utilizzando la oluzione olo per controllare il tuo riultato. 1 Un fucile è puntato orizzontalmente contro un beralio alla ditanza di 30 m. Il

Dettagli

Esercizi di dinamica 2

Esercizi di dinamica 2 Esercizi di dinaica ) Un corpo di assa.0 kg si trova su un piano orizzontae scabro. I coefficiente di attrito statico tra corpo e piano è s 0.8. I corpo è sottoposto a azione di una forza orizzontae 7.0

Dettagli

Risoluzione di travature reticolari iperstatiche col metodo delle forze. Complemento alla lezione 43/50: Il metodo delle forze II

Risoluzione di travature reticolari iperstatiche col metodo delle forze. Complemento alla lezione 43/50: Il metodo delle forze II Risouzione di travature reticoari iperstatiche co metodo dee forze ompemento aa ezione 3/50: I metodo dee forze II sercizio. er a travatura reticoare sotto riportata, determinare gi sforzo nee aste che

Dettagli

6) Stati di cedimento 6.1) Introduzione all analisi delle costruzioni in muratura nel loro stato attuale

6) Stati di cedimento 6.1) Introduzione all analisi delle costruzioni in muratura nel loro stato attuale 6) tati di cedimento 6.1) Introduzione all analii delle cotruzioni in muratura nel loro tato attuale Nel conteto del modello di materiale rigido non reitente a trazione, la valutazione delle capacità portanti

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica I 13 Febbraio 2006 Compito A

Facoltà di Ingegneria Prova scritta di Fisica I 13 Febbraio 2006 Compito A Facoltà di Ingegneria Prova critta di Fiica I 13 Febbraio 6 Copito A Eercizio n.1 Un blocco, aiilabile ad un punto ateriale di aa, partendo da fero, civola da un altezza h lungo un piano inclinato cabro

Dettagli

Sintesi tramite il luogo delle radici

Sintesi tramite il luogo delle radici Sintei tramite il luogo delle radici Può eere utilizzata anche per progettare itemi di controllo per itemi intabili Le pecifiche devono eere ricondotte a opportuni limiti u %, ta, t di W(), oltre quelle

Dettagli

Stato limite ultimo di sezioni in c.a. soggette. SLU per sezioni rettangolari in c.a. con. determinazione del campo di rottura

Stato limite ultimo di sezioni in c.a. soggette. SLU per sezioni rettangolari in c.a. con. determinazione del campo di rottura Univerità degli Studi di Roma Tre Coro di Progetto di trutture - A/A 2008-0909 Stato limite ultimo di ezioni in c.a. oggette a preoleione SLU per ezioni rettangolari in c.a. con doppia armatura determinazione

Dettagli

Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10. Lecture 11: 13-14 Maggio 2010. Meccanismi per la Condivisione dei Costi

Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10. Lecture 11: 13-14 Maggio 2010. Meccanismi per la Condivisione dei Costi Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/0 Lecture : 3-4 Maggio 200 Meccanimi per la Condiviione dei Coti Docente Paolo Penna Note redatte da: Paolo Penna Primo Eempio Vogliamo vendere

Dettagli

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Visione d insiee DOMANDE E RISPOSTE SULL UNITÀ Ce cos è inerzia? L inerzia è a tendenza di un corpo a antenere i proprio stato di quiete o di oto rettiineo unifore (prio principio dea dinaica). L inerzia

Dettagli

Teorema del Limite Centrale

Teorema del Limite Centrale Teorema del Limite Centrale Una combinazione lineare W = a 1 X + a Y + a 3 Z +., di variabili aleatorie indipendenti X,Y,Z, ciacuna avente una legge di ditribuzione qualiai ma con valori attei comparabili

Dettagli

Lezione 11. Equilibrio dei mercati del credito e della moneta bancaria. domanda di credito delle imprese = offerta delle banche;

Lezione 11. Equilibrio dei mercati del credito e della moneta bancaria. domanda di credito delle imprese = offerta delle banche; Lezione 11. Equilibrio dei mercati del credito e della moneta bancaria L E d = L domanda di credito delle impree = offerta delle banche; M d H = M M domanda di moneta (legale e bancaria) delle famiglie

Dettagli

Cinematica: soluzioni. Scheda 4. Ripetizioni Cagliari di Manuele Atzeni - 3497702002 - info@ripetizionicagliari.it

Cinematica: soluzioni. Scheda 4. Ripetizioni Cagliari di Manuele Atzeni - 3497702002 - info@ripetizionicagliari.it Cinematica: oluzioni Problema di: Cinematica - C0015ban Teto [C0015ban] Eercizi banali di Cinematica: 1. Moto rettilineo uniforme (a) Quanto pazio percorre in un tempo t = 70 un oggetto che i muove con

Dettagli

6 Lezione. STATI LIMITE: Esempi di progetto/verifica

6 Lezione. STATI LIMITE: Esempi di progetto/verifica 6 Lezione STATI LIMITE: Eempi di progetto/veriica SLU Applicazioni Progetto della ezione in c.a. PROBLEMA N. 1 40 Determinare: 1) Il valore dell armatura bilanciata. ) Il momento ultimo a leione emplice

Dettagli

Note su alcuni principi fondamentali di macroeconomia Versione parziale e provvisoria. Claudio Sardoni Sapienza Università di Roma

Note su alcuni principi fondamentali di macroeconomia Versione parziale e provvisoria. Claudio Sardoni Sapienza Università di Roma Note u alcuni principi fondamentali di macroeconomia Verione parziale e provvioria Claudio Sardoni Sapienza Univerità di Roma Anno accademico 2010-2011 ii Indice Premea v I Il breve periodo 1 1 Il fluo

Dettagli

Lezione n.11 Rischio demolizioni

Lezione n.11 Rischio demolizioni CORO DI PROGETTAZIONE ORGANIZZAZIONE E ICUREZZA NE CANTIERE corso A ezione n. Prof. Renato aganà Rischio demolizioni + 5. 6 7 0 0 a 5 0 b 6 0 7 + 7. 7 0 b 5 6 0 0 a 0 + 0.5 +. 7 7 5 0 6 0 0 a + 0. 0 6

Dettagli

Lezione 2. Campionamento e Aliasing. F. Previdi - Controlli Automatici - Lez. 2 1

Lezione 2. Campionamento e Aliasing. F. Previdi - Controlli Automatici - Lez. 2 1 Lezione 2. Campionamento e Aliaing F. Previdi - Controlli Automatici - Lez. 2 1 Schema della lezione 1. Introduzione 2. Il campionatore ideale 3. Traformata di un egnale campionato 4. Teorema del campionamento

Dettagli

Diagramma circolare di un motore asincrono trifase

Diagramma circolare di un motore asincrono trifase Diagramma circolare di un motore aincrono trifae l diagramma circolare è un diagramma che permette di leggere tutte le grandezze del motore aincrono trifae (potenza rea, perdite nel ferro, coppia motrice,

Dettagli

Meccanica Classica: Cinematica Formule

Meccanica Classica: Cinematica Formule Tet di Fiica - Cinematica Meccanica Claica: Cinematica Formule Velocità media: m Accelerazione media: Formule da ricordare: x x x1 t t t1 1 a m t t t Motouniforme: x(t)x 0 + t oppure x t 1 Moto uniformemente

Dettagli

PROBLEMI RISOLTI DI DINAMICA

PROBLEMI RISOLTI DI DINAMICA PROBLEMI RISOLTI DI DINAMICA 1 Un autoobile di aa 100 Kg auenta in odo unifore la ua velocità di 30 / in 0 a) Quale forza agice durante i 0? b) Quale forza arebbe necearia per ipriere un accelerazione

Dettagli

Modulo n.3 - I materiali nelle lavorazioni metalliche

Modulo n.3 - I materiali nelle lavorazioni metalliche oduo n. - I maeriai nee avorazioni meaiche PROPRIETÀ ISIHE, EANIHE, TENOOGIHE (Diiazione vericae) OBIETTIVI: A) onocenza dee proprieà dei maeriai finaizzaa a oro uiizzo; B) apacià di eeguire cacoi ue principai

Dettagli

Lezioni di Ricerca Operativa 2 Dott. F. Carrabs

Lezioni di Ricerca Operativa 2 Dott. F. Carrabs Lezioni di Ricerca Operativa Dott. F. Carrab.. 009/00 Lezione in Laboratorio: - Eercizi di modellazione Lezione 7: Eempio: Invetimenti Un cliente affida ad un aenzia finanziaria un milione di euro da impieare

Dettagli

2. In un mercato concorrenziale senza intervento pubblico non si ha perdita di benessere sociale netto.

2. In un mercato concorrenziale senza intervento pubblico non si ha perdita di benessere sociale netto. Beanko & Breautigam Microeconomia Manuale elle oluzioni Capitolo 10 Mercati concorrenziali: applicazioni Soluzioni elle Domane i ripao 1. In corriponenza ell equilibrio i lungo perioo, un mercato concorrenziale

Dettagli

Trasformazioni Elementari 2D

Trasformazioni Elementari 2D Traformazioni Elementari 2D Le traformazioni affini ono operazioni di ROTAZIONE, TRASLAZIONE e SCALATURA che permettono di modificare l oggetto 2D o 3D. Una traformazione è definita da una matrice T. Applicare

Dettagli

L equazione che descrive il moto del corpo è la seconda legge della dinamica

L equazione che descrive il moto del corpo è la seconda legge della dinamica Eercizio ul piano inclinato La forza peo è data dalla formula p mg Allora e grandezze geometriche: poono eere critte utilizzando l angolo di inclinazione del piano oppure le Angolo di inclinazione orza

Dettagli

Definizione Statico-Cinematica dei vincoli interni

Definizione Statico-Cinematica dei vincoli interni Definizione Statico-Cinematica dei vincoi interni Esempi deo schema strutturae di una struttura in cemento armato e di due strutture in acciaio in cui sono presenti dei vincoi interni cerniera. Vincoo

Dettagli

11 L energia. meccanica. unità

11 L energia. meccanica. unità unità 11 L energia meccanica Ceare Galimberti, Olycom Il record mondiale di alto in alto è di 2,45 m. Se i faceero le Olimpiadi ulla Luna, l ata dovrebbe eere itemata molto più in alto, perché la forza

Dettagli

Capitolo. Il comportamento dei sistemi di controllo in regime permanente. 6.1 Classificazione dei sistemi di controllo. 6.2 Errore statico: generalità

Capitolo. Il comportamento dei sistemi di controllo in regime permanente. 6.1 Classificazione dei sistemi di controllo. 6.2 Errore statico: generalità Capitolo 6 Il comportamento dei itemi di controllo in regime permanente 6. Claificazione dei itemi di controllo 6. Errore tatico: generalità 6. Calcolo dell errore a regime 6.4 Eercizi - Errori a regime

Dettagli

Lezione 12. Regolatori PID

Lezione 12. Regolatori PID Lezione 1 Regolatori PD Legge di controllo PD Conideriamo un regolatore che eercita un azione di controllo dipendente dall errore attravero la eguente legge: t ut = K et K e d K de t P + τ τ+ D. dt La

Dettagli

Parte III. Unità didattiche

Parte III. Unità didattiche Parte III Unità didattiche I Giochi per cantare Le attività qui propote decrivono acune odaità con e quai inegnare un canto per iitazione. La pria unità a chiaereo «gioco zero» (G0) poiché cotituice i

Dettagli

F = 150 N F 1 =? = 3,1 s. 3,2

F = 150 N F 1 =? = 3,1 s. 3,2 ESERCIZI SVOLTI : Principi di Newton Lavoro Energia Prof.. Marletta ITC Zanon - Udine ESERCIZIO (): Una caa di 30 kg viene tirata con una corda che forma un angolo di 50 col pavimento u una uperficie licia.

Dettagli

Interazione tra forze verticali e longitudinali: effetti anti 5.5 aggiornato 19-11-2013

Interazione tra forze verticali e longitudinali: effetti anti 5.5 aggiornato 19-11-2013 Interazione tra forze verticai e ongitudinai: effetti anti 5.5 aggiornato 19-11-2013 Ne piano frontae si studia interazione tra forze verticai Fz e forze aterai Fy sviuppate a iveo de impronta a terra.

Dettagli

5. Limiti di funzione.

5. Limiti di funzione. Istituzioni di Matematiche - Appunti per e ezioni - Anno Accademico / 6 5. Limiti di funzione. 5.. Funzioni imitate. Una funzione y = f(x) definita in un intervao [ a b] imitata superiormente in tae intervao

Dettagli

ESTENSIMETRO O STRAIN GAUGE

ESTENSIMETRO O STRAIN GAUGE ez I trasduttori di forza e di pressione La misura di una forza o di una pressione si ric onduc e aa misura di una deformazione. E queo c he succ ede nee bianc e c he permettono di misurare a forza peso

Dettagli

STAFFE ROTANTI. Programma generale. Pressione d esercizio fino a 500 bar. A semplice e doppio effetto. 7 differenti tipi di corpo

STAFFE ROTANTI. Programma generale. Pressione d esercizio fino a 500 bar. A semplice e doppio effetto. 7 differenti tipi di corpo Programma generale STAFFE ROTANTI Preione d eercizio fino a A emplice e doppio effetto 7 differenti tipi di corpo Forza di bloccaggio maima da 0,6 a 41 kn Cora di bloccaggio maima da 7 a 50 mm Sicurezza

Dettagli

d y d u + u y des C(s) F(s) Esercizio 1 Si consideri lo schema di controllo riportato in figura:

d y d u + u y des C(s) F(s) Esercizio 1 Si consideri lo schema di controllo riportato in figura: Eercizio Si conideri lo chema di controllo riportato in figura: y de e C() d u u F() d y y Applicando le regole di algebra dei blocchi, calcolare le eguenti funzioni di traferimento: y() a) W y,dy() =

Dettagli

Sezioni in c.a. La flessione composta. Catania, 16 marzo 2004 Marco Muratore

Sezioni in c.a. La flessione composta. Catania, 16 marzo 2004 Marco Muratore Sezioni in c.a. La fleione compota Catania, 16 marzo 004 arco uratore Per chi non c era 1. Compreione: verifica Tenioni ammiibili α cd Ac f 1.5 f yd A 0.7 σ ( A max c c n A ) Riultati comparabili per il

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico-Tecnologico Progetto Brocca

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico-Tecnologico Progetto Brocca Eame di tato 00 ESAME D STATO D LCEO SCENTFCO 00 ndirizzo Scientifico-Tecnologico rogetto Brocca Tema di: FSCA tracrizione del teto e redazione oluzione di Quintino d Annibale Secondo tema L'etto oule

Dettagli

La solarità nelle varie zone italiane per il fotovoltaico

La solarità nelle varie zone italiane per il fotovoltaico Energia e Ambiente La soarità nee varie zone itaiane per i fotovotaico Modena 5 marzo 2008 Gianni Leanza Energia e Ambiente QUANTA ENERGIA ARRIVA DAL SOLE? Da Soe, si iberano enormi quantità di energia

Dettagli

Controlli automatici

Controlli automatici Controlli automatici Proetto del controllore nel dominio della frequenza Prof. Paolo Rocco (paolo.rocco@polimi.it) Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioineneria Introduzione

Dettagli

PIANO DI LAVORO. docente: Lancellotti Canio. classe: 5^ A IGEA. disciplina: ECONOMIA AZIENDALE. consegnato in data: 11 dicembre 2012

PIANO DI LAVORO. docente: Lancellotti Canio. classe: 5^ A IGEA. disciplina: ECONOMIA AZIENDALE. consegnato in data: 11 dicembre 2012 ISTITUTO OMNICOMPRENSIVO STATALE DI SAN DANIELE DEL FRIULI Istituto Statae d Istruzione Superiore Vincenzo Manzini di San Daniee de Friui Piazza IV Novembre 33038 SAN DANIELE DEL FRIULI (prov. di Udine)

Dettagli

Capitolo IV L n-polo

Capitolo IV L n-polo Capitolo IV L n-polo Abbiamo oervato che una qualiai rete, vita da due nodi, diventa, a tutti gli effetti eterni, un bipolo unico e queto è in qualche miura ovvio e abbiamo anche motrato come cotruire

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2003

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2003 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 003 Il candidato riolva uno dei due problemi e 5 dei 0 queiti in cui i articola il quetionario. PROLEMA Si conideri un tetraedro regolare T di vertici

Dettagli

CHAPTER 1 CINEMATICA. 1.1. Moto Rettilineo

CHAPTER 1 CINEMATICA. 1.1. Moto Rettilineo ESERCIZI DI FISICA CHAPTER 1 CINEMATICA 1.1. Moto Rettilineo Velocità media: vettoriale e calare. Exercie 1. Carl Lewi ha coro i 100m piani in circa 10, e Bill Rodger ha vinto la maratona (circa 4km)

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Il problema Laboratorio di Algoritmi e Strutture Dati Docenti: M. Goldwurm, S. Aguzzoli Appello del 5 Aprile 005 Progetto Recinti Conegna entro il Aprile 005 Si tudia la reitenza di alcune pecie di piante

Dettagli

6.5. La compressione

6.5. La compressione 6.5. La comreione rofondimenti 6.5.1. I materiali iotroi Mentre alcuni materiali (come l acciaio) hanno un uguale comortamento a trazione e a comreione (ono cioè «materiali iotroi») altri (come le ghie,

Dettagli

SCHEDA TECNICA DI VALUTAZIONE

SCHEDA TECNICA DI VALUTAZIONE CHEDA TECNICA DI VALUTAZIONE L aggiudicazione avverà a favore del oferta economicamente più vantaggioa, valutata econdo i eguenti criteri: Al integrale accetazione del capitolato tecnico peciale veranno

Dettagli

Pilkington Optilam Pilkington Optiphon Linee guida per l utilizzo

Pilkington Optilam Pilkington Optiphon Linee guida per l utilizzo Pikington Optiam Pikington Optiphon Linee guida per utiizzo Pikington Optiam Pikington Optiphon Introduzione I vetro stratificato è prodotto assembando due o più astre di vetro foat con uno o più intercaari.

Dettagli

22 - Il principio dei lavori virtuali

22 - Il principio dei lavori virtuali - Il principio dei lavori virtuali ü [.a. 0-0 : ultima reviione 5 aprile 0] Eempio n. Si conideri il portale di Figura, emplicemente ipertatico. Si vuole applicare il principio dei lavori virtuali per

Dettagli

Definizione delle specifiche per un sistema di controllo a retroazione unitaria

Definizione delle specifiche per un sistema di controllo a retroazione unitaria Definizione delle pecifiche per un itema di controllo a retroazione unitaria Obiettivi del controllo Il itema di controllo deve eere progettato in modo da garantire un buon ineguimento dei egnali di riferimento

Dettagli

Circuito Simbolico. Trasformazione dei componenti

Circuito Simbolico. Trasformazione dei componenti Circuito Simbolico Principio di bae E poibile applicare a tutte le leggi matematiche che regolano un circuito la traformata di Laplace, in modo da ottenere un nuovo circuito con delle proprietà differenti.

Dettagli

Ing. Mariagrazia Dotoli Controlli Automatici NO (9 CFU) Antitrasformata di Laplace PROCEDIMENTI DI ANTITRASFORMAZIONE

Ing. Mariagrazia Dotoli Controlli Automatici NO (9 CFU) Antitrasformata di Laplace PROCEDIMENTI DI ANTITRASFORMAZIONE PROCEDIMENTI DI ANTITRASFORMAZIONE L'operazione di paaggio invero dal dominio della frequenza complea al dominio del tempo F() f(t) è detta antitraformata o traformazione invera di Laplace. Data una funzione

Dettagli

Esercitazione di Meccanica dei fluidi con Fondamenti di Ingegneria Chimica. Scambio di materia (II)

Esercitazione di Meccanica dei fluidi con Fondamenti di Ingegneria Chimica. Scambio di materia (II) Eercitazione di Meccanica dei fluidi con Fondaenti di Ingegneria hiica Eercitazione 5 Gennaio 3 Scabio di ateria (II) Eercizio Evaporazione di acqua da una picina Stiare la perdita giornaliera di acqua

Dettagli

L ATTIVITÁ FISICA. Questo perché l attività fisica migliora Figura 5. il funzionamento dell apparato cardiorespiratorio,

L ATTIVITÁ FISICA. Questo perché l attività fisica migliora Figura 5. il funzionamento dell apparato cardiorespiratorio, L ATTIVITÁ FISICA Fare regolarmente attività fiica fa bene! E le ragioni ono molte: la prima è il miglioramento ia in quantità che in qualità della vita. Maggiore è il livello di allenamento e minore è

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN TUTELA E BENESSERE ANIMALE Coro di : FISICA MEDICA A.A. 2015 /2016 Docente: Dott. Chiucchi Riccardo ail:rchiucchi@unite.it Medicina Veterinaria: CFU

Dettagli

Due incognite ipertstatiche con cedimento elastico lineare sul vincolo

Due incognite ipertstatiche con cedimento elastico lineare sul vincolo Dott. Ing aoo Serafini Cic per tutti gi appunti (AUTOAZIONE TRATTAENTI TERICI ACCIAIO SCIENZA dee COSTRUZIONI ) e-mai per suggerimenti Due incognite ipertstatiche con cedimento eastico ineare su vincoo

Dettagli

Prova di verifica parziale N. 1 20 Ott 2008

Prova di verifica parziale N. 1 20 Ott 2008 Prova di verifica parziale N. 1 20 Ott 2008 Eercizio 1 Nel uo tato naturale un campione di terreno umido di volume pari a 0.01 m 3 ha un peo di 18 kg. Lo teo campione eiccato in tufa ha un peo di 15.6

Dettagli

FORZE DI ATTRITO. a cura di Gianfranco Metelli

FORZE DI ATTRITO. a cura di Gianfranco Metelli ORZE DI ATTRITO a cura i Gianfranco Metelli L attrito è una forza che i eercita tra ue corpi poti a contatto e che, in generale, i oppone al loro moto reciproco. Una forza i attrito è, per eempio, quella

Dettagli

Le Misure. 2 ottobre 2007

Le Misure. 2 ottobre 2007 Le Miure ottobre 007 In tutte le oluzioni i farà ricoro alla notazione cientifica dei numeri, baata ul ignificato del itema decimale e poizionale. (piegare il ignificato) 1 Lunghezza 1.0.1 Una navetta

Dettagli

INDICE PARTE 1 1. INTRODUZIONE 1 2. DEFINIZIONI E NOMENCLATURA 5 3. REGIMI DI MOTO

INDICE PARTE 1 1. INTRODUZIONE 1 2. DEFINIZIONI E NOMENCLATURA 5 3. REGIMI DI MOTO Indice INDICE PARTE 1 PAG. 1. INTRODUZIONE 1. DEFINIZIONI E NOMENCLATURA 5.1. Introduzione.. Portata massica, titoo, frazione di vuoto..1. Portata massica... Titoo dea miscea..3. Frazione di vuoto dea

Dettagli

SISTEMA DI FISSAGGIO EDILFIX

SISTEMA DI FISSAGGIO EDILFIX SISTEM I ISSGGIO EILIX Il itema i fiaggio EILIX offre una oluzione rapia e veratile a ogni problema i ancoraggio tra elementi i calcetruzzo, quali: pannelli/travi, parapetti/olette, ecc. e in carpenteria

Dettagli

FISICA Lavoro, Potenza, Energia

FISICA Lavoro, Potenza, Energia Lavoro, Potenza, Energia. Il Lavoro Supponiamo di applicare una forza F ad un corpo materiale per un determinato intervallo di tempo, con l effetto di far potare il corpo teo dalla ua poizione iniziale

Dettagli

Un mondo di vantaggi. Un offerta personalizzata. Là dove i Papi vanno in vacanza CREVALMAGAZINE SOCIOINCREVAL TECNOLOGIA PER IL CLIENTE

Un mondo di vantaggi. Un offerta personalizzata. Là dove i Papi vanno in vacanza CREVALMAGAZINE SOCIOINCREVAL TECNOLOGIA PER IL CLIENTE ECONOMIA CULTURA SOLIDARIETÀ TERRITORIO SPORT PLEIADI N 62 - Semestrae - Aprie 2013 CREVALMAGAZINE SOCIOINCREVAL Un mondo di vantaggi TECNOLOGIA PER IL CLIENTE Un offerta personaizzata CASTELLI ROMANI

Dettagli

ALU STAFFE IN ALLUMINIO SENZA FORI

ALU STAFFE IN ALLUMINIO SENZA FORI ALU STAFFE IN ALLUMINIO SENZA FORI Giunzione a compara in lega di alluminio per utilizzo in ambienti interni ed eterni (cl. di erv. 2) Preforata con ditanze ottimizzate per giunzioni ia u legno (chiodi

Dettagli

Errori di misura. è ragionevole assumere che una buona stima del valore vero sia la media

Errori di misura. è ragionevole assumere che una buona stima del valore vero sia la media Errori di miura Se lo trumento di miura è abbatanza enibile, la miura rietuta della tea grandezza fiica darà riultati diveri fra loro e fluttuanti in modo caratteritico. E l effetto di errori cauali, o

Dettagli

l B 1. la velocità angolare dell asta un istante prima dell urto; 2. la velocità v 0 ; 3. l energia cinetica dissipata nell urto;

l B 1. la velocità angolare dell asta un istante prima dell urto; 2. la velocità v 0 ; 3. l energia cinetica dissipata nell urto; 1 Esercizio (tratto da Probema 8.29 de Mazzodi 2) Un asta di unghezza 1.2 m e massa M 0.5 Kg è incernierata ne suo estremo A ad un perno fisso e può osciare senza attrito in un piano verticae. A istante

Dettagli

ELETTRONICA ANALOGICA INDUSTRIALE PARTE 4. Retroazione

ELETTRONICA ANALOGICA INDUSTRIALE PARTE 4. Retroazione Retroazione Eetto della retroazione ul guadagno Riduzione della ditorione Impedenze di ingreo e di ucita Reti di retroazione Ripota in requenza Eetto della retroazione ui poli Margini di guadagno e di

Dettagli

Manuale DTT APPROFONDIMENTI

Manuale DTT APPROFONDIMENTI Manuae DTT La tramiione digitae terretre DVB-T L introduzione dea teeviione digitae nea diffuione terretre rappreenta una coniderevoe opportunità tecnoogica da comprendere appieno a fine di poter utiizzare

Dettagli

Alessandro Scopelliti. Università di Reggio Calabria e University of Warwick. alessandro.scopelliti@unirc.it

Alessandro Scopelliti. Università di Reggio Calabria e University of Warwick. alessandro.scopelliti@unirc.it Aleandro Scoelliti Univerità di Reggio Calabria e Univerity of Warwick aleandro.coelliti@unirc.it Selezione avvera La elezione avvera è il fenomeno er cui, in un mercato caratterizzato da informazione

Dettagli

J yy > Jxx. l o H A R A R B

J yy > Jxx. l o H A R A R B oitecnico di Torino I cedimento di una struttura soggetta a carichi statici può avvenire in acuni casi con un meccanismo diverso da queo di superamento dei imiti di resistena de materiae. Tae meccanismo

Dettagli

Esercizi sul Moto Circolare Uniforme

Esercizi sul Moto Circolare Uniforme Eercizi ul Moto Circolare Uniforme 1.Un oroloio ha tre lancette: quella delle ore luna 1 cm, quella dei minuti luna 1.4 cm e quella dei econdi luna 1.6 cm. Conidera il punto etremo di oni lancetta. Calcola

Dettagli

La macchina a ciclo Rankine

La macchina a ciclo Rankine Lezione XIV - 7/0/00 ora 8:0-0:0 - Maine a vapore, ilo Rankine ed eerizi - Originale di Amoretti Miele. La maina a ilo Rankine Il problema di realizzare un ilo termodinamio e produa la maima uantità di

Dettagli

Università Politecnica delle Marche, Facoltà di Agraria. C.d.L. Scienze Forestali e Ambientali, A.A. 2013/2014, Fisica

Università Politecnica delle Marche, Facoltà di Agraria. C.d.L. Scienze Forestali e Ambientali, A.A. 2013/2014, Fisica C.d.. Scienze oretali e Ambientali, A.A. 03/04, iica Seconda legge della dinamica: a forza riultante agente u un corpo è in relazione con la rapidità con cui quel corpo modifica la propria velocità (l

Dettagli

Poiché la retta è definita dall equazione: y = a + bx. Capitolo 4. Regressione e Correlazione.

Poiché la retta è definita dall equazione: y = a + bx. Capitolo 4. Regressione e Correlazione. Diaz - Appunti di tatitica - AA 1/ - edizione 9/11/1 Cap. 4 - Pag. 1 Capitolo 4. Regreione e Correlazione. Regreione Il termine regreione ha un'origine antica ed un ignificato molto particolare. L inventore

Dettagli

Ø Le funi sono dispositivi che permettono di trasmettere l azione di una forza applicata in un dato punto ad un punto diverso.

Ø Le funi sono dispositivi che permettono di trasmettere l azione di una forza applicata in un dato punto ad un punto diverso. Tenione Ø Le funi ono dipoitivi che permettono di tramettere l azione di una forza applicata in un dato punto ad un punto divero. Ø La fune viene coniderata inetenibile e priva di maa ed il modulo della

Dettagli

Il grigliato Keller, nelle realizzazioni di piani di lavoro, offre il più elevato rapporto tra carico sopportabile e peso proprio, oltre ad una

Il grigliato Keller, nelle realizzazioni di piani di lavoro, offre il più elevato rapporto tra carico sopportabile e peso proprio, oltre ad una Il grigliato Keller, nelle realizzazioni di piani di lavoro, offre il più elevato rapporto tra carico opportabile e peo proprio, oltre ad una elevata permeabilità alla luce e all aria. Tali caratteritice

Dettagli

1 - Dimostrare che i vettori. formano un triangolo rettangolo. 2 - Dimostrare che se a+ b+ c = 0 (cioè se i tre vettori formano un triangolo) allora:

1 - Dimostrare che i vettori. formano un triangolo rettangolo. 2 - Dimostrare che se a+ b+ c = 0 (cioè se i tre vettori formano un triangolo) allora: CALCOLO VETTORIALE Moti degi esercizi proposti possono essere risoti considerando e proprietà dee figure geometriche formate dai vettori. Si richiede invece di risoveri utiizzando i cacoo vettoriae. -

Dettagli

Esempio 1 Si consideri la sezione di un solaio latero-cementizio (1 m) di caratteristiche geometriche:

Esempio 1 Si consideri la sezione di un solaio latero-cementizio (1 m) di caratteristiche geometriche: Si riporta di eguito la rioluzione di alni eercizi riguardanti il calcolo del momento reitente e del dominio di preoleione di ezioni in cemento armato. In tutte le applicazioni ucceive i è utilizzato per

Dettagli

Le ipotesi di base che si utilizzano sono le stesse quattro già viste con riferimento al caso della flessione semplice e cioè:

Le ipotesi di base che si utilizzano sono le stesse quattro già viste con riferimento al caso della flessione semplice e cioè: LEZIONI N 44 E 45 CALCOLO A ROTTURA DELLA SEZIONE PRESSOINFLESSA PROBLEMI DI VERIFICA La procedura di verifica dei pilatri di c.a., ottopoti a forzo normale e momento flettente, è baata ulla cotruzione

Dettagli

Fig. 1. Fig. 2. = + +ωc

Fig. 1. Fig. 2. = + +ωc Rifasamento monofase Sia dato i iruito di fig. 1 ostituito da un generatore di tensione indipendente reae di f.e.m. ed impedenza serie Z, da una inea di aimentazione di impedenza Z e da un ario + (a maggior

Dettagli

Sfruttando le considerazioni appena fatte come misureresti il coefficiente di attrito statico μ s?

Sfruttando le considerazioni appena fatte come misureresti il coefficiente di attrito statico μ s? MISURA DEL COEFFICIENTE DI ATTRITO STATICO Materiae occorrente: piano incinato monete Nota a unghezza de piano, qua è a reazione che sussiste fra i coefficiente di attrito statico μ s e a configurazione

Dettagli

SERS (surface enhanced raman scattering)

SERS (surface enhanced raman scattering) a pettrocopia aman tradizionale SS (urface enhanced raman cattering) a pettrocopia aman è una tecnica di indagine uperficiale che i baa ul principio di eccitazione dei livelli energetici della materia.

Dettagli

3. Catene di Misura e Funzioni di Trasferimento

3. Catene di Misura e Funzioni di Trasferimento 3.. Generalità 3. Catene di Miura e Funzioni di Traferimento 3.. Generalità Il egnale che rappreenta la grandezza da miurare viene trattato in modo da poter eprimere quet ultima con uno o più valori numerici

Dettagli

Introduzione alla spettroscopia. Spettroscopia infrarossa e spettrometria di massa

Introduzione alla spettroscopia. Spettroscopia infrarossa e spettrometria di massa 12 12 Introduzione aa spettroscopia. Spettroscopia infrarossa e spettrometria di massa Neo studiare a chimica organica, abbiamo finora dato per scontato che, quando si isoa da una reazione un composto

Dettagli

ENERGYMETER MID U1281/U1289/U1381/U1387/U1389 Contatori elettronici di energia attiva e reattiva

ENERGYMETER MID U1281/U1289/U1381/U1387/U1389 Contatori elettronici di energia attiva e reattiva 3-349-617-10 10/12.14 Contatore di energia eettrica per sistemi a 2, 3, 4 fii con inserzione diretta 65 A o tramite TA 1 A, 5 A Casse di accuratezza B per uso industriae e commerciae nonché per esigenze

Dettagli

Paolo Rocco. Automatica

Paolo Rocco. Automatica Paolo Rocco Dipene ad uo degli tudenti del Politecnico di Milano per i cori da cinque crediti didattici Automatica Ingegneria Aeropaziale E vietato l uo commerciale di queto materiale Avvertenza Queta

Dettagli

Obiettivi in Alta Definizione e gestione delle Aberrazioni Cromatiche 1 parte

Obiettivi in Alta Definizione e gestione delle Aberrazioni Cromatiche 1 parte HD ACADEMY a cura dell Ing. Sergio Brighel* Obiettivi in Alta Definizione e getione delle Aberrazioni Cromatiche 1 parte Il fenomeno delle aberrazioni cromatiche è tra le caue più importanti di decadimento

Dettagli

1 Generalità sui sistemi di controllo

1 Generalità sui sistemi di controllo 1 Generalità ui itemi di controllo Col termine proceo nell impiantitica chimica i intende un inieme di operazioni eeguite u una certa quantità di materia allo copo di modificarne in tutto o in parte alcune

Dettagli

Indice. 1 Le misure, 4. 3 Le forze e il moto, 118 2 Le forze e l equilibrio, 40 III. Unità 5 Equilibrio del corpo rigido, 80

Indice. 1 Le misure, 4. 3 Le forze e il moto, 118 2 Le forze e l equilibrio, 40 III. Unità 5 Equilibrio del corpo rigido, 80 III Indice Premea, V Introduzione, Un po di curioità..., Il metodo perimentale, 3 Le miure, Unità Miure ed errori, 6. Le miure, 6. L incertezza della miura, 0.3 L errore relativo,. Il Sitema Internazionale

Dettagli

Unità Didattica 1. Le unità di misura

Unità Didattica 1. Le unità di misura Unità Didattica 1. Le unità di iura Pria di addentrarci nella ateria, è bene fare un rapido riaunto delle tecniche di converione e delle più iportanti unità di iura nel capo dell aeronautica, perché capiterà

Dettagli

Le grandi imprese. nascono da piccole opportunita...

Le grandi imprese. nascono da piccole opportunita... Le grandi imprese nascono da piccoe opportunita... CHI SIAMO Direzione Lavoro è una Società speciaizzata in Ricerca & Seezione, Formazione e Gestione Risorse Umane. Nasce da unione di un gruppo di professionisti

Dettagli

ESERCIZI IN PREPARARZIONE ALLA PROVA PER IL SUPERAMENTO DEL DEBITO DI FISICA. CLASSE 1TGC2

ESERCIZI IN PREPARARZIONE ALLA PROVA PER IL SUPERAMENTO DEL DEBITO DI FISICA. CLASSE 1TGC2 ESERCIZI IN PREPARARZIONE ALLA PROVA PER IL SUPERAMENTO DEL DEBITO DI FISICA. 1) Risovere e seguenti equivaenze CLASSE 1TGC2 1 5 m = mm 6 44 km 2 = m 2 2 34,5 dam 2 = dm 2 7 9 cm 3 = m 3 3 5 cm 2 = m 2

Dettagli

Problema n. 2. Soluzione

Problema n. 2. Soluzione Problema n. Un auto da cora A iaia u un piano orizzontale con elocità cotante = 69 km/ i 11 km/ j ripetto ad un oeratore olidale al uolo Ox. Qual è la elocità dell auto A miurata da un oeratore olidale

Dettagli

Comportamento meccanico dei materiali Unità 4: Cinematica ed equilibrio del corpo rigido

Comportamento meccanico dei materiali Unità 4: Cinematica ed equilibrio del corpo rigido omportamento meccanico dei materiai Unità 4: inematica ed equiibrio de corpo rigido Definizioni Gradi di ibertà Numero minimo di coordinate con e quai è possibie definire in modo non ambiguo a posizione

Dettagli

Un metodo di calcolo per le strutture monodimensionali piane

Un metodo di calcolo per le strutture monodimensionali piane www.carosantagata.it n metodo di cacoo per e strutture monodimensionai piane bstract. Si propone un metodo di cacoo per a determinazione dea configurazione di equiibrio dee strutture monodimensionai piane.

Dettagli

A tal fine consideriamo un esempio come punto di partenza per le nostre considerazioni.

A tal fine consideriamo un esempio come punto di partenza per le nostre considerazioni. Moto Parabolico Sino ad ora abbiamo ito due tipi di moto: moto rettilineo uniforme moto uniformemente accelerato lo tudio che è tato condotto fino a queto punto ha preo in coniderazione un moto alla olta,

Dettagli

ROTAZIONI DEGLI ESTREMI DI UNA TRAVE PRISMATICA APPOGGIATA ALLE ESTREMITÁ E SOGGETTA AD UN CARICO VERTICALE

ROTAZIONI DEGLI ESTREMI DI UNA TRAVE PRISMATICA APPOGGIATA ALLE ESTREMITÁ E SOGGETTA AD UN CARICO VERTICALE M. G. USTO ROTZIONI DEGLI ESTREMI DI UN TRVE PRISMTIC PPOGGIT LLE ESTREMITÁ E SOGGETT D UN CRICO VERTICLE CSO DEI CRICHI TRINGOLRE, UNIFORME E CONCENTRTO mgbstudio.net PGIN INTENZIONLMENTE VUOT SOMMRIO

Dettagli

Lezione 4. Risposte canoniche dei sistemi del primo e del secondo ordine

Lezione 4. Risposte canoniche dei sistemi del primo e del secondo ordine Lezione 4 Ripoe canoniche dei iemi del primo e del econdo ordine Parameri caraeriici della ripoa allo calino Per ripoe canoniche i inendono le ripoe dei iemi dinamici ai egnali coiddei canonici (impulo,

Dettagli

Dalle tensioni ammissibili agli stati limite alla luce del nuovo Testo Unico

Dalle tensioni ammissibili agli stati limite alla luce del nuovo Testo Unico Dalle tenioni ammiiili agli tati limite alla lue del nuovo Teto Unio Dalle tenioni ammiiili agli tati limite: un approio unitario Silvi arina, 28 maggio 2005 Aurelio Gheri Evoluzione della normativa (imia)

Dettagli

Fig. 9.72 - Prisma di Saint Venant soggetto a torsione

Fig. 9.72 - Prisma di Saint Venant soggetto a torsione 9.6 orione del prima di Saint Venant La trattazione del problema di de Saint Venant volta inora ha ecluo la preenza della torione, coa per la quale era neceario che la retta di azione del taglio paae per

Dettagli

2. METODO DEGLI SPOSTAMENTI O EQUAZIONE DELLA LINEA ELASTICA, PER LA SOLUZIONE DI TRAVI IPERSTATICHE

2. METODO DEGLI SPOSTAMENTI O EQUAZIONE DELLA LINEA ELASTICA, PER LA SOLUZIONE DI TRAVI IPERSTATICHE METODO DEGLI SPOSTAMENTI CORSO DI PROGETTAZIONE STRUTTURALE B a.a. 00/0 Prof. G. Salerno Appunti elaborati da Arch. C. Provenzano. STRUTTURE IPERSTATICHE Una truttura i dice ipertatica o taticamente indeterminata

Dettagli