PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO"

Transcript

1 PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO 1. Load Balancing Un istanza del problema del load balancing consiste di una sequenza p 1,..., p n di interi positivi (pesi dei job) e un intero m (numero di macchine). Uno schedule è una partizione S 1,..., S m dei job in m insiemi, uno per ogni macchina. Il carico L i della macchina i è la somma j S i p j dei pesi dei job dell insieme S i. Il problema di ottimizzazione del load balancing consiste nel calcolare uno schedule che minimizza il makespan definito come massimo carico L = max i L i. Quesito 1 (15 punti). Si consideri il seguente algoritmo probabilistico: ogni job è assegnato ad una macchina scelta uniformemente a caso tra le m macchine a disposizione. Dimostrare che il carico medio di ogni macchina è uguale a 1/m n j=1 p j. Dimostrare o confutare che il makespan dello schedule calcolato dall algoritmo è anche esso 1/m n j=1 p j. Suggerimento: Definiamo la variabile casuale X ij che ha valore p j se il job j è assegnato alla macchina i; e 0 altrimenti. Abbiamo che X i = j X i,j è il carico della macchina i. Siccome E[X i,j ] = p j /m abbiamo, per linearità della media, che E[X i ] = j p j/m. 2. CNF SAT Quesito 2 ( punti). Si consideri l algoritmo probabilistico R per il problema CNF-SAT che assegna ad ogni variabile il valore vero con probabilità 1/2 ed il valore falso con probabilità 1/2. Supponiamo di avere una formula Φ in CNF con m clausole e di poter scartare una clausola tra le m di Φ al fine di costruire una nuova formula Ψ con m 1 clausole che abbia il maggior numero atteso di clausole soddisfatte dall algoritmo R. Quale clausola di Φ dovrebbe essere scartata? Suggerimento: Una clausola qualsiasi che ha il numero minimo di letterale. 3. Minimum spanning tree di minimo grado massimo Dato un grafo G = (V, E) con n vertici, desideriamo calcolare uno spanning tree T di G che minimizza il massimo grado in T dei vertici di G. Prima di descrivere l algoritmo che intendiamo studiare, introduciamo la seguente notazione. Per uno spanning tree T di G, denotiamo con d T (u) il grado in T del vertice u; cioè il numero di archi dell albero T che sono incidenti a u. Inoltre con (T ) denotiamo il grado massimo dei vertici in T ; cioè (T ) = max u d T (u). Per questo problema consideriamo un algoritmo di ricerca locale. Una mossa dell algoritmo consiste dei seguenti passi: Data: 9 gennaio,

2 un arco (v, w) è aggiunto all albero T ; ciò crea un ciclo ed un arco (u, z) del ciclo è rimosso; Ad esempio, si consideri il grafo della Figura 1 in cui gli archi dello spanning tree sono rappresentati da linee continue e gli archi del grafo che non appartengono allo spanning tree sono rappresentati da linee tratteggiate. Se aggiungiamo all albero l arco (v, w) = (2, 6), si crea il ciclo costituito dai vertici 2, 3, 4, 5, 6 che è rotto rimuovendo l arco (u, z) = (4, 3). Nota che questa mossa ha l effetto di ridurre il grado massimo dei quattro nodi coinvolti. Infatti prima della mossa abbiamo che d T (2) = 3, d T (3) = 2, d T (4) = 5, d T (6) = 2. Dopo aver effettuato lo scambio di archi abbiamo d T (2) = 4, d T (3) = 1, d T (4) = 4, d T (6) = 3. Quindi il grado massimo dei 4 nodi coinvolti passa da 5 a v 1 2 z 3 4 u w v 1 2 z 3 4 u w 5 6 Figura 1. L arco (2, 6) è aggiunto e l arco (4, 3) è rimosso. Quesito 3 ( punti). Dimostrare che se d T (v), d T (w) d T (u) 2 e d T (v), d T (w) d T (z) 2 lo scambio riduce il grado massimo dei quattro vertici coinvolti nello scambio. Suggerimento: Supponiamo che d T (u) = M sia il grado massimo dei quattro vertici prima dello scambio. Dimostriamo che, dopo lo scambio, i quattro vertici hanno grado al più M 1. Infatti, per effetto dello scambio, i gradi di u e z diminuiscono di 1 e i gradi di v e w aumentano di 1. Quindi, dopo lo scambio, u e z hanno grado al più M 1; il vertice v ha grado d T (v)+1 d T (u) 2+1 = M 1; il vertice w ha grado d T (w)+1 d T (u) 2+1 = M 1. Nell analisi dell algoritmo di ricerca locale, è utilizzata la funzione potenziale Φ(T ) = v V 3d T (v). 2

3 Quesito 4 ( punti). Dimostrare che per ogni albero T abbiamo che Φ(T ) n3 (T ) e che se T è un cammino di Hamilton del grafo G allora Φ(T ) n. Suggerimento: Siccome per ogni vertice d t (V ) (T ) abbiamo Φ(T ) = v V 3 d T (v) v V 3 (T ) = n 3 (T ). Un cammino di Hamilton T su un grafo di n 2 vertici ha 2 vertici di grado 1 e (n 2) vertici di grado 2. Quindi Φ(T ) = (n 2) 9 = 9n 12 n, per n 2. Useremo la funzione potenziale Φ per analizzare il tempo di esecuzione dell algoritmo mostrando che la funzione potenziale descresce se gli archi da scambiare sono scelti in maniera opportuna. Ad esempio. il valore della funzione potenziale Φ relativamente al primo albero della Figura 1 è e dopo la mossa è = = 219 Quesito 5 (25 punti). Supponiamo di effettuare uno scambio tra gli archi (u, z) e (v, w) passando dall albero T all albero T e che i vertici sono tali che d T (v), d T (w) d T (u) 2 d T (v), d T (w) d T (z) 2. Dimostrare che Φ(T ) Φ(T ) 2 3 d T (u) 2. Suggerimento: Φ(T ) Φ(T ) = ( 3 d T (u) 3 d T (u)) + ( 3 d T (z) 3 d T (z)) + ( 3 d T (v) 3 d T (v)) + ( 3 d T (w) 3 d T (w)) = ( 3 d T (u) 3 d T (u) 1 ) + ( 3 d T (z) 3 d T (z) 1 ) + ( 3 d T (v) 3 d T (v)+1 ) + ( 3 d T (w) 3 d T (w)+1 ) ( 3 d T (u) 3 d T (u) 1 ) + ( 3 d T (v) 3 d T (v)+1 ) + ( 3 d T (w) 3 d T (w)+1 ) = 2 3 d T (u) d T (v) 2 3 d T (w) 6 3 d T (u) d T (u) d T (u) 2 = 2 3 d T (u) 2 Il quesito precedente quindi suggerisce di effettuare mosse che coinvolgono un vertice u di grado alto. 4. Disjoint Path Si consideri l algoritmo di approssimazione per il problema del calcolo di cammini disgiunti descritto nel Capitolo 11.5 del libro di testo Algorithm Design, che per comodità chiameremo A. Supponiamo di avere un grafo G ed una sequenza di richieste. Vogliamo progettare un algoritmo B che cerca di soddisfare tutte le richieste utilizzando A. Nel caso in cui esista una sola richiesta (s, t) che non sia stata soddisfatta dall algoritmo A, B deve trovare un arco diverso dall arco (s, t) che aggiunto al grafo permette all algoritmo A di soddisfare anche la richiesta (s, t). Due esempi sono descritti nelle figure 2 e 3. 3

4 Quesito 6 (30 punti). In riferimento alle classi che si trovano sulla pagina del corso relative all esercitazione Disjoint Paths, aggiungere alla classe Graph.py i seguenti metodi: (1) allpairs che calcola i cammini minimi tra ogni coppia di vertici; (2) removepath che rimuove il cammino minimo tra i due vertici dati in input; e alla classe DP.py i seguenti metodi: (1) solve che implementa l algoritmo di approssimazione descritto nel libro di testo; (2) addedge che restituisce l arco da aggiungere al grafo per soddisfare l unica richiesta non soddisfatta. Nel caso che tutte le richieste siano soddisfatte, o che esistano più di una richiesta non soddisfatta, o che l unico modo di soddisfare l unica richiesta non soddisfatta sia di aggiungere un arco diretto tra sorgente e destinazione, il metodo restituisce False. 5. Cosa consegnare Ciascuno studente deve consegnare una directory il cui nome è uguale alla concatenazione del cognome e del nome dello studente da cui sono stati eliminati tutti gli spazi, apostrofi e accenti. La directory contiene tre file, Load.pdf, SAT.pdf, e Spanning.pdf, ed una directory Python. (1) Il file Load.pdf contiene la risposta al Quesit0 1. Il nome, il cognome e la matricola dello studente devono comparire all inizio della risposta del quesito. (2) Il file SAT.pdf contiene la risposta al Quesito 2. Il nome, il cognome e la matricola dello studente devono comparire all inizio della risposta del quesito. (3) Il file Spanning.pdf contiene le risposte ai Quesiti 3-5. Ogni risposta deve essere contenuta in una pagina diversa. Il nome, il cognome e la matricola dello studente devono comparire all inizio della risposta di ciascun quesito. (4) L implementazione Python relativa al Quesito 6 (cioè le classi DP.py e Graph.py modificate) deve essere contenuta in una directory di nome Python. Per consegnare l elaborato lo studente deve produrre un archivio zip che ha come nome la concatenazione del cognome e del nome dello studente da cui sono stati eliminati tutti gli spazi, apostrofi e accenti. L archivio zip può essere prodotto usando il comando zip. 4

5 Istanza originaria s 1, s 2 t 2 t Istanza modificata s 1, s 2 0 t 2 t Figura 2. Nell istanza originaria, delle due richieste (0, 4) e (0, 3), l algoritmo A soddisfa solo (0, 3). Osserviamo però che aggiungendo l arco (0, 3) otteniamo una nuova istanza in cui entrambe le richieste possono essere soddisfatte. 5

6 Istanza originaria t 2 8 t 3 s 1 t s 2 9 s 3 Istanza modificata t 2 8 t 3 s 1 t s 2 9 s 3 Figura 3. Nell istanza originaria, l algoritmo A soddisfa le richieste (, 8) e (9, ). Se aggiungiamo l arco (0, 4), l algoritmo soddisfa tutte le richieste. 6

Approcci esatti per il job shop

Approcci esatti per il job shop Approcci esatti per il job shop Riferimenti lezione: Carlier, J. (1982) The one-machine sequencing problem, European Journal of Operational Research, Vol. 11, No. 1, pp. 42-47 Carlier, J. & Pinson, E.

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 3 5 7-8 9 57

Dettagli

Minimo Albero Ricoprente

Minimo Albero Ricoprente Minimo lbero Ricoprente Pag. 1/20 Minimo lbero Ricoprente Il problema della definizione di un Minimo lbero Ricoprente trova applicazione pratica in diverse aree di studio, quali ad esempio la progettazione

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo

Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo L. De Giovanni G. Zambelli 1 Problema del flusso a costo minimo Il problema del flusso a costo minimo é definito

Dettagli

1. Considerazioni generali

1. Considerazioni generali 1. Considerazioni generali Modelli di shop scheduling In molti ambienti produttivi l esecuzione di un job richiede l esecuzione non simultanea di un certo numero di operazioni su macchine dedicate. Ogni

Dettagli

Note del Corso di Modelli Biologici Discreti: Un paio di algoritmi DNA per risolvere SAT

Note del Corso di Modelli Biologici Discreti: Un paio di algoritmi DNA per risolvere SAT Note del Corso di Modelli Biologici Discreti: Un paio di algoritmi DNA per risolvere SAT Giuditta Franco Corso di Laurea in Bioinformatica - AA 2012/2013 Uno dei più grossi risultati nell informatica degli

Dettagli

Sistemi Operativi mod. B. Sistemi Operativi mod. B A B C A B C P 1 2 0 0 P 1 1 2 2 3 3 2 P 2 3 0 2 P 2 6 0 0 P 3 2 1 1 P 3 0 1 1 < P 1, >

Sistemi Operativi mod. B. Sistemi Operativi mod. B A B C A B C P 1 2 0 0 P 1 1 2 2 3 3 2 P 2 3 0 2 P 2 6 0 0 P 3 2 1 1 P 3 0 1 1 < P 1, > Algoritmo del banchiere Permette di gestire istanze multiple di una risorsa (a differenza dell algoritmo con grafo di allocazione risorse). Ciascun processo deve dichiarare a priori il massimo impiego

Dettagli

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza Il problema di flusso di costo minimo (MCF) Dati : grafo orientato G = ( N, A ) i N, deficit del nodo i : b i (i, j) A u ij, capacità superiore (max quantità di flusso che può transitare) c ij, costo di

Dettagli

Esercizi Capitolo 14 - Algoritmi Greedy

Esercizi Capitolo 14 - Algoritmi Greedy Esercizi Capitolo 14 - Algoritmi Greedy Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 7-8 9 7 9-8 79

Dettagli

40 Algoritmi sui Grafi

40 Algoritmi sui Grafi Università degli Studi di Napoli Parthenope Corso di Laurea in Informatica A.A 2014/15 PROGETTO PROGRAMMAZIONE III 40 Algoritmi sui Grafi Relatore: Prof. Raffaele Montella Studente: Diego Parlato Matricola:

Dettagli

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Scopo: Stimare l onere computazionale per risolvere problemi di ottimizzazione e di altra natura

Dettagli

Sequenziamento a minimo costo di commutazione in macchine o celle con costo lineare e posizione home (In generale il metodo di ottimizzazione

Sequenziamento a minimo costo di commutazione in macchine o celle con costo lineare e posizione home (In generale il metodo di ottimizzazione Sequenziamento a minimo costo di commutazione in macchine o celle con costo lineare e posizione home (In generale il metodo di ottimizzazione presentato in questo file trova la seq. a costo minimo per

Dettagli

Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10. Lecture 22: 1 Giugno 2010. Meccanismi Randomizzati

Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10. Lecture 22: 1 Giugno 2010. Meccanismi Randomizzati Strumenti della Teoria dei Giochi per l Informatica AA 2009/10 Lecture 22: 1 Giugno 2010 Meccanismi Randomizzati Docente Vincenzo Auletta Note redatte da: Davide Armidoro Abstract In questa lezione descriveremo

Dettagli

2 Formulazione dello shortest path come problema di flusso

2 Formulazione dello shortest path come problema di flusso Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10 Lecture 20: 28 Maggio 2010 Cycle Monotonicity Docente: Vincenzo Auletta Note redatte da: Annibale Panichella Abstract In questa lezione

Dettagli

CPM - PERT CPM - PERT. Rappresentazione di un progetto. Gestione di un progetto. Critical Path Method Project Evaluation and Review Technique

CPM - PERT CPM - PERT. Rappresentazione di un progetto. Gestione di un progetto. Critical Path Method Project Evaluation and Review Technique CPM - PERT CPM - PERT CPM e PERT sono metodologie per la gestione di progetti composti da più attività in cui esistano relazioni di precedenza. Critical Path Method Project Evaluation and Review Technique

Dettagli

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12 A / A / Seconda Prova di Ricerca Operativa Cognome Nome Numero Matricola Nota: LA RISOLUZIONE CORRETTA DEGLI ESERCIZI CONTRADDISTINTI DA UN ASTERISCO È CONDIZIONE NECESSARIA PER IL RAGGIUNGIMENTO DELLA

Dettagli

IL PROBLEMA DELLO SHORTEST SPANNING TREE

IL PROBLEMA DELLO SHORTEST SPANNING TREE IL PROBLEMA DELLO SHORTEST SPANNING TREE n. 1 - Formulazione del problema Consideriamo il seguente problema: Abbiamo un certo numero di città a cui deve essere fornito un servizio, quale può essere l energia

Dettagli

Correttezza. Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 1. Dispensa 10. A. Miola Novembre 2007

Correttezza. Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 1. Dispensa 10. A. Miola Novembre 2007 Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 1 Dispensa 10 Correttezza A. Miola Novembre 2007 http://www.dia.uniroma3.it/~java/fondinf1/ Correttezza 1 Contenuti Introduzione alla correttezza

Dettagli

CALCOLATORI ELETTRONICI A cura di Luca Orrù. Lezione n.6. Unità di controllo microprogrammata

CALCOLATORI ELETTRONICI A cura di Luca Orrù. Lezione n.6. Unità di controllo microprogrammata Lezione n.6 Unità di controllo microprogrammata 1 Sommario Unità di controllo microprogrammata Ottimizzazione, per ottimizzare lo spazio di memoria occupato Il moltiplicatore binario Esempio di architettura

Dettagli

Rappresentazione grafica di entità e attributi

Rappresentazione grafica di entità e attributi PROGETTAZIONE CONCETTUALE La progettazione concettuale, ha il compito di costruire e definire una rappresentazione corretta e completa della realtà di interesse, e il prodotto di tale attività, è lo schema

Dettagli

Note su quicksort per ASD 2010-11 (DRAFT)

Note su quicksort per ASD 2010-11 (DRAFT) Note su quicksort per ASD 010-11 (DRAFT) Nicola Rebagliati 7 dicembre 010 1 Quicksort L algoritmo di quicksort è uno degli algoritmi più veloci in pratica per il riordinamento basato su confronti. L idea

Dettagli

APPUNTI SUI METODI PERT-C.P.M.

APPUNTI SUI METODI PERT-C.P.M. APPUNTI SUI METODI PERT-C.P.M. (corso di ricerca operativa) A cura di: Antonio Scalera 1 PERT/C.P.M. I metodi Pert e C.P.M. studiano lo sviluppo di un progetto attraverso la programmazione delle attività

Dettagli

Prova di Laboratorio di Programmazione

Prova di Laboratorio di Programmazione Prova di Laboratorio di Programmazione 6 febbraio 015 ATTENZIONE: Non è possibile usare le classi del package prog.io del libro di testo. Oltre ai metodi richiesti in ciascuna classe, è opportuno implementare

Dettagli

Progetto Febbraio 2013 - Appello 1: Diffusione di tweets sul grafo di Twitter

Progetto Febbraio 2013 - Appello 1: Diffusione di tweets sul grafo di Twitter UNIVERSITÀ DEGLI STUDI DI MILANO, DIPARTIMENTO DI INFORMATICA LAUREA TRIENNALE IN COMUNICAZIONE DIGITALE CORSO DI RETI DI CALCOLATORI ANNO ACCADEMICO 2011/2012 Progetto Febbraio 2013 - Appello 1: Diffusione

Dettagli

Parte 3: Gestione dei progetti, Shop scheduling

Parte 3: Gestione dei progetti, Shop scheduling Parte : Gestione dei progetti, Shop scheduling Rappresentazione reticolare di un progetto Insieme di attività {,...,n} p i durata (nota e deterministica dell attività i) relazione di precedenza fra attività:

Dettagli

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso Flusso di costo minimo È dato un grafo direzionato G = (N, A). Ad ogni arco (i, j) A è associato il costo c ij

Dettagli

Ricerca Operativa. Claudio Arbib Universitàdi L Aquila. Problemi combinatorici (Gennaio 2006)

Ricerca Operativa. Claudio Arbib Universitàdi L Aquila. Problemi combinatorici (Gennaio 2006) Claudio Arbib Universitàdi L Aquila Ricerca Operativa Problemi combinatorici (Gennaio 2006) Sommario Problemi combinatorici Ottimizzazione combinatoria L algoritmo universale Il metodo greedy Problemi

Dettagli

Ricerca Operativa A.A. 2007/2008

Ricerca Operativa A.A. 2007/2008 Ricerca Operativa A.A. 2007/2008 9. Cenni su euristiche e metaeuristiche per ottimizzazione combinatoria Motivazioni L applicazione di metodi esatti non è sempre possibile a causa della complessità del

Dettagli

Simulazione di una Rete di Interconnessione di una Compagnia Aerea

Simulazione di una Rete di Interconnessione di una Compagnia Aerea Simulazione di una Rete di Interconnessione di una Compagnia Aerea Progetto del corso di Algoritmi e Strutture Dati a.a. 2011/2012 December 4, 2011 1 Introduzione Il progetto consiste nella realizzazione

Dettagli

Svantaggi della Commutazione di Circuito. Commutazione di Pacchetto. Struttura di un Pacchetto

Svantaggi della Commutazione di Circuito. Commutazione di Pacchetto. Struttura di un Pacchetto Università degli studi di Salerno Laurea in Informatica I semestre / Commutazione di Pacchetto Prof. Vincenzo Auletta auletta@dia.unisa.it http://www.dia.unisa.it/professori/auletta/ Svantaggi della Commutazione

Dettagli

Macchine a stati finiti. Sommario. Sommario. M. Favalli. Le macchine a stati si utilizzano per modellare di sistemi fisici caratterizzabili mediante:

Macchine a stati finiti. Sommario. Sommario. M. Favalli. Le macchine a stati si utilizzano per modellare di sistemi fisici caratterizzabili mediante: Sommario Macchine a stati finiti M. Favalli Engineering Department in Ferrara 4 Sommario (ENDIF) Analisiesintesideicircuitidigitali / 35 (ENDIF) Analisiesintesideicircuitidigitali 2 / 35 4 Le macchine

Dettagli

MATEMATICA DEL DISCRETO elementi di teoria dei grafi. anno acc. 2009/2010

MATEMATICA DEL DISCRETO elementi di teoria dei grafi. anno acc. 2009/2010 elementi di teoria dei grafi anno acc. 2009/2010 Grafi semplici Un grafo semplice G è una coppia ordinata (V(G), L(G)), ove V(G) è un insieme finito e non vuoto di elementi detti vertici o nodi di G, mentre

Dettagli

26 Febbraio 2015 Modulo 2

26 Febbraio 2015 Modulo 2 Reti di Comunicazione e Internet Prof. I. Filippini Cognome Nome Matricola 26 Febbraio 2015 Modulo 2 Tempo complessivo a disposizione per lo svolgimento: 1h 40m E possibile scrivere a matita E1 E2 Domande

Dettagli

Esercitazione N7:Gioco dei 21 fiammiferi (impariamo java giocando)

Esercitazione N7:Gioco dei 21 fiammiferi (impariamo java giocando) Esercitazione N7:Gioco dei 21 fiammiferi (impariamo java giocando) Le basi della programmazione ad oggetti: per costruire in modo adeguato una applicazione basata sulla programmazione ad oggetti occorre

Dettagli

STRUTTURE NON LINEARI

STRUTTURE NON LINEARI PR1 Lezione 13: STRUTTURE NON LINEARI Michele Nappi mnappi@unisa.it www.dmi.unisa.it/people/nappi Per la realizzazione della presentazione è stato utilizzato in parte materiale didattico prodotto da Oronzo

Dettagli

Ordinamento degli eventi. Lezione 11. Osservazioni. Relazione verificato prima. Cenni ai sistemi operativi distribuiti 3. Coordinazione distribuita

Ordinamento degli eventi. Lezione 11. Osservazioni. Relazione verificato prima. Cenni ai sistemi operativi distribuiti 3. Coordinazione distribuita Lezione 11 Cenni ai sistemi operativi distribuiti 3. Coordinazione distribuita Ordinamento degli eventi Un sistema monoprocessore Unico clock Unica memoria Ordinamento degli eventi Mutua esclusione Deadlock

Dettagli

Problemi di soddisfacimento di vincoli. Formulazione di problemi CSP. Colorazione di una mappa. Altri problemi

Problemi di soddisfacimento di vincoli. Formulazione di problemi CSP. Colorazione di una mappa. Altri problemi Problemi di soddisfacimento di vincoli Maria Simi a.a. 2014/2015 Problemi di soddisfacimento di vincoli (CSP) Sono problemi con una struttura particolare, per cui conviene pensare ad algoritmi specializzati

Dettagli

b i 1,1,1 1,1,1 0,1,2 0,3,4

b i 1,1,1 1,1,1 0,1,2 0,3,4 V o Appello // RICERCA OPERATIVA - Corso A (a.a. 9/) Nome Cognome: Corso di Laurea: L C6 LS LM Matricola: ) Si consideri il problema di flusso di costo minimo in figura. Si verifichi se il flusso ammissibile

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboratorio di Algoritmi e Strutture Dati Docente: V. Lonati Progetto Il faccendiere valido per gli appelli di giugno e luglio 2012 1 Il problema Un faccendiere vuole depositare ingenti quantità di denaro

Dettagli

Cognome:.. Nome:.. 1/5

Cognome:.. Nome:.. 1/5 Cognome:.. Nome:.. 1/5 Sistemi P2P Prova del 17/12/2007 Note: 1) Per ogni risposta corretta a domande di tipo A vengono assegnati 4 punti 2) Per ogni risposta scorretta a domande di tipo A viene sottratto

Dettagli

Introduzione al MATLAB c Parte 2

Introduzione al MATLAB c Parte 2 Introduzione al MATLAB c Parte 2 Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 18 gennaio 2008 Outline 1 M-file di tipo Script e Function Script Function 2 Costrutti di programmazione

Dettagli

Problema del trasporto

Problema del trasporto p. 1/1 Problema del trasporto Supponiamo di avere m depositi in cui è immagazzinato un prodotto e n negozi che richiedono tale prodotto. Nel deposito i è immagazzinata la quantità a i di prodotto. Nel

Dettagli

Macchine a stati finiti. Sommario. Sommario. M. Favalli. 5th June 2007

Macchine a stati finiti. Sommario. Sommario. M. Favalli. 5th June 2007 Sommario Macchine a stati finiti M. Favalli 5th June 27 4 Sommario () 5th June 27 / 35 () 5th June 27 2 / 35 4 Le macchine a stati si utilizzano per modellare di sistemi fisici caratterizzabili mediante:

Dettagli

Sommario della lezione

Sommario della lezione Università degli Studi di Salerno Corso di Algoritmi Prof. Ugo Vaccaro Anno Acc. 2014/15 p. 1/33 Sommario della lezione Ancora sui cammini minimi: Cammini minimi in grafi con archi di costo negativo Algoritmi

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

Ricerca Operativa e Logistica

Ricerca Operativa e Logistica Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili A.A. 2011/2012 Lezione 10: Variabili e vincoli logici Variabili logiche Spesso nei problemi reali che dobbiamo affrontare ci sono dei

Dettagli

Ottimizzazione nella gestione dei progetti Capitolo 4: la gestione dei costi (Programmazione multimodale): formulazioni

Ottimizzazione nella gestione dei progetti Capitolo 4: la gestione dei costi (Programmazione multimodale): formulazioni Ottimizzazione nella gestione dei progetti Capitolo 4: la gestione dei costi (Programmazione multimodale): formulazioni CARLO MANNINO Università di Roma La Sapienza Dipartimento di Informatica e Sistemistica

Dettagli

Corso di Esercitazioni di Programmazione

Corso di Esercitazioni di Programmazione Corso di Esercitazioni di Programmazione Introduzione Dott.ssa Sabina Rossi Informazioni Pagina web del corso: News Orari Mailing list Lezioni Esercitazioni Date esami Risultati esami.. http://www.dsi.unive.it/~prog1

Dettagli

Esame di Ricerca Operativa del 19/01/2016

Esame di Ricerca Operativa del 19/01/2016 Esame di Ricerca Operativa del 19/01/201 (Cognome) (Nome) (Matricola) Esercizio 1. Una banca offre ai suoi clienti diversi tipi di prestito: mutuo casa, credito auto, credito famiglia, che rendono un interesse

Dettagli

Altri metodi di indicizzazione

Altri metodi di indicizzazione Organizzazione a indici su più livelli Altri metodi di indicizzazione Al crescere della dimensione del file l organizzazione sequenziale a indice diventa inefficiente: in lettura a causa del crescere del

Dettagli

16.3.1 Alberi binari di ricerca

16.3.1 Alberi binari di ricerca 442 CAPITOLO 16. STRUTTURE DI DATI DINAMICHE root 7 5 11 2 8 13 10 Figura 16.11 Esempio di albero binario: ogni nodo contiene il dato da immagazzinare e tre puntatori che definiscono le sue relazioni di

Dettagli

1 Breve introduzione ad AMPL

1 Breve introduzione ad AMPL 1 Breve introduzione ad AMPL Il primo passo per risolvere un problema reale attraverso strumenti matematici consiste nel passare dalla descrizione a parole del problema al modello matematico dello stesso.

Dettagli

Corso di Informatica

Corso di Informatica Corso di Informatica Modulo T3 1-Sottoprogrammi 1 Prerequisiti Tecnica top-down Programmazione elementare 2 1 Introduzione Lo scopo di questa Unità è utilizzare la metodologia di progettazione top-down

Dettagli

Esame di Ricerca Operativa - 20 settembre 2007 Facoltà di Architettura - Udine - CORREZIONE -

Esame di Ricerca Operativa - 20 settembre 2007 Facoltà di Architettura - Udine - CORREZIONE - Esame di Ricerca Operativa - settembre 7 Facoltà di rchitettura - Udine - CORREZIONE - Problema ( punti): Un azienda pubblicitaria deve svolgere un indagine di mercato per lanciare un nuovo prodotto. L

Dettagli

Algoritmi e Strutture Dati II: Parte B Anno Accademico 2004-2005. Lezione 11

Algoritmi e Strutture Dati II: Parte B Anno Accademico 2004-2005. Lezione 11 Algoritmi e Strutture Dati II: Parte B Anno Accademico 2004-2005 Docente: Ugo Vaccaro Lezione 11 In questa lezione vedremo alcune applicazioni della tecnica greedy al progetto di algoritmi on-line. Vediamo

Dettagli

Archivio CD. Fondamenti di Programmazione

Archivio CD. Fondamenti di Programmazione Archivio CD Una persona possiede un certo numero di CD musicali e desidera organizzare il proprio archivio tramite uno strumento software. Il programma deve permettere: - l inserimento di un nuovo CD nella

Dettagli

Esercizi di Ricerca Operativa I

Esercizi di Ricerca Operativa I Esercizi di Ricerca Operativa I Dario Bauso, Raffaele Pesenti May 10, 2006 Domande Programmazione lineare intera 1. Gli algoritmi per la programmazione lineare continua possono essere usati per la soluzione

Dettagli

DI D AGRA R MM M I M A BLOCC C H C I TEORI R A E D D E SERC R I C ZI 1 1

DI D AGRA R MM M I M A BLOCC C H C I TEORI R A E D D E SERC R I C ZI 1 1 DIAGRAMMI A BLOCCHI TEORIA ED ESERCIZI 1 1 Il linguaggio dei diagrammi a blocchi è un possibile formalismo per la descrizione di algoritmi Il diagramma a blocchi, o flowchart, è una rappresentazione grafica

Dettagli

Esame di Ricerca Operativa del 19/01/2016

Esame di Ricerca Operativa del 19/01/2016 Esame di Ricerca Operativa del 9/0/06 (Cognome) (Nome) (Matricola) Esercizio. Una banca offre ai suoi clienti diversi tipi di prestito: mutuo casa, credito auto, credito famiglia, che rendono un interesse

Dettagli

Il calcolo letterale per risolvere problemi e per dimostrare

Il calcolo letterale per risolvere problemi e per dimostrare Il calcolo letterale per risolvere problemi e per dimostrare (si prevedono circa 25 ore di lavoro in classe) Nome e cognome dei componenti del gruppo che svolge le attività di gruppo di questa lezione

Dettagli

Semantica Assiomatica

Semantica Assiomatica Semantica Assiomatica Anche nella semantica assiomatica, così come in quella operazionale, il significato associato ad un comando C viene definito specificando la transizione tra stati (a partire, cioè,

Dettagli

Politecnico di Milano. Ingegneria del Software a.a. 2006/07. Appello del 14 settembre 2007 Cognome Nome Matricola

Politecnico di Milano. Ingegneria del Software a.a. 2006/07. Appello del 14 settembre 2007 Cognome Nome Matricola Politecnico di Milano Ingegneria del Software a.a. 2006/07 Appello del 14 settembre 2007 Cognome Nome Matricola Sezione (segnarne una) Baresi, Ghezzi, Morzenti, SanPietro Istruzioni 1. La mancata indicazione

Dettagli

1. I database. La schermata di avvio di Access

1. I database. La schermata di avvio di Access 7 Microsoft Access 1. I database Con il termine database (o base di dati) si intende una raccolta organizzata di dati, strutturati in maniera tale che, effettuandovi operazioni di vario tipo (inserimento

Dettagli

Prof. Ing. Michele Marra - Appunti delle Lezioni di Ricerca Operativa Sequenze CAPITOLO II

Prof. Ing. Michele Marra - Appunti delle Lezioni di Ricerca Operativa Sequenze CAPITOLO II CAPITOLO II 2. - PROBLEMI DI SEQUENZA I problemi di sequenza si presentano ogni qualvolta vi sono delle attività che richiedono delle risorse limitate ed indivisibili e bisogna definire l'ordine secondo

Dettagli

Grafi. Moreno Marzolla Dip. di Informatica Scienza e Ingegneria Università di Bologna. moreno.marzolla@unibo.it http://www.moreno.marzolla.

Grafi. Moreno Marzolla Dip. di Informatica Scienza e Ingegneria Università di Bologna. moreno.marzolla@unibo.it http://www.moreno.marzolla. Grafi Moreno Marzolla ip. di Informatica Scienza e Ingegneria Università di ologna moreno.marzolla@unibo.it http://www.moreno.marzolla.name/ opyright lberto Montresor, Università di Trento, Italy (http://www.dit.unitn.it/~montreso/asd/index.shtml)

Dettagli

Algoritmi e strutture dati. Codici di Huffman

Algoritmi e strutture dati. Codici di Huffman Algoritmi e strutture dati Codici di Huffman Memorizzazione dei dati Quando un file viene memorizzato, esso va memorizzato in qualche formato binario Modo più semplice: memorizzare il codice ASCII per

Dettagli

Insegnamento di Gestione e Organizzazione dei Progetti A.A. 2008/9

Insegnamento di Gestione e Organizzazione dei Progetti A.A. 2008/9 Insegnamento di Gestione e Organizzazione dei Progetti A.A. 2008/9 Lezione 11: valutazione costi diagramma di PERT Prof.ssa R. Folgieri email: folgieri@dico.unimi.it folgieri@mtcube.com 1 Da ricordare:

Dettagli

Test del Software. Definizione SCOPO LIMITI DEL TEST

Test del Software. Definizione SCOPO LIMITI DEL TEST Definizione! Verifica dinamica del comportamento del software rispetto a quello atteso, utilizzando un insieme finito di casi di test, appropriatamente selezionati nel dominio di tutti i casi possibili

Dettagli

Barriere assorbenti nelle catene di Markov e una loro applicazione al web

Barriere assorbenti nelle catene di Markov e una loro applicazione al web Università Roma Tre Facoltà di Scienze M.F.N Corso di Laurea in Matematica a.a. 2001/2002 Barriere assorbenti nelle catene di Markov e una loro applicazione al web Giulio Simeone 1 Sommario Descrizione

Dettagli

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,...

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... Entropia Motivazione Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... ) s,s 2,s 3,... ognuno dei quali appartiene ad un alfabeto A di M elementi.? Quant è l informazione portata

Dettagli

Schedulazione delle attività di un progetto in presenza di multi-calendari

Schedulazione delle attività di un progetto in presenza di multi-calendari Schedulazione delle attività di un progetto in presenza di multi-calendari Maria Silvia Pini Resp. accademico: Prof.ssa Francesca Rossi Università di Padova Attività FSE DGR 1102/2010 La gestione dell

Dettagli

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 0// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x + x x +x x x x x x x 0 x x

Dettagli

ALGORITMI e PROGRAMMI Programmazione: Lavoro che si fa per costruire sequenze di istruzioni (operazioni) adatte a svolgere un dato calcolo

ALGORITMI e PROGRAMMI Programmazione: Lavoro che si fa per costruire sequenze di istruzioni (operazioni) adatte a svolgere un dato calcolo ALGORITMI e PROGRAMMI Programmazione: Lavoro che si fa per costruire sequenze di istruzioni (operazioni) adatte a svolgere un dato calcolo INPUT: dati iniziali INPUT: x,y,z AZIONI esempio: Somma x ed y

Dettagli

Calcolo della funzione di Sprague-Grundy

Calcolo della funzione di Sprague-Grundy Calcolo della funzione di Sprague-Grundy Paola Lorusso e Walter Mottinelli 23 aprile 2008 La funzione di Sprague-Grundy è utilizzata nella teoria dei giochi per determinare se esiste una strategia vincente

Dettagli

Minimo sottografo ricoprente. Minimo sottografo ricoprente. Minimo albero ricoprente. Minimo albero ricoprente

Minimo sottografo ricoprente. Minimo sottografo ricoprente. Minimo albero ricoprente. Minimo albero ricoprente Minimo sottografo ricoprente Minimo sottografo ricoprente Dato un grafo connesso G = (V, E) con costi positivi sugli archi c e, un minimo sottografo ricoprente è un insieme di archi E E tale che: G = (V,

Dettagli

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI Prima di riuscire a scrivere un programma, abbiamo bisogno di conoscere un metodo risolutivo, cioè un metodo che a partire dai dati di ingresso fornisce i risultati attesi.

Dettagli

Esempio: dest = parolagigante, lettere = PROVA dest (dopo l'invocazione di tipo pari ) = pprrlogvgante

Esempio: dest = parolagigante, lettere = PROVA dest (dopo l'invocazione di tipo pari ) = pprrlogvgante Esercizio 0 Scambio lettere Scrivere la funzione void scambiolettere(char *dest, char *lettere, int p_o_d) che modifichi la stringa destinazione (dest), sostituendone i caratteri pari o dispari (a seconda

Dettagli

Sorgenti autorevoli in ambienti hyperlinkati.

Sorgenti autorevoli in ambienti hyperlinkati. Sorgenti autorevoli in ambienti hyperlinkati. La qualità di un metodo di ricerca richiede la valutazione umana dovuta alla soggettività inerente alla nozione di rilevanza. I motori di ricerca correnti,

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

Ragionamento Automatico Model checking. Lezione 12 Ragionamento Automatico Carlucci Aiello, 2004/05Lezione 12 0. Sommario. Formulazione del problema

Ragionamento Automatico Model checking. Lezione 12 Ragionamento Automatico Carlucci Aiello, 2004/05Lezione 12 0. Sommario. Formulazione del problema Sommario Ragionamento Automatico Model checking Capitolo 3 paragrafo 6 del libro di M. Huth e M. Ryan: Logic in Computer Science: Modelling and reasoning about systems (Second Edition) Cambridge University

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestione della produzione e della supply chain Logistica distributiva Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Problemi di Distribuzione: Il problema del Vehicle Rou:ng

Dettagli

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Network design

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Network design Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Network design Network Design È data una rete rappresentata su da un grafo G = (V, A) e un insieme di domande K, ciascuna

Dettagli

Sommario della lezione

Sommario della lezione Sommario della lezione Ulteriori applicazioni del Massimo Flusso 1. Connettività di grafi. Selezione di progetti 3. Trasporto in reti 4. Eliminazione in tornei Università degli Studi di Salerno Corso di

Dettagli

Esempi di modelli di programmazione lineare (intera) 2014

Esempi di modelli di programmazione lineare (intera) 2014 Esempi di modelli di programmazione lineare (intera) 2014 1) Combinando risorse Una ditta produce due tipi di prodotto, A e B, combinando e lavorando opportunamente tre risorse, R, S e T. In dettaglio:

Dettagli

METODI MATEMATICI PER LE DECISIONI ECONOMICHE E AZIENDALI 12 CANDIDATO.. VOTO

METODI MATEMATICI PER LE DECISIONI ECONOMICHE E AZIENDALI 12 CANDIDATO.. VOTO METODI MATEMATICI PER LE DECISIONI ECONOMICHE E AZIENDALI 12 1) In un problema multiattributo i pesi assegnati ai vari obiettivi ed i risultati che essi assumono in corrispondenza alle varie alternative

Dettagli

1. PRIME PROPRIETÀ 2

1. PRIME PROPRIETÀ 2 RELAZIONI 1. Prime proprietà Il significato comune del concetto di relazione è facilmente intuibile: due elementi sono in relazione se c è un legame tra loro descritto da una certa proprietà; ad esempio,

Dettagli

- Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo)

- Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo) Se si ha un problema lineare e' possibile risolverlo in piu' modi (equivalenti ) - Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo) - Trovare soluzione ottima duale (con il simplesso

Dettagli

CUTPOINTS BRIDGES BLOCKS BLOCK GRAPHS - CUTPOINT GRAPHS

CUTPOINTS BRIDGES BLOCKS BLOCK GRAPHS - CUTPOINT GRAPHS CUTPOINTS BRIDGES BLOCKS BLOCK GRAPHS - CUTPOINT GRAPHS INTRODUZIONE Per conoscere la struttura di un grafo connesso è importante individuare nel grafo la distribuzione di certi punti detti cutpoints (punti

Dettagli

La programmazione con vincoli in breve. La programmazione con vincoli in breve

La programmazione con vincoli in breve. La programmazione con vincoli in breve Obbiettivi Introdurre la nozione di equivalenza di CSP. Dare una introduzione intuitiva dei metodi generali per la programmazione con vincoli. Introdurre il framework di base per la programmazione con

Dettagli

RAPPRESENTAZIONE GRAFICA DEGLI ALGORITMI

RAPPRESENTAZIONE GRAFICA DEGLI ALGORITMI RAPPRESENTAZIONE GRAFICA DEGLI ALGORITMI Diagramma di flusso L algoritmo può essere rappresentato in vari modi, grafici o testuali. Uno dei metodi grafici più usati e conosciuti è il cosiddetto diagramma

Dettagli

Algoritmi di Ricerca. Esempi di programmi Java

Algoritmi di Ricerca. Esempi di programmi Java Fondamenti di Informatica Algoritmi di Ricerca Esempi di programmi Java Fondamenti di Informatica - D. Talia - UNICAL 1 Ricerca in una sequenza di elementi Data una sequenza di elementi, occorre verificare

Dettagli

Esercizi Capitolo 6 - Alberi binari di ricerca

Esercizi Capitolo 6 - Alberi binari di ricerca Esercizi Capitolo 6 - Alberi binari di ricerca Alberto Montresor 23 settembre 200 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile

Dettagli

Dimensionamento dei lotti di produzione: il caso con variabilità nota

Dimensionamento dei lotti di produzione: il caso con variabilità nota Dimensionamento dei lotti di produzione: il caso con variabilità nota A. Agnetis In questi appunti studieremo alcuni modelli per il problema del lot sizing, vale a dire il problema di programmare la dimensione

Dettagli

Dai dati al modello teorico

Dai dati al modello teorico Dai dati al modello teorico Analisi descrittiva univariata in R 1 Un po di terminologia Popolazione: (insieme dei dispositivi che verranno messi in produzione) finito o infinito sul quale si desidera avere

Dettagli

Comparatori. Comparatori di uguaglianza

Comparatori. Comparatori di uguaglianza Comparatori Scopo di un circuito comparatore é il confronto tra due codifiche binarie. Il confronto può essere effettuato per verificare l'uguaglianza oppure una relazione d'ordine del tipo "maggiore",

Dettagli

Ottimizzazione nella gestione dei progetti

Ottimizzazione nella gestione dei progetti Ottimizzazione nella gestione dei progetti Capitolo 2: Reti di attività CARLO MANNINO Università di Roma La Sapienza Dipartimento di Informatica e Sistemistica Definizioni di ase Il Progetto è costituito

Dettagli

Progetto Automi e Linguaggi Parser svliluppato con JLex e cup

Progetto Automi e Linguaggi Parser svliluppato con JLex e cup Progetto Automi e Linguaggi Parser svliluppato con JLex e cup Sviluppato da Santoro Carlo Maurizio Matricola:0108/528 Sviluppo terminato il: 18/06/06 TRACCIA DEL PROGETTO Si costruisca, utilizzando la

Dettagli

Il problema del massimo flusso. Preflow-push e augmenting path: un approccio unificante

Il problema del massimo flusso. Preflow-push e augmenting path: un approccio unificante Introduzione Il problema del massimo flusso. Preflow-push e augmenting path: un approccio unificante Il problema del massimo flusso è uno dei fondamentali problemi nell ottimizzazione su rete. Esso è presente

Dettagli

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione.

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione. Grafi ed Alberi Pag. /26 Grafi ed Alberi In questo capitolo richiameremo i principali concetti di due ADT che ricorreranno puntualmente nel corso della nostra trattazione: i grafi e gli alberi. Naturale

Dettagli