13. EQUAZIONI ALGEBRICHE

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "13. EQUAZIONI ALGEBRICHE"

Transcript

1 G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più vriili he è ver per tutti i vlori he si possono ttriuire lle vriili, purhé le espressioni ino signifito. Esempio: ( ) ; quest uguglinz è ver per qulsisi vlore delle vriili e. Si die equzione un uguglinz tr due espressioni lgerihe ontenenti un o più vriili, dette inognite, verifit solo per determinti vlori delle inognite. Esempio: + è verifit per, inftti +, m non è verifit per ltri vlori di, per esempio per risult + flso. Si himno soluzioni di un equzione i vlori he sostituiti lle inognite rendono ver l'equzione. Risolvere un'equzione signifi trovre l'insieme di tutte le soluzioni dell'equzione. Due equzioni si diono equivlenti se hnno lo stesso insieme di soluzioni. Primo prinipio di equivlenz: dt un'equzione, ggiungendo entrmi i memri uno stesso numero od un stess espressione ontenente l'inognit si ottiene un'equzione equivlente. Se si ggiunge un'espressione he dipende d un'inognit non si devono modifire le ondizioni di esistenz dell equzione stess. Esempio: dt l equzione si può ggiungere entrmi i memri +, si ottiene l equzione equivlente + +. Conseguenze dirette del primo prinipio di equivlenz sono l regol del trsporto e l regol di nellzione. Regol del trsporto: dt un'equzione, trsportndo un termine d un memro ll'ltro e mindolo di segno si ottiene un'equzione equivlente. Esempio: dt l equzione + 5 possimo portre + dopo l ugule e prim dell ugule, ottenimo l equzione equivlente 5. Regol di nellzione: dt un'equzione, termini uguli presenti in entrmi i memri possono essere nellti, ottenendo un'equzione equivlente. Esempio: dt l equzione possimo nellre prim dell ugule e lo stesso dopo l ugule, ottenendo l equzione equivlente + 5. Seondo prinipio di equivlenz: dt un'equzione, moltiplindo mo i memri per un numero diverso d zero si ottiene un'equzione equivlente. Si può nhe moltiplire per un'espressione ontenente l'inognit purhé l espressione non si nnulli qulunque si il vlore dell'inognit stess, e he non restring le ondizioni di esistenz. Esempio: dt l equzione possimo dividere primo e seondo memro per ottenendo l equzione equivlente, semplifindo. Conseguenze dirette del seondo prinipio di equivlenz sono: Regol dell divisione per un fttore omune diverso d zero: dt un'equzione in ui tutti i termini hnno un fttore omune diverso d zero, dividendo per tle numero si ottiene un'equzione equivlente. Esempio: nell equzione si possono semplifire tutti i termini per, si ottiene l equzione equivlente + 6. Regol del mimento di segno: dt un'equzione, mindo segno tutti i termini di

2 G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi entrmi i memri si ottiene un'equzione equivlente. Esempio: nell equzione si possono mire di segno tutti i termini ottenendo l equzione equivlente. Un equzione si die equzione lgeri o polinomile se è rionduiile, medinte i prinipi di equivlenz, un polinomio uguglito zero. Il grdo del polinomio è detto grdo dell equzione. Teorem fondmentle dell lger: ogni equzione lgeri di grdo n mmette esttmente n soluzioni nell insieme dei numeri omplessi (lune delle soluzioni possono oinidere).. Equzioni di primo grdo Un'equzione di primo grdo si può sempre riondorre lll form normle + 0 L soluzione dipende di vlori delle ostnti e : se 0 e 0 l'equzione non h soluzione e si die impossiile se 0 l'equzione è soddisftt per qulsisi vlore dell vriile e si die indetermint se 0 l'equzione si die determint ed h un e un sol soluzione. Equzioni frtte o frzionrie: sono le equzioni in ui l inognit ompre l denomintore. Le equzioni frzionrie si risolvono seguendo i pssi: o stilire l insieme di definizione, ossi esludere i vlori dell inognit he nnullno i denomintori. o lolre il denomintore omune e ridurre tutte le frzioni llo stesso denomintore omune o eliminre i denomintori omuni o risolvere l equzione inter ottenut o verifire se le soluzioni trovte pprtengono ll insieme di definizione. Esempio: Somporre in fttori i denomintori + ( )( + ) + Rier delle ondizioni di esistenz o insieme di definizione: porre i denomintori diversi d 0: + 0 e 0, ioè + Ridurre tutte le frzioni llo stesso denomintore ( + ) ( ) + ( )( + ) ( )( + ) ( )( + ) Elimre i denomintori omuni e risolvere l equzione + + ( ) ( ) l soluzione è ettile in qunto è divers d + e d -.

3 G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. Equzioni di seondo grdo Un'equzione di seondo grdo o qudrti, in un sol vriile oeffiienti reli, è rionduiile ll form normle on 0 Equzione inomplet pur: un'equzione di seondo grdo inomplet pur è dell form + 0. Si risolve nel seguente modo: + 0, ± Se > 0 l equzione mmette due soluzioni reli opposte. Se < 0 l equzione non mmette soluzioni reli, mmette due soluzioni immginrie. Se 0 l equzione si present nell form 0 ed h ome uni soluzione (doppi) 0 9 Esempio: 9 0, ± Equzione inomplet spuri: un'equzione spuri di seondo grdo è dell form + 0. Si risolve nel seguente modo: Rogliendo fttore omune l'equzione si srive ome ( + ) 0 Per l legge di nnullmento del prodotto le due soluzioni (reli) sono 0 e. 5 Esempio: 5 0 ( 5) 0 0, Equzione omplet: un'equzione omplet di seondo grdo si present nell form ± Si risolve per mezzo dell formul risolutiv, ± Se il oeffiiente è pri si può utilizzre nhe l formul ridott:, Se e è pri si può utilizzre l formul dett ridottissim, ± L quntità Δ si him disriminnte, seond del segno he ssume si h:. Δ > 0 due soluzioni reli distinte: Δ e + Δ. Δ 0 due soluzioni reli oinidenti:. Δ < 0 nessun soluzione rele, due soluzioni omplesse oniugte: i Δ e + i Δ

4 G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi Esempi: ± 5 5± 56 5± pplindo l formul risolutiv, le soluzioni sono Si può pplire l formul ridottissim, ± 9 5 ± ±, le soluzioni sono + 5. Relzioni fr i oeffiienti e le rdii di un equzione di grdo Dt un'equzione di seondo grdo + + 0, he h ome soluzioni e, fr le rdii e i oeffiienti,, sussistono le seguenti relzioni: Somm delle rdii: + Prodotto delle rdii: Pertnto un equzione di seondo grdo si può sempre srivere nell form S+ P 0, dove S è l somm delle soluzioni, P è il prodotto delle soluzioni: S +, P Altre relzioni Differenz delle rdii: Somm dei reiproi delle rdii: + Somm dei qudti delle rdii: + Somm dei reiproi dei qudrti delle rdii: + Somm dei ui delle rdii: + Somm dei reiproi dei ui delle rdii: + D queste relzioni disendono le seguenti proprietà: - Le rdii sono opposte se e solo se 0 - Le rdii sono reiprohe se e solo se - Le rdii sono ntireiprohe se e solo se - Un rdie è zero se e solo se 0 - Se Δ > 0, llor le rdii sono onordi se e solo se > 0, e sono disordi se e solo se < 0

5 G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi 5. Regol dei segni o regol di Crtesio (equzioni di grdo) Dt l equzione on Δ 0 ogni permnenz nei segni dei oeffiienti orrisponde un soluzione negtiv, ogni vrizione dei segni nei oeffiienti orrisponde un soluzione positiv. Più preismente: due permnenze, quindi due soluzioni negtive un permnenz e un vrizione: un soluzione negtiv, un positiv un vrizione e un permnenz: un soluzione positiv e un negtiv due vrizioni: due soluzioni positive 6. Somposizione di un trinomio di seondo grdo Dto un trinomio + +, e dette, le soluzioni dell'equzione + + 0, risult + + ( )( ) Esempio: Dto il trinomio Le soluzioni di sono 5 ± ±, ; Il trinomio si sompone ( + ) Equzioni prmetrihe (di grdo) Si diono equzioni prmetrihe le equzioni he ontengono, oltre ll inognit solitmente indit on l letter, nhe un o più lettere dette prmetri. Le soluzioni vrino seond dei vlori dei prmetri. Determinre le soluzioni qundo è ssegnto il vlore del prmetro. Esempio: k + ( k ) + k + 0, determinre le soluzioni per k- Svolgimento. Sostituire k il vlore ssegnto e risolvere l equzione ( ) + ( ) + 0 divent 0, le soluzioni sono ( + ) 0 0; Determinre il vlore del prmetro qundo è ssegnt un soluzione dell equzione. Esempio: k + ( k ) + k + 0, determinre k in modo he l equzione i soluzione 9. Svolgimento. Sostituire il vlore dell soluzione ll e risolvere l equzione nell inognit k 7 k9 + ( k ) 9 + k+ 0 8k+ 9k 8 + k+ 0 9k 7 k 9 Determinre il vlore del prmetro in modo he le soluzioni sino opposte Esempio: k + ( k ) + k + 0, determinre k in modo he Svolgimento. Imporre S0, l somm delle soluzioni null: k S k 0 k k Determinre il vlore del prmetri in modo he le soluzioni sino uguli Esempio: k + ( k ) + k + 0, determinre k in modo he Svolgimento. Imporre Δ 0 B AC 0 ( k) k ( k+ ) 0 ( ) k k k 6k 0 0k k dividendo per - 5k + 8k 0 k, ± 6+ 0 ± 6 k 0; k + Determinre il vlore del prmetro in modo he l somm delle soluzioni si un vlore 5

6 G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi numerio ssegnto. Esempio: k + ( k ) + k + 0, determinre k in modo he + k Svolgimento. Imporre S k k k k Determinre il vlore del prmetro in modo he il prodotto delle soluzioni si un vlore numerio ssegnto Esempio: k + ( k ) + k + 0, determinre k in modo he k+ Svolgimento. Imporre P k+ k k k Determinre il vlore del prmetro in modo he l equzione i rdii reli e distinte Esempio: ( k ) + k+ k+ 0, determinre k in modo he l equzione i due rdii reli e distinte. Svolgimento. Δ> 0 > 0 ( )( ) ( ) k k k+ > 0 k k k > 0 k k + k+ 8> 0 k+ 8> 0 k > Determinre il vlore del prmetro in modo he l somm dei reiproi delle soluzioni si un vlore numerio ssegnto. Esempio: ( k+ ) + k 0, determinre k in modo he + + S Svolgimento. + ; S k+ ; P k ; sostituendo si h: P k + k + k k k k Determinre il vlore del prmetro in modo he l somm dei qudrti delle rdii si un vlore numerio ssegnto. k+ + k 0, determinre k in modo he + Esempio: ( ) Svolgimento. ( ) + + S P ; riprendendo i vlori di S e di P k+ k k + k+ k k 0 k 0. ottenuti l punto preedente imo ( ) Anlisi dell esistenz in R e del segno delle rdii l vrire di un prmetro k+ k+ k 0 Esempio: ( ) ( )( ) Δ 0 k k+ k 0 k k+ 0 k 0 0 k 0 k 0 Δ 0 0 k 0 k - 0 so k<-/; Δ< 0 nessun rdie rele. so k-/; Δ 0 due rdii reli e oinidenti; vrizioni rdii positive. so -/<k<-; Δ> 0 rdii; vrizioni rdii positive. so k-; si nnull il oeffiiente di equzione di grdo rdie; positiv. 5 so -<k<0; Δ> 0 rdii; permnenz e vrizione rdie positiv e negtiv. 6 so k0; si nnull il oeffiiente di equzione inomplet pur rdii opposte. 7 so 0<k<; Δ> 0 rdii; vrizione e permnenz rdie positiv e negtiv. 8 so k; si nnull il termine noto equzione spuri rdie 0, rdie positiv. 6

7 G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi 9 so k>; Δ> 0 rdii; vrizioni rdii positive. 8. Equzioni rionduiili equzioni di seondo grdo Equzioni reiprohe, sono quelle in ui i oeffiienti dei termini equidistnti dgli estremi sono uguli due due oppure opposti due due. Esempi + 0, si nnull per -, on l regol di Ruffini si ss di grdo , si nnull si per, si per -, si può pplire due volte l regol di Ruffini. n Equzioni inomie, sono quelle he si possono srivere nell form + 0, on n intero positivo; le soluzioni sono ± n se n è pri n se n è dispri Purhé queste rdii esistno. Esempi 9 0 ± ( 9)( + 9) non h soluzioni reli n n n Equzioni trinomie, si presentno nell form + + 0, si risolvono sostituendo t, dll sostituzione si ottiene un equzione di grdo. Esempio: , questo tipo di equzione è nhe dett iqudrti, sostituendo t 6± 6 si h t 6t+ 8 0, he h per soluzioni t,, tenendo onto dell sostituzione ± si h ± Altre equzioni possono essere riondotte uno dei si preedenti on opportune sostituzioni. Esempio ( ) 8 0 si risolve sostituendo t, si ottiene t 8 0 t 8 t riordndo l sostituzione preedente si h. 9. Equzioni di terzo grdo Un'equzione di terzo grdo in form normle si present ome Affinhé l'equzione si effettivmente di terzo grdo deve risultre 0, dividendo quindi per l equzione si può srivere nell form so: se 0, mettendo in evidenz l'equzione divent ( + + ) 0. Pertnto un soluzione è 0, le ltre si trovno risolvendo l'equzione di seondo grdo so: se 0 (in tl so 0 non è soluzione), operndo il mimento di vriile 7

8 G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi y +, d ui y, l'equzione divent y y + y + y + y + y Eseguendo le somme si rriv y + y( ) Posto p e q +, l'equzione divent 7 y + py + q 0 () Nel seguito vedremo un metodo per risolvere l equzione (). p Operndo il mimento di vriile y z, l'equzione si risrive ome z p p p z pz + + pz + q 0 z 7z z Eseguendo le somme e moltiplindo mo i memri per 6 p z si rriv 0 p Ponendo t z, si trov un'equzione di seondo grdo t + qt 0 7 q q p le ui soluzioni sono t ± + 7 e riordndo l sostituzione t z z + qz 7 q q p z ± + 7 Riordndo le ltre sostituzioni effettute si rriv ll seguente formul risolutiv dell () not ome formul di Crdno q q p q q p y Per ottenere il vlore di st riordre he y q q p q q p Ponendo u + + e 7 7 srivere ome y u+ v u+ v uv y + i u+ v uv y i q p Il disriminnte dell equzione di grdo è Δ + 7 Se Δ> 0 l equzione h rdie rele e omplesse oniugte Se Δ 0 l equzione h rdii reli di ui oinidenti v +, le tre soluzioni dell equzione si possono 8

9 G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi Se Δ< 0 l equzione h rdii reli. 0. Equzioni di qurto grdo Un'equzione di qurto grdo in form normle si srive ome d + e 0, ltrimenti il grdo dell'equzione sree inferiore. on 0 so: se e 0 si può rogliere fttor omune, ottenendo ( d) 0, pertnto un soluzione è 0, le ltre tre si trovno risolvendo l'equzione di terzo grdo d 0. so: se e 0 llor 0 non è soluzione dell'equzione. Operndo il mio di vriile y l'equzione divent y + y + y + d y + e 0 Svolgendo i loli si riondue l'equzione quest form d d y + y y Ponendo A 6, d d B, C +, l'equzione si risrive nell form y + Ay By + C Aggiungendo A d mo i memri si ottiene, ll sinistr dell'ugule, un qudrto perfetto ( y + A) By + C + A Aggiungendo or w + Aw + wy (on w per il momento nor d determinre) si ottiene ( y + A + w) wy + By + w + Aw + A + C Seglimo w in modo he il memro di destr si un qudrto perfetto, per fr questo st lolrne il disriminnte rispetto y e porlo ugule zero B 8w( w + Aw + A + C) 0 Quest è un'equzione di terzo grdo oeffiienti reli, pertnto mmette (lmeno) un soluzione rele. Si D tle soluzione (rele), llor l'equzione di qurto grdo divent B ( y + A + D) D( y + ) D Estrendo l rdie qudrt si trovno due equzioni seondo grdo y B + A + D Dy + D D y A D B + + Dy D D Risolvendo tli equzioni si trovno quttro vlori di y, e riordndo he y si determinno le quttro soluzioni dell'equzione di prtenz. 9

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

8 Equazioni parametriche di II grado

8 Equazioni parametriche di II grado Equzioni prmetrihe di II grdo Un equzione he oltre ll inognit (o lle inognite) ontiene ltre lettere (un o più) si die letterri o prmetri e le lettere sono himte, nhe, prmetri; si suppong he l equzione

Dettagli

Lezione 7: Rette e piani nello spazio

Lezione 7: Rette e piani nello spazio Lezione 7: Rette e pini nello spzio In quest lezione i metteremo in un riferimento rtesino ortonormle dello spzio. I primi oggetti geometrii he individuimo sono le rette e i pini. Per qunto rigurd le rette

Dettagli

2^ Lezione. Equazioni di 1. Equazioni di 2. Equazioni fattoriali. Equazioni biquadratiche. Equazioni binomie. Equazioni fratte. Allegato Esercizi.

2^ Lezione. Equazioni di 1. Equazioni di 2. Equazioni fattoriali. Equazioni biquadratiche. Equazioni binomie. Equazioni fratte. Allegato Esercizi. Corso di Anli Alger di Bse ^ Lezione Equzioni di. Equzioni di. Equzioni fttorili. Equzioni iqudrtihe. Equzioni inomie. Equzioni frtte. Allegto Eserizi. EQUAZIONI ALGEBRICHE EQUAZIONI DI GRADO Con il termine

Dettagli

FUNZIONI MATEMATICHE. Una funzione lineare è del tipo:

FUNZIONI MATEMATICHE. Una funzione lineare è del tipo: FUNZIONI MATEMATICHE Le relzioni mtemtihe utilizzte per desrivere fenomeni nturli, in iologi ome in ltre sienze, possono ovvimente essere le più svrite. Per lo più si trtt di equzioni lineri, qudrtihe,

Dettagli

VERIFICA DI UN CIRCUITO RESISTIVO CONTENENTE PIÙ GENERATORI CON UN TERMINALE COMUNE E SENZA TERMINALE COMUNE.

VERIFICA DI UN CIRCUITO RESISTIVO CONTENENTE PIÙ GENERATORI CON UN TERMINALE COMUNE E SENZA TERMINALE COMUNE. FCA D UN CCUTO SSTO CONTNNT PÙ GNATO CON UN TMNAL COMUN SNZA TMNAL COMUN. Si verifino quttro iruiti on due genertori: genertori on polrità onorde e un terminle omune genertori on polrità disorde e un terminle

Dettagli

Le equazioni di grado superiore al secondo

Le equazioni di grado superiore al secondo Le equzioni di grdo superiore l secondo ITIS Feltrinelli nno scolstico 007-008 R. Folgieri 007-008 1 Teorem fondmentle dell lger Ogni equzione lgeric di grdo n h sempre n soluzioni, che possono essere

Dettagli

] + [ ] [ ] def. ] e [ ], si ha subito:

] + [ ] [ ] def. ] e [ ], si ha subito: OPE OPERAZIONI BINARIE Definizione di operzione inri Dto un insieme A non vuoto, si him operzione (inri) su A ogni pplizione di A in A In generle, un'operzione su A viene indit on il simolo Se (x, y) è

Dettagli

a è detta PARTE LETTERALE

a è detta PARTE LETTERALE I MONOMI Si die MONOMIO un espressione letterle in ui le unihe operzioni presenti sino il prodotto e l divisione. Esempio è detto COEFFICIENTE del monomio e è dett PARTE LETTERALE Un monomio si die ridotto

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

I PRODOTTI NOTEVOLI. Nel calcolo letterale capita spesso di incontrare moltiplicazioni tra particolari polinomi.

I PRODOTTI NOTEVOLI. Nel calcolo letterale capita spesso di incontrare moltiplicazioni tra particolari polinomi. I PRODOTTI NOTEVOLI Nel lolo letterle pit spesso di inontrre moltiplizioni tr prtiolri polinomi. I reltivi sviluppi si ottengono pplindo le regole fin qui viste, m i risultti, opportunmente semplifiti,

Dettagli

A.A.2009/10 Fisica 1 1

A.A.2009/10 Fisica 1 1 Mhine termihe e frigoriferi Un mhin termi è un mhin he, grzie un sequenz i trsformzioni termoinmihe i un t sostnz, proue lvoro he può essere utilizzto. Un mhin solitmente lvor su i un ilo i trsformzioni

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

COMBINAZIONI DI CARICO SOLAI

COMBINAZIONI DI CARICO SOLAI COMBINAZIONI DI CARICO SOLAI (ppunti di Mrio Zfonte in fse di elorzione) Ai fini delle verifihe degli stti limite, seondo unto indito dll normtiv, in generle le ondizioni di rio d onsiderre, sono uelle

Dettagli

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE Eserizi dell lezione sull Geomeri Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ES ERCIZI SULL' IPERBOLE ESERCIZI SULLA CIRCONFERENZA. Determinre l equzione dell ironferenz

Dettagli

Formule di Gauss Green

Formule di Gauss Green Formule di Guss Green In queste lezioni voglimo studire il legme esistente tr integrli in domini bidimensionli ed integrli urvilinei sull frontier di questi. In seguito i ouperemo del problem nlogo nello

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI ESPONENZIALI E LOGARITMI 1 se 0, per ogni R ; Teori in sintesi ESPONENZIALI Potenze con esponente rele L potenz è definit: se >0: Sono definite: se >0: Non sono definite: Csi prticolri: Le proprietà delle

Dettagli

Salvatore Loris Pelella. Corso di. Matematica RCS LIBRI EDUCATION SPA

Salvatore Loris Pelella. Corso di. Matematica RCS LIBRI EDUCATION SPA Slvtore Loris Pelell Corso di Mtemtic RCS LIBRI EDUCATION SPA ISBN 88-45-084-3 004 RCS Libri S.p.A.- Milno Prim edizione: gennio 004 Ristmpe 004 005 006 3 4 5 Stmp: V. Bon, Torino Coordinmento editorile

Dettagli

U.D.1:ripetizione. U.D.1: piano cartesiano. U.D.2 :La retta. U. D.3 : I sistemi. U.D.1: Le equazioni fratte U.D.1:Disequazioni di primo grado

U.D.1:ripetizione. U.D.1: piano cartesiano. U.D.2 :La retta. U. D.3 : I sistemi. U.D.1: Le equazioni fratte U.D.1:Disequazioni di primo grado U.D.1:ripetizione U.D.1: pino rtesino U.D.2 :L rett U. D.3 : I sistemi U.D.1: Le equzioni frtte U.D.1:Disequzioni di primo grdo Istituzione Solsti MARGHERITA DI SAVOIA Anno Solstio 2014/15 CLASSE II B

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

Teoria in sintesi ESPONENZIALI. Potenze con esponente reale. La potenza. Sono definite: Non sono definite: Casi particolari :

Teoria in sintesi ESPONENZIALI. Potenze con esponente reale. La potenza. Sono definite: Non sono definite: Casi particolari : Teori in sintesi ESPONENZIALI Potenze con esponente rele L potenz è definit: se >, per ogni R se, per tutti e soli gli R se

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stbilità dei sistemi di controllo in retrozione Criterio di Nyquist Il criterio di Nyquist Estensione G (s) con gudgno vribile Appliczione sistemi con retrozione positiv 2 Criterio di Nyquist Stbilità

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione RELAZIONI E FUNZIONI Relzioni inrie Dti ue insiemi non vuoti e (he possono eventulmente oiniere), si ie relzione tr e un qulsisi legge he ssoi elementi elementi. L insieme A è etto insieme i prtenz. L

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ ELEMENTI DI CALCOLO ALGEBRICO Test di utovlutzione 0 0 0 0 0 0 60 0 80 90 00 n Il mio punteggio, in entesimi, è n Rispondi ogni quesito segnndo un sol delle lterntive. n Confront le tue risposte

Dettagli

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003 Liceo Scientifico Sperimentle nno - Problem Bernrdo Pedone ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI nno - PROBLEMA Nel pino sono dti: il cerchio γ di dimetro OA =, l rett t tngente γ

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico

Dettagli

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO L RLZIONI L FUNZIONI serizi in più SRIZI IN PIÙ SRIZI I FIN PITOLO TST Nell insieme ell figur, l relzione rppresentt goe ell o elle proprietà: TST L relzione «essere isenente i», efinit nell insieme egli

Dettagli

Risoluzione. dei triangoli. e dei poligoni

Risoluzione. dei triangoli. e dei poligoni UNITÀ Risoluzione dei tringoli e dei poligoni TEORI Relzioni tr lti e ngoli di un tringolo qulunque (sleno) riteri per risolvere i tringoli qulunque 3 re dei tringoli 4 erhi notevoli dei tringoli 5 ltezze,

Dettagli

TEORIA DELLA PROBABILITÀ II

TEORIA DELLA PROBABILITÀ II TEORIA DELLA PROBABILITÀ II Diprtimento di Mtemti ITIS V.Volterr Sn Donà di Pive Versione [14-15] Indie 1 Clolo omintorio 1 1.1 Introduzione............................................ 1 1.2 Permutzioni...........................................

Dettagli

ESERCIZI ESERCIZI. Test di autoverifica... 206 Prova strutturata conclusiva... 208 ESERCIZI

ESERCIZI ESERCIZI. Test di autoverifica... 206 Prova strutturata conclusiva... 208 ESERCIZI Indice cpitolo Insiemi ed elementi di logic... 7 8 Insiemi... Operzioni con gli insiemi... 8 Introduzione ll logic... 9 Connettivi e tvole di verità... Espressioni proposizionli... 0 Predicti e quntifictori...

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

Equazioni di primo grado

Equazioni di primo grado Cpitolo Equzioni i primo gro Equzioni i primo gro erifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

Numeri razionali COGNOME... NOME... Classe... Data...

Numeri razionali COGNOME... NOME... Classe... Data... I numeri rzionli Cpitolo Numeri rzionli Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

Il lemma di ricoprimento di Vitali

Il lemma di ricoprimento di Vitali Il lemm di ricoprimento di Vitli Si I = {I} un fmigli di intervlli ciusi contenuti in R. Diremo ce l fmigli I ricopre l insieme E nel senso di Vitli (oppure ce I è un ricoprimento di Vitli di E) se per

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA Nel pino sono dti: il cerchio di dimetro OA,

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone 3 Questionrio Quesito 1 Provre che un sfer è equivlente i /3 del cilindro circoscritto. r 4 3 Il volume dell sfer è 3 r Il volume del cilindro

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2005 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2005 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 005 Sessione suppletiv Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PROBLEMA Sono dti un pirmide

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemtic clsse quint -Gli integrli Quest oper è distriuit con: Licenz Cretive Commons Attriuzione - Non commercile - Non opere derivte. Itli Ing. Alessndro Pochì Appunti di lezione svolti ll

Dettagli

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna verso LA RILEVAZIONE INVALSI SCUOLA SECONDARIA DI secondo GRADO PROVA DI Mtemtic 30 quesiti Febbrio 0 Scuol... Clsse... Alunno... e b sono numeri reli che verificno quest uguglinz: Qunto vle il loro prodotto?

Dettagli

Introduzione all algebra

Introduzione all algebra Introduzione ll lgebr E. Modic ersmo@glois.it Liceo Scientifico Sttle S. Cnnizzro Corso P.O.N. Modelli mtemtici e reltà A.S. 2010/2011 Premess Codificre e Decodificre Nell vit quotidin ci cpit spesso di

Dettagli

L IPERBOLE. L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi.

L IPERBOLE. L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi. prof.ss Cterin Vespi 1 Appunti di geometri nliti L IPERBOLE L iperole è il luogo geometrio dei punti del pino per i quli è ostnte l differenz delle distnze d due punti fissi detti fuohi. Sino F1 e F i

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI ESPONENZIALI E LOGARITMI RICHIAMI DI TEORIA dom f Im f grfico Funzioni esponenzili y=^ con > Funzioni esponenzili y=^ con

Dettagli

( X, Y ) che danno un livello costante di utilità (curva di livello). Fissando per esempio il valore U 0 per

( X, Y ) che danno un livello costante di utilità (curva di livello). Fissando per esempio il valore U 0 per Funzioni di utilità (finlmente un po di geroglifici, dopo i grffiti) NB: non fte leggere queste pgine un mtemtico, ltrimenti mi msscr!. Definizione e proprietà Considerimo due eni e di interesse per un

Dettagli

Disequazioni di primo grado

Disequazioni di primo grado Cpitolo Disequzioni i primo gro Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

Monomi e polinomi. Verifica per la classe prima COGNOME... NOME... Classe... Data...

Monomi e polinomi. Verifica per la classe prima COGNOME... NOME... Classe... Data... Cpitolo Monomi e polinomi Monomi Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Le grandezze scalari e le grandezze vettoriali

Le grandezze scalari e le grandezze vettoriali VETTORI I VETTORI DEL PINO Le grndezze slri e le grndezze ettorili Esistono grndezze determinte dl nmero he le misr rispetto n prefisst nità, ome per esempio l lnghezz, l re, il olme, il tempo Qeste grndezze

Dettagli

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia COME SOPRAVVIVERE ALLA MATEMATICA di Giuli Cnzin e Dominique Cppelletti Come potrete notre inoltrndovi nel corso di Introduzione ll economi, l interpretzione dell teori economic non presuppone conoscenze

Dettagli

RADICALI. Q (insieme dei razionali relativi) = numeri che possono essere messi sotto forma di frazioni es: 0,+3;

RADICALI. Q (insieme dei razionali relativi) = numeri che possono essere messi sotto forma di frazioni es: 0,+3; RADICALI In quest sched ti vengono riproposti lcuni concetti ed esercizi che ti dovreero essere fmiliri e che sono indispensili per ffrontre con successo gli studi futuri. INSIEMI NUMERICI Ripsso insiemi

Dettagli

+ t v. v 3. x = p + tv, t R. + t. 3 2 e passante per il punto p =

+ t v. v 3. x = p + tv, t R. + t. 3 2 e passante per il punto p = 5. Rette e piani in R 3 ; sfere. In questo paragrafo studiamo le rette, i piani e le sfere in R 3. Ci sono due modi per desrivere piani e rette in R 3 : mediante equazioni artesiane oppure mediante equazioni

Dettagli

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x)

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x) Nome.Cognome Clsse D 7 Aprile 0 Verific di mtemtic Problem (punti ) Sono dte le funzioni: f ( ) =, g ( ) = ( ) ) determinre il dominio di f() e di g() b) determinre, senz l uso dell clcoltrice f ( ) c)

Dettagli

Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti

Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti Problemi di mssimo e minimo in Geometri olid Problemi su poliedri Indice dei problemi risolti In generle, un problem si riferisce un figur con crtteristice specifice (p.es., il numero dei lti dell bse)

Dettagli

a con base a maggiore di 1 Dominio Codominio Crescenza/decrescenza Funz Crescente in Concavità/convessità Strettamente convessa in

a con base a maggiore di 1 Dominio Codominio Crescenza/decrescenza Funz Crescente in Concavità/convessità Strettamente convessa in Funzione esponenzile Dto un numero rele >0, l funzione si chim funzione esponenzile di bse e f prte dell fmigli delle funzioni elementri. Il suo ndmento (crescenz o decrescenz) è strettmente legto l vlore

Dettagli

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli:

Acidi Deboli. Si definisce acido debole un acido con K a < 1 che risulta perciò solo parzialmente dissociato in soluzione. Esempi di acidi deboli: Acidi Deboli Si definisce cido debole un cido con < 1 che risult perciò solo przilmente dissocito in soluzione. Esempi di cidi deboli: Acido cetico (H OOH) 1.75 1-5 Acido scorbico (vitmin ) 1 6.76 1-5.5

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

Il dominio della funzione, cioè l'insieme dei valori che si possono attribuire a x è tutto R ;

Il dominio della funzione, cioè l'insieme dei valori che si possono attribuire a x è tutto R ; CAPITOLO ESPONENZIALI E LOGARITMI ESPONENZIALI Teori in sintesi Potenze con esponente rele L potenz è definit: se > 0, per ogni R se 0, per tutti e soli gli R se < 0, per tutti e soli gli Z. + Sono definite:

Dettagli

CONDUTTANZA ELETTRICA DI UN ELETTROLITA IN SOLUZIONE (TEORIA)

CONDUTTANZA ELETTRICA DI UN ELETTROLITA IN SOLUZIONE (TEORIA) CONDUTTANZA ELETTICA DI UN ELETTOLITA IN SOLUZIONE (TEOIA) Se si ppli un differenz di potenzile elettrio fr due elettrodi iersi in un soluzione ioni, si verifi un igrzione risultnte di ioni in direzione

Dettagli

Equivalenza tra equazioni di Lagrange e problemi variazionali

Equivalenza tra equazioni di Lagrange e problemi variazionali Equivlenz tr equzioni di Lgrnge e problemi AM Cherubini 20 Aprile 2007 1 / 21 Problemi Mostrimo or come si possono ricvre sistemi di equzioni con struttur lgrngin in un mbito diverso: prim si er crtterizzt

Dettagli

Definizioni fondamentali

Definizioni fondamentali Definizioni fondmentli Sistem scisse su un rett 1 Un rett si ce orientt qundo su ess è fissto un verso percorrenz Dti due punti qulsisi A e B un rett orientt r, il segmento AB che può essere percorso d

Dettagli

Elettronica dei Sistemi Digitali Il test nei sistemi elettronici: guasti catastrofici e modelli di guasto (parte I)

Elettronica dei Sistemi Digitali Il test nei sistemi elettronici: guasti catastrofici e modelli di guasto (parte I) Elettronic dei Sistemi Digitli Il test nei sistemi elettronici: gusti ctstrofici e modelli di gusto (prte I) Vlentino Lierli Diprtimento di Tecnologie dell Informzione Università di Milno, 26013 Crem e-mil:

Dettagli

Massimo Bergamini Anna Trifone Graziella Barozzi. Matematica.blu 2.0. Riesci a ottenere 3 quadrati congruenti spostando solo

Massimo Bergamini Anna Trifone Graziella Barozzi. Matematica.blu 2.0. Riesci a ottenere 3 quadrati congruenti spostando solo 3 Mssimo Bergmini Ann Trifone Grziell Brozzi Mtemtic.lu.0 Riesci ottenere 3 qudrti congruenti spostndo solo 4 feri? Vlore ssoluto (modulo) = se $ 0 - se 1 0 Formule di lger Equzioni e disequzioni con il

Dettagli

EQUAZIONI ESPONENZIALI -- LOGARITMI

EQUAZIONI ESPONENZIALI -- LOGARITMI Equzioi espoezili e riti pg 1 Adolfo Sioe 1998 EQUAZIONI ESPONENZIALI -- LOGARITMI Fuzioe Espoezile Dto u uero rele positivo osiderio l fuzioe f : R R he d ogi eleeto R f orrispodere l'eleeto y =. Se =

Dettagli

Momento di una forza rispettto ad un punto

Momento di una forza rispettto ad un punto Momento di un fo ispettto d un punto Rihimimo lune delle definiioni e popietà sui vettoi già disusse ll iniio del oso Podotto vettoile: ϑ ϑ sin sin θ Il vettoe è dietto lungo l pependiole l pino individuto

Dettagli

T16 Protocolli di trasmissione

T16 Protocolli di trasmissione T16 Protoolli di trsmissione T16.1 Cos indi il throughput di un ollegmento TD?.. T16.2 Quli tr le seguenti rtteristihe dei protoolli di tipo COP inidono direttmente sul vlore del throughput? Impossiilità

Dettagli

Misura degli archi e degli angoli

Misura degli archi e degli angoli Misur degli rhi e degli ngoli. Si definise ome positivo il verso ntiorrio di perorrenz di un ironferenz; ome negtivo il verso orrio.. Fissto su un ironferenz un punto A ome origine e un punto B ome estremo

Dettagli

Il modello relazionale. Il Modello Relazionale. Il modello relazionale. Relazione. Dominio. Esempio

Il modello relazionale. Il Modello Relazionale. Il modello relazionale. Relazione. Dominio. Esempio Il Moello elzionle Proposto E. F. o nel 1970 per vorire l inipenenz ei ti e reso isponiile ome moello logio in DM reli nel 1981 si s sul onetto mtemtio i relzione, questo ornise l moello un se teori he

Dettagli

Equazioni parametriche di primo grado

Equazioni parametriche di primo grado Polo Sivigli Equzioni prmetriche di primo grdo Premess Come si s dll lgebr elementre, si chim equzione un uguglinz fr due espressioni letterli che si verific soltnto ttribuendo prticolri vlori lle lettere,

Dettagli

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes I Teoremi di Green, dell divergenz o di Guss e di Stokes In R Si un sottoinsieme limitto di R semplice rispetto d entrmbi gli ssi crtesini con costituit dll unione di un numero finito di sostegni di curve

Dettagli

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA Nome.Cognome. 8 Dicembre 008 Clsse G VERIFICA di MATEMATICA A) Risolvi le seguenti disequzioni goniometriche sin ) sin + ) 0 6 tn cos + sin ) 0 (punti:0,5) ) tn + tn > 0 sin 5) sin > cos (punti: ) 6) sin

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequzioni i seono gro Cpitolo Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez.

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez. Fcoltà di Economi - Università di Sssri Anno Accdemico 2004-2005 Dispense Corso di Econometri Docente: Lucino Gutierrez Algebr Linere Progrmm: 1.1 Definizione di mtrice e vettore 1.2 Addizione e sottrzione

Dettagli

Integrali curvilinei e integrali doppi

Integrali curvilinei e integrali doppi Integrli curvilinei e integrli doppi Integrli curvilinei di prim specie Prim di inizire l trttzione di questo rgomento dimo l definizione di curv. Per curv nello 3 3 spzio R intendimo un sottoinsieme di

Dettagli

Figura 2.1. A sottoinsieme di B

Figura 2.1. A sottoinsieme di B G Sammito, ernardo, Formulario di matematia Insiemi F Cimolin, L arletta, L Lussardi Insiemi Generalità Un insieme è una ollezione distinguibile di oggetti, detti elementi dell'insieme Quando un elemento

Dettagli

TEORIA ELEMENTARE DEL PROBLEMA DI CAUCHY

TEORIA ELEMENTARE DEL PROBLEMA DI CAUCHY TEORIA ELEMENTARE DEL PROBLEMA DI CAUCHY DANIELE ANDREUCCI DIP. METODI E MODELLI, UNIVERSITÀ LA SAPIENZA VIA A.SCARPA 16, 00161 ROMA, ITALY ndreucci@dmmm.unirom1.it 1. Notzione fondmentle e prime definizioni

Dettagli

1) In una equazione differenziale del tipo y (t)=a y(t), con a > 0, il tempo di raddoppio, cioè il tempo T tale che y(t+t)=2y(t) è:

1) In una equazione differenziale del tipo y (t)=a y(t), con a > 0, il tempo di raddoppio, cioè il tempo T tale che y(t+t)=2y(t) è: 1) In un equzione differenzile del tipo y (t)= y(t), con > 0, il tempo di rddoppio, cioè il tempo T tle che y(t+t)=y(t) è: A) T = B) 1 T = log e C) 1 T = log e ** D) 1 T = E) T = log e ) L equzione differenzile

Dettagli

La statistica nei test Invalsi

La statistica nei test Invalsi L sttisti nei test Invlsi 1) Osserv il grfio seguente he rppresent l distriuzione perentule di fmiglie per numero di omponenti, in se l ensimento 2001.. Qul è l perentule di fmiglie on 2 omponenti? Rispost:..%.

Dettagli

Studio di funzione. Pertanto nello studio di tali funzioni si esamino:

Studio di funzione. Pertanto nello studio di tali funzioni si esamino: Prof. Emnul ANDRISANI Studio di funzion Funzioni rzionli intr n n o... n n Crttristich: sono funzioni continu drivbili in tutto il cmpo rl D R quindi non sistono sintoti vrticli D R quindi non sistono

Dettagli

PARABOLA. La parabola è il luogo dei punti del piano, e solo essi, equidistanti da un punto F detto fuoco e da una retta detta direttrice.

PARABOLA. La parabola è il luogo dei punti del piano, e solo essi, equidistanti da un punto F detto fuoco e da una retta detta direttrice. Prof I Svoi CME LUG GEMETRIC L prol è il luogo dei punti del pino, e solo essi, equidistnti d un punto F detto fuoo e d un rett dett direttrie Per omodità di rppresentzione seglimo l'origine equidistnte

Dettagli

Appunti di Analisi matematica 1. Paolo Acquistapace

Appunti di Analisi matematica 1. Paolo Acquistapace Appunti di Anlisi mtemtic Polo Acquistpce 23 febbrio 205 Indice Numeri 4. Alfbeto greco................................. 4.2 Insiemi..................................... 4.3 Funzioni....................................

Dettagli

Geometria analitica +l piano cartesiano Le funzioni retta, parabola, iperbole Le trasformazioni sul piano cartesiano

Geometria analitica +l piano cartesiano Le funzioni retta, parabola, iperbole Le trasformazioni sul piano cartesiano Geometri nliti +l pino rtesino Le funzioni rett, prol, iperole Le trsformzioni sul pino rtesino SEZ. P +l pino rtesino Osserv le oorinte ei seguenti punti: (, 0), (, ), C(, +), D + +, E(+, 9)., Che os

Dettagli

Il modello relazionale. Il Modello Relazionale. Il modello relazionale. Relazione. Dominio. Esempio

Il modello relazionale. Il Modello Relazionale. Il modello relazionale. Relazione. Dominio. Esempio Il Moello elzionle Proposto E. F. o nel 1970 per vorire l inipenenz ei ti e reso isponiile ome moello logio in DM reli nel 1981 si s sul onetto mtemtio i relzione, questo ornise l moello un se teori he

Dettagli

PRODOTTI NOTEVOLI. Esempi

PRODOTTI NOTEVOLI. Esempi PRODOTTI NOTEVOLI In lger ci sono delle regole per eseguire in modo più reve e più veloce l moltipliczione tr prticolri polinomi. Queste regole (o meglio formule si chimno prodotti notevoli. Anlizzimo

Dettagli

Università degli studi di Cagliari CORSO ANALISI II A.A. 2007/2008. Rappresentazione delle CONICHE e QUADRICHE

Università degli studi di Cagliari CORSO ANALISI II A.A. 2007/2008. Rappresentazione delle CONICHE e QUADRICHE Università degli studi di Cgliri CORSO ANALISI II A.A. 007/008 Rppresentzione delle CONICHE e QUADRICHE Rppresentzione delle CONICHE Generlità Si definiscono coniche le curve pine risultto dell intersezione

Dettagli

F (r(t)), d dt r(t) dt

F (r(t)), d dt r(t) dt Cmpi vettorili Un cmpo vettorile è un funzione vlori vettorili F : A R, con A R n, ove in questo cso l imensione el ominio e el coominio è l stess. F ( 1, 2,..., n ) (f 1 ( 1, 2,..., n ), f 2 ( 1, 2,...,

Dettagli

Equazioni e disequazioni

Equazioni e disequazioni Cpitolo Equzioni e disequzioni.1 Princìpi di equivlenz 1. Sommndo o sottrendo l stess quntità d entrmbi i membri di un equzione o di un disequzione ess non cmbi, ovvero: A(x) B(x) A(x) k(x) B(x) k(x).

Dettagli

Componenti per l elaborazione binaria dell informazione. Sommario. Sommario. Approfondimento del corso di reti logiche. M. Favalli.

Componenti per l elaborazione binaria dell informazione. Sommario. Sommario. Approfondimento del corso di reti logiche. M. Favalli. Sommrio Componenti per l elorzione inri ell informzione Approfonimento el orso i reti logihe M. Fvlli Engineering Deprtment in Ferrr Porte logihe 2 Il livello swith 3 Aspetti tenologii 4 Reti logihe omintorie

Dettagli

Appunti di Analisi Matematica 1

Appunti di Analisi Matematica 1 Appunti di Anlisi Mtemtic 1 MASTER IN ECONOMIA DIGITALE & e-business Centro per lo studio dei sistemi complessi Università di Sien Mrzo 2005 Prof. Polo Nistri Un funzione (o ppliczione) tr due insiemi

Dettagli

Febbraio 2014. PROGETTO: Studio di Architettura e Urbanistica Dott. Arch. Guido Leoni Via Affò, 4 - Parma - tel. 0521.233423

Febbraio 2014. PROGETTO: Studio di Architettura e Urbanistica Dott. Arch. Guido Leoni Via Affò, 4 - Parma - tel. 0521.233423 Comune di Poviglio Provinci di Reggio Emili Relzione illustrtiv dell Delierzione Consilire di pprovzione, dei coefficienti e prmetri di conversione che ssicurno l equivlenz tr le definizioni e le modlità

Dettagli

LEZIONE 20. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione

LEZIONE 20. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione LEZIONE 20 20.1. Prodotti sclri. Definizione 20.1.1. Si V uno spzio vettorile su R. Un prodotto sclre su V è un ppliczione tle che:, : V V R (v 1, v 2 ) v 1, v 2 (PS1) per ogni v 1, v 2 V si h v 1, v 2

Dettagli

ESERCIZI SUI PRODOTTI NOTEVOLI. ESERCIZI SUL M.C.D. E m.c.m. ESERCIZI SUL RACCOGLIMENTO A FATTOR COMUNE ERCIZI SURUFFINI

ESERCIZI SUI PRODOTTI NOTEVOLI. ESERCIZI SUL M.C.D. E m.c.m. ESERCIZI SUL RACCOGLIMENTO A FATTOR COMUNE ERCIZI SURUFFINI Esercii dell leione di Alger di se ESERCIZI SUI PRODOTTI NOTEVOLI ESERCIZI SUL M.C.D. E m.c.m. ESERCIZI SUL RACCOGLIMENTO A FATTOR COMUNE ES ES ERCIZI SURUFFINI ERCIZI SULLE SEMPLIFICAZIONI DI FRAZIONI

Dettagli

SOLUZIONE PROBLEMI Insegnamento di Fisica dell Atmosfera Seconda prova in itinere

SOLUZIONE PROBLEMI Insegnamento di Fisica dell Atmosfera Seconda prova in itinere Doente: rof Dino Zri serittore: in lessio Bertò OLUZION PROBLMI Insenento i Fisi ell tosfer eon rov in itinere /3 Vlori elle ostnti Rio terrestre eio: 637 Rio solre eio: 7 5 Distnz ei terr-sole : 9 6 Vlore

Dettagli

Anno 1. Numeri reali: proprietà e applicazioni di uso comune

Anno 1. Numeri reali: proprietà e applicazioni di uso comune Anno Numeri reli: proprietà e ppliczioni di uso comune Introduzione L insieme dei numeri rzionli è composto d numeri che si ottengono dl rpporto tr due numeri interi. Tle rpporto, o frzione, è sempre ssociile

Dettagli

Macchine elettriche in corrente continua

Macchine elettriche in corrente continua cchine elettriche in corrente continu Generlità Può essere definit mcchin un dispositivo che convert energi d un form un ltr. Le mcchine elettriche in prticolre convertono energi elettric in energi meccnic

Dettagli

ELEMENTI GEOMETRIA ANALITICA SABO

ELEMENTI GEOMETRIA ANALITICA SABO ELEMENTI DI GEOMETRIA ANALITICA SABO COORDINATE CARTESIANE Ascisse dei Punti di un Rett Dt un rett orientt (verso di percorrenz positivo d sinistr verso destr per rette orizzontli; dl sso verso l lto per

Dettagli