Il metodo di Gauss-Newton per le regressioni non-lineari

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Il metodo di Gauss-Newton per le regressioni non-lineari"

Transcript

1 Il metodo di Gauss-Newton per le regressioni non-lineari Andrea Onofri Dipartimento di Scienze Agrarie ed Ambientali Università degli Studi di Perugia Versione on-line: onofri/rtutorial/index.html Sviluppo del metodo iterativo L algoritmo di Gauss-Newton è basato sull espansione in serie di Taylor; in breve, il principio è che ogni funzione f(x) derivabile nel punto x 0 e che ammetta derivate fino all ordine n- in un intervallo che contiene il punto x 0 può essere approssimata con un polinomio P(x), di grado minore o uguale ad n- e definito da: P (x) f(x 0 ) + f (x 0 )(x x 0 ) + f (x 0 )(x x 0 ) f n (x 0 )(x x 0 ) Nel punto x 0 P(x) assume lo stesso valore della funzione f(x), mentre per x diverso da x 0 esso approssima solamente il valore reale della f(x). In parole più semplici e fermando l espansione alla derivata prima, posso dire che se ho una funzione f(x) derivabile in un punto x 0 e della quale conosco f(x 0 ), posso utilizzare la retta tangente alla funzione in x 0 per ottenere valori approssimati per f(x) in un intorno di x 0, il che è utile, se la f è complessa. Lo sviluppo di Taylor può trovare applicazione nelle regressioni non lineari. Infatti, immaginiamo di avere due osservazioni sperimentali, con: X Y Immaginiamo di voler descrivere il vettore Y con una funzione del tipo: Y exp(θ X) Nello spazio a due dimensioni (R 2 ), il problema può essere posto come in figura : il punto Y rappresenta la risposta osservata, mentre la risposta attesa giace sulla curva E(Y), ottenuta assegnando al parametro θ i valori possibili E(Y) g(θ): exp(θ 0.5) E(Y ) exp(θ 5.5)

2 SVILUPPO DEL METODO ITERATIVO 2 Figura : Geometria delle regressioni non-lineari Trovare la risposta attesa E(Y) equivale a trovare il punto della curva più vicino ad Y, minimizzando quindi lo scostamento ɛ. Tuttavia, a differenza del caso lineare, la superficie dove giace la risposta attesa è curva, non lineare (gli incrementi sono più grandi al crescere di θ) e, talvolta (non in questo caso) la superficie è finita. Insomma, il problema della minimizzazione di ɛ non può essere sempre risolto direttamente in modo banale, come nel caso lineare. Possiamo quindi sfruttare le serie di Taylor, ed approssimare la g(θ) tramite la sua derivata prima g (θ). Il metodo è iterativo e si sviluppa in questo modo. PRIMA ITERAZIONE - Fissiamo un valore iniziale verosimile per θ (ad esempio θ 0). 2 - Tracciamo la derivata prima di g(θ) nel punto θ 0. In figura 2, la retta passa per il punto g(θ) e per il punto V, individuato da:

3 SVILUPPO DEL METODO ITERATIVO 3 g(θ ) exp(0 0.5) exp(0 2.5) V dexp(θ 0.5) dexp(θ 2.5) Figura 2: Linearizzazione della regressione 3 - Spostiamo l origine degli assi in corrispondenza del punto g(θ) ed otteniamo quindi il punto Y definito come: Y La distanza al quadrato di Y dall origine degli assi è pari a Y T Y.09

4 SVILUPPO DEL METODO ITERATIVO 4 che rappresenta la devianza del residuo del modello non-lineare in questa prima iterazione. Ora il problema è posto in forma lineare: si tratta di trovare il punto della retta g (θ) più vicino a Y, cosa che può essere fatta con le usuali metodiche (approssimazione lineare): β (V T V ) V T Y Il valore di β indica di quanto ci dobbiamo spostare lungo la retta tangente (cioè quanto dobbiamo aggiungere o togliere a θ) per trovare il punto più vicino ad Y. Siccome la retta approssima il valore di g(θ), se poniamo θ2 θ + β otteniamo una nuova stima di θ che ci porta più vicini di prima al valore ricercato. Possiamo quindi procedere ad una nuova iterazione. SECONDA ITERAZIONE - Fissiamo θ Individuiamo la derivata prima, generata da: exp( ) g(θ 2 ) exp( ) V dexp(θ2 0.5) dexp(θ 2 2.5) Spostiamo l origine degli assi in corrispondenza del punto g(θ2) ed otteniamo il punto Y 2 : Y La devianza del residuo in questa seconda iterazione è pari a Y T 2 Y Calcoliamo ora un nuovo incremento e quindi un nuovo valore di θ: β (V T V ) V T Y θ Proseguendo nelle iterazioni otteniamo i valori di θ e di devianza riportati in tabella.

5 2 PER APPROFONDIMENTI 5 Iterazione RSS θ Alla sesta iterazione la variazione del valore di θ diviene trascurabile così come quella della devianza residua. Di conseguenza il processo iterativo può essere arrestato, considerando di aver raggiunto la convergenza. 2 Per approfondimenti BATES DM, WATTS DG (988). Nonlinear Regression Analysis and Its Applications. John Wiley & Sons, Inc., New York.

Stima dei parametri nei modelli non-lineari

Stima dei parametri nei modelli non-lineari Stima dei parametri nei modelli non-lineari Indice Introduzione................................ 1 Approssimazione locale.......................... 2 Linearizzazione della funzione.......................

Dettagli

Parametrizzazione dei modelli

Parametrizzazione dei modelli Parametrizzazione dei modelli Andrea Onofri Dipartimento di Scienze Agrarie ed Ambientali Università degli Studi di Perugia 15 febbraio 2011 Indice 1 Introduzione 1 1.1 Parametrizzazione della funzione................

Dettagli

Metodi Numerici con elementi di Programmazione (A.A )

Metodi Numerici con elementi di Programmazione (A.A ) Metodi Numerici con elementi di Programmazione (A.A. 2013-2014) Metodi Numerici Appunti delle lezioni: Sistemi non lineari Docente Vittoria Bruni Email: vittoria.bruni@sbai.uniroma1.it Ufficio: Via A.

Dettagli

Metodi di Ottimizzazione

Metodi di Ottimizzazione Metodi di Ottimizzazione Stefano Gualandi Università di Pavia, Dipartimento di Matematica email: twitter: blog: stefano.gualandi@unipv.it @famospaghi, @famoconti http://stegua.github.com Metodi di Ottimizzazione

Dettagli

Calcolo Numerico con elementi di programmazione

Calcolo Numerico con elementi di programmazione Calcolo Numerico con elementi di programmazione (A.A. 2014-2015) Appunti delle lezioni sui metodi per la soluzione di sistemi di equazioni non lineari Sistemi di equazioni non lineari Un sistema di equazioni

Dettagli

Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III)

Derivazione numerica. Introduzione al calcolo numerico. Derivazione numerica (II) Derivazione numerica (III) Derivazione numerica Introduzione al calcolo numerico Il calcolo della derivata di una funzione in un punto implica un processo al limite che può solo essere approssimato da un calcolatore. Supponiamo

Dettagli

Esercizi proposti di Analisi Numerica

Esercizi proposti di Analisi Numerica Esercizi proposti di Analisi Numerica Silvia Bonettini Dipartimento di Matematica, Università di Ferrara 30 gennaio 2012 1 Conversioni, operazioni di macchina e analisi dell errore 1. Convertire i numeri

Dettagli

lezione n. 6 (a cura di Gaia Montanucci) Verosimiglianza: L = = =. Parte dipendente da β 0 e β 1

lezione n. 6 (a cura di Gaia Montanucci) Verosimiglianza: L = = =. Parte dipendente da β 0 e β 1 lezione n. 6 (a cura di Gaia Montanucci) METODO MASSIMA VEROSIMIGLIANZA PER STIMARE β 0 E β 1 Distribuzione sui termini di errore ε i ε i ~ N (0, σ 2 ) ne consegue : ogni y i ha ancora distribuzione normale,

Dettagli

Sistemi Intelligenti Relazione tra ottimizzazione e statistica - IV Alberto Borghese

Sistemi Intelligenti Relazione tra ottimizzazione e statistica - IV Alberto Borghese Sistemi Intelligenti Relazione tra ottimizzazione e statistica - IV Alberto Borghese Università degli Studi di Milano Laboratory of Applied Intelligent Systems (AIS-Lab) Dipartimento di Informatica borghese@di.unimi.it

Dettagli

Esercitazione di Calcolo Numerico 1 27 Maggio Calcolare la fattorizzazione P A = LU della matrice A =

Esercitazione di Calcolo Numerico 1 27 Maggio Calcolare la fattorizzazione P A = LU della matrice A = Esercitazione di Calcolo Numerico 1 27 Maggio 29 1. Calcolare la fattorizzazione P A = LU della matrice 1 2 3 A = 2 3 3, ed utilizzarla per risolvere il sistema lineare Ax = b, con b = (1, 2,, 16) T. 2.

Dettagli

Metodi iterativi per equazioni nonlineari.

Metodi iterativi per equazioni nonlineari. Metodi iterativi per equazioni nonlineari. Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica 9 aprile 2016 Alvise Sommariva Introduzione 1/ 14 Introduzione Si supponga sia f

Dettagli

Lezione 3 Interpolazione Polinomiale.

Lezione 3 Interpolazione Polinomiale. Lezione 3 Interpolazione Polinomiale http://idefix.mi.infn.it/~palombo/didattica/lab-tnds/corsolab/lezionifrontali Fernando Palombo Scopi dell interpolazione Dati i valori y i di una grandezza Y in corrispondenza

Dettagli

Laboratorio di Calcolo Numerico

Laboratorio di Calcolo Numerico Laboratorio di Calcolo Numerico M.R. Russo Università degli Studi di Padova Dipartimento di Matematica Pura ed Applicata A.A. 2009/2010 Equazioni non lineari Data una funzione consideriamo il problema

Dettagli

Il Metodo di Newton, o delle Tangenti Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Il Metodo di Newton, o delle Tangenti Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it Il Metodo di Newton, o delle Tangenti 6 Novembre 2016 Indice 1 Metodo di Newton, o delle tangenti 2 1.1

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

Esercizio 1. Esercizio 2. Assegnata la funzione:

Esercizio 1. Esercizio 2. Assegnata la funzione: Esercizio 1 Assegnata la funzione: f ) = 3, mostrare che verifica il teorema di Rolle nei rispettivi intervalli compatti [ 1, 0] e [0, 1]. Determinare inoltre i punti 0 tali che f 0 ) = 0. Risulta: f è

Dettagli

PROBLEMI NON-LINEARI NEL CALCOLO STRUTTURALE

PROBLEMI NON-LINEARI NEL CALCOLO STRUTTURALE PROBLEMI NON-LINEARI NEL CALCOLO STRUTTURALE 1/ Non-linearità geometrica: spostamenti e deformazioni finiti / Non-linearità materiale: legge costitutiva non-lineare, plasticità, meccanica del danno, ipoelasticità,

Dettagli

Daniela Lera A.A

Daniela Lera A.A Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2016-2017 Problemi non lineari Definizione f : R R F : R n R m f (x) = 0 F(x) = 0 In generale si determina

Dettagli

Metodi di Ricerca Lineare

Metodi di Ricerca Lineare Metodi di Ricerca Lineare Stefano Gualandi Università di Pavia, Dipartimento di Matematica email: twitter: blog: stefano.gualandi@unipv.it @famo2spaghi http://stegua.github.com Metodi di Ottimizzazione

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Quarto Appello 4 Settembre 2018

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Quarto Appello 4 Settembre 2018 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Quarto Appello 4 Settembre 8 Cognome: Nome: Matricola: T.: 4 punti T.: 4 punti Es.: 5 punti Es.: 9 punti Es.: 5 punti Es.4: 5 punti Totale.

Dettagli

Minimi quadrati e massima verosimiglianza

Minimi quadrati e massima verosimiglianza Minimi quadrati e massima verosimiglianza 1 Introduzione Nella scorsa lezione abbiamo assunto che la forma delle probilità sottostanti al problema fosse nota e abbiamo usato gli esempi per stimare i parametri

Dettagli

Metodi Numerici con elementi di Programmazione (A.A )

Metodi Numerici con elementi di Programmazione (A.A ) Metodi Numerici con elementi di Programmazione (A.A. 2018-2019) Metodi Numerici Appunti delle lezioni: Sistemi non lineari Docente Vittoria Bruni Email: vittoria.bruni@sbai.uniroma1.it Ufficio: Via A.

Dettagli

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Risoluzione di Equazioni non lineari Sia F C 0 ([a, b]), cioé F è una funzione continua in un intervallo [a, b] R, tale che F(a)F(b) < 0 1.5 1 F(b) 0.5 0 a

Dettagli

3. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE.

3. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE. 3. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE. Molto spesso y = f(x) rappresenta l evoluzione di un fenomeno al passare del tempo x.se siamo interessati a sapere con che rapidità il fenomeno

Dettagli

Sviluppo di Taylor. Continuando analogamente, otteniamo

Sviluppo di Taylor. Continuando analogamente, otteniamo Sviluppo di Taylor Vogliamo determinare il polinomio che meglio approssima una funzione f(x) in un dato punto x 0 Sia f:i R con x 0 I Per determinare la miglior approssimazione lineare, vogliamo determinare

Dettagli

Equazioni differenziali

Equazioni differenziali Capitolo 2 Equazioni differenziali I modelli matematici per lo studio di una popolazione isolata sono equazioni differenziali. Premettiamo dunque allo studio dei modelli di popolazioni isolate una breve

Dettagli

Algoritmi numerici. Zeri di una funzione. Integrale di una funzione. Soluzione di una equazione differenziale

Algoritmi numerici. Zeri di una funzione. Integrale di una funzione. Soluzione di una equazione differenziale Algoritmi numerici Zeri di una funzione Integrale di una funzione Soluzione di una equazione differenziale Zeri di una funzione Trovare le soluzioni di f(x) = 0 dove f(x) e una funzione reale di variabile

Dettagli

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica, delle Comunicazioni

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica, delle Comunicazioni CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica, delle Comunicazioni Prof.ssa Laura Pezza (A.A. 2017-2018) V Lezione del 15.03.2018 http://www.dmmm.uniroma1.it/ laura.pezza 1 Metodo di Newton:

Dettagli

Laboratorio di Calcolo Numerico A.A

Laboratorio di Calcolo Numerico A.A Laboratorio di Calcolo Numerico A.A. 2007-2008 Laboratorio 7 Minimi quadrati. Approssimazione delle derivate. Esercizio 1. Si considerino le 6 coppie di dati ( 4.5, 0.7), ( 3.2, 2.3), ( 1.4, 3.8), (0.8,

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = 3x 2 x 2 y + y + 1

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = 3x 2 x 2 y + y + 1 Analisi Matematica II Corso di Ingegneria Gestionale Compito del --5 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo - Le risposte senza giustificazione sono considerate nulle Esercizio

Dettagli

RENDITE. Ricerca del tasso di una rendita

RENDITE. Ricerca del tasso di una rendita RENDITE Ricerca del tasso di una rendita Un problema che si presenta spesso nelle applicazioni è quello di calcolare il tasso di interesse associato a una rendita quando siano note le altre grandezze 1

Dettagli

Zeri di funzioni e teorema di Sturm

Zeri di funzioni e teorema di Sturm Zeri di funzioni e teorema di Sturm Enrico Bertolazzi Dipartimento di Ingegneria Meccanica e Strutturale Università degli Studi di Trento via Mesiano 77, I 38050 Trento, Italia EnricoBertolazzi@ingunitnit

Dettagli

Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 20 giugno 2011

Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 20 giugno 2011 Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 20 giugno 2011 L esame consiste di 4 domande aperte e 10 esercizi a risposta multipla. Per gli esercizi ci sono

Dettagli

Anova e regressione. Andrea Onofri Dipartimento di Scienze Agrarie ed Ambientali Universitá degli Studi di Perugia 22 marzo 2011

Anova e regressione. Andrea Onofri Dipartimento di Scienze Agrarie ed Ambientali Universitá degli Studi di Perugia 22 marzo 2011 Anova e regressione Andrea Onofri Dipartimento di Scienze Agrarie ed Ambientali Universitá degli Studi di Perugia 22 marzo 2011 Nella sperimentazione agronomica e biologica in genere è normale organizzare

Dettagli

1. Disegnare nel piano di Gauss i seguenti insiemi di numeri complessi:

1. Disegnare nel piano di Gauss i seguenti insiemi di numeri complessi: Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Test di autovalutazione 1. Disegnare nel piano di Gauss i seguenti insiemi di numeri complessi: (a) A = {z C : z, 0 arg z /} (b) B = {w

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

Daniela Lera A.A. 2008-2009

Daniela Lera A.A. 2008-2009 Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2008-2009 Equazioni non lineari Metodo di Newton Il metodo di Newton sfrutta le informazioni sulla funzione

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di 2 - EQUAZIONI NON LINEARI Lucio Demeio Dipartimento di Scienze Matematiche 1 Elementi introduttivi 2 3 4 Introduzione Problema: trovare le soluzioni di

Dettagli

La formula di Taylor per funzioni di più variabili

La formula di Taylor per funzioni di più variabili La formula di Taylor per funzioni di più variabili Il polinomio di Taylor Due variabili. Sia A R 2 un aperto, f : A R una funzione sufficientemente regolare, (x, y) un punto di A. Sia (h, k) un vettore

Dettagli

Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza. Equazioni non lineari

Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza. Equazioni non lineari Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza Equazioni non lineari ESERCIZIO 1 Data l equazione ln(e + x) = 1 (1 + 4x) + 1 2 1.1 verificare analiticamente se sono soddisfatte le

Dettagli

Claudio Estatico Equazioni non-lineari

Claudio Estatico Equazioni non-lineari Claudio Estatico (claudio.estatico@uninsubria.it) Equazioni non-lineari 1 Equazioni non-lineari 1) Equazioni non-lineari e metodi iterativi. 2) Metodo di bisezione, metodo regula-falsi. 3) Metodo di Newton.

Dettagli

Teoria Es. 1 Es. 2 Es.3 Es. 4 Totale. Cognome: Nome: Matricola: Prima Parte. x a dx

Teoria Es. 1 Es. 2 Es.3 Es. 4 Totale. Cognome: Nome: Matricola: Prima Parte. x a dx Teoria Es. Es. 2 Es. Es. 4 Totale Analisi e Geometria Appello 5/07/209 Docente: Numero di iscrizione all appello: Cognome: Nome: Matricola: Prima Parte (a) Prima domanda di teoria. ( punti) Enunciare e

Dettagli

Esempi. nel testo di Barone et al.:

Esempi. nel testo di Barone et al.: Applicazioni Esempi nel testo di Barone et al.: Ricerca degli 0 di una funzione mediante il metodo di bisezione e mediante il metodo di Newton (4.3.2) Ricerca dei numeri primi (4.3.3) Problemi di arrotondamento

Dettagli

variabili. se i limiti esistono e si chiamano rispettivamente derivata parziale rispetto ad x e rispetto ad y.

variabili. se i limiti esistono e si chiamano rispettivamente derivata parziale rispetto ad x e rispetto ad y. Funzioni di più variabili Derivate parziali Qui saranno considerate soltanto funzioni di due variabili, ma non c è nessuna difficoltà ad estendere le nuove nozioni a funzioni di n ( > variabili ( Definizione:

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esercizi sullo studio di funzione Seconda parte Come visto nella prima parte, per poter descrivere una curva, data la sua equazione cartesiana esplicita y f () occorre procedere secondo l ordine seguente:

Dettagli

Analisi cinematica di meccanismi articolati

Analisi cinematica di meccanismi articolati Analisi cinematica di meccanismi articolati metodo dei numeri complessi rev 10 1 Il quadrilatero articolato b β a c α d γ Posizione a + b = c + d a e iα + b e iβ = c e iγ + d a cos α + b cos β = c cos

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria Formule di Taylor Ottobre 2012

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria Formule di Taylor Ottobre 2012 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it Formule di Taylor Ottobre 2012 Indice 1 Formule di Taylor 1 1.1 Il polinomio di Taylor...............................

Dettagli

Esercitazione 4 - Matematica Applicata

Esercitazione 4 - Matematica Applicata Esercitazione - Matematica Applicata Lucia Pilleri // Esercizio dal compito del //). Considerato il seguente metodo alle differenze finite, dipendente dai parametri reali e β )] η i+ = η i + h 5fx i, η

Dettagli

1 Polinomio di Taylor 1. 2 Formula di Taylor 2. 3 Alcuni sviluppi notevoli 2. 4 Uso della formula di Taylor nel calcolo dei limiti 4

1 Polinomio di Taylor 1. 2 Formula di Taylor 2. 3 Alcuni sviluppi notevoli 2. 4 Uso della formula di Taylor nel calcolo dei limiti 4 1 POLINOMIO DI TAYLOR 1 Formula di Taylor Indice 1 Polinomio di Taylor 1 Formula di Taylor 3 Alcuni sviluppi notevoli 4 Uso della formula di Taylor nel calcolo dei iti 4 5 Soluzioni degli esercizi 6 La

Dettagli

Metodi numerici per zeri di funzioni

Metodi numerici per zeri di funzioni CALCOLO NUMERICO Francesca Mazzia Dipartimento Interuniversitario di Matematica Università di Bari Metodi numerici per zeri di funzioni 1 Metodo delle successive bisezioni Se f(x) C([a, b]) ed f(a) f(b)

Dettagli

Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 19 settembre 2011

Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 19 settembre 2011 Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 19 settembre 2011 L esame consiste di 4 domande aperte e 10 esercizi a risposta multipla. Per gli esercizi ci sono

Dettagli

Vogliamo determinare una funzione lineare che meglio approssima i nostri dati sperimentali e poter decidere sulla bontà di questa approssimazione.

Vogliamo determinare una funzione lineare che meglio approssima i nostri dati sperimentali e poter decidere sulla bontà di questa approssimazione. S.S.I.S. TOSCANA F.I.M. II anno FUNZIONI DI REGRESSIONE E METODO DEI MINIMI QUADRATI Supponiamo di star conducendo uno studio sulla crescita della radice di mais in funzione del contenuto di saccarosio

Dettagli

Esercizio 1. Esercizio 2

Esercizio 1. Esercizio 2 Sia data la matrice A A(α) = Esercizio α 2 2α 2 2, α R.) determinare per quali valori del parametro reale α é verificata la condizione necessaria e sufficiente di convergenza per il metodo di Jacobi;.2)

Dettagli

Esercizi con soluzioni dell esercitazione del 31/10/17

Esercizi con soluzioni dell esercitazione del 31/10/17 Esercizi con soluzioni dell esercitazione del 3/0/7 Esercizi. Risolvere graficamente la disequazione 2 x 2 2 cos(πx). 2. Determinare l insieme di definizione della funzione arcsin(exp( x 2 )). 3. Trovare

Dettagli

A.A Prof. R. Morandi

A.A Prof. R. Morandi Svolgimento di alcuni esercizi del corso di Calcolo Numerico A.A. - Prof. R. Morandi Versione in aggiornamento ( gennaio ): ogni segnalazione di imprecisioni è gradita Aritmetica Finita Esercizio : Assegnati

Dettagli

Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia

Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia Nota Bene: Gli esercizi di questa raccolta sono solo degli esempi. Non sono stati svolti né verificati e servono unicamente da spunto

Dettagli

Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni

Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni ANALISI NUMERICA - Primo Parziale - TEMA A (Prof. A.M.Perdon)

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@poi.it Limiti di derivate. Punti angolosi e di cuspide. Ottobre 2012 Indice 1 Limiti della derivata e punti di non

Dettagli

Metodi per il calcolo degli zeri di funzioni non lineari

Metodi per il calcolo degli zeri di funzioni non lineari Metodi per il calcolo degli zeri di funzioni non lineari N. Del Buono 1 Introduzione Le radici di un equazione non lineare f(x) = 0 non possono, in generale, essere espresse esplicitamente e anche quando

Dettagli

Analisi degli errori

Analisi degli errori Analisi degli errori Corso di Calcolo Numerico, a.a. 2008/2009 Francesca Mazzia Dipartimento di Matematica Università di Bari Francesca Mazzia (Univ. Bari) Analisi degli errori 1 / 36 Errori Computazionali

Dettagli

Calcolo Numerico. Corso di Laurea in Ingegneria Elettronica Appello del 16 gennaio 2013

Calcolo Numerico. Corso di Laurea in Ingegneria Elettronica Appello del 16 gennaio 2013 Calcolo Numerico Corso di Laurea in Ingegneria Elettronica Appello del 6 gennaio 3 Sia M = F (, 4). Calcolare: rd( 7 6 ). Sia A = Determinare una fattorizzazione LR di A ed utilizzarla per calcolare A.

Dettagli

Problema. Equazioni non lineari. Metodo grafico. Teorema. Cercare la soluzione di

Problema. Equazioni non lineari. Metodo grafico. Teorema. Cercare la soluzione di Problema Cercare la soluzione di Equazioni non lineari dove Se è soluzione dell equazione, cioè allora si dice RADICE o ZERO della funzione Metodo grafico Graficamente si tratta di individuare l intersezione

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 2 - EQUAZIONI NON LINEARI Introduzione Problema: trovare le soluzioni di un equazione del tipo f() = 0 Esempio sin a = 0 e = 3 1.0 2.0 0.5

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

Facoltá di Scienze MM.FF.NN. Corso di Studi in Informatica- A.A

Facoltá di Scienze MM.FF.NN. Corso di Studi in Informatica- A.A Facoltá di Scienze MM.FF.NN. Corso di Studi in Informatica- A.A. 4-5 Corso di CALCOLO NUMERICO / ANALISI NUMERICA : Esempi di esercizi svolti in aula 9//4 ) Determinare la rappresentazione in base di.

Dettagli

Argomento 6: Derivate Esercizi. I Parte - Derivate

Argomento 6: Derivate Esercizi. I Parte - Derivate 6: Derivate Esercizi I Parte - Derivate E. 6.1 Calcolare le derivate delle seguenti funzioni: 1) log 5 3 + cos ) + 3 + 4 + 3 3) 5 tan 4) ( + 3e ) sin 5) arctan( + 1) 6) log 7) 10) + + 3 8) 3 3 1 + 16 11)

Dettagli

x = t y = t z = t 3 1 A = B = 1 2

x = t y = t z = t 3 1 A = B = 1 2 11/1/05 Teoria: Enunciare e discutere il teorema di Lagrange. Esercizio 1. Determinare l equazione cartesiana del piano passante per P 0 = (1,, 1) e contenente i vettori u = (,, ) e v = (1, 5, 4). Risposta

Dettagli

Analisi Matematica (A L) Polinomi e serie di Taylor

Analisi Matematica (A L) Polinomi e serie di Taylor a.a. 2015/2016 Laurea triennale in Informatica Analisi Matematica (A L) Polinomi e serie di Taylor Nota: questo file differisce da quello proiettato in aula per la sola impaginazione. Polinomio di Taylor

Dettagli

Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3.4, 3.9. Esercizi 3.4, 3.9.

Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3.4, 3.9. Esercizi 3.4, 3.9. Appunti sul corso di Complementi di Matematica - mod Analisi prof. B.Baccelli 200/ 07 - Funzioni vettoriali, derivata della funzione composta, formula di Taylor. Riferimenti: R.Adams, Calcolo Differenziale

Dettagli

Istituzioni di Matematiche Modulo B (SG)

Istituzioni di Matematiche Modulo B (SG) Istituzioni di Matematiche Modulo B (SG) II foglio di esercizi ESERCIZIO 1. Per ciascuna funzione f(, ) calcolare le derivate parziali f (, ) e f (, ) e determinare il relativo dominio di definizione.

Dettagli

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi)

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi) Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006 Matematica 2 (Analisi) Nome:................................. N. matr.:.................................

Dettagli

DIFFERENZIAZIONE. Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim

DIFFERENZIAZIONE. Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim DIFFERENZIAZIONE 1 Regola della catena Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim = f (x 0 ). x x 0 x x 0 Questa

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di 3 - PROBLEMI DI INTERPOLAZIONE Lucio Demeio Dipartimento di Scienze Matematiche 1 Interpolazione: Polinomio di Lagrange 2 3 Introduzione Problemi di interpolazione

Dettagli

Esercitazione n 5. 1 Limiti e continuità di funzioni in più variabili. Esercizio 1: Si verifichi che la funzione f definita per ogni (x, y) R 2 da

Esercitazione n 5. 1 Limiti e continuità di funzioni in più variabili. Esercizio 1: Si verifichi che la funzione f definita per ogni (x, y) R 2 da Esercitazione n 5 1 Limiti e continuità di funzioni in più variabili Esercizio 1: Si verifici ce la funzione f definita per ogni (, y) R 2 da { 4 y 4 se (, y) (0, 0) f(, y) = 2 +y 2 0 se (, y) = (0, 0)

Dettagli

Alcune nozioni di calcolo differenziale

Alcune nozioni di calcolo differenziale Alcune nozioni di calcolo differenziale G. Mastroeni, M. Pappalardo 1 Limiti per funzioni di piu variabili Supporremo noti i principali concetti algebrici e topologici relativi alla struttura dello spazio

Dettagli

Regressione non lineare

Regressione non lineare Metodi di Analisi dei Dati Sperimentali AA /2010 Pier Luca Maffettone Regressione non lineare Regressione non lineare - Introduzione Sino ad ora si sono considerati casi con modelli lineari nei parametri:

Dettagli

Laboratorio di Calcolo Numerico - Corso di Laurea in Matematica Appello d esame del 12/07/2012

Laboratorio di Calcolo Numerico - Corso di Laurea in Matematica Appello d esame del 12/07/2012 Cognome: Nome: Matricola: Laboratorio di Calcolo Numerico - Corso di Laurea in Matematica Appello d esame del 12/07/2012 ESERCIZIO 1 [10 punti] Si consideri il problema di approssimare le radici α 1 =

Dettagli

1 Note ed esercizi risolti a ricevimento

1 Note ed esercizi risolti a ricevimento 1 Note ed esercizi risolti a ricevimento Nota 1. Il polinomio di Taylor della funzione f x, y) due variabili), del secondo ordine, nel punto x 0, y 0 ), è P 2 x, y) = f x 0, y 0 ) + f x x 0, y 0 ) x x

Dettagli

Polinomio di Taylor del secondo ordine per funzioni di due variabili

Polinomio di Taylor del secondo ordine per funzioni di due variabili Esercitazioni del 15 aprile 2013 Polinomio di Taylor del secondo ordine per funzioni di due variabili Sia f : A R 2 R una funzione di classe C 2. Fissato un p unto (x 0, y 0 A consideriamo il seguente

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli

Analisi Matematica 1 Foglio 1 Lunedì 3 ottobre. f(x) = log x 2 6x + 5.

Analisi Matematica 1 Foglio 1 Lunedì 3 ottobre. f(x) = log x 2 6x + 5. Analisi Matematica Foglio Lunedì 3 ottobre Esercizio. Trovare il dominio naturale della funzione f data da ( ) f(x) = log x 2 6x + 5. Esercizio 2. Dire quali tra le seguenti funzioni sono iniettive :.

Dettagli

b vettore(termine noto) y* proiezione ortogonale di b

b vettore(termine noto) y* proiezione ortogonale di b Carla Guerrini 1 Sistemi sovradeterminati Sia A una matrice m n ove m > n sia b R m trovare una soluzione del sistema sovradeterminato Ax = b significa cercare di esprimere un vettore di R m come combinazione

Dettagli

Metodi statistici per l economia (Prof. Capitanio) Slide n. 10. Materiale di supporto per le lezioni. Non sostituisce il libro di testo

Metodi statistici per l economia (Prof. Capitanio) Slide n. 10. Materiale di supporto per le lezioni. Non sostituisce il libro di testo Metodi statistici per l economia (Prof. Capitanio) Slide n. 10 Materiale di supporto per le lezioni. Non sostituisce il libro di testo 1 REGRESSIONE LINEARE Date due variabili quantitative, X e Y, si è

Dettagli

Metodi Numerici con elementi di Programmazione (A.A )

Metodi Numerici con elementi di Programmazione (A.A ) Metodi Numerici con elementi di Programmazione (A.A. 2013-2014) Metodi Numerici Appunti delle lezioni: Approssimazione di dati e funzioni Approssimazione ai minimi quadrati Docente Vittoria Bruni Email:

Dettagli

Calcolo del fattore di convergenza

Calcolo del fattore di convergenza Calcolo del fattore di convergenza Dato uno schema iterativo si ha: lim k x k+1 ξ x k ξ p = M p è l ordine di convergenza del metodo iterativo M è la costante asintotica dell errore o fattore di convergenza.

Dettagli

CALENDARIO BOREALE 2 AMERICHE 2015 QUESITO 1

CALENDARIO BOREALE 2 AMERICHE 2015 QUESITO 1 www.matefilia.it Indirizzi: LI0, EA0 SCIENTIFICO; LI0 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE AMERICHE 0 QUESITO Determinare il volume del solido generato dalla rotazione attorno alla

Dettagli

Raccolta di esercizi di Calcolo Numerico

Raccolta di esercizi di Calcolo Numerico Annamaria Mazzia Raccolta di esercizi di Calcolo Numerico Dipartimento di Ingegneria Civile Edile e Ambientale Università degli Studi di Padova Creative Commons Attribuzione-Non commerciale-non opere derivate

Dettagli

Calcolo Numerico. Corso di Laurea in Ingegneria Elettronica Appello del 17 gennaio A(x) =

Calcolo Numerico. Corso di Laurea in Ingegneria Elettronica Appello del 17 gennaio A(x) = Calcolo Numerico Corso di Laurea in Ingegneria Elettronica Appello del 7 gennaio 204 Sia M = F (2, 3). Dopo aver mostrato che 20 M, determinare tutti gli elementi ξ M tali che: ξ > 20 Per ogni x R, sia:

Dettagli

ESAME DI STATO DI ISTRUZIONE SECONDARIA SUPERIORE. Tema di Matematica e Fisica

ESAME DI STATO DI ISTRUZIONE SECONDARIA SUPERIORE. Tema di Matematica e Fisica ESAME DI STATO DI ISTRUZIONE SECONDARIA SUPERIORE Problema 1 Si considerino le seguenti funzioni: Tema di Matematica e Fisica Sessione ordinaria 2019 - Seconda prova scritta 1. Provare che comunque siano

Dettagli

Sistemi sovradeterminati. b vettore(termine noto) V n. y* proiezione ortogonale di b. Carla Guerrini 1

Sistemi sovradeterminati. b vettore(termine noto) V n. y* proiezione ortogonale di b. Carla Guerrini 1 Carla Guerrini 1 Sistemi sovradeterminati Sia A una matrice m n ove m > n sia b R m si vuole trovare una soluzione del sistema sovradeterminato Ax = b. Nel caso in cui la matric A abbia rango pieno, cioé

Dettagli

Calcolo Numerico con elementi di programmazione

Calcolo Numerico con elementi di programmazione Calcolo Numerico con elementi di programmazione (A.A. 2014-2015) Appunti delle lezioni sui metodi numerici per la soluzione di sistemi lineari Metodi Iterativi la soluzione si ottiene tramite approssimazioni

Dettagli

Funzione derivabile. La derivata.

Funzione derivabile. La derivata. Funzione derivabile. La derivata. Dati: f I R funzione; I R intervallo aperto ; x 0 I. Definizione (Derivata come limite del rapporto incrementale) Se esiste finito (cioè, non + o ) il limite del rapporto

Dettagli

Il problema lineare dei minimi quadrati

Il problema lineare dei minimi quadrati Il problema lineare dei minimi quadrati APPLICAZIONE: Il polinomio di migliore approssimazione nel senso dei minimi quadrati Felice Iavernaro Dipartimento di Matematica Università di Bari 15 Gennaio 2009

Dettagli

Analisi Vettoriale A.A Soluzioni del Foglio 2

Analisi Vettoriale A.A Soluzioni del Foglio 2 Analisi Vettoriale A.A. 2006-2007 - Soluzioni del Foglio 2 2.1 Esercizio Assegnato il sistema e y + z + x 2 = 0 x 2 + y 2 + z 2 + y 1 = 0 dimostrare che in un intorno del punto (0,0,1) il sistema definisce

Dettagli

UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA

UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - 6.Funzioni con derivate - CTF Matematica Codice Compito: - Numero d Ordine D. Un polinomio di grado e tangente all asse x ed ha un flesso orizzontale nel punto

Dettagli

Calcolo Numerico per Ingegneria. Corso estivo di Bressanone. Prof. L. Bergamaschi SOLUZIONE DELLA PROVA SCRITTA del

Calcolo Numerico per Ingegneria. Corso estivo di Bressanone. Prof. L. Bergamaschi SOLUZIONE DELLA PROVA SCRITTA del Calcolo Numerico per Ingegneria. Corso estivo di Bressanone. Prof. L. Bergamaschi SOLUZIONE DELLA PROVA SCRITTA del 9.8.2. Data l equazione x x = (a) Mostrare che essa ammette una e una sola soluzione

Dettagli

Metodi iterativi per sistemi lineari

Metodi iterativi per sistemi lineari Metodi iterativi per sistemi lineari Mirano a costruire la soluzione x di un sistema lineare come limite di una successione di vettori Per matrici piene di ordine n il costo computazionale è dell ordine

Dettagli

Valutazione dei modelli matematici

Valutazione dei modelli matematici Valutazione dei modelli matematici Andrea Onofri 30 aprile 2013 Indice 1 Introduzione 2 2 Metodi grafici di valutazione 2 3 Metodi numerici 3 3.1 Il coefficiente di determinazione................... 5

Dettagli

Compito numero 2 - Compito intero

Compito numero 2 - Compito intero Esercitazione 6 - Correzione esame dell 8//3 Lucia Pilleri 9//3 Compito numero - Compito intero Esercizio del parziale - del compito intero Risolvere, mediante la fattorizzazione P A = LU, il sistema lineare

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli