Risultati esame scritto Fisica 2 17/02/2014 orali: alle ore presso aula G8

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Risultati esame scritto Fisica 2 17/02/2014 orali: alle ore presso aula G8"

Transcript

1 isultati esame scitto Fisica 7//4 oali: 4 alle oe. pesso aula G8 gli studenti inteessati a visionae lo scitto sono pegati di pesentasi il giono dell'oale; Nuovo odinamento voto AMATO MATTIA CASLLA ALSSANDO 5 CIAVALLA MAIA nc COPPOLA MAUIZIO ammesso COPPOLTTA ANNA CISTOFAO AFFAL CUTLL' OBTA nc DAGON DONATLLA 4 SPOSITO FANCSCO ammesso GIACOBB SAAA 7 ammesso IANNI' GATANO ammesso NICOTA PASQUAL ammesso OLIVIO MATA PALLON FANCSCO ammesso PUCCIO LONZA nc SCICCITANO FANCSCO nc SCUMACI CISTINA nc non classiicato Pe gli studenti del N.O.: possono sostenee l'esame di Fisica solo gli studenti che hanno supeato l'esame di Fisica

2 same di Fisica Coso Inteateneo di Ing. Inomatica e Biomedica 7//4 Poblema Nel cicuito in igua sono note sia le esistenze.ω,.ω e.ω, che le oze elettomotici.v e.v. Si calcoli la coente cicolante nella esistenza ; si detemini inolte la dieenza di potenziale a i punti A e B (V A V B ). Poblema Sia dato un cicuito come quello in igua disposto nel piano veticale e costituito da due binai conduttoi paalleli, chiusi in alto da una baa conduttice igida e issa, e in basso da una baa mobile in gado di scoee sui binai senza attito. Nella baa in alto è inseito un geneatoe di potenziale, oientato come in igua, con oza elettomotice pai a. La distanza a i due binai è pai a l e la esistenza elettica totale del cicuito è pai a. Il cicuito è immeso in un campo magnetico uniome e costante nel tempo, di modulo B, pependicolae al cicuito stesso e con diezione uscente dal oglio in igua. La baa mobile ha massa m ed è soggetta anche alla oza peso. ) Deteminae la velocità limite, v lim, della baa mobile e la coispondente coente I cicolante nel cicuito (quando vv lim ) ) Deteminae pe quale valoe di la baa mobile ha una velocità inale pai a zeo. ) Pe un valoe di maggioe di quello deteminato al punto ), la baa mobile ha una velocità limite dietta veso l alto e compie lavoo conto la oza di gavità. In queste cicostanze si detemini il endimento meccanico del sistema, η, deinito come il appoto a potenza meccanica podotta (la baa mobile sale conto la oza di gavità) e potenza elettica onita dal geneatoe (pe vv lim ). [espimee i isultati in unzione dei paameti del poblema, m, B, l,, e dell acceleazione di gavità g] Poblema Sia dato un cilindo dielettico di lunghezza ininita e aggio, con densità di caica di volume uniome pai a (positiva). sso è all inteno di un guscio cilindico metallico (conduttoe) di aggio inteno e aggio esteno. Il tutto è contenuto all inteno di un ulteioe guscio cilindico di mateiale dielettico con aggio inteno e aggio esteno, dotato di una densità di caica di volume uniome pai a (negativa). Detta la distanza dall asse del cilindo, si detemini: ) il campo elettico pe < ; ) il campo elettico pe e le espessioni delle densità di caica supeiciali, e, che si hanno ispettivamente sulla accia intena ed estena del guscio metallico, sapendo che inizialmente il metallo è neuto; ) il campo elettico pe < e pe > ; 4) il valoe di ainché il campo elettico sia nullo pe qualsiasi valoe di >, supponendo che.cm e 4.cm [a pate il punto 4), espimee i isultati in unzione dei paameti del poblema,,,,, della vaiabile e di ]

3 Soluzione poblema Nel cicuito della igua sostituiamo al paallelo delle due esistenze e la esistenza equivalente eq : eq eq Il cicuito si iduce alloa a sole due maglie. Pe applicae il metodo delle maglie scegliamo la maglia costituita dal peimeto esteno del cicuito (cioè l insieme di ami che unisce, e, lasciando uoi il amo con eq ), e la maglia costituita invece da e eq. Scivendo le equazioni pe queste due maglie si ottiene che: I I eq Senza isolvee il sistema si vede subito, dalla seconda equazione, che la d.d.p. ai capi della esistenza equivalente eq è pai a. Questa è anche la stessa d.d.p. ai capi della esistenza, da cui segue pe la legge di Ohm: I I.A dove l ultima espessione è la coente cicolante nella esistenza. La d.d.p. a i punti A e B del cicuito è pai alla d.d.p. ai capi del geneatoe, dato che i poli di tale geneatoe sono collegati diettamente ai punti A e B ispettivamente. Pe cui se ne deduce che: V V.V A B Soluzione poblema Punto ): Il lusso del campo magnetico Φ(B) attaveso il piano del cicuito è dato da: Φ ( B ) Bly( t) dove y è la distanza della baa mobile dalla baa issa in cima al cicuito (con l asse y oientato veso il basso, come in igua). Applichiamo la legge dell induzione di Faaday e otteniamo la oza elettomotice indotta, i : ( B) dy() t dφ i Bl dt dt Blv() t con v velocità istantanea della baa mobile. Dato che l asse y è oientato veso il basso, la velocità v è positiva quando è dietta veso il basso. In questa situazione (baa mobile che si muove veso il basso) si ha un aumento di Φ(B) attaveso il cicuito e petanto la coispondente i a giae la coente in senso oaio in igua. In questa situazione alloa i e sono concodi e i loo eetti si sommano ai ini della coente I cicolante nel cicuito (in senso oaio): i Blv I Vicevesa, se v è negativa (baa che si muove veso l alto) si ottiene una i che si oppone a nella pecedente omula (la omula imane invaiata peché è il segno meno della velocità negativa che espime questa discodanza di i e ). Dalla coente ci possiamo calcolae la oza meccanica di oigine magnetica, F M Il B (podotto vettoiale), che agisce sulla baetta mobile; dato che la coente nella baetta mobile è pependicolae al campo magnetico B, pe il modulo di F M abbiamo che: B l v Bl IlB F M La diezione di F M è veticale (paallelo all asse y); pe quanto iguada il veso (veso l alto o veso il basso) osseviamo come pima che nel caso di v positiva (dietta veso il basso) la coente I cicola in senso oaio in igua e F M è dietta veso l alto (si oppone cioè alla caduta della baa mobile). Se v è negativa, la coente I in senso oaio

4 diminuisce e anche la F M, ma come pima non è necessaio modiicae l ultima omula ottenuta (peché il segno meno della v tiene già conto di questo eetto). Tenuto conto che sulla baa mobile agiscono la oza peso veso il basso (diezione positiva dell asse y) e la F M appena tovata veso l alto (diezione negativa dell asse y), il II pincipio della dinamica si scive come segue: ma mg F M B l v Bl ma mg Bl B l v ma mg La velocità limite è quella velocità posseduta dalla baa mobile quando l acceleazione è pai a zeo. Imponendo a nell ultima omula si tova la velocità limite, v lim : Bl B l v mg mg vlim B l Bl lim La coispondente coente I cicolante nel cicuito la toviamo sostituendo l espessione tovata pe v lim alla velocità v nell espessione della coente deteminata più sopa: i Blv I Bl mg I B l Bl mg mg I Bl Bl Come vediamo quando vvlim, la coente I cicolante nel cicuito non dipende dalla d.d.p. del geneatoe e dalla esistenza. Punto ): Dato che la velocità limite è la velocità posseduta dalla baa mobile pe t, la baa mobile ha velocità inale pai a zeo quando la v lim deteminata al punto ) è pai a zeo: mg vlim B l Bl mg Bl Punto ): Se è maggioe del valoe ipotato nell ultima espessione, la velocità limite v lim è negativa (dietta veso l alto). In questo caso il cicuito unziona come un motoe elettico pe sollevae una massa m, quella della baa mobile. Alloa pate della potenza elettica eogata dal geneatoe viene convetita in potenza meccanica, conto la oza di gavità. La potenza meccanica, P MCC, sviluppata è pai a: P F v mg v MCC P lim mg m g PMCC Bl B l D alta pate la potenza elettica P LTT eogata è pai a: P I LTT lim mg PLTT Bl dove abbiamo sostituito alla coente I l espessione tovata al punto ), della coente cicolante quando vv lim.

5 Facendo il appoto P MCC / P LTT si ottiene il endimento η: PMCC mg m g Bl η P LTT Bl B l mg mg η Bl Soluzione poblema Data la simmetia cilindica delle distibuzioni di caica del poblema, il campo elettico in tutto lo spazio ispecchia tale simmetia cilindica e avà diezione adiale (cioè paallelo ai aggi che patono dall asse centale dei cilindi dati) mente saà uniome lungo l asse paallelo all asse dei cilindi. isolviamo il calcolo dei campi elettici col teoema di Gauss, consideando di volta in volta una supeicie cilindica gaussiana di aggio oppotuno, altezza geneica e concentico con i cilindi dati nel poblema. Punto ): Consideiamo una supeicie gaussiana cilindica di aggio < e applichiamo il teoema di Gauss, calcoliamo cioè il lusso del campo elettico attaveso la supeicie gaussiana. Dato che il campo ha diezione adiale (pependicolae quindi alla supeicie gaussiana punto pe punto), il lusso si iduce al podotto del modulo di pe la supeicie lateale del cilindo gaussiano: che è dietto veso l esteno peché il valoe ottenuto pe è positivo. Punto ): All inteno del metallo il campo elettico all equilibio è sempe pai a zeo, ovveo pe. Applicando il teoema di Gauss ad una supeicie cilindica con tale che, bisogna ottenee che la caica totale acchiusa all inteno della supeicie gasussiana sia pai a zeo, pe avee. Ma all inteno della supeicie gaussiana si ha la caica del cilindo dielettico di aggio e la densità di caica supeiciale sulla accia intena del guscio metallico, : che è negativa, ovveo sulla accia intena c è una densità di caica negativa. Dato che inizialmente il guscio metallico ea neuto, bisogna avee sulla accia estena (pe ) una caica uguale e contaia a quella che si ha sulla accia intena (pe ). Alloa pe la distibuzione di caica su,, toviamo la seguente espessione: che è una distibuzione di caica positiva. Punto ): Consideiamo una supeicie cilindica gaussiana di aggio con < <. Al suo inteno ci sono la distibuzione di caica del cilindo dielettico più inteno, le distibuzioni di caica supeiciali, e, appena calcolate, e pate della distibuzione di caica negativa del guscio cilindico dielettico più esteno. Vale la pena ossevae peò che la caica del cilindo dielettico più inteno () e quella della supeicie metallica più intena ( )

6 danno contibuti uguali ed opposti alla caica totale e si annullano. imangono petanto solo e la azione di caica negativa. Applicando il teoema di Gauss con tali consideazioni si ottiene che: Il campo elettico appena tovato è dietto veso l esteno pe < ( ) /, mente pe maggioe di tale valoe il campo elettico saà dietto veso l inteno. Va ossevato peò che può diventae maggioe di ( ) / solo se è maggioe di tale valoe. Pe > ipetiamo un agionamento analogo al pecedente, ma in questo caso va consideata tutta la distibuzione di caica e non solo una sua azione: La diezione di tale campo elettico, veso l esteno o l inteno, dipende dal valoe di ( ): se esso è maggioe di zeo alloa il campo elettico è dietto veso l esteno, altimenti esso è dietto veso l inteno. Punto 4): Dall ultima espessione tovata si vede che il campo elettico ovunque pe > se ( ). Con i valoi dati dal poblema pe e, si tova che: 5.cm

Risultati esame scritto Fisica 2-16/02/2015 orali: alle ore presso aula M

Risultati esame scritto Fisica 2-16/02/2015 orali: alle ore presso aula M isultati esame scitto Fisica - 6//5 oali: 3--5 alle oe 4. pesso aula M gli studenti inteessati a visionae lo scitto sono pegati di pesentasi il giono dell'oale Nuovo odinamento maticola voto 4866 7 ammesso

Dettagli

Facoltà di Ingegneria Fisica II Compito A

Facoltà di Ingegneria Fisica II Compito A Facoltà di ngegneia Fisica 66 Compito A Esecizio n Un filo di mateiale isolante, con densità di caica lineae costante, viene piegato fino ad assumee la foma mostata in figua (la pate cicolae ha aggio e

Dettagli

Conduttori in equilibrio elettrostatico

Conduttori in equilibrio elettrostatico onduttoi in equilibio elettostatico In un conduttoe in equilibio, tutte le caiche di conduzione sono in equilibio Se una caica di conduzione è in equilibio, in quel punto il campo elettico è nullo caica

Dettagli

( ) ( ) ( ) ( ) Esercizi 2 Legge di Gauss

( ) ( ) ( ) ( ) Esercizi 2 Legge di Gauss Esecizi Legge di Gauss. Un involuco sfeico isolante ha aggi inteno ed esteno a e b, ed e caicato con densita unifome ρ. Disegnae il diagamma di E in funzione di La geometia e mostata nella figua: Usiamo

Dettagli

Lezione 3. Applicazioni della Legge di Gauss

Lezione 3. Applicazioni della Legge di Gauss Applicazioni della Legge di Gauss Lezione 3 Guscio sfeico di aggio con caica totale distibuita unifomemente sulla supeficie. immetia sfeica, dipende solo da supeficie sfeica di aggio

Dettagli

A.A. 2009/ Appello del 15 giugno 2010

A.A. 2009/ Appello del 15 giugno 2010 Fisica I pe Ing. Elettonica e Fisica pe Ing. Infomatica A.A. 29/21 - Appello del 15 giugno 21 Soluzione del poblema n. 1a 1. All uscita della guida, nel punto D, il copo compie un moto paabolico con velocità

Dettagli

Nome..Cognome. classe 5D 29 Novembre VERIFICA di FISICA: Elettrostatica Domande

Nome..Cognome. classe 5D 29 Novembre VERIFICA di FISICA: Elettrostatica Domande Nome..ognome. classe 5 9 Novembe 8 RIFI di FISI: lettostatica omande ) ai la definizione di flusso di un campo vettoiale attaveso una supeficie. nuncia il teoema di Gauss pe il campo elettico (senza dimostalo)

Dettagli

int Schiusa Schiusa r r Φ = r r S o 1 Anno scolastico

int Schiusa Schiusa r r Φ = r r S o 1 Anno scolastico Anno scolastico 4 + ε ε int dt E d C dt d E C Q E S o S Schiusa Schiusa gandezza definizione fomula Foza di Loentz Foza agente su una caica q in moto con velocità v in una egione in cui è pesente un campo

Dettagli

FISICA GENERALE II Esercitazione D tutorato ESERCIZI CON SOLUZIONE

FISICA GENERALE II Esercitazione D tutorato ESERCIZI CON SOLUZIONE FSCA GENERALE Esecitazione D tutoato -3 ESERCZ CON SOLUZONE. Un conduttoe cilindico cavo, di aggio esteno a =. cm e aggio inteno b =.6 cm, è pecoso da una coente =A, distibuita uniomemente sulla sua sezione.

Dettagli

AI VERTICI DI UN QUADRATO DI LATO 2L SONO POSTE 4 CARICHE UGUALI Q. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE.

AI VERTICI DI UN QUADRATO DI LATO 2L SONO POSTE 4 CARICHE UGUALI Q. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE. ESERCIZIO 1 AI VERTICI DI UN UADRATO DI LATO SONO POSTE 4 CARICHE UGUALI. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE. 4 caiche uguali sono poste ai vetiti di un quadato. L asse di un quadato

Dettagli

Energia potenziale elettrica

Energia potenziale elettrica Enegia potenziale elettica L ultima ossevazione del capitolo pecedente iguadava le analogie e le diffeenze ta il campo elettico e il campo gavitazionale pendendo in esame la foza di Coulomb e la legge

Dettagli

LICEO PEDAGOGICO-ARTISTICO G. Pascoli di BOLZANO TEST DI FISICA IN SOSTITUZIONE DELL ORALE- FILA A CLASSE V B-27/05/2010

LICEO PEDAGOGICO-ARTISTICO G. Pascoli di BOLZANO TEST DI FISICA IN SOSTITUZIONE DELL ORALE- FILA A CLASSE V B-27/05/2010 LICEO PEDAGOGICO-ARTISTICO G. Pascoli di BOLZANO TEST DI FISICA IN SOSTITUZIONE DELL ORALE- FILA A CLASSE V B-7/05/010 Ogni quesito va oppotunamente motivato, pena la sua esclusione dalla valutazione.

Dettagli

Politecnico di Milano Fondamenti di Fisica Sperimentale a.a Facoltà di Ingegneria Industriale - Ind. Aero-Energ-Mecc

Politecnico di Milano Fondamenti di Fisica Sperimentale a.a Facoltà di Ingegneria Industriale - Ind. Aero-Energ-Mecc Politecnico di Milano Fondamenti di Fisica Speimentale a.a. 9-1 - Facoltà di Ingegneia Industiale - Ind. Aeo-Eneg-Mecc II pova in itinee - 5/7/1 Giustificae le isposte e scivee in modo chiao e leggibile.

Dettagli

Campo magnetico, forza magnetica, momenti meccanici sui circuiti piani

Campo magnetico, forza magnetica, momenti meccanici sui circuiti piani Campo magnetico, foza magnetica, momenti meccanici sui cicuiti piani Esecizio 1 Un potone d enegia cinetica E k 6MeV enta in una egione di spazio in cui esiste un campo magnetico B1T otogonale al piano

Dettagli

4. DINAMICA. I tre principi della dinamica per un corpo puntiforme (detto anche punto materiale o particella) sono:

4. DINAMICA. I tre principi della dinamica per un corpo puntiforme (detto anche punto materiale o particella) sono: 4.1 Pincipi della dinamica 4. DINAMICA I te pincipi della dinamica pe un copo puntifome (detto anche punto mateiale o paticella) sono: 1) pincipio di intezia di Galilei; 2) legge dinamica di Newton; 3)

Dettagli

Fisica per Medicina. Lezione 22 - Campo magnetico. Dr. Cristiano Fontana

Fisica per Medicina. Lezione 22 - Campo magnetico. Dr. Cristiano Fontana Fisica pe Medicina Lezione 22 - Campo magnetico D. Cistiano Fontana Dipatimento di Fisica ed Astonomia Galileo Galilei Univesità degli Studi di Padova 1 dicembe 2017 ndice Elettomagnetismo Campo magnetico

Dettagli

SESTA LEZIONE: campo magnetico, forza magnetica, momenti meccanici sui circuiti piani

SESTA LEZIONE: campo magnetico, forza magnetica, momenti meccanici sui circuiti piani A. Chiodoni esecizi di Fisica II SESTA LEZIONE: campo magnetico, foza magnetica, momenti meccanici sui cicuiti piani Esecizio 1 Un potone d enegia cinetica E k 6MeV enta in una egione di spazio in cui

Dettagli

Capacità ele+rica. Condensatori

Capacità ele+rica. Condensatori Capacità ele+ica Condensatoi Condensatoi Il sistema più semplice pe immagazzinae enegia elettostatica è caicae un condensatoe. Genealmente il condensatoe è costituito da due piani metallici sepaati da

Dettagli

Lo schema seguente spiega come passare da una equazione all altra e al grafico della circonferenza. Svolgere i calcoli.

Lo schema seguente spiega come passare da una equazione all altra e al grafico della circonferenza. Svolgere i calcoli. D4. Ciconfeenza D4.1 Definizione di ciconfeenza come luogo di punti Definizione: una ciconfeenza è fomata dai punti equidistanti da un punto detto cento. La distanza (costante) è detta aggio. Ci sono due

Dettagli

AZIONE A DISTANZA E TEORIA DI CAMPO (1)

AZIONE A DISTANZA E TEORIA DI CAMPO (1) Il campo elettico AZION A DITANZA TOIA DI CAMPO () Come fanno due caiche elettiche ad inteagie fa di loo? All inizio del 9 si sono confontate due ipotesi:.le caiche si scambiano dei messaggei e uindi si

Dettagli

Le equazioni di Maxwell.

Le equazioni di Maxwell. Le equazioni di Maxwell. Campi elettici indotti. Pe la legge di Faady, in una spia conduttice dove c è una vaiazione di Φ concatenato si osseva una coente indotta i. Ricodando che una coente è un flusso

Dettagli

Fisica II Secondo Appello - 7/2/2008

Fisica II Secondo Appello - 7/2/2008 Fisica II Secondo Appello - 7/2/2008 Chi ecupea il pimo compitino fa il pimo esecizio in due oe Chi ecupea il secondo compitino fa gli ultimi due esecizi in due oe Chi non ecupea fa le pime 4 domande del

Dettagli

SELEZIONE DI ESERCIZI DI ELETTROSTATICA.

SELEZIONE DI ESERCIZI DI ELETTROSTATICA. Fisica geneale II, a.a. 13/14 SELEZIONE DI ESEIZI DI ELETTOSTATIA..1. Un pocesso elettolitico divide 1.3 mg di Nal (massa di una mole = 59 g) in Na + e l. Le caiche positive vengono allontanate da quelle

Dettagli

Esercizi Scheda N Fisica II. Esercizi con soluzione svolti

Esercizi Scheda N Fisica II. Esercizi con soluzione svolti Esecizi Scheda N. 45 Fisica II Esecizio. Esecizi con soluzione svolti Un filo ettilineo, indefinito, pecoso da una coente di intensità i=4 A, è immeso in un mezzo omogeneo, isotopo, indefinito e di pemeabilità

Dettagli

Equilibrio dei corpi rigidi- Statica

Equilibrio dei corpi rigidi- Statica Equilibio dei copi igidi- Statica Ci ifeiamo solo a situazioni paticolai in cui i copi igidi non si muovono in nessun modo: ne taslano ( a 0 ), ne uotano ( 0 ), ossia sono femi in un oppotuno sistema di

Dettagli

E, ds. - Flusso totale uscente dalla superficie chiusa S: è la somma di tutti i flussi elementari, al tendere a zero delle aree infinitesime: r )

E, ds. - Flusso totale uscente dalla superficie chiusa S: è la somma di tutti i flussi elementari, al tendere a zero delle aree infinitesime: r ) Flusso del campo elettico e legge di Gauss. - Si definisce supeficie gaussiana una ipotetica supeficie S chiusa, che contiene un volume V. - La legge di Gauss mette in elazione i valoi dei campi elettici

Dettagli

Gravitazione. Dati due corpi di massa m 1 e m 2, posti ad una distanza r, tra di essi si esercita una forza attrattiva data in modulo da

Gravitazione. Dati due corpi di massa m 1 e m 2, posti ad una distanza r, tra di essi si esercita una forza attrattiva data in modulo da Gavitazione Dati due copi di massa m 1 e m 2, posti ad una distanza, ta di essi si esecita una foza attattiva data in modulo da F = G m 1m 2 dove G è una costante univesale, avente lo stesso valoe pe tutte

Dettagli

La parabola come luogo geometrico

La parabola come luogo geometrico La paabola come luogo geometico Definizioni e pime popietà Definizioni. Si chiama paabola il luogo ei punti equiistanti a un punto, etto fuoco, e a una etta etta iettice.. Il punto ella paabola che ha

Dettagli

Effetto Hall. flusso reale dei portatori se positivi. flusso reale dei portatori se negativi

Effetto Hall. flusso reale dei portatori se positivi. flusso reale dei portatori se negativi Appunti di Fisica II Effetto Hall L'effetto Hall è un fenomeno legato al passaggio di una coente I, attaveso ovviamente un conduttoe, in una zona in cui è pesente un campo magnetico dietto otogonalmente

Dettagli

Appunti su argomenti monografici per il corso di FM1 Prof. Pierluigi Contucci. Gravità e Teorema di Gauss

Appunti su argomenti monografici per il corso di FM1 Prof. Pierluigi Contucci. Gravità e Teorema di Gauss 1 Appunti su agomenti monogafici pe il coso di FM1 Pof. Pieluigi Contucci Gavità e Teoema di Gauss Vogliamo dimostae, a patie dalla legge di gavitazione univesale che il campo gavitazionale geneato da

Dettagli

IL CAMPO ELETTROMAGNETICO DIPENDENTE DAL TEMPO

IL CAMPO ELETTROMAGNETICO DIPENDENTE DAL TEMPO IL CAMPO ELETTROMAGNETICO DIPENDENTE DAL TEMPO Legge di Faaday-Heny (o dell induzione elettomagnetica); Applicazioni della legge dell induzione e.m., caso della spia otante; Il fenomeno dell autoinduzione

Dettagli

( ) Energia potenziale U = GMm r. GMm r. GMm L AB. = r. r r. Definizione di energia potenziale

( ) Energia potenziale U = GMm r. GMm r. GMm L AB. = r. r r. Definizione di energia potenziale Enegia potenziale Definizione di enegia potenziale Il lavoo, compiuto da una foza consevativa nello spostae il punto di applicazione da a, non dipende dal cammino seguito, ma esclusivamente dai punti e.

Dettagli

SETTIMA-OTTAVA LEZIONE: sorgenti del campo magnetico, legge di Ampere, legge di Biot-Sawart

SETTIMA-OTTAVA LEZIONE: sorgenti del campo magnetico, legge di Ampere, legge di Biot-Sawart . Chiodoni esecizi di Fisica II SETTIM-OTTV LEZIONE: sogenti del campo magnetico, legge di mpee, legge di Biot-Sawat Esecizio 1 Due spie cicolai di aggio 3cm, aventi lo stesso asse, sono poste in piani

Dettagli

DISTRIBUZIONE DELLA CARICA NEI CONDUTTORI

DISTRIBUZIONE DELLA CARICA NEI CONDUTTORI 1 DISTRIBUZIONE DELLA CARICA NEI CONDUTTORI I copi conduttoi sono caatteizzati dal fatto di avee moltissimi elettoni libei di muovesi (elettoni di conduzione). Cosa accade se un copo conduttoe viene caicato

Dettagli

IL POTENZIALE. = d quindi: LAB

IL POTENZIALE. = d quindi: LAB 1 IL POTENZIALE Sappiamo che il campo gavitazionale è un campo consevativo cioè nello spostamento di un copo ta due punti del campo gavitazionale teeste, le foze del campo compiono un lavoo che dipende

Dettagli

Campo elettrico e potenziale di un disco uniformemente carico

Campo elettrico e potenziale di un disco uniformemente carico Campo elettico e poteniale di un disco unifomemente caico q S densità supeficiale di caica Consideo l anello di aggio e spessoe d calcolo l anello sommo sugli anelli ho due integaioni dq da πd d Σ anello

Dettagli

IL POTENZIALE. Nello spostamento successivo B B, poiché la forza elettrica risulta perpendicolare allo spostamento, il lavoro L è nullo.

IL POTENZIALE. Nello spostamento successivo B B, poiché la forza elettrica risulta perpendicolare allo spostamento, il lavoro L è nullo. 1 I POTENZIAE Sappiamo che il campo gavitazionale è un campo consevativo cioè nello spostamento di un copo ta due punti del campo gavitazionale teeste, le foze del campo compiono un lavoo che dipende dalla

Dettagli

Effetto delle Punte e problema dell elettrostatica

Effetto delle Punte e problema dell elettrostatica Effetto delle Punte e poblema dell elettostatica 4 4 R Q R Q πε πε / / R R R R E E Effetto delle punte E L effetto paafulmine E E E R R Nel caso del paafulmine, R 6 Km è il aggio di cuvatua della supeficie

Dettagli

Problema generale dell elettrostatica

Problema generale dell elettrostatica Poblema geneale dell elettostatica Deteminae il campo elettico in tutto lo spazio uando pe M conduttoi sono fissati i potenziali e pe i imanenti N sono note le caiche possedute Nello spazio esteno ai conduttoi

Dettagli

La legge di Lenz - Faraday Neumann

La legge di Lenz - Faraday Neumann 1 La legge di Lenz - Faaday Neumann Il flusso del campo magnetico B Pe dae una veste matematica alle conclusioni delle espeienze viste nella lezione pecedente, abbiamo bisogno di definie una nuova gandezza

Dettagli

Parte II (Il Condizionamento)

Parte II (Il Condizionamento) Pate II (Il Cicuiti di condizionamento dei sensoi esistivi I sensoi basati sulla vaiazione della esistenza sono molto comuni. Ciò è dovuto al fatto che molte gandezze fisiche poducono la vaiazione della

Dettagli

Momenti. Momento di inerzia, momento di una forza, momento angolare

Momenti. Momento di inerzia, momento di una forza, momento angolare Momenti Momento di inezia, momento di una foza, momento angolae Conce&o di Momento I momenti in fisica sono cose molto divese fa loo. Cetamente non hanno sempe la stessa unità di misua; ed avemo cua di

Dettagli

Momenti. Momento di inerzia, momento di una forza, momento angolare

Momenti. Momento di inerzia, momento di una forza, momento angolare Momenti Momento di inezia, momento di una foza, momento angolae Conce&o di Momento I momenti in fisica sono cose molto divese fa loo. Cetamente non hanno sempe la stessa unità di misua; ed avemo cua di

Dettagli

La struttura stellare

La struttura stellare La stuttua stellae La stuttua stellae Una stella è una sfea di gas tenuta insieme dall auto gavità ed il cui collasso è impedito dalla pesenza di gadienti di pessione. Con ottima appossimazione una stella

Dettagli

Campi scalari e vettoriali (1)

Campi scalari e vettoriali (1) ampi scalai e vettoiali (1) 3 e ad ogni punto P = (x, y, z) di una egione di spazio Ω R è associato uno ed uno solo scalae φ diemo che un campo scalae è stato definito in Ω. In alti temini: φ 3 : P R φ(p)

Dettagli

Lezione XV Cinghie. Organi di trasmissione. Normalmente gli assi di rotazione delle due pulegge sono paralleli.

Lezione XV Cinghie. Organi di trasmissione. Normalmente gli assi di rotazione delle due pulegge sono paralleli. Ogani di tasmissione Ogani flessibili Nelle macchine tovano numeose applicazioni tanto ogani flessibili popiamente detti (cinghie e funi), quanto ogani costituiti da elementi igidi ta loo aticolati (catene).

Dettagli

Elettrostatica. P. Maestro Elettrostatica pag. 1

Elettrostatica. P. Maestro Elettrostatica pag. 1 Elettostatica Composizione dell atomo Caica elettica Legge di Coulomb Campo elettico Pincipio di sovapposizione Enegia potenziale del campo elettico Moto di una caica in un campo elettico statico Teoema

Dettagli

Docente Francesco Benzi

Docente Francesco Benzi MACCHINE ELETTRICHE Coso di Lauea in Ingegneia Industiale Anno Accademico 015-016 MACCHINE ELEMENTARI Docente Fancesco Benzi Univesità di Pavia e-mail: fbenzi@unipv.it Dispense in collaboazione con Giovanni

Dettagli

Utilizzando la forma complessa della legge di Ohm calcoliamo la corrente che scorre nel circuito r r

Utilizzando la forma complessa della legge di Ohm calcoliamo la corrente che scorre nel circuito r r Yui Geelli, uca Fontanesi, Riccado Campai ab. Elettomagnetismo INDUZIONE Scopo dell espeimento è duplice: dappima la misuazione dell induttanza di un solenoide, poi del coefficiente di mutua induzione

Dettagli

Fondamenti di Gravitazione

Fondamenti di Gravitazione Fondamenti di Gavitazione Intoduzione all Astofisica AA 205/206 Pof. Alessando Maconi Dipatimento di Fisica e Astonomia Univesità di Fienze Dispense e pesentazioni disponibili all indiizzo http://www.aceti.asto.it/

Dettagli

Legge di Ohm. La corrente elettrica dal punto di vista microscopico: modello di Drude

Legge di Ohm. La corrente elettrica dal punto di vista microscopico: modello di Drude Legge di Ohm. Obiettivi didattici: Veifica della elazione ta coente e d.d.p. pe un conduttoe metallico. Veifica della elazione ta la esistenza di un conduttoe e le sue dimensioni (lunghezza, sezione) Misua

Dettagli

ESERCIZI AGGIUNTIVI MODELLO IS/LM IN ECONOMIA CHIUSA

ESERCIZI AGGIUNTIVI MODELLO IS/LM IN ECONOMIA CHIUSA ESERCIZI AGGIUNTIVI MODELLO IS/ IN ECONOMIA CHIUSA ESERCIZIO 1 Illustate gaficamente ed economicamente quali conseguenze ha sul mecato monetaio la decisione della Banca Centale di aumentae il Tasso Ufficiale

Dettagli

GEOMETRIA ELEMENTARE. h = 2 2 S. h =

GEOMETRIA ELEMENTARE. h = 2 2 S. h = QUESITI 1 GEOMETRI ELEMENTRE 1. (Da Veteinaia 015) Le diagonali (ossia le linee che uniscono i vetici opposti) di un ombo misuano ispettivamente 4 cm e 8 cm. Qual è il peimeto del ombo in cm? a) 8 3 b)

Dettagli

Fisica Generale- Modulo Fisica II Esercitazione 2 Ingegneria Meccanica POTENZIALE ELETTRICO ED ENERGIA POTENZIALE

Fisica Generale- Modulo Fisica II Esercitazione 2 Ingegneria Meccanica POTENZIALE ELETTRICO ED ENERGIA POTENZIALE Fisica Geneale- Modulo Fisica II secitazione OTNZIL LTTRICO D NRGI OTNZIL Ba. Una caica elettica mc si tova nell oigine di un asse mente una caica negativa 4 mc si tova nel punto di ascissa m. Sia il punto

Dettagli

MACCHINA ELEMENTARE A RILUTTANZA

MACCHINA ELEMENTARE A RILUTTANZA Sistemi magnetici con moto meccanico MACCHINA ELEMENTARE A RILUTTANZA Consiste in un nucleo magnetico con un avvolgimento a N spie e una pate mobile che uota con spostamento angolae θ e velocità angolae

Dettagli

ESERCITAZIONE N.2 MODELLO IS/LM IN ECONOMIA CHIUSA

ESERCITAZIONE N.2 MODELLO IS/LM IN ECONOMIA CHIUSA ESERCITAZIONE N.2 MODELLO IS/LM IN ECONOMIA CHIUSA LEGENDA: H = BM = base monetaia mm = moltiplicatoe monetaio = 1 + c c + (o i) = tasso d inteesse = iseve/depositi c = cicolante /depositi id (D) = tasso

Dettagli

Vista dall alto. Vista laterale. a n. Centro della traiettoria

Vista dall alto. Vista laterale. a n. Centro della traiettoria I poblema Un ciclista pedala su una pista cicolae di aggio 5 m alla velocità costante di 3.4 km/h. La massa complessiva del ciclista e della bicicletta è 85.0 kg. Tascuando la esistenza dell aia calcolae

Dettagli

Legge di Gauss. Superficie Σ immersa nel campo elettrostatico generato da una carica q. da! r 2. d!(! E) "! E #! n da = q r 2! er!!

Legge di Gauss. Superficie Σ immersa nel campo elettrostatico generato da una carica q. da! r 2. d!(! E) ! E #! n da = q r 2! er!! Legge di Gauss Legge di Gauss in foma integale e locale Esempi Equazioni di Poisson e di Laplace Poblemi di Diichlet e Neumann Poblema geneale dell elettostatica Legge di Gauss Supeficie Σ immesa nel campo

Dettagli

! Un asta di peso p =! + 1 (vedi figura) è appoggiata su due. supporti A e B, distanti, dal baricentro G dell asta,

! Un asta di peso p =! + 1 (vedi figura) è appoggiata su due. supporti A e B, distanti, dal baricentro G dell asta, isica eneale 5. Esecizi di Statica Esecizio Un asta di eso = + (vedi figua) è aoggiata su due 0 N suoti e, distanti, dal baicento dell asta, isettivamente a =. m e b = + 0. 000 m Calcolae la foza d aoggio

Dettagli

Circuiti RLC RIASSUNTO: L(r)C serie: impedenza Z(ω) Q valore risposta in frequenza L(r)C parallelo Circuiti risonanti Circuiti anti-risonanti

Circuiti RLC RIASSUNTO: L(r)C serie: impedenza Z(ω) Q valore risposta in frequenza L(r)C parallelo Circuiti risonanti Circuiti anti-risonanti icuiti R RIASSUNTO: () seie: impedenza () valoe isposta in fequenza () paallelo icuiti isonanti icuiti anti-isonanti icuito in seie I cicuiti pesentano caatteistiche inteessanti. Ad esempio, ponendo un

Dettagli

Esercizi Scheda N Fisica II. Esercizi con soluzione

Esercizi Scheda N Fisica II. Esercizi con soluzione Esecizio 9.1 Esecizi con soluzione Te divese onde sonoe hanno fequenza ν ispettivamente 1 Hz, 1 Hz e 5 Mhz. Deteminae le lunghezze d onda coispondenti ed i peiodi di oscillazione, sapendo che la velocità

Dettagli

qq r Elettrostatica Legge di Coulomb permette di calcolare la forza che si esercita tra due particelle cariche.

qq r Elettrostatica Legge di Coulomb permette di calcolare la forza che si esercita tra due particelle cariche. lettostatica La mateia è costituita da atomi. Gli atomi sono fomati da un nucleo, contenete paticelle neute (neutoni) e paticelle caiche positivamente (potoni). Intono al nucleo ci sono paticelle caiche

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE

CORSO DI LAUREA IN SCIENZE BIOLOGICHE RS DI LURE IN SIENZE BILGIE Pova di isica del 17 aio 6 Giustiicae il pocediento seuito, sostituie alla ine i valoi nueici, non dienticae le unità di isua,scivee in odo chiao. 1 Un poiettile di si ea in

Dettagli

Per migliorare la trasmissione tra satellite e Terra, emerge la necessità di portare il satellite ad un orbita circolare diversa.

Per migliorare la trasmissione tra satellite e Terra, emerge la necessità di portare il satellite ad un orbita circolare diversa. 1 Esecizio (tatto dagli esempi 5.3 e 5.4 del cap. V del Mazzoldi-Nigo-Voci) Un satellite atificiale di massa m 10 3 Kg uota attono alla Tea descivendo un obita cicolae di aggio 1 6.6 10 3 Km. 1. Calcolae

Dettagli

Magnetostatica: forze magnetiche e campo magnetico

Magnetostatica: forze magnetiche e campo magnetico Magnetostatica: foze magnetiche e campo magnetico Lezione 6 Campo di induzione magnetica B() (nomenclatua stoica ; in ealtà si dovebbe chiamae, e spesso lo è, campo magnetico) è un campo di foze vettoiale

Dettagli

1 Potenziale elettrostatico e seconda equazione di Maxwell per E

1 Potenziale elettrostatico e seconda equazione di Maxwell per E 1 Potenziale elettostatico e seconda equazione di Maxwell pe E Consideiamo il campo elettico oiginato da una caica puntifome q che ipotizziamo fissa nell oigine degli assi: E( ) = q ˆ 2 = q 3 (1) Pe definizione,

Dettagli

ESERCIZI DI CALCOLO STRUTTURALE

ESERCIZI DI CALCOLO STRUTTURALE ESERCIZIO A1 ESERCIZI DI CACOO SRUURAE Pate A: ave incastata Calcolo delle eazioni vincolai con caichi concentati o distibuiti P 1 P 1 = 10000 N = 1.2 m Sia la stuttua in figua soggetta al caico P 1 applicato

Dettagli

Gravitazione universale

Gravitazione universale INGEGNERIA GESTIONALE coso di Fisica Geneale Pof. E. Puddu LEZIONE DEL 22 OTTOBRE 2008 Gavitazione univesale 1 Legge della gavitazione univesale di Newton Ogni paticella attae ogni alta paticella con una

Dettagli

Esistono due tipi di forze di attrito radente: le forze di attrito statico, per cui vale la relazione:

Esistono due tipi di forze di attrito radente: le forze di attrito statico, per cui vale la relazione: oze di attito f N P Le foze di attito adente si geneano sulla supeficie di contatto di due copi e hanno la caatteistica di opposi sepe al oto elativo dei due copi. Le foze di attito adente non dipendono,

Dettagli

Il magnetismo. Il Teorema di Ampere: la circuitazione del campo magnetico.

Il magnetismo. Il Teorema di Ampere: la circuitazione del campo magnetico. Il magnetismo Il Teoema di Ampee: la cicuitazione del campo magnetico. Richiamiamo la definizione geneale di cicuitazione pe un campo vettoiale Definizione: si definisce cicuitazione di un campo vettoiale

Dettagli

Potenza volumica. Legge di Joule in forma locale

Potenza volumica. Legge di Joule in forma locale Potenza volumica. Legge di Joule in foma locale Si considei un tubo di flusso elementae all inteno di un copo conduttoe nel quale ha sede un campo di coente. n da La potenza elettica che fluisce nel bipolo

Dettagli

Cinematica III. 11) Cinematica Rotazionale

Cinematica III. 11) Cinematica Rotazionale Cinematica III 11) Cinematica Rotazionale Abbiamo già tattato il moto cicolae unifome come moto piano (pa. 8) intoducendo la velocità lineae v e l acceleazione lineae a, ma se siamo inteessati solo al

Dettagli

Equazioni e disequazioni irrazionali

Equazioni e disequazioni irrazionali Equazioni e disequazioni iazionali 8 81 Equazioni iazionali con un solo adicale Definizione 81 Un equazione si dice iazionale quando l incognita compae sotto il segno di adice Analizziamo le seguenti equazioni:

Dettagli

Concetto di capacità

Concetto di capacità oncetto di capacità Il teoema di Gauss stabilisce che, posta una caica su un conduttoe isolato, il campo elettico E da essa podotto nello spazio cicostante è diettamente popozionale alla caica stessa:

Dettagli

TEORIA DELLA GRAVITAZIONE

TEORIA DELLA GRAVITAZIONE LEGGI DI KEPLEO EOI DELL GVIZIONE Dopo la ivoluzionaia teoia eliocentica del monaco polacco Copenico, Giovanni Kepleo fomulò te leggi a coeggee e miglioae ulteiomente il modello copenicano. Egli è infatti

Dettagli

ESERCIZIO n.2. y B. rispetto alle rette r e t indicate in Figura. GA#2 1

ESERCIZIO n.2. y B. rispetto alle rette r e t indicate in Figura. GA#2 1 ESERCZO n. Data la sezione a T ipotata in Figua, deteminae: a) gli assi pincipali centali di inezia; ) l ellisse pincipale centale di inezia; c) il nocciolo centale di inezia; d) i momenti di inezia e

Dettagli

Seconda prova (Tema assegnato alla maturità per geometri, 2007)

Seconda prova (Tema assegnato alla maturità per geometri, 2007) Seconda pova (Tema assegnato alla matuità pe geometi, 007) IL TM Dovendosi ealizzae lavoi di natua planimetica (azionamenti) ed altimetica (spianamenti) in un teeno CD, i cui vetici si susseguono in senso

Dettagli

Elettromagnetismo. Applicazioni della legge di Gauss. Lezione n. 6 14.10.2015. Prof. Francesco Ragusa Università degli Studi di Milano

Elettromagnetismo. Applicazioni della legge di Gauss. Lezione n. 6 14.10.2015. Prof. Francesco Ragusa Università degli Studi di Milano lettomagnetismo Pof. Fancesco agsa Univesità degli Stdi di Milano Lezione n. 6 4..5 Applicazioni della legge di Gass Anno Accademico 5/6 Campo di n gscio sfeico cavo Abbiamo già calcolato mediante n calcolo

Dettagli

SECONDA LEZIONE: lavoro elettrico, potenziale elettrostatico, teorema di Gauss (prima parte)

SECONDA LEZIONE: lavoro elettrico, potenziale elettrostatico, teorema di Gauss (prima parte) A. Chiodoni esecizi di Fisica II SECONDA LEZIONE: lavoo elettico, potenziale elettostatico, teoea di Gauss (pia pate) Esecizio Te caiche sono poste ai vetici di un tiangolo euilateo di lato l, calcolae

Dettagli

Biomeccanica. Cinematica Dinamica Statica dei corpi rigidi Energia e principi di conservazione

Biomeccanica. Cinematica Dinamica Statica dei corpi rigidi Energia e principi di conservazione Biomeccanica Cinematica Dinamica Statica dei copi igidi Enegia e pincipi di consevazione Posizione: definita da : z modulo, diezione, veso vettoe s s z s s y unità di misua (S.I.) : meto x s x y Taiettoia:

Dettagli

Campi elettrici e magnetici a bassa frequenza: sorgenti e metodi di valutazione

Campi elettrici e magnetici a bassa frequenza: sorgenti e metodi di valutazione Coso di Maste di secondo livello Sistemi Infomativi Geogafici pe il monitoaggio e la gestione del teitoio Campi elettici e magnetici a bassa fequenza: sogenti e metodi di valutazione Ing. Nicola Zoppetti

Dettagli

Q AB = Q AC + Q CB. liquido vapore. δq AB = δq AC + δq CB. δq = c x dt + r dx. Le 5 espressioni del δq nel campo dei vapori saturi

Q AB = Q AC + Q CB. liquido vapore. δq AB = δq AC + δq CB. δq = c x dt + r dx. Le 5 espressioni del δq nel campo dei vapori saturi Le 5 espessioni del Q nel campo dei vapoi satui A C K B Consideiamo la tasfomazione AB che si svolge tutta all inteno della campana dei vapoi satui di una sostanza qualsiasi. Supponiamo quindi di andae

Dettagli

M.T., M.T.T. Appunti di Fisica per Scienze Biologiche Vers /09/2005

M.T., M.T.T. Appunti di Fisica per Scienze Biologiche Vers /09/2005 MT, MTT Appunti di Fisica pe Scienze iologiche Ves 4 /9/5 L Elettostatica costituenti elementai della mateia possiedono, olte alla massa, la caica elettica La caica elettica si misua in oulomb () ed il

Dettagli

LEZIONE 10. d(a, B) = AB = AB = (x A x B ) 2 + (y A y B ) 2 + (z A z B ) 2.

LEZIONE 10. d(a, B) = AB = AB = (x A x B ) 2 + (y A y B ) 2 + (z A z B ) 2. LEZIONE 10 10.1. Distanze. Definizione 10.1.1. In S n sia fissata un unità di misua u. Se A, B S n, definiamo distanza fa A e B, e sciviamo d(a, B), la lunghezza del segmento AB ispetto ad u. Abbiamo già

Dettagli

Elettrostatica. G.P. Maggi - Lezioni di Fisica Generale AA 2001/2002

Elettrostatica. G.P. Maggi - Lezioni di Fisica Generale AA 2001/2002 G.P. Maggi - Lezioni di Fisica Geneale AA 2001/2002 Elettostatica La caica elettica Ta tutti i tipi di foza che abbiamo incontato in meccanica, solo la foza peso e quella di gavitazione univesale deivano

Dettagli

Il Problema di Keplero

Il Problema di Keplero Il Poblema di Kepleo Il poblema di Kepleo nel campo gavitazionale Intoduzione Con Poblema di Kepleo viene indicato il poblema del moto di un copo in un campo di foze centali. Nel caso specifico gavitazionale

Dettagli

Lezione mecc n.13 pag 1

Lezione mecc n.13 pag 1 Lezione mecc n.3 pag Agomenti di questa lezione Intoduzione alla dinamica dei sistemi Definizione di cento di massa Foze estene ed intene ad un sistema Quantità di moto e sue vaiazioni (pima equazione

Dettagli

F 1 F 2 F 3 F 4 F 5 F 6. Cosa è necessario per avere una rotazione?

F 1 F 2 F 3 F 4 F 5 F 6. Cosa è necessario per avere una rotazione? Cosa è necessaio pe avee una otazione? Supponiamo di vole uotae il sistema in figua intono al bullone, ovveo intono all asse veticale passante pe, usando foze nel piano oizzontale aventi tutte lo stesso

Dettagli

FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 5

FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 5 8360 - FISICA MATEMATICA 1 A.A. 014/15 Poblemi dal libo di testo: D. Giancoli, Fisica, a ed., CEA Capitolo 5 Poblema 1 Un bimbo su una giosta si muove con una velocità di 1.5 m/s quando è a 1.10 m dal

Dettagli

Massimi e minimi con le linee di livello

Massimi e minimi con le linee di livello Massimi e minimi con le linee di livello Pe affontae questo agomento è necessaio sape appesentae i fasci di cuve ed in paticolae: Fasci di paabole. Pe affontae questo agomento si consiglia di ivedee l

Dettagli

Corso di Progetto di Strutture. POTENZA, a.a Le piastre anulari

Corso di Progetto di Strutture. POTENZA, a.a Le piastre anulari Coso di Pogetto di Stuttue POTENZA, a.a. 3 Le piaste anulai Dott. aco VONA Scuola di Ingegneia, Univesità di Basilicata maco.vona@unibas.it http://www.unibas.it/utenti/vona/ LE PIASTE CICOLAI CAICATE ASSIALENTE

Dettagli

durante lo spostamento infinitesimo dr la quantità data dal prodotto scalare F dr

durante lo spostamento infinitesimo dr la quantità data dal prodotto scalare F dr 4. Lavoo ed enegia Definizione di lavoo di una foza Si considea un copo di massa m in moto lungo una ceta taiettoia. Si definisce lavoo infinitesimo fatto dalla foza F duante lo spostamento infinitesimo

Dettagli

Sommario: Campo elettrico

Sommario: Campo elettrico Sommaio: ampo elettico ampo elettico: se F è la foza sulla caica q, il campo elettico è: F q Linee di foza: il campo si appesenta figuativamente mediante le sue linee di foza: in ogni punto il campo è

Dettagli

v t V o cos t Re r v t

v t V o cos t Re r v t Metodo Simbolico, o metodo dei Fasoi Questo metodo applicato a eti lineai pemanenti consente di deteminae la soluzione in egime sinusoidale solamente pe quanto attiene il egime stazionaio. idea di appesentae

Dettagli

AUTOVALORI ED AUTOVETTORI DI UNA MATRICE

AUTOVALORI ED AUTOVETTORI DI UNA MATRICE AUTOVALORI ED AUTOVETTORI DI UNA MATRICE TEOREMA: Un elemento di K è un autovaloe pe una matice A, di odine n, se e solo se, indicata con I la matice identità di odine n, isulta: det( A I) Il deteminante

Dettagli

Sulla carica viene esercitata la forza magnetica. traiettoria circolare.

Sulla carica viene esercitata la forza magnetica. traiettoria circolare. Moto di caiche in Campo Magnetico Consideiamo una paticella di massa m e caica puntifome +q in moto con velocità v pependicolae ad un campo B unifome. B α v + F F v Nel piano α, B veso l alto Sulla caica

Dettagli

STUDIO DELLA RESISTENZA DI UN DISCO A SPESSORE COSTANTE UTILIZZANDO IL METODO DEGLI ELEMENTI FINITI

STUDIO DELLA RESISTENZA DI UN DISCO A SPESSORE COSTANTE UTILIZZANDO IL METODO DEGLI ELEMENTI FINITI POLITECNICO DI TORINO Facoltà di Ingegneia I Anno accademico xxxx/xxxx Coso di COSTRUZIONE DI MACCHINE Elettix1 STUDIO DELLA RESISTENZA DI UN DISCO A SPESSORE COSTANTE UTILIZZANDO IL METODO DEGLI ELEMENTI

Dettagli

Magnetostatica: forze magnetiche e campo magnetico

Magnetostatica: forze magnetiche e campo magnetico Magnetostatica: foze magnetiche e campo magnetico Lezione 6 Campo di induzione magnetica () (nomenclatua stoica ; in ealtà si dovebbe chiamae, e spesso lo è, campo magnetico) è un campo di foze vettoiale

Dettagli

Moto di puro rotolamento

Moto di puro rotolamento oto-taslaione di un copo igido di seione cicolae (disco,cilindo,sfea) su di un piano, pe il quale il punto (o i punti) di contatto ta il copo ed il piano è femo ispetto a questo ( non vi è stisciamento

Dettagli

Momenti. Momento di una forza, momento di inerzia, momento angolare

Momenti. Momento di una forza, momento di inerzia, momento angolare Momenti Momento di una foza, momento di inezia, momento angolae Momento di una foza Supponiamo di avee una pota vista dall alto e supponiamo che sia incadinata su un lato, diciamo in A. A Se applicassimo

Dettagli