Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:"

Transcript

1 Esame di Ricerca Operativa del 0// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x + x x +x x x x x x x 0 x x Base Soluzione di base Ammissibile Degenere (si/no) (si/no) {, } x = {, } y = Esercizio. Effettuare due iterazioni dell algoritmo del simplesso primale per il problema dell esercizio. iterazione {,} iterazione Base x y Indice Rapporti Indice uscente entrante Esercizio. Una ditta utilizza un cargo per il trasporto di prodotti P, P e P. Il cargo ha tre scompartimenti per il carico: A,B,C. La seguente tabella mostra i limiti in peso e spazio degli scompartimenti. capacità di peso (tonn) capacità di spazio (m ) A 000 B 800 C 000 La seguente tabella mostra per ogni prodotto la quantità massima (in tonn) di merce da caricare e il volume occupato. peso (tonn) volume occupato (m /tonn) P 0 00 P 00 P 0 Sapendo che il profitto ottenuto dal trasportodi una tonnellatadi merce è di 00Euro/tonnper P, 0Euro/tonnper P e 0 Euro/tonn per P, determinare come distribuire la merce negli scompartimenti per massimizzare il profitto. COMANDI DI MATLAB c= A= b= Aeq= beq= lb= ub=

2 Esercizio. Completare la seguente tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell ordine, il costo e la capacità). - (,) - (,) (0,9) - (,) (0,) (,) (,) (,0) (,) (0,9) Archi di T Archi di U Soluzione di base Ammissibile Degenere (si/no) (si/no) (,) (,) (,) (,) (,) (,) (,) x = (,) (,) (,) (,) (,) (,) (,) π = (0, Esercizio. Effettuare due iterazioni dell algoritmo del simplesso su reti per il problema dell esercizio. (,) iterazione iterazione Archi di T (,) (,) (,) (,) (,) (,) Archi di U (,) x π Arco entrante ϑ +, ϑ Arco uscente

3 Esercizio. a) Applicare l algoritmo di Dijkstra per trovare l albero dei cammini minimi di radice sulla seguente rete nodo visitato iter iter iter iter iter iter iter π p π p π p π p π p π p π p nodo nodo nodo nodo nodo nodo insieme Q b) Applicare l algoritmo FFEK per trovare il flusso massimo tra il nodo ed il nodo sulla seguente rete. 9 cammino aumentante δ x v Taglio di capacità minima: N s = N t =

4 Esercizio. Si consideri il seguente problema di programmazione lineare intera: max x + x x + x 0 x + x x 0 x 0 x,x Z a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo. sol. ottima del rilassamento = v S (P) = b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento. sol. ammissibile = v I (P) = c) Calcolare un taglio di Gomory. r = taglio: Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di città, le cui distanze reciproche sono indicate in tabella: città a) Trovare una valutazione inferiore del valore ottimo calcolando il albero di costo minimo. albero: v I (P) = b) Trovare una valutazione superiore applicando l algoritmo del nodo più vicino a partire dal nodo. ciclo: v S (P) = c) Applicare il metodo del Branch and Bound, utilizzando il albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell ordine, le variabili x, x, x.

5 SOLUZIONI Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x + x x +x x x x x x x 0 x x Base Soluzione di base Ammissibile Degenere (si/no) (si/no) {, } x = (, ) SI NO {, } y = ( 0, 0, ) 8, 0, 8, 0 Esercizio. Effettuare due iterazioni dell algoritmo del simplesso primale per il problema dell esercizio. Esercizio. Base x y Indice Rapporti Indice uscente entrante iterazione {, } (0, ) (0, 0,,, 0, 0) iterazione {, } (, ) variabili decisionali x i,j = tonnellate di prodotto i immagazzinato nello scompartimento j; i=,,; j=a,b,c ( 0, 0, ) 8, 0, 8, 0 NO NO 9,, 8 modello max 00 (x A +x B +x C ) +0 (x A +x B +x C ) +0 (x A +x B +x C ) x A +x B +x C 0 x A +x B +x C x A +x B +x C x A +x A +x A x B +x B +x B x C +x C +x C 00 x A +00 x A +0 x A x B +00 x B +0 x B x C +00 x C +0 x C 000 x i,j 0 c = -[ 00; 00; 00;0; 0; 0; 0; 0; 0] A = [ ; ; ; ; ; b = [ 0; ; ; ; ; ;000; 800; 000] ; ; ; ] Aeq = [] beq = [] lb = [0; 0; 0; 0; 0; 0; 0; 0; 0] ub = []

6 Esercizio. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell ordine, il costo e la capacità). - (,) - (,) (0,9) - (,) (0,) (,) (,) (,0) (,) (0,9) Archi di T Archi di U Soluzione di base Ammissibile Degenere (si/no) (si/no) (,) (,) (,) (,) (,) (,) (,) x = (0, 0,,, 0, 0,,, 0,, ) NO SI (,) (,) (,) (,) (,) (,) (,) π = (0,, 0,, 0,, ) NO SI Esercizio. Effettuare due iterazioni dell algoritmo del simplesso su reti per il problema dell esercizio. (,) iterazione iterazione Archi di T (,) (,) (,) (,) (,) (,) (,) (,) (,) (,) (,) (,) Archi di U (,) (,) x (0, 0,,, 0,,, 0,, 0, ) (0,,,, 0,,, 0,, 0, 0) π (0,,,,, 8, 8) (0,, 0,,, 8, ) Arco entrante (,) (,) ϑ +, ϑ 9,, Arco uscente (,) (,) Esercizio. a) Applicare l algoritmo di Dijkstra per trovare l albero dei cammini minimi di radice sulla seguente rete iter iter iter iter iter iter iter π p π p π p π p π p π p π p nodo visitato nodo nodo 9 9 nodo nodo nodo + + nodo insieme Q,,,,,,,,,

7 b) Applicare l algoritmo di Ford-Fulkerson(con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo ed il nodo sulla seguente rete. 9 cammino aumentante δ x v (0, 9, 0, 0, 0, 0, 9, 0, 0, 0, 0) (, 9, 0,, 0, 0, 9, 0, 0,, 0) (,, 0,, 0,, 9, 0, 0,, 0) (,,,, 0,, 9, 0,,, ) Taglio di capacità minima: N s = {,,,} N t = {,,} Esercizio. Si consideri il seguente problema di programmazione lineare intera: max x + x x + x 0 x + x x 0 x 0 x,x Z a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo. ( sol. ottima del rilassamento = 0, ) b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento. v S (P) = sol. ammissibile = (0,) v I (P) = c) Calcolare un taglio di Gomory. r = x r = x +8x 9 Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di città, le cui distanze reciproche sono indicate in tabella: città a) Trovare una valutazione inferiore del valore ottimo calcolando il albero di costo minimo. albero: (, ) (, ) (, ) (, ) (, ) v I (P) = 8 b) Trovare una valutazione superiore applicando l algoritmo del nodo più vicino a partire dal nodo. ciclo: v S (P) = 0 c) Applicare il metodo del Branch and Bound, utilizzando il albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell ordine, le variabili x, x, x.

8 8,0 P x = 0 x = 8,0 P,,0 P, x = 0 x =,0 P, 8,0 P, x = 0 x =,0 P, 8,0 P,

Esame di Ricerca Operativa del 18/12/12. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 18/12/12. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 8// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x x x x x + x x x + x 8 x Base

Dettagli

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12 A / A / Seconda Prova di Ricerca Operativa Cognome Nome Numero Matricola Nota: LA RISOLUZIONE CORRETTA DEGLI ESERCIZI CONTRADDISTINTI DA UN ASTERISCO È CONDIZIONE NECESSARIA PER IL RAGGIUNGIMENTO DELLA

Dettagli

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani Ricerca Operativa Esercizi sul metodo del simplesso Luigi De Giovanni, Laura Brentegani 1 1) Risolvere il seguente problema di programmazione lineare. ma + + 3 s.t. 2 + + 2 + 2 + 3 5 2 + 2 + 6,, 0 Soluzione.

Dettagli

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione.

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione. Grafi ed Alberi Pag. /26 Grafi ed Alberi In questo capitolo richiameremo i principali concetti di due ADT che ricorreranno puntualmente nel corso della nostra trattazione: i grafi e gli alberi. Naturale

Dettagli

IL PROBLEMA DELLO SHORTEST SPANNING TREE

IL PROBLEMA DELLO SHORTEST SPANNING TREE IL PROBLEMA DELLO SHORTEST SPANNING TREE n. 1 - Formulazione del problema Consideriamo il seguente problema: Abbiamo un certo numero di città a cui deve essere fornito un servizio, quale può essere l energia

Dettagli

Minimo sottografo ricoprente. Minimo sottografo ricoprente. Minimo albero ricoprente. Minimo albero ricoprente

Minimo sottografo ricoprente. Minimo sottografo ricoprente. Minimo albero ricoprente. Minimo albero ricoprente Minimo sottografo ricoprente Minimo sottografo ricoprente Dato un grafo connesso G = (V, E) con costi positivi sugli archi c e, un minimo sottografo ricoprente è un insieme di archi E E tale che: G = (V,

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

Il problema del massimo flusso. Preflow-push e augmenting path: un approccio unificante

Il problema del massimo flusso. Preflow-push e augmenting path: un approccio unificante Introduzione Il problema del massimo flusso. Preflow-push e augmenting path: un approccio unificante Il problema del massimo flusso è uno dei fondamentali problemi nell ottimizzazione su rete. Esso è presente

Dettagli

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione Alberi binari Ilaria Castelli castelli@dii.unisi.it Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione A.A. 2009/2010 I. Castelli Alberi binari, A.A. 2009/2010 1/20 Alberi binari

Dettagli

The Directed Closure Process in Hybrid Social-Information Networks

The Directed Closure Process in Hybrid Social-Information Networks The Directed Closure Process in Hybrid Social-Information Networks with an Analysis of Link Formation on Twitter Dario Nardi Seminario Sistemi Complessi 15 Aprile 2014 Dario Nardi (CAS) 15/4/14 1 / 20

Dettagli

DESMATRON TEORIA DEI GRAFI

DESMATRON TEORIA DEI GRAFI DESMATRON TEORIA DEI GRAFI 0 Teoria dei Grafi Author: Desmatron Release 1.0.0 Date of Release: October 28, 2004 Author website: http://desmatron.altervista.org Book website: http://desmatron.altervista.org/teoria_dei_grafi/index.php

Dettagli

VC-dimension: Esempio

VC-dimension: Esempio VC-dimension: Esempio Quale è la VC-dimension di. y b = 0 f() = 1 f() = 1 iperpiano 20? VC-dimension: Esempio Quale è la VC-dimension di? banale. Vediamo cosa succede con 2 punti: 21 VC-dimension: Esempio

Dettagli

2 Formulazione dello shortest path come problema di flusso

2 Formulazione dello shortest path come problema di flusso Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10 Lecture 20: 28 Maggio 2010 Cycle Monotonicity Docente: Vincenzo Auletta Note redatte da: Annibale Panichella Abstract In questa lezione

Dettagli

Appunti dalle lezioni di

Appunti dalle lezioni di Università di Roma La Sapienza Sede di Latina (Università Pontina) Corso di Laurea in Ingegneria Informatica Appunti dalle lezioni di Ricerca Operativa Anno Accademico 2003-2004 Indice Introduzione 5 Che

Dettagli

DI D AGRA R MM M I M A BLOCC C H C I TEORI R A E D D E SERC R I C ZI 1 1

DI D AGRA R MM M I M A BLOCC C H C I TEORI R A E D D E SERC R I C ZI 1 1 DIAGRAMMI A BLOCCHI TEORIA ED ESERCIZI 1 1 Il linguaggio dei diagrammi a blocchi è un possibile formalismo per la descrizione di algoritmi Il diagramma a blocchi, o flowchart, è una rappresentazione grafica

Dettagli

Albero semantico. Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni.

Albero semantico. Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni. Albero semantico Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni. A differenza dell albero sintattico (che analizza la formula da un punto di vista puramente

Dettagli

Gli algoritmi. Gli algoritmi. Analisi e programmazione

Gli algoritmi. Gli algoritmi. Analisi e programmazione Gli algoritmi Analisi e programmazione Gli algoritmi Proprietà ed esempi Costanti e variabili, assegnazione, istruzioni, proposizioni e predicati Vettori e matrici I diagrammi a blocchi Analisi strutturata

Dettagli

Esercizi Capitolo 5 - Alberi

Esercizi Capitolo 5 - Alberi Esercizi Capitolo 5 - Alberi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare alle

Dettagli

Sistemi avanzati di gestione dei Sistemi Informativi

Sistemi avanzati di gestione dei Sistemi Informativi Esperti nella gestione dei sistemi informativi e tecnologie informatiche Sistemi avanzati di gestione dei Sistemi Informativi Docente: Email: Sito: Eduard Roccatello eduard@roccatello.it http://www.roccatello.it/teaching/gsi/

Dettagli

Teoria dei giochi Gioco Interdipendenza strategica

Teoria dei giochi Gioco Interdipendenza strategica Teoria dei giochi Gioco Interdipendenza strategica soggetti decisionali autonomi con obiettivi (almeno parzialmente) contrapposti guadagno di ognuno dipende dalle scelte sue e degli altri Giocatori razionali

Dettagli

Approssimazione polinomiale di funzioni e dati

Approssimazione polinomiale di funzioni e dati Approssimazione polinomiale di funzioni e dati Approssimare una funzione f significa trovare una funzione f di forma più semplice che possa essere usata al posto di f. Questa strategia è utilizzata nell

Dettagli

Alberto Montresor Università di Trento

Alberto Montresor Università di Trento !! Algoritmi e Strutture Dati! Capitolo 1 - Greedy!!! Alberto Montresor Università di Trento!! This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License. To view a copy

Dettagli

LIVELLO STRATEGICO E TATTICO

LIVELLO STRATEGICO E TATTICO Corso di Laurea Triennale in INGEGNERIA GESTIONALE Anno Accademico 2012/13 Prof. Davide GIGLIO 1 ESEMPI DI PROBLEMI DECISIONALI LIVELLO STRATEGICO Capacity growth planning LIVELLO TATTICO Aggregate planning

Dettagli

Sistemi di supporto alle decisioni Ing. Valerio Lacagnina

Sistemi di supporto alle decisioni Ing. Valerio Lacagnina Cosa è il DSS L elevato sviluppo dei personal computer, delle reti di calcolatori, dei sistemi database di grandi dimensioni, e la forte espansione di modelli basati sui calcolatori rappresentano gli sviluppi

Dettagli

Esempi di algoritmi. Lezione III

Esempi di algoritmi. Lezione III Esempi di algoritmi Lezione III Scopo della lezione Implementare da zero algoritmi di media complessità. Verificare la correttezza di un algoritmo eseguendolo a mano. Imparare a valutare le prestazioni

Dettagli

L impresa che non fa il prezzo

L impresa che non fa il prezzo L offerta nei mercati dei prodotti L impresa che non fa il prezzo L impresa che non fa il prezzo (KR 10 + NS 6) Dipartimento di Economia Politica Università di Milano Bicocca Outline L offerta nei mercati

Dettagli

Ricerca non informata in uno spazio di stati

Ricerca non informata in uno spazio di stati Università di Bergamo Facoltà di Ingegneria Intelligenza Artificiale Paolo Salvaneschi A5_2 V2.4 Ricerca non informata in uno spazio di stati Il contenuto del documento è liberamente utilizzabile dagli

Dettagli

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 1.1 Che cos è un algoritmo CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 Gli algoritmi sono metodi per la soluzione di problemi. Possiamo caratterizzare un problema mediante i dati di cui si dispone all inizio

Dettagli

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it L INTENSITÀ DELLA CORRENTE ELETTRICA Consideriamo una lampadina inserita in un circuito elettrico costituito da fili metallici ed un interruttore.

Dettagli

Problem solving avanzato

Problem solving avanzato Problem solving avanzato Formulazione del problema Struttura dati e algoritmo Il programma 2 26 Politecnico di Torino 1 Dati in input (1/4) Sono dati due file di testo, contenenti le informazioni sulle

Dettagli

Slide con esempi di prezzi di Futures e opzioni quotate su Borsa Italiana sulle azioni di Unicredit.

Slide con esempi di prezzi di Futures e opzioni quotate su Borsa Italiana sulle azioni di Unicredit. Slide con esempi di prezzi di Futures e opzioni quotate su Borsa Italiana sulle azioni di Unicredit. http://www.borsaitaliana.it/borsa/azioni/scheda.html?isin=it0004781412&lang=en http://www.borsaitaliana.it/borsa/derivati/idem-stock-futures/lista.html?underlyingid=ucg&lang=en

Dettagli

SISTEMI LINEARI QUADRATI: METODI ITERATIVI

SISTEMI LINEARI QUADRATI: METODI ITERATIVI SISTEMI LINEARI QUADRATI: METODI ITERATIVI CALCOLO NUMERICO e PROGRAMMAZIONE SISTEMI LINEARI QUADRATI:METODI ITERATIVI p./54 RICHIAMI di ALGEBRA LINEARE DEFINIZIONI A R n n simmetrica se A = A T ; A C

Dettagli

Stefano Bonetti Framework per la valutazione progressiva di interrogazioni di localizzazione

Stefano Bonetti Framework per la valutazione progressiva di interrogazioni di localizzazione Analisi del dominio: i sistemi per la localizzazione Definizione e implementazione del framework e risultati sperimentali e sviluppi futuri Tecniche di localizzazione Triangolazione Analisi della scena

Dettagli

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco ANALISI DI SITUAZIONE - LIVELLO COGNITIVO La classe ha dimostrato fin dal primo momento grande attenzione e interesse verso gli

Dettagli

Guida ai Servizi Voce per l Utente. Guida ai ai Servizi Voce per l Utente

Guida ai Servizi Voce per l Utente. Guida ai ai Servizi Voce per l Utente Guida ai Servizi Voce per l Utente Guida ai ai Servizi Voce per l Utente 1 Indice Introduzione... 3 1 Servizi Voce Base... 4 1.1 Gestione delle chiamate... 4 1.2 Gestione del Numero Fisso sul cellulare...

Dettagli

Razionalità organizzativa e struttura

Razionalità organizzativa e struttura Un organizzazione è sempre compresa in sistemi più ampi Alcune parti dell organizzazione inevitabilmente sono interdipendenti con altre organizzazioni non subordinate e fuori dalle possibilità di controllo

Dettagli

Elementi di UML (7): Diagrammi dei componenti e di deployment

Elementi di UML (7): Diagrammi dei componenti e di deployment Elementi di UML (7): Diagrammi dei componenti e di deployment Università degli Studi di Bologna Facoltà di Scienze MM. FF. NN. Corso di Laurea in Scienze di Internet Anno Accademico 2004-2005 Laboratorio

Dettagli

Programmazione Non Lineare Ottimizzazione vincolata

Programmazione Non Lineare Ottimizzazione vincolata DINFO-Università di Palermo Programmazione Non Lineare Ottimizzazione vincolata D. Bauso, R. Pesenti Dipartimento di Ingegneria Informatica Università di Palermo DINFO-Università di Palermo 1 Sommario

Dettagli

Analisi dei requisiti e casi d uso

Analisi dei requisiti e casi d uso Analisi dei requisiti e casi d uso Indice 1 Introduzione 2 1.1 Terminologia........................... 2 2 Modello del sistema 4 2.1 Requisiti hardware........................ 4 2.2 Requisiti software.........................

Dettagli

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso Esercizio 1 Data la funzione di domanda: ELASTICITÀ Dire se partendo da un livello di prezzo p 1 = 1.5, al produttore converrà aumentare il prezzo fino al livello p 2 = 2. Sarebbe conveniente per il produttore

Dettagli

IL SAMPLE AND HOLD UNIVERSITÀ DEGLI STUDI DI MILANO. Progetto di Fondamenti di Automatica. PROF.: M. Lazzaroni

IL SAMPLE AND HOLD UNIVERSITÀ DEGLI STUDI DI MILANO. Progetto di Fondamenti di Automatica. PROF.: M. Lazzaroni UNIVERSITÀ DEGLI STUDI DI MILANO FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea in Informatica IL SAMPLE AND HOLD Progetto di Fondamenti di Automatica PROF.: M. Lazzaroni Anno Accademico

Dettagli

Massimo Paolucci (paolucci@dist.unige.it) DIST Università di Genova. Metodi per supportare le decisioni relative alla gestione di progetti

Massimo Paolucci (paolucci@dist.unige.it) DIST Università di Genova. Metodi per supportare le decisioni relative alla gestione di progetti Project Management Massimo Paolucci (paolucci@dist.unige.it) DIST Università di Genova Project Management 2 Metodi per supportare le decisioni relative alla gestione di progetti esempi sono progetti nell

Dettagli

Che cos è il Marketing 3.0?

Che cos è il Marketing 3.0? Che cos è il Marketing 3.0? di Fabrizio Pieroni Philip Kotler, studioso di Marketing attento ai cambiamenti della società e pronto a modificare di conseguenza le sue posizioni, ha recentemente presentato

Dettagli

Dispense del Corso di Algoritmi e Strutture Dati

Dispense del Corso di Algoritmi e Strutture Dati Dispense del Corso di Algoritmi e Strutture Dati Marco Bernardo Edoardo Bontà Università degli Studi di Urbino Carlo Bo Facoltà di Scienze e Tecnologie Corso di Laurea in Informatica Applicata Versione

Dettagli

CALCOLATORI ELETTRONICI 29 giugno 2010

CALCOLATORI ELETTRONICI 29 giugno 2010 CALCOLATORI ELETTRONICI 29 giugno 2010 NOME: COGNOME: MATR: Scrivere chiaramente in caratteri maiuscoli a stampa 1. Si disegni lo schema di un flip-flop master-slave S-R sensibile ai fronti di salita e

Dettagli

REGOLAMENTO PER L ISCRIZIONE DEGLI STUDENTI A TEMPO PARZIALE AI CORSI DI STUDIO DELL UNIVERSITA DEGLI STUDI DELLA TUSCIA

REGOLAMENTO PER L ISCRIZIONE DEGLI STUDENTI A TEMPO PARZIALE AI CORSI DI STUDIO DELL UNIVERSITA DEGLI STUDI DELLA TUSCIA Università degli Studi della Tuscia Regolamento per l iscrizione degli studenti a tempo parziale ai corsi di studio dell Università degli Studi della Tuscia (D.R. n. 637/07 del 01.08.2007) REGOLAMENTO

Dettagli

Business Intelligence. Il data mining in

Business Intelligence. Il data mining in Business Intelligence Il data mining in L'analisi matematica per dedurre schemi e tendenze dai dati storici esistenti. Revenue Management. Previsioni di occupazione. Marketing. Mail diretto a clienti specifici.

Dettagli

CALCOLATORI ELETTRONICI 31 marzo 2015

CALCOLATORI ELETTRONICI 31 marzo 2015 CALCOLATORI ELETTRONICI 31 marzo 2015 NOME: COGNOME: MATR: Scrivere nome, cognome e matricola chiaramente in caratteri maiuscoli a stampa 1. Tradurre in linguaggio assembly MIPS il seguente frammento di

Dettagli

Introduzione allo Scilab Parte 3: funzioni; vettori.

Introduzione allo Scilab Parte 3: funzioni; vettori. Introduzione allo Scilab Parte 3: funzioni; vettori. Felice Iavernaro Dipartimento di Matematica Università di Bari http://dm.uniba.it/ iavernaro felix@dm.uniba.it 13 Giugno 2007 Felice Iavernaro (Univ.

Dettagli

La partecipazione finanziaria per una nuova Europa sociale

La partecipazione finanziaria per una nuova Europa sociale La partecipazione finanziaria per una nuova Europa sociale Il Cammino verso una Regolamentazione Europea: L Approccio Modulare Employee Stock Ownership Plans (ESOP): Un veicolo per garantire la successione

Dettagli

Attività 9. La città fangosa Minimal Spanning Trees

Attività 9. La città fangosa Minimal Spanning Trees Attività 9 La città fangosa Minimal Spanning Trees Sommario la nostra società ha molti collegamenti in rete: la rete telefonica, la rete energetica, la rete stradale. Per una rete in particolare, ci sono

Dettagli

Capitolo 7. Circuiti magnetici

Capitolo 7. Circuiti magnetici Capitolo 7. Circuiti magnetici Esercizio 7.1 Dato il circuito in figura 7.1 funzionante in regime stazionario, sono noti: R1 = 7.333 Ω, R2 = 2 Ω, R3 = 7 Ω δ1 = 1 mm, δ2 = 1.3 mm, δ3 = 1.5 mm Α = 8 cm 2,

Dettagli

Modelli Binomiali per la valutazione di opzioni

Modelli Binomiali per la valutazione di opzioni Modelli Binomiali per la valutazione di opzioni Rosa Maria Mininni a.a. 2014-2015 1 Introduzione ai modelli binomiali La valutazione degli strumenti finanziari derivati e, in particolare, la valutazione

Dettagli

Breve introduzione al metodo del Analytic Hierarchy Process (AHP)

Breve introduzione al metodo del Analytic Hierarchy Process (AHP) Breve introduzione al metodo del Analytic Hierarchy Process (AHP) Massimo Paolucci (paolucci@dist.unige.it) DIST Università di Genova 2 Il metodo SAW costruisce un peso con cui valutare le alternative

Dettagli

Elettronica Analogica. Luxx Luca Carabetta. Nello studio dell elettronica analogica ci serviamo di alcune grandezze:

Elettronica Analogica. Luxx Luca Carabetta. Nello studio dell elettronica analogica ci serviamo di alcune grandezze: Grandezze elettriche Serie e Parallelo Legge di Ohm, Principi di Kirchhoff Elettronica Analogica Luxx Luca Carabetta Premessa L elettronica Analogica, si appoggia su segnali che possono avere infiniti

Dettagli

Macchine rotanti. Premessa

Macchine rotanti. Premessa Macchine rotanti Premessa Sincrono, asincrono, a corrente continua, brushless sono parecchi i tipi di motori elettrici. Per ognuno teoria e formule diverse. Eppure la loro matrice fisica è comune. Unificare

Dettagli

Routing (instradamento) in Internet. Internet globalmente consiste di Sistemi Autonomi (AS) interconnessi:

Routing (instradamento) in Internet. Internet globalmente consiste di Sistemi Autonomi (AS) interconnessi: Routing (instradamento) in Internet Internet globalmente consiste di Sistemi Autonomi (AS) interconnessi: Stub AS: istituzione piccola Multihomed AS: grande istituzione (nessun ( transito Transit AS: provider

Dettagli

1 LA CORRENTE ELETTRICA CONTINUA

1 LA CORRENTE ELETTRICA CONTINUA 1 LA CORRENTE ELETTRICA CONTINUA Un conduttore ideale all equilibrio elettrostatico ha un campo elettrico nullo al suo interno. Cosa succede se viene generato un campo elettrico diverso da zero al suo

Dettagli

Minimizzazione di Reti Logiche Combinatorie Multi-livello

Minimizzazione di Reti Logiche Combinatorie Multi-livello Minimizzazione di Reti Logiche Combinatorie Multi-livello Maurizio Palesi Maurizio Palesi 1 Introduzione Obiettivo della sintesi logica: ottimizzazione delle cifre di merito area e prestazioni Prestazioni:

Dettagli

AOT Lab Dipartimento di Ingegneria dell Informazione Università degli Studi di Parma. Unified Process. Prof. Agostino Poggi

AOT Lab Dipartimento di Ingegneria dell Informazione Università degli Studi di Parma. Unified Process. Prof. Agostino Poggi AOT Lab Dipartimento di Ingegneria dell Informazione Università degli Studi di Parma Unified Process Prof. Agostino Poggi Unified Process Unified Software Development Process (USDP), comunemente chiamato

Dettagli

La struttura dell RNA Struttura dell RNA mediante analisi comparativa Predizione della struttura secondaria: L algoritmo di Nussinov Predizione della

La struttura dell RNA Struttura dell RNA mediante analisi comparativa Predizione della struttura secondaria: L algoritmo di Nussinov Predizione della La struttura dell RNA Struttura dell RNA mediante analisi comparativa Predizione della struttura secondaria: L algoritmo di Nussinov Predizione della struttura secondaria: Minimizzazione dell energia Un

Dettagli

Matlab: Funzioni. Informatica B. Daniele Loiacono

Matlab: Funzioni. Informatica B. Daniele Loiacono Matlab: Funzioni Informatica B Funzioni A cosa servono le funzioni? 3 x = input('inserisci x: '); fx=1 for i=1:x fx = fx*x if (fx>220) y = input('inserisci y: '); fy=1 for i=1:y fy = fy*y A cosa servono

Dettagli

Organizzazione Gerarchica dei file

Organizzazione Gerarchica dei file Il numero di file che devono essere memorizzati su un disco può essere estremamente elevato Si ha quindi la necessità di mantenere i file in una forma ordinata Un unico spazio (contenitore) di file è scomodo

Dettagli

Si basano sul seguente Teorema: S = A sse S { A} è insoddisfacibile.

Si basano sul seguente Teorema: S = A sse S { A} è insoddisfacibile. Deduzione automatica La maggior parte dei metodi di deduzione automatica sono metodi di refutazione: anziché dimostrare direttamente che S A, si dimostra che S { A} è un insieme insoddisfacibile (cioè

Dettagli

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Angela è nata nel 1997,

Dettagli

Unità 12. La corrente elettrica

Unità 12. La corrente elettrica Unità 12 La corrente elettrica L elettricità risiede nell atomo Modello dell atomo: al centro c è il nucleo formato da protoni e neutroni ben legati tra di loro; in orbita intorno al nucleo si trovano

Dettagli

Grafi, alberi e re1: modelli su cui cercare soluzioni o;me

Grafi, alberi e re1: modelli su cui cercare soluzioni o;me Università degli Studi Roma Tre Dipar-mento di Scienze della Formazione Laboratorio di Matema-ca per la Formazione Primaria Grafi, alberi e re: modelli su cui cercare soluzioni o;me Mini corso Informa.ca

Dettagli

Corrente elettrica (regime stazionario)

Corrente elettrica (regime stazionario) Corrente elettrica (regime stazionario) Metalli Corrente elettrica Legge di Ohm Resistori Collegamento di resistori Generatori di forza elettromotrice Metalli Struttura cristallina: ripetizione di unita`

Dettagli

Gli uni e gli altri. Strategie in contesti di massa

Gli uni e gli altri. Strategie in contesti di massa Gli uni e gli altri. Strategie in contesti di massa Alessio Porretta Universita di Roma Tor Vergata Gli elementi tipici di un gioco: -un numero di agenti (o giocatori): 1,..., N -Un insieme di strategie

Dettagli

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2 NLP -OPT 1 CONDIZION DI OTTIMO [ Come ricavare le condizioni di ottimo. ] Si suppone x* sia punto di ottimo (minimo) per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J la condizione

Dettagli

Rappresentazione dei numeri in un calcolatore

Rappresentazione dei numeri in un calcolatore Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri in un calcolatore Lezione 2 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione dei numeri

Dettagli

Circuiti Elettrici. Elementi di circuito: resistori, generatori di differenza di potenziale

Circuiti Elettrici. Elementi di circuito: resistori, generatori di differenza di potenziale Circuiti Elettrici Corrente elettrica Legge di Ohm Elementi di circuito: resistori, generatori di differenza di potenziale Leggi di Kirchhoff Elementi di circuito: voltmetri, amperometri, condensatori

Dettagli

AA 2006-07 LA RICORSIONE

AA 2006-07 LA RICORSIONE PROGRAMMAZIONE AA 2006-07 LA RICORSIONE AA 2006-07 Prof.ssa A. Lanza - DIB 1/18 LA RICORSIONE Il concetto di ricorsione nasce dalla matematica Una funzione matematica è definita ricorsivamente quando nella

Dettagli

Esercitazione 7. Procedure e Funzioni

Esercitazione 7. Procedure e Funzioni Esercitazione 7 Procedure e Funzioni Esercizio Scrivere un programma che memorizza in un array di elementi di tipo double le temperature relative al mese corrente e ne determina la temperatura massima,

Dettagli

SCUOLANET UTENTE DOCENTE

SCUOLANET UTENTE DOCENTE 1 ACCESSO A SCUOLANET Si accede al servizio Scuolanet della scuola mediante l'indirizzo www.xxx.scuolanet.info (dove a xxx corrisponde al codice meccanografico della scuola). ISTRUZIONI PER IL PRIMO ACCESSO

Dettagli

Capo 1. Art.1 - (Definizione dell istituto dell indennità di posizione della categoria EP)

Capo 1. Art.1 - (Definizione dell istituto dell indennità di posizione della categoria EP) REGOLAMENTO DISCIPLINANTE L APPLICAZIONE DEGLI ARTT.75 CONFERIMENTO E REVOCA DI INCARICHI AL PERSONALE DELLA CATEGORIA EP E 76 RETRIBUZIONE DI POSIZIONE E RETRIBUZIONE DI RISULTATO DEL CCNL 16.10.2008

Dettagli

Trasmissioni a cinghia dentata SIT - CLASSICA passo in pollici. Trasmissioni a cinghia. dentata CLASSICA

Trasmissioni a cinghia dentata SIT - CLASSICA passo in pollici. Trasmissioni a cinghia. dentata CLASSICA Trasmissioni a cinghia dentata SIT - CLASSICA passo in pollici Trasmissioni a cinghia dentata CLASSICA INDICE Trasmissione a cinghia dentata SIT - CLASSICA passo in pollici Pag. Cinghie dentate CLASSICE

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

costo carburante per km incidenza = ------------------------------------------------------------- x 100 altri costi + costo carburante per km

costo carburante per km incidenza = ------------------------------------------------------------- x 100 altri costi + costo carburante per km Costi di esercizio dell impresa di autotrasporto per conto di terzi costi minimi di esercizio che garantiscano il rispetto dei parametri di sicurezza (Articolo 83 bis, commi 1 e 2, commi 4 e 4-bis della

Dettagli

29, 19 30 2010, 240 24 2014, 478) INDICE

29, 19 30 2010, 240 24 2014, 478) INDICE Regolamento per l attribuzione a professori e ricercatori dell incentivo di cui all art. 29, comma 19 della legge 30 dicembre 2010, n. 240 (emanato con decreto rettorale 24 ottobre 2014, n. 478) INDICE

Dettagli

Algebra Relazionale. algebra relazionale

Algebra Relazionale. algebra relazionale Algebra Relazionale algebra relazionale Linguaggi di Interrogazione linguaggi formali Algebra relazionale Calcolo relazionale Programmazione logica linguaggi programmativi SQL: Structured Query Language

Dettagli

DECRETA. ART. 1 Caratteristiche del Master

DECRETA. ART. 1 Caratteristiche del Master Il Rettore Decreto Rep. n 1339 Prot. n 13549 Data 29.04.2014 Titolo III Classe V UOR SOFPL VISTO lo Statuto del Politecnico di Milano; VISTO il D.M. 3.11.1999, n.509; VISTO Il D.M. 22.10.2004, n. 270;

Dettagli

10 1 Gli obiettivi dell OMC 2 I sussidi alle esportazioni agricole in un Paese piccolo 3 I sussidi alle esportazioni agricole in un Paese grande 4

10 1 Gli obiettivi dell OMC 2 I sussidi alle esportazioni agricole in un Paese piccolo 3 I sussidi alle esportazioni agricole in un Paese grande 4 I SUSSIDI ALLE ESPORTAZIONI NELL AGRICOLTURA E NEI SETTORI AD ALTA TECNOLOGIA 10 1 Gli obiettivi dell OMC 2 I sussidi alle esportazioni agricole in un Paese piccolo 3 I sussidi alle esportazioni agricole

Dettagli

PROGRAMMAZIONE LINEARE IN DUE VARIABILI

PROGRAMMAZIONE LINEARE IN DUE VARIABILI 1 PROGRAMMAZIONE LINEARE IN DUE VARIABILI La ricerca operativa nata durante la seconda guerra mondiale ed utilizzata in ambito militare, oggi viene applicata all industria, nel settore pubblico e nell

Dettagli

Piano Giovani di Zona Quattro Vicariati Comuni di Ala, Avio, Brentonico, Mori e Ronzo-Chienis

Piano Giovani di Zona Quattro Vicariati Comuni di Ala, Avio, Brentonico, Mori e Ronzo-Chienis Piano Giovani di Zona Quattro Vicariati Comuni di Ala, Avio, Brentonico, Mori e Ronzo-Chienis BANDO PER LA PRESENTAZIONE DI PROGETTI PER LA FORMAZIONE DEL PIANO OPERATIVO GIOVANI (POG) Anno 2015 PREMESSA:

Dettagli

Capitolo 12 Il monopolio. Robert H. Frank Microeconomia - 5 a Edizione Copyright 2010 - The McGraw-Hill Companies, srl

Capitolo 12 Il monopolio. Robert H. Frank Microeconomia - 5 a Edizione Copyright 2010 - The McGraw-Hill Companies, srl Capitolo 12 Il monopolio IL MONOPOLIO Il monopolio è una forma di mercato in cui un unico venditore offre un bene che non ha stretti sostituti, ad una moltitudine di consumatori La differenza fondamentale

Dettagli

Progetto, realizzazione e manutenzione di un laghetto da giardino - Direttive generali -

Progetto, realizzazione e manutenzione di un laghetto da giardino - Direttive generali - Progetto, realizzazione e manutenzione di un laghetto da giardino - Direttive generali - (tratto dalla relazione di Martino Buzzi del 17.09.06) Lo stagno: un angolo di natura Avere uno stagno nel proprio

Dettagli

Autori: M. Di Ianni, A. Panepuccia

Autori: M. Di Ianni, A. Panepuccia AR Analisi di Reti 2010/2011 M.Di Ianni Assegnazioni di ruoli Autori: M. Di Ianni, A. Panepuccia In questa dispensa verrà trattato il problema dell assegnazione dei ruoli in un grafo. Tale problema è stato

Dettagli

Studente: SANTORO MC. Matricola : 528

Studente: SANTORO MC. Matricola : 528 CORSO di LAUREA in INFORMATICA Corso di CALCOLO NUMERICO a.a. 2004-05 Studente: SANTORO MC. Matricola : 528 PROGETTO PER L ESAME 1. Sviluppare una versione dell algoritmo di Gauss per sistemi con matrice

Dettagli

Applicazione dei sistemi di accumulo elettrici in ambito industriale

Applicazione dei sistemi di accumulo elettrici in ambito industriale Applicazione dei sistemi di accumulo elettrici in ambito industriale D. Iannuzzi, E. Pagano, P. Tricoli Report RSE/2009/46 Ente per le Nuove tecnologie, l Energia e l Ambiente RICERCA SISTEMA ELETTRICO

Dettagli

Introduzione all elettronica

Introduzione all elettronica Introduzione all elettronica L elettronica nacque agli inizi del 1900 con l invenzione del primo componente elettronico, il diodo (1904) seguito poi dal triodo (1906) i cosiddetti tubi a vuoto. Questa

Dettagli

Alcune proprietà dei numeri primi, II

Alcune proprietà dei numeri primi, II This is the last preprint. The final paper will appear in the website http: //matematica.uni-bocconi.it/langzac/home2.htm. Alcune proprietà dei numeri primi, II Alessandro Languasco & Alessandro Zaccagnini

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice Pseudo codice Pseudo codice Paolo Bison Fondamenti di Informatica A.A. 2006/07 Università di Padova linguaggio testuale mix di linguaggio naturale ed elementi linguistici con sintassi ben definita e semantica

Dettagli

Le metodologie alternative al VAN

Le metodologie alternative al VAN Teoria della Finanza Aziendale Le metodologie alternative al VAN 6 1-2 Argomenti Il VAN e le possibili alternative Il Payback Period Il rendimento medio contabile Il TIR Valutazione in presenza di vincoli

Dettagli

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) Principal Component Analysis (PCA) Come evidenziare l informazione contenuta nei dati S. Marsili-Libelli: Calibrazione di Modelli Dinamici pag. Perche PCA? E un semplice metodo non-parametrico per estrarre

Dettagli

L Economia del Benessere

L Economia del Benessere L Economia del Benessere L'Economia del Benessere è la branca normativa della Scienza Economica. In quest'area della ricerca vengono studiate e definite delle regole (o dei metodi) per poter classificare,

Dettagli

Valutazione e valorizzazione di un sito web di una struttura alberghiera. Andrea Tiburzi Rimini, 9 marzo 2013

Valutazione e valorizzazione di un sito web di una struttura alberghiera. Andrea Tiburzi Rimini, 9 marzo 2013 Valutazione e valorizzazione di un sito web di una struttura alberghiera. Andrea Tiburzi Rimini, 9 marzo 2013 Introduzione Agenda La misura del valore: i fattori che influenzano il valore di un azienda

Dettagli