Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:"

Transcript

1 Esame di Ricerca Operativa del 0// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x + x x +x x x x x x x 0 x x Base Soluzione di base Ammissibile Degenere (si/no) (si/no) {, } x = {, } y = Esercizio. Effettuare due iterazioni dell algoritmo del simplesso primale per il problema dell esercizio. iterazione {,} iterazione Base x y Indice Rapporti Indice uscente entrante Esercizio. Una ditta utilizza un cargo per il trasporto di prodotti P, P e P. Il cargo ha tre scompartimenti per il carico: A,B,C. La seguente tabella mostra i limiti in peso e spazio degli scompartimenti. capacità di peso (tonn) capacità di spazio (m ) A 000 B 800 C 000 La seguente tabella mostra per ogni prodotto la quantità massima (in tonn) di merce da caricare e il volume occupato. peso (tonn) volume occupato (m /tonn) P 0 00 P 00 P 0 Sapendo che il profitto ottenuto dal trasportodi una tonnellatadi merce è di 00Euro/tonnper P, 0Euro/tonnper P e 0 Euro/tonn per P, determinare come distribuire la merce negli scompartimenti per massimizzare il profitto. COMANDI DI MATLAB c= A= b= Aeq= beq= lb= ub=

2 Esercizio. Completare la seguente tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell ordine, il costo e la capacità). - (,) - (,) (0,9) - (,) (0,) (,) (,) (,0) (,) (0,9) Archi di T Archi di U Soluzione di base Ammissibile Degenere (si/no) (si/no) (,) (,) (,) (,) (,) (,) (,) x = (,) (,) (,) (,) (,) (,) (,) π = (0, Esercizio. Effettuare due iterazioni dell algoritmo del simplesso su reti per il problema dell esercizio. (,) iterazione iterazione Archi di T (,) (,) (,) (,) (,) (,) Archi di U (,) x π Arco entrante ϑ +, ϑ Arco uscente

3 Esercizio. a) Applicare l algoritmo di Dijkstra per trovare l albero dei cammini minimi di radice sulla seguente rete nodo visitato iter iter iter iter iter iter iter π p π p π p π p π p π p π p nodo nodo nodo nodo nodo nodo insieme Q b) Applicare l algoritmo FFEK per trovare il flusso massimo tra il nodo ed il nodo sulla seguente rete. 9 cammino aumentante δ x v Taglio di capacità minima: N s = N t =

4 Esercizio. Si consideri il seguente problema di programmazione lineare intera: max x + x x + x 0 x + x x 0 x 0 x,x Z a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo. sol. ottima del rilassamento = v S (P) = b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento. sol. ammissibile = v I (P) = c) Calcolare un taglio di Gomory. r = taglio: Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di città, le cui distanze reciproche sono indicate in tabella: città a) Trovare una valutazione inferiore del valore ottimo calcolando il albero di costo minimo. albero: v I (P) = b) Trovare una valutazione superiore applicando l algoritmo del nodo più vicino a partire dal nodo. ciclo: v S (P) = c) Applicare il metodo del Branch and Bound, utilizzando il albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell ordine, le variabili x, x, x.

5 SOLUZIONI Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x + x x +x x x x x x x 0 x x Base Soluzione di base Ammissibile Degenere (si/no) (si/no) {, } x = (, ) SI NO {, } y = ( 0, 0, ) 8, 0, 8, 0 Esercizio. Effettuare due iterazioni dell algoritmo del simplesso primale per il problema dell esercizio. Esercizio. Base x y Indice Rapporti Indice uscente entrante iterazione {, } (0, ) (0, 0,,, 0, 0) iterazione {, } (, ) variabili decisionali x i,j = tonnellate di prodotto i immagazzinato nello scompartimento j; i=,,; j=a,b,c ( 0, 0, ) 8, 0, 8, 0 NO NO 9,, 8 modello max 00 (x A +x B +x C ) +0 (x A +x B +x C ) +0 (x A +x B +x C ) x A +x B +x C 0 x A +x B +x C x A +x B +x C x A +x A +x A x B +x B +x B x C +x C +x C 00 x A +00 x A +0 x A x B +00 x B +0 x B x C +00 x C +0 x C 000 x i,j 0 c = -[ 00; 00; 00;0; 0; 0; 0; 0; 0] A = [ ; ; ; ; ; b = [ 0; ; ; ; ; ;000; 800; 000] ; ; ; ] Aeq = [] beq = [] lb = [0; 0; 0; 0; 0; 0; 0; 0; 0] ub = []

6 Esercizio. Completare la tabella considerando il problema di flusso di costo minimo sulla seguente rete (su ogni nodo è indicato il bilancio e su ogni arco sono indicati, nell ordine, il costo e la capacità). - (,) - (,) (0,9) - (,) (0,) (,) (,) (,0) (,) (0,9) Archi di T Archi di U Soluzione di base Ammissibile Degenere (si/no) (si/no) (,) (,) (,) (,) (,) (,) (,) x = (0, 0,,, 0, 0,,, 0,, ) NO SI (,) (,) (,) (,) (,) (,) (,) π = (0,, 0,, 0,, ) NO SI Esercizio. Effettuare due iterazioni dell algoritmo del simplesso su reti per il problema dell esercizio. (,) iterazione iterazione Archi di T (,) (,) (,) (,) (,) (,) (,) (,) (,) (,) (,) (,) Archi di U (,) (,) x (0, 0,,, 0,,, 0,, 0, ) (0,,,, 0,,, 0,, 0, 0) π (0,,,,, 8, 8) (0,, 0,,, 8, ) Arco entrante (,) (,) ϑ +, ϑ 9,, Arco uscente (,) (,) Esercizio. a) Applicare l algoritmo di Dijkstra per trovare l albero dei cammini minimi di radice sulla seguente rete iter iter iter iter iter iter iter π p π p π p π p π p π p π p nodo visitato nodo nodo 9 9 nodo nodo nodo + + nodo insieme Q,,,,,,,,,

7 b) Applicare l algoritmo di Ford-Fulkerson(con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo ed il nodo sulla seguente rete. 9 cammino aumentante δ x v (0, 9, 0, 0, 0, 0, 9, 0, 0, 0, 0) (, 9, 0,, 0, 0, 9, 0, 0,, 0) (,, 0,, 0,, 9, 0, 0,, 0) (,,,, 0,, 9, 0,,, ) Taglio di capacità minima: N s = {,,,} N t = {,,} Esercizio. Si consideri il seguente problema di programmazione lineare intera: max x + x x + x 0 x + x x 0 x 0 x,x Z a) Calcolare una valutazione superiore del valore ottimo risolvendo il rilassamento continuo. ( sol. ottima del rilassamento = 0, ) b) Calcolare una valutazione inferiore del valore ottimo arrotondando la soluzione ottima del rilassamento. v S (P) = sol. ammissibile = (0,) v I (P) = c) Calcolare un taglio di Gomory. r = x r = x +8x 9 Esercizio 8. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di città, le cui distanze reciproche sono indicate in tabella: città a) Trovare una valutazione inferiore del valore ottimo calcolando il albero di costo minimo. albero: (, ) (, ) (, ) (, ) (, ) v I (P) = 8 b) Trovare una valutazione superiore applicando l algoritmo del nodo più vicino a partire dal nodo. ciclo: v S (P) = 0 c) Applicare il metodo del Branch and Bound, utilizzando il albero di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell ordine, le variabili x, x, x.

8 8,0 P x = 0 x = 8,0 P,,0 P, x = 0 x =,0 P, 8,0 P, x = 0 x =,0 P, 8,0 P,

Esame di Ricerca Operativa del 18/12/12. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 18/12/12. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 8// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x x x x x + x x x + x 8 x Base

Dettagli

Esame di Ricerca Operativa del 19/01/2016

Esame di Ricerca Operativa del 19/01/2016 Esame di Ricerca Operativa del 9/0/06 (Cognome) (Nome) (Matricola) Esercizio. Una banca offre ai suoi clienti diversi tipi di prestito: mutuo casa, credito auto, credito famiglia, che rendono un interesse

Dettagli

Esame di Ricerca Operativa del 19/01/2016

Esame di Ricerca Operativa del 19/01/2016 Esame di Ricerca Operativa del 19/01/201 (Cognome) (Nome) (Matricola) Esercizio 1. Una banca offre ai suoi clienti diversi tipi di prestito: mutuo casa, credito auto, credito famiglia, che rendono un interesse

Dettagli

b i 1,1,1 1,1,1 0,1,2 0,3,4

b i 1,1,1 1,1,1 0,1,2 0,3,4 V o Appello // RICERCA OPERATIVA - Corso A (a.a. 9/) Nome Cognome: Corso di Laurea: L C6 LS LM Matricola: ) Si consideri il problema di flusso di costo minimo in figura. Si verifichi se il flusso ammissibile

Dettagli

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12 A / A / Seconda Prova di Ricerca Operativa Cognome Nome Numero Matricola Nota: LA RISOLUZIONE CORRETTA DEGLI ESERCIZI CONTRADDISTINTI DA UN ASTERISCO È CONDIZIONE NECESSARIA PER IL RAGGIUNGIMENTO DELLA

Dettagli

Un applicazione della programmazione lineare ai problemi di trasporto

Un applicazione della programmazione lineare ai problemi di trasporto Un applicazione della programmazione lineare ai problemi di trasporto Corso di Ricerca Operativa per il Corso di Laurea Magistrale in Ingegneria della Sicurezza: Trasporti e Sistemi Territoriali AA 2012-2013

Dettagli

Il Metodo Branch and Bound

Il Metodo Branch and Bound Il Laura Galli Dipartimento di Informatica Largo B. Pontecorvo 3, 56127 Pisa laura.galli@unipi.it http://www.di.unipi.it/~galli 4 Novembre 2014 Ricerca Operativa 2 Laurea Magistrale in Ingegneria Gestionale

Dettagli

Ricerca Operativa (Compito A) Appello del 16/06/2014 Andrea Scozzari

Ricerca Operativa (Compito A) Appello del 16/06/2014 Andrea Scozzari Ricerca Operativa (Compito A) Appello del 16/06/2014 Andrea Scozzari Esercizio n.1 Un agenzia finanziaria deve investire 1000000 di euro di un suo cliente in fondi di investimento. Il mercato offre cinque

Dettagli

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi

Dettagli

Modelli di programmazione matematica Produzione Bin packing (Zaino) Trasporto Magazzino Assegnazione Commesso viaggiatore Scheduling Supply Chain

Modelli di programmazione matematica Produzione Bin packing (Zaino) Trasporto Magazzino Assegnazione Commesso viaggiatore Scheduling Supply Chain 1 PROGRAMMAZIONE LINEARE 1 1 Programmazione lineare 1.1 Modelli matematici Modelli di programmazione matematica Produzione Bin packing (Zaino) Trasporto Magazzino Assegnazione Commesso viaggiatore Scheduling

Dettagli

1. Considerazioni generali

1. Considerazioni generali 1. Considerazioni generali Modelli di shop scheduling In molti ambienti produttivi l esecuzione di un job richiede l esecuzione non simultanea di un certo numero di operazioni su macchine dedicate. Ogni

Dettagli

min 4x 1 +x 2 +x 3 2x 1 +x 2 +2x 3 = 4 3x 1 +3x 2 +x 3 = 3 x 1 +x 2 3x 3 = 5 Innanzitutto scriviamo il problema in forma standard: x 1 x 2 +3x 3 = 5

min 4x 1 +x 2 +x 3 2x 1 +x 2 +2x 3 = 4 3x 1 +3x 2 +x 3 = 3 x 1 +x 2 3x 3 = 5 Innanzitutto scriviamo il problema in forma standard: x 1 x 2 +3x 3 = 5 IL METODO DEL SIMPLESSO 65 Esercizio 7.4.4 Risolvere utilizzando il metodo del simplesso il seguente problema di PL: min 4 + + + + = 4 + + = + = 5 Innanzitutto scriviamo il problema in forma standard:

Dettagli

Ottimizzazione Multi Obiettivo

Ottimizzazione Multi Obiettivo Ottimizzazione Multi Obiettivo 1 Ottimizzazione Multi Obiettivo I problemi affrontati fino ad ora erano caratterizzati da una unica (e ben definita) funzione obiettivo. I problemi di ottimizzazione reali

Dettagli

METODI MATEMATICI PER LE DECISIONI ECONOMICHE E AZIENDALI 12 CANDIDATO.. VOTO

METODI MATEMATICI PER LE DECISIONI ECONOMICHE E AZIENDALI 12 CANDIDATO.. VOTO METODI MATEMATICI PER LE DECISIONI ECONOMICHE E AZIENDALI 12 1) In un problema multiattributo i pesi assegnati ai vari obiettivi ed i risultati che essi assumono in corrispondenza alle varie alternative

Dettagli

Parte 3: Gestione dei progetti, Shop scheduling

Parte 3: Gestione dei progetti, Shop scheduling Parte : Gestione dei progetti, Shop scheduling Rappresentazione reticolare di un progetto Insieme di attività {,...,n} p i durata (nota e deterministica dell attività i) relazione di precedenza fra attività:

Dettagli

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani Ricerca Operativa Esercizi sul metodo del simplesso Luigi De Giovanni, Laura Brentegani 1 1) Risolvere il seguente problema di programmazione lineare. ma + + 3 s.t. 2 + + 2 + 2 + 3 5 2 + 2 + 6,, 0 Soluzione.

Dettagli

Modelli di Programmazione Lineare. PRTLC - Modelli

Modelli di Programmazione Lineare. PRTLC - Modelli Modelli di Programmazione Lineare PRTLC - Modelli Schema delle esercitazioni Come ricavare la soluzione ottima Modelli Solver commerciali Come ricavare una stima dell ottimo Rilassamento continuo - generazione

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

Esercizi di Ricerca Operativa I

Esercizi di Ricerca Operativa I Esercizi di Ricerca Operativa I Dario Bauso, Raffaele Pesenti May 10, 2006 Domande Programmazione lineare intera 1. Gli algoritmi per la programmazione lineare continua possono essere usati per la soluzione

Dettagli

- Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo)

- Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo) Se si ha un problema lineare e' possibile risolverlo in piu' modi (equivalenti ) - Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo) - Trovare soluzione ottima duale (con il simplesso

Dettagli

CAPITOLO IX 9. - PROGRAMMAZIONE LINEARE INTERA

CAPITOLO IX 9. - PROGRAMMAZIONE LINEARE INTERA CAPITOLO IX 9. - PROGRAMMAZIONE LINEARE INTERA Molto spesso i risultati che si desidera ottenere come soluzione di un problema di programmazione lineare sono numeri interi, ad es. il numero di vagoni ferroviari

Dettagli

Un esempio di applicazione della programmazione lineare intera all ingegneria del software: stima del worst-case execution time di un programma

Un esempio di applicazione della programmazione lineare intera all ingegneria del software: stima del worst-case execution time di un programma Un esempio di applicazione della programmazione lineare intera all ingegneria del software: stima del worst-case execution time di un programma Corso di Ricerca Operativa per il Corso di Laurea Magistrale

Dettagli

Esame di Ricerca Operativa - 20 settembre 2007 Facoltà di Architettura - Udine - CORREZIONE -

Esame di Ricerca Operativa - 20 settembre 2007 Facoltà di Architettura - Udine - CORREZIONE - Esame di Ricerca Operativa - settembre 7 Facoltà di rchitettura - Udine - CORREZIONE - Problema ( punti): Un azienda pubblicitaria deve svolgere un indagine di mercato per lanciare un nuovo prodotto. L

Dettagli

Il problema del commesso viaggiatore

Il problema del commesso viaggiatore ITTS Vito Volterra Progetto ABACUS Ottimizzazione combinatoria Il problema del commesso viaggiatore Studente: Davide Talon Esame di stato 2013 Anno scolastico 2012-2013 Indice 1. Introduzione........................................

Dettagli

ALGORITMO DEL SIMPLESSO

ALGORITMO DEL SIMPLESSO ALGORITMO DEL SIMPLESSO ESERCITAZIONI DI RICERCA OPERATIVA 1 ESERCIZIO 1. Risolvere il seguente programma lineare (a) con il metodo del simplesso e (b) con il metodo grafico. (1) min x 1 x () (3) (4) (5)

Dettagli

Esercizio 1. Esercizio 2

Esercizio 1. Esercizio 2 A Ricerca Operativa Primo appello 4 novembre 005 Esercizio Incontrate una ragazza con il suo cane Fido e vi chiedete che età possa avere. Lei sembra leggervi nel pensiero e vi dice: Non si chiede l età

Dettagli

Approcci esatti per il job shop

Approcci esatti per il job shop Approcci esatti per il job shop Riferimenti lezione: Carlier, J. (1982) The one-machine sequencing problem, European Journal of Operational Research, Vol. 11, No. 1, pp. 42-47 Carlier, J. & Pinson, E.

Dettagli

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Network design

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Network design Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Network design Network Design È data una rete rappresentata su da un grafo G = (V, A) e un insieme di domande K, ciascuna

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 7-8 9 7 9-8 79

Dettagli

Capitolo 5: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano

Capitolo 5: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano Capitolo 5: Ottimizzazione Discreta E. Amaldi DEI, Politecnico di Milano 5.1 Modelli di PLI, formulazioni equivalenti ed ideali Il modello matematico di un problema di Ottimizzazione Discreta è molto spesso

Dettagli

Ricerca Operativa (Compito A) Appello del 18/06/2013 Andrea Scozzari

Ricerca Operativa (Compito A) Appello del 18/06/2013 Andrea Scozzari Ricerca Operativa (Compito A) Appello del 18/06/2013 Andrea Scozzari Esercizio n.1 Un azienda intende incrementare il proprio organico per ricoprire alcuni compiti scoperti. I dati relativi ai compiti

Dettagli

Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEIB, Politecnico di Milano

Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEIB, Politecnico di Milano Capitolo 3: Ottimizzazione Discreta E. Amaldi DEIB, Politecnico di Milano 3.1 Modelli di PLI e PLMI Moltissimi problemi decisionali complessi possono essere formulati o approssimati come problemi di Programmazione

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 3 5 7-8 9 57

Dettagli

Algoritmi enumerativi

Algoritmi enumerativi Capitolo 7 Algoritmi enumerativi Come abbiamo visto, né gli algoritmi greedy né quelli basati sulla ricerca locale sono in grado, in molti casi, di garantire l ottimalità della soluzione trovata. Nel caso

Dettagli

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Scopo: Stimare l onere computazionale per risolvere problemi di ottimizzazione e di altra natura

Dettagli

SIMULAZIONE ESAME di OTTIMIZZAZIONE Corso di Laurea in Ingegneria Gestionale 2 o anno

SIMULAZIONE ESAME di OTTIMIZZAZIONE Corso di Laurea in Ingegneria Gestionale 2 o anno SIMULAZIONE ESAME di OTTIMIZZAZIONE 28 novembre 2005 SIMULAZIONE ESAME di OTTIMIZZAZIONE Corso di Laurea in Ingegneria Gestionale 2 o anno Cognome : XXXXXXXXXXXXXXXXX Nome : XXXXXXXXXXXXXX VALUTAZIONE

Dettagli

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di flusso Flusso di costo minimo È dato un grafo direzionato G = (N, A). Ad ogni arco (i, j) A è associato il costo c ij

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Modellazione in Programmazione Lineare

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Modellazione in Programmazione Lineare Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Modellazione in Programmazione Lineare Luigi De Giovanni 1 Modelli di programmazione lineare I modelli di programmazione lineare sono una

Dettagli

Ricerca Operativa A.A. 2007/2008

Ricerca Operativa A.A. 2007/2008 Ricerca Operativa A.A. 2007/2008 9. Cenni su euristiche e metaeuristiche per ottimizzazione combinatoria Motivazioni L applicazione di metodi esatti non è sempre possibile a causa della complessità del

Dettagli

Lezioni di Ricerca Operativa

Lezioni di Ricerca Operativa Lezioni di Ricerca Operativa Massimo Paolucci Dipartimento di Informatica, Sistemistica e elematica (DIS) Università di Genova paolucci@dist.unige.it http://www.dattero.dist.unige.it Estratto per la parte

Dettagli

Ricerca Operativa A.A. 2007/2008. 10. Dualità in Programmazione Lineare

Ricerca Operativa A.A. 2007/2008. 10. Dualità in Programmazione Lineare Ricerca Operativa A.A. 2007/2008 10. Dualità in Programmazione Lineare Luigi De Giovanni - Ricerca Operativa - 10. Dualità in Programmazione Lineare 10.1 Soluzione di un problema di PL: punti di vista

Dettagli

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza Il problema di flusso di costo minimo (MCF) Dati : grafo orientato G = ( N, A ) i N, deficit del nodo i : b i (i, j) A u ij, capacità superiore (max quantità di flusso che può transitare) c ij, costo di

Dettagli

1 Breve introduzione ad AMPL

1 Breve introduzione ad AMPL 1 Breve introduzione ad AMPL Il primo passo per risolvere un problema reale attraverso strumenti matematici consiste nel passare dalla descrizione a parole del problema al modello matematico dello stesso.

Dettagli

(3,4) (1,3) (2,2) (0,2) (3,4) (2,4) t (2,3) (3,5) (2,4) (3,5) (6,8) (3,4) (1,2) 1 (1,3)

(3,4) (1,3) (2,2) (0,2) (3,4) (2,4) t (2,3) (3,5) (2,4) (3,5) (6,8) (3,4) (1,2) 1 (1,3) Prova Scritta di RICERCA OPERATIVA èinformaticiè 2èè98 - Esame æ Cognome: æ Nome:. Una compagnia petrolifera possiede 3 depositi dai quali puço prelevare benzina e trasportarla ai 5 impianti di distribuzione.

Dettagli

Ricerca Operativa 2. Introduzione al metodo del Simplesso

Ricerca Operativa 2. Introduzione al metodo del Simplesso Ricerca Operativa 2. Introduzione al metodo del Simplesso Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema di ottimizzazione vincolata è definito dalla massimizzazione

Dettagli

Politecnico di Milano I a Facoltà di Ingegneria C.S. in Ing. per l Ambiente e il Territorio

Politecnico di Milano I a Facoltà di Ingegneria C.S. in Ing. per l Ambiente e il Territorio MODELLISTICA E SIMULAZIONE febbraio 007 a prova Cognome e Nome:... Autorizzo Politecnico di Milano I a Facoltà di Ingegneria C.S. in Ing. per l Ambiente e il Territorio Non autorizzo la pubblicazione su

Dettagli

Introduzione all Optimization Toolbox di MATLAB. Barbara Panicucci Massimo Pappalardo Mauro Passacantando

Introduzione all Optimization Toolbox di MATLAB. Barbara Panicucci Massimo Pappalardo Mauro Passacantando Introduzione all Optimization Toolbox di MATLAB Barbara Panicucci Massimo Pappalardo Mauro Passacantando Indice 1 Introduzione a MATLAB 5 1.1 Avviare MATLAB................................. 5 1.2 Come

Dettagli

Esercizi e complementi di Ottimizzazione nella Gestione dei Progetti

Esercizi e complementi di Ottimizzazione nella Gestione dei Progetti Esercizi e complementi di Ottimizzazione nella Gestione dei Progetti Marco Pranzo 16 Aprile 009 1 Organizzazione concerto rock I promotori di un evento rock devono svolgere le attività (Tabella 1) per

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo

Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo L. De Giovanni G. Zambelli 1 Problema del flusso a costo minimo Il problema del flusso a costo minimo é definito

Dettagli

Sequenziamento a minimo costo di commutazione in macchine o celle con costo lineare e posizione home (In generale il metodo di ottimizzazione

Sequenziamento a minimo costo di commutazione in macchine o celle con costo lineare e posizione home (In generale il metodo di ottimizzazione Sequenziamento a minimo costo di commutazione in macchine o celle con costo lineare e posizione home (In generale il metodo di ottimizzazione presentato in questo file trova la seq. a costo minimo per

Dettagli

montagna ai trasporti internazionali Luca Bertazzi

montagna ai trasporti internazionali Luca Bertazzi Il problema dello zaino: dalla gita in montagna ai trasporti internazionali Luca Bertazzi 0 Il problema dello zaino Zaino: - capacità B Oggetti (items): - numero n - indice i =1,2,...,n - valore p i -

Dettagli

Indice. Nota degli autori. 1 Capitolo 1 Introduzione alla ricerca operativa

Indice. Nota degli autori. 1 Capitolo 1 Introduzione alla ricerca operativa XI Nota degli autori 1 Capitolo 1 Introduzione alla ricerca operativa 1 1.1 Premessa 1 1.2 Problemi di ottimizzazione 6 1.3 Primi approcci ai modelli di ottimizzazione 13 1.4 Uso del risolutore della Microsoft

Dettagli

Politecnico di Milano. Reti Wireless. Seminari didattici. Introduzione all ottimizzazione. Ilario Filippini

Politecnico di Milano. Reti Wireless. Seminari didattici. Introduzione all ottimizzazione. Ilario Filippini Politecnico di Milano Reti Wireless Seminari didattici Introduzione all ottimizzazione Ilario Filippini 2 Esempio 1! 3 Esempio 1!! 4 Esempio 2!!? 5 Ottimizzazione!!!!!! Ottimizzazione 6 Approccio matematico

Dettagli

PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO

PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO 1. Load Balancing Un istanza del problema del load balancing consiste di una sequenza p 1,..., p n di interi positivi (pesi dei job) e un

Dettagli

0 A B I C O L M P E Q R F G D H N *

0 A B I C O L M P E Q R F G D H N * UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Modelli di Sistemi di Produzione I scritti d'esame appelli 2004/05 e 2005/06 Esercizio 1 job 3: I (M 1, 3) L (M 2, 4) M (M 3, 11)

Dettagli

Fondamenti di Ricerca Operativa

Fondamenti di Ricerca Operativa Politecnico di Milano Anno Accademico 2010/2011 Fondamenti di Ricerca Operativa Corso del Prof. Edoardo Amaldi Stefano Invernizzi Facoltà di Ingegneria dell Informazione Corso di Laurea Magistrale in Ingegneria

Dettagli

Management Sanitario. Modulo di Ricerca Operativa

Management Sanitario. Modulo di Ricerca Operativa Management Sanitario per il corso di Laurea Magistrale SCIENZE RIABILITATIVE DELLE PROFESSIONI SANITARIE Modulo di Ricerca Operativa Prof. Laura Palagi http://www.dis.uniroma1.it/ palagi Dipartimento di

Dettagli

Laureando Gianluca Tamasia

Laureando Gianluca Tamasia Facoltà di Scienze Matematiche Fisiche e Naturali Tesi di Laurea in Informatica Un tool per la didattica della programmazione lineare intera Laureando Gianluca Tamasia Relatore Prof. Luciano Gualà Correlatore

Dettagli

Domande d esame. Ricerca Operativa. G. Liuzzi. Giovedí 14 Maggio 2015. 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR

Domande d esame. Ricerca Operativa. G. Liuzzi. Giovedí 14 Maggio 2015. 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR 1 Giovedí 14 Maggio 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Geometria di R n 1 Dare la definizione di Poliedro e Vertice di un Poliedro 2 Dare la definizione di Poliedro e di Politopo

Dettagli

Selezione di un portafoglio di titoli in presenza di rischio. Testo

Selezione di un portafoglio di titoli in presenza di rischio. Testo Selezione di un portafoglio di titoli in presenza di rischio Testo E ormai pratica comune per gli operatori finanziari usare modelli e metodi basati sulla programmazione non lineare come guida nella gestione

Dettagli

Le Macchine di Turing

Le Macchine di Turing Le Macchine di Turing Come è fatta una MdT? Una MdT è definita da: un nastro una testina uno stato interno un programma uno stato iniziale Il nastro Il nastro è infinito suddiviso in celle In una cella

Dettagli

Laboratorio di Ricerca Operativa Cad Ingegneria Gestionale (BGER3 - I semestre) a.a. 2012-13 Homework n 6. Docente: Laura Palagi

Laboratorio di Ricerca Operativa Cad Ingegneria Gestionale (BGER3 - I semestre) a.a. 2012-13 Homework n 6. Docente: Laura Palagi Laboratorio di Ricerca Operativa Cad Ingegneria Gestionale (BGER3 - I semestre) a.a. 2012-13 Homework n 6 Docente: Laura Palagi PIANIFICAZIONE DELLA PRODUZIONE 2 Si distingue in: PRODUCTION PLANNING: Tentativo

Dettagli

Problemi di localizzazione impianti

Problemi di localizzazione impianti Problemi di localizzazione impianti Laura Galli Dipartimento di Informatica Largo B. Pontecorvo 3, 56127 Pisa laura.galli@unipi.it http://www.di.unipi.it/~galli 2 Dicembre 2014 Ricerca Operativa 2 Laurea

Dettagli

1. Classificazione delle risorse

1. Classificazione delle risorse 1. Classificazione delle risorse Classificazione delle risorse in base alla disponibilità. - Risorse rinnovabili Sono risorse utilizzate per l esecuzione di una attività per tutta la sua durata, ma sono

Dettagli

Università degli Studi di Genova Corso di Laurea Magistrale in Ingegneria Gestionale

Università degli Studi di Genova Corso di Laurea Magistrale in Ingegneria Gestionale Pianificazione di una rete logistica per lo smaltimento e il riutilizzo dei rifiuti di apparecchiature elettriche ed elettroniche: applicazione del progetto WEEENMODELS nel Comune di Genova Candidata:

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Metodi euristici di ottimizzazione combinatoria

Metodi e Modelli per l Ottimizzazione Combinatoria Metodi euristici di ottimizzazione combinatoria Metodi e Modelli per l Ottimizzazione Combinatoria Metodi euristici di ottimizzazione combinatoria L. De Giovanni 1 Introduzione I metodi visti finora garantiscono, almeno in linea teorica, di risolvere

Dettagli

Dimensionamento dei lotti di produzione: il caso con variabilità nota

Dimensionamento dei lotti di produzione: il caso con variabilità nota Dimensionamento dei lotti di produzione: il caso con variabilità nota A. Agnetis In questi appunti studieremo alcuni modelli per il problema del lot sizing, vale a dire il problema di programmare la dimensione

Dettagli

Ottimizzazione topologica di reti di tipo Internet Protocol con il metodo del Local Branching

Ottimizzazione topologica di reti di tipo Internet Protocol con il metodo del Local Branching POLITECNICO DI TORINO I Facoltà di Ingegneria Corso di Laurea in Matematica per le Scienze dell Ingegneria Tesi di Laurea Ottimizzazione topologica di reti di tipo Internet Protocol con il metodo del Local

Dettagli

5. Problemi di Ottimizzazione e Programmazione Matematica

5. Problemi di Ottimizzazione e Programmazione Matematica Dispense del corso di Ottimizzazione Combinatoria (IN440) 5. Problemi di Ottimizzazione e Programmazione Matematica Marco Liverani Università degli Studi Roma Tre Dipartimento di Matematica e Fisica Corso

Dettagli

Appunti di Algoritmi e Strutture Dati. Grafi. Gianfranco Gallizia

Appunti di Algoritmi e Strutture Dati. Grafi. Gianfranco Gallizia Appunti di Algoritmi e Strutture Dati Grafi Gianfranco Gallizia 12 Dicembre 2004 2 Indice 1 Grafi 5 1.1 Definizione.............................. 5 1.2 Implementazione........................... 5 1.2.1

Dettagli

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione.

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione. Grafi ed Alberi Pag. /26 Grafi ed Alberi In questo capitolo richiameremo i principali concetti di due ADT che ricorreranno puntualmente nel corso della nostra trattazione: i grafi e gli alberi. Naturale

Dettagli

Teoria dei Giochi. Teoria dei Giochi

Teoria dei Giochi. Teoria dei Giochi Teoria dei Giochi E uno strumento decisionale, utile per operare previsioni sul risultato quando un decisore deve operare in concorrenza con altri decisori. L ipotesi principale su cui si basa la TdG è

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

1. Sia dato un poliedro. Dire quali delle seguenti affermazioni sono corrette.

1. Sia dato un poliedro. Dire quali delle seguenti affermazioni sono corrette. . Sia dato un poliedro. (a) Un vettore x R n è un vertice di P se soddisfa alla seguenti condizioni: x P e comunque presi due punti distinti x, x 2 P tali che x x e x x 2 si ha x = ( β)x + βx 2 con β [0,

Dettagli

Bilanciamento dei carichi di lavoro

Bilanciamento dei carichi di lavoro Bilanciamento dei carichi di lavoro Dispensa per il modulo di Analisi e Ottimizzazione dei Processi di Produzione Università di Roma Tor Vergata a cura di Andrea Pacifici A.A. 2003-04 Sommario Il problema

Dettagli

Problemi di soddisfacimento di vincoli. Formulazione di problemi CSP. Colorazione di una mappa. Altri problemi

Problemi di soddisfacimento di vincoli. Formulazione di problemi CSP. Colorazione di una mappa. Altri problemi Problemi di soddisfacimento di vincoli Maria Simi a.a. 2014/2015 Problemi di soddisfacimento di vincoli (CSP) Sono problemi con una struttura particolare, per cui conviene pensare ad algoritmi specializzati

Dettagli

Università del Salento

Università del Salento Università del Salento Dipartimento di Matematica DAI SISTEMI DI DISEQUAZIONI LINEARI.. ALLA PROGRAMMAZIONE LINEARE Chefi Triki La Ricerca Operativa Fornisce strumenti matematici di supporto alle attività

Dettagli

1 Inefficienza degli equilibri

1 Inefficienza degli equilibri Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10 Lecture 8: 9 Aprile 2010 Inefficienza degli equilibri Docente Prof. Vincenzo Auletta Note redatte da: Carmine Giordano Abstract In questa

Dettagli

Esempi di modelli di programmazione lineare (intera) 2014

Esempi di modelli di programmazione lineare (intera) 2014 Esempi di modelli di programmazione lineare (intera) 2014 1) Combinando risorse Una ditta produce due tipi di prodotto, A e B, combinando e lavorando opportunamente tre risorse, R, S e T. In dettaglio:

Dettagli

Politecnico di Milano Facoltà di Ingegneria dell Informazione AGENTI AUTONOMI E SISTEMI MULTIAGENTE Appello COGNOME E NOME

Politecnico di Milano Facoltà di Ingegneria dell Informazione AGENTI AUTONOMI E SISTEMI MULTIAGENTE Appello COGNOME E NOME Politecnico di Milano Facoltà di Ingegneria dell Informazione AGENTI AUTONOMI E SISTEMI MULTIAGENTE Appello COGNOME E NOME 5 luglio 2006 RIGA COLONNA MATRICOLA Il presente plico pinzato, composto di quattro

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestione della produzione e della supply chain Logistica distributiva Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Problemi di Distribuzione: Il problema del Vehicle Rou:ng

Dettagli

Introduzione alla Programmazione Lineare

Introduzione alla Programmazione Lineare Introduzione alla Programmazione Lineare. Proprietà geometriche Si definiscono come problemi di Programmazione Lineare (PL) tutti quei problemi di ottimizzazione in cui la funzione obiettivo è lineare

Dettagli

Ricerca euristica. Funzioni di valutazione euristica. Esempi di euristica. Strategia best-first: esempio. Algoritmo di ricerca Best-First 03/03/15

Ricerca euristica. Funzioni di valutazione euristica. Esempi di euristica. Strategia best-first: esempio. Algoritmo di ricerca Best-First 03/03/15 Ricerca euristica Ricerca euristica Maria Simi a.a. 2014/2015 La ricerca esaustiva non è praticabile in problemi di complessità esponenziale Noi usiamo conoscenza del problema ed esperienza per riconoscere

Dettagli

Ricerca Operativa Esercizi risolti sulle condizioni di complementarietà primale-duale. L. De Giovanni, V. Dal Sasso

Ricerca Operativa Esercizi risolti sulle condizioni di complementarietà primale-duale. L. De Giovanni, V. Dal Sasso Ricerca Operativa Esercizi risolti sulle condizioni di complementarietà primale-duale L. De Giovanni, V. Dal Sasso 1 Esercizio 1. Dato il problema min 2x 1 x 2 s.t. x 1 + 2x 2 7 2x 1 x 2 6 3x 1 + 2x 2

Dettagli

Ricerca Operativa Dualità e programmazione lineare

Ricerca Operativa Dualità e programmazione lineare Ricerca Operativa Dualità e programmazione lineare L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi alle spiegazioni del

Dettagli

Ottimizzazione nella gestione dei progetti Capitolo 4: la gestione dei costi (Programmazione multimodale): formulazioni

Ottimizzazione nella gestione dei progetti Capitolo 4: la gestione dei costi (Programmazione multimodale): formulazioni Ottimizzazione nella gestione dei progetti Capitolo 4: la gestione dei costi (Programmazione multimodale): formulazioni CARLO MANNINO Università di Roma La Sapienza Dipartimento di Informatica e Sistemistica

Dettagli

Algoritmi Euristici introduzione. Vittorio Maniezzo Università di Bologna

Algoritmi Euristici introduzione. Vittorio Maniezzo Università di Bologna 9 Algoritmi Euristici introduzione Vittorio Maniezzo Università di Bologna 1 Molti problemi reali richiedono soluzioni algoritmiche I camion devono essere instradati VRP, NP-hard I depositi o i punti di

Dettagli

Modelli di PL: allocazione ottima di risorse. Un esempio Modelli a risorse condivise Modelli a risorse alternative Modelli multi-periodo

Modelli di PL: allocazione ottima di risorse. Un esempio Modelli a risorse condivise Modelli a risorse alternative Modelli multi-periodo Modelli di PL: allocazione ottima di risorse Un esempio Modelli a risorse condivise Modelli a risorse alternative Modelli multi-periodo Allocazione ottima di robot Un azienda automobilistica produce tre

Dettagli

Programmazione Quadratica. 2009 by A. Bemporad Controllo di Processo e dei Sistemi di Produzione A.a. 2008/09

Programmazione Quadratica. 2009 by A. Bemporad Controllo di Processo e dei Sistemi di Produzione A.a. 2008/09 Programmazione Quadratica 1/82 Programmazione lineare minimizza o massimizza funzione obiettivo soggetto a 2/82 Programmazione quadratica minimize or maximize funzione obiettivo soggetto a STESSI VINCOLI

Dettagli

Logistica - Il problema del trasporto

Logistica - Il problema del trasporto Logistica - Il problema del trasporto Federico Di Palma December 17, 2009 Il problema del trasporto sorge ogniqualvolta si debba movimentare della merce da una o più sorgenti verso una o più destinazioni

Dettagli

Problema del trasporto

Problema del trasporto p. 1/1 Problema del trasporto Supponiamo di avere m depositi in cui è immagazzinato un prodotto e n negozi che richiedono tale prodotto. Nel deposito i è immagazzinata la quantità a i di prodotto. Nel

Dettagli

Appunti di Ricerca Operativa

Appunti di Ricerca Operativa Appunti di Ricerca Operativa 0/0 Prefazione La Ricerca Operativa è un campo in continua evoluzione, il cui impatto sulle realtà aziendali ed organizzative è in costante crescita. L insegnamento di questa

Dettagli

Sommario della lezione

Sommario della lezione Sommario della lezione Ulteriori applicazioni del Massimo Flusso 1. Connettività di grafi. Selezione di progetti 3. Trasporto in reti 4. Eliminazione in tornei Università degli Studi di Salerno Corso di

Dettagli

Contenuto e scopo presentazione. Node Routing. Applicazioni. Il problema del commesso viaggiatore

Contenuto e scopo presentazione. Node Routing. Applicazioni. Il problema del commesso viaggiatore ontenuto e scopo presentazione Node Routing ontenuto vengono introdotti modelli e metodi per problemi di ommesso Viaggiatore: Traveling Salesman Problem (TSP) enni di TSP e VRP Scopo fornire strumenti

Dettagli

Scopo intervento. Integrazione scorte e distribuzione. Indice. Motivazioni

Scopo intervento. Integrazione scorte e distribuzione. Indice. Motivazioni Scopo intervento Integrazione scorte e distribuzione Modelli a domanda costante Presentare modelli e metodi utili per problemi di logistica distributiva Indicare limiti degli stessi e come scegliere tra

Dettagli

Ricerca Operativa A.A. 2008/2009

Ricerca Operativa A.A. 2008/2009 Ricerca Operativa A.A. 08/09 2. Modelli di Programmazione Lineare Modelli di programmazione lineare Il metodo grafico è basato su linearità della funzione obiettivo linearità dei vincoli Sotto queste ipotesi

Dettagli

ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI

ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI PROBLEMA: un azienda deve scegliere fra due possibili investimenti al fine di massimizzare il profitto netto nel rispetto delle condizioni interne e di mercato

Dettagli

Ottimizzazione Combinatoria

Ottimizzazione Combinatoria Ottimizzazione Combinatoria Esercitazione AMPL A.A. 2009-2010 Esercitazione a cura di Silvia Canale contatto e-mail: canale@dis.uniroma1.it Università di Roma La Sapienza Dipartimento di Informatica e

Dettagli