Astronomia Lezione 14/11/2011

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Astronomia Lezione 14/11/2011"

Transcript

1 Astronomia Lezione 14/11/2011 Docente: Alessandro Melchiorri Slides: oberon.roma1.infn.it/alessandro/ Libri di testo: - An introduction to modern astrophysics B. W. Carroll, D. A. Ostlie, Addison Wesley - The Physical Universe, an introduction to Astronomy F. Zhou, University Science Books - Elementi di Astronomia, P. Giannone.

2 Opacita Un raggio di luce che attraversa un gas perde fotoni per assorbimento. L equazione che descrive questo processo e la seguente: vale a dire che l assorbimento per lunghezza d onda e proporzionale al cammino ds nel gas, alla densita del gas e alla intesita iniziale stessa. La quantita kl e detta coefficiente di assorbimento o opacita e dipende dalla densita, temperatura e composizione del gas.

3 Considerando la fotosfera del Sole si ha (a frequenze di 500 nm): E quindi si ha che i fotoni vengono assorbiti ad una distanza: Che e maggiore della altezza di scala di temperatura. Quindi i fotoni nella fotosfera non attraversano zone a temperature costanti e quindi l approssimazione di equilibrio termodinamico locale per il Sole non e propriamente valida. La distanza sopra definita e il cammino libero medio del fotone, da cui si puo ottenere la sezione d urto usando la definizione precedente:

4 Consideriamo adesso la profondita ottica tl definita a partire dalla quantita differenziale: Il segno meno sta ad indicare che il moto del fotone e verso di noi mentre noi guardiamo le distanze a partire dalla Terra. Per un raggio di luce che percorre una distanza s si ha una variazione nella profondita ottica: Dato che e una quantita negativa, vale a dire che la Profondita ottica diminuisce, possiamo porre la profondita ottica a zero sulla superficie della stella e considerarla Crescente mano a mano che andiamo all interno dell atmosfera stellare:

5 Nel caso di puro assorbimento abbiamo quindi: Se il raggio parte da un punto dove la profodita ottica e pari a 1, l intensita specifica sara diminuita di un fattore 1/e quando lascia la stella. La profondita ottica puo quindi essere pensata come collegata al numero di cammini liberi medi percorsi dal fotone nell atmosfera stellare. Un gas puo essere otticamente spesso se tl>>1 o otticamente sottile se tl <<1

6

7 Sorgenti Generali di Opacita I processi che danno luogo all opacita di un raggio di luce ed ad un diminuire della sua Intensita possono provenire da un assorbimento dei fotoni che lo costituiscono (i fotoni in questo caso scompaiono e la loro energia si trasforma in energia termica del gas) o in uno scattering del fotone in un altra direzione (quindi ne vediamo meno). Se questi processi variano lentamente con la lunghezza d onda, allora il coefficiente di assorbimento kl dipende lentamente dalla lunghezza d onda e l assorbimento e continuo nello spettro. Altrimenti se varia rapidamente abbiamo la formazione di righe. Essenzialmente si hanno Quattro meccanismi fisici che portano ad assorbimento o scattering di fotoni: 1- Transizioni legato-legato (bound-bound): In questo caso il fotone viene assorbito da un atomo e un elettrone si sposta a livello energetico piu alto. L elettrone puo quindi tornare al livello di partenza e riemettere lo stesso fotone. In questo caso e un processo di scattering. Oppure puo tornare ad un livello diverso, quindi il fotone originario e perso come in un processo di assorbimento. Un importante sotto-prodotto di questo processo di assorbimento e la degradazione dell energia media dei fotoni del campo di radiazione. Se infatti l elettrone si diseccita passando per due stati, emettera due fotoni di energia inferiore di quello iniziale. Per questo processo l opac ita klbb e piccola per il continuo ed e rilevante solo per alcune frequenze (righe)

8 2- Assorbimento legato-libero (bound-free): in questo caso il fotone ha abbastanza energia per Ionizzare l atomo. Chiaramente tutti i fotoni con lunghezza d onda minore di: (dove cn e l energia di ionizzazione si un atomo al livello di eccitazione n) saranno assorbiti. Quindi questo processo con opacita klbf contibuisce al continuo. Il processo inverso (un elettrone viene catturato da un atomo emettendo un fotone) puo anch esso ridurre l energia media Dei fotoni perche l elettrone puo essere catturato in un orbita piu esterna. 3- Assorbimento libero-libero (free-free). Se un elettrone passa accanto ad uno ione, questo puo frenare emettendo un fotone (radiazione di bremsstrahlung o di frenamento). Il Processo che ci interessa e quello inverso, un elettrone passa accanto ad uno ione ed accelera assorbendo un fotone. L opacita di questo processo klff contribuisce quindi al continuo.

9 4- Thomson Scattering (electron-scattering): quando un elettrone libero si scontra con un fotone si ha lo scattering Thomson. Questo puo avvenire a qualunque frequenza e quindi il coefficiente di opacita dello scattering Thomson kles non dipende dalla frequenza e quindi ha un effetto sul continuo dello spettro. Il valore della sezione d urto dello scattering Thomson e : che e molto minore della sezione d urto per ionizzazione dell atomo di Idrogeno: Quindi lo scattering Thomson ha effetto considerevole solo a grandi temperature, quando vi sono molti elettroni liberi nell atmosfera stellare.

10 L energia di ionizzazione di un atomo di idrogeno eccitato con l elettrone nello stato n=2 e pari a: si ha quindi che se n=2 e popolato l intensita della luce a lunghezze d onda inferiori a subira un assorbimento continuo dovuto all assorbimento legato-libero. Questo Salto di Balmer e chiaramente visibile, ad esempio nel Sole (figura sopra).

11 Il massimo numero di atomi di idrogeno Eccitati con n=2 si ha per temperature di Circa T=9900K. Queste sono le stelle di classe spettrale A0. Il valore di 364.7nm al di sotto del Quale si ha il salto di Balmer e al centro della banda U (365 nm). Ci possiamo quindi aspettare che stelle di tipo A0 siano meno luminose in questa banda e quindi abbiano indice di colore U-B piu grande (U e magnitudine).

12 Le stelle di tipo A0 sono infatti quelle che si discostano di piu da un corpo nero In un diagramma colore-colore. (Vedi sopra). Il Salto di Balmer puo essere usato per determinare la temperatura dell atmosfera stellare.

13 Assorbimento da parte di ione negativo H- e altri Per stelle a temperature sufficientemente basse (sotto F0) il contributo maggiore alla opacita viene dallo ione negativo di idrogeno H-. Questo ione consiste in un atomo di idrogeno con 2 elettroni. La cosa e possibile se uno dei due elettroni e piu vicino al nucleo dell altro. A causa della schermatura parziale Da parte del nucleo e possibile avere un tale tipo di configurazione stabile. L energia di ionizzazione e molto bassa ev corrispondente a 1640 nm. Per tutte le lunghezze d onda inferiori a 1640 nm si avra assorbimento continuo, In stelle a bassa temperatura da classe F0 in giu. Per stelle di tipo A e B all opacita contribuiscono maggiormente la fotoionizzazione dell idrogeno e l assorbimento free-free. Per stelle di tipo O invece e piu importante l assorbimento dovuto allo scattering Thomson. per stelle molto fredde abbiamo assorbimento da parte di molecole per processi Legato-legato o legato-libero.

14 Opacita totale e media di Rosseland In generale quindi l opacita totale in una stella sara la somma di diversi termini piu o meno importanti: l opacita totale non dipende solo dalla lunghezza d onda ma dalla temperatura, composizione e densita dell atmosfera stellare. E utile considerare una opacita che non dipende dalla lunghezza d onda e considerarne una media pesata. La media maggiormente utilizzata e la media di Rosseland che ha Il maggior contributo dai valori di opacita k minori, pesata per le variazioni del corpo nero a quelle frequenze: questo valore medio non dipende piu dalla frequenza ma dalla temperatura, densita e composizione della stella.

15 Media di Rosseland Sfortunatamente non si hanno delle espressioni analitiche per le opacita medie nel caso di sistemi legato-legato perche le transizioni sono troppo complesse. Si hanno pero le seguenti utili espressioni per i meccanismi legato-libero (bound-free) e libero-libero (free-free): Dove r e la densita in kg/m^3, T e la temperatura in K, mentre X, Y e Z sono le Abbondanze in idrogeno, elio e metalli definite cosi : con, chiaramente, X+Y+Z=1. I termini gff e gbf sono chiamati fattori di Gaunt, hanno origine quanto-meccanica e sono dell ordine di 1. t invece e detto fattore di ghigliottina e vale da 1 a 100 e determina il cut-off dell atomo ionizzato.

16 Media di Rosseland Queste opacita hanno un andamento funzionale del tipo: Dove il coefficiente k0 e praticamente costante una volta fissata la composizione della stella. Questo andamento prende il nome di legge di opacita di Kramers. Per quanto riguarda lo scattering Thomson elettrone-fotone, questo non dipende dalla frequenza. Il valore medio di Rosseland e data da: Per il termine di ionizzazione dello ione H- invece si ha la seguente formula approssimata: nel caso in cui: (i valori di X e Z sono tipici per stelle in sequenza principale).

17 Media di Rosseland Si puo quindi considerare una opacita media totale: Un calcolo teorico per valori di opacita totale in funzione della temperatura e densita e riportato in figura. Si ha che a) Aumentando la densita aumenta k a parita di Temperatura. Guardando a densita costante, il primo picco e dovuto alle transizioni legato-legato dell idrogeno, la discesa seguente e invece dovuta a meccanismi Libero-legato e libero-libero (va come T^-3.5). I due picchi seguenti sono dovuti all Elio He II ionizzato (T=40000K) e a metalli come il Ferro. Tutte le curve poi convergono Ad un solo valore dato da processi di scattering Thomson (che non dipende ne da densita ne da temperatura).

18 Processi di emissione Tutti i processi di assorbimento descritti precedentemente hanno dei processi di emissione. Un fotone di puo quindi aggiungere al raggio di luce sia perche prodotto da un processo di assorbimento inverso sia perche un processo di scattering fa deviare un fotone lungo la nostra linea di vista. La maggior differenza rispetto all assorbimento e che i processi di emissione non avvengono tutti lungo la linea di vista ma in maniera random nell atmosfera stellare.

19 Random Walk Per capire meglio i processi di emissione, ricordiamo il problema del random walk. Consideriamo un moto di N passi ciascuno di distanza L con la direzione di ogni passo presa ogni volta a caso (random walk): Si ha: E se prendo il prodotto Scalare:

20 Random Walk Si ha quindi: Dato che i termini nel coseno si cancellano abbiamo la legge del random walk: Ma ricordando le definizioni della profondita ottica: Quindi:

21 Profondita ottica Chiaramente potremo osservare solo luce proveniente da regioni con profondita ottica piccola (pochi urti) con t=1. Vedremo in realta che e possibile osservare luce Proveniente al massimo da regioni con t=2/3. Questo porta a due conseguenze: 1- Ricordando che: La temperatura della stella deve diminuire andando verso l esterno (e cosi l assorbimento) altrimenti non potremmo vedere le righe di assorbimento. 2- Oscuramento al bordo. Guardando una stella possiamo vedere piu in profondita andando verso il centro rispetto all esterno che ci apparira piu oscuro.

Docente: Alessandro Melchiorri Slides delle lezioni: oberon.roma1.infn.it/alessandro/astro2014

Docente: Alessandro Melchiorri Slides delle lezioni: oberon.roma1.infn.it/alessandro/astro2014 Astronomia Lezione 14/11/2014 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Slides delle lezioni: oberon.roma1.infn.it/alessandro/astro2014 Atmosfere Stellari Nel caso di equilibrio

Dettagli

Docente: Alessandro Melchiorri

Docente: Alessandro Melchiorri Astronomia Lezione 15/11/2012 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Sito web per slides lezioni: oberon.roma1.infn.it:/alessandro/astro2012/ Le lezioni astronomia012_*.pdf

Dettagli

Astronomia Lezione 24/11/2011

Astronomia Lezione 24/11/2011 Astronomia Lezione 24/11/2011 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Slides: oberon.roma1.infn.it/alessandro/ Libri di testo: - An introduction to modern astrophysics

Dettagli

Docente: Alessandro Melchiorri Slides delle lezioni: oberon.roma1.infn.it/alessandro/astro2014

Docente: Alessandro Melchiorri Slides delle lezioni: oberon.roma1.infn.it/alessandro/astro2014 Astronomia Lezione 07/11/2014 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Slides delle lezioni: oberon.roma1.infn.it/alessandro/astro2014 Altri spettri: notare come il picco

Dettagli

Astronomia Lezione 4/11/2011

Astronomia Lezione 4/11/2011 Astronomia Lezione 4/11/2011 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Slides: oberon.roma1.infn.it/alessandro/ Libri di testo: - An introduction to modern astrophysics

Dettagli

Astronomia Lezione 11/11/2011

Astronomia Lezione 11/11/2011 Astronomia Lezione 11/11/2011 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Slides: oberon.roma1.infn.it/alessandro/ Libri di testo: - An introduction to modern astrophysics

Dettagli

Astronomia Lezione 7/11/2011

Astronomia Lezione 7/11/2011 Astronomia Lezione 7/11/011 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Attenzione! on abbiamo lezione il 10/11/011 Slides: oberon.roma1.infn.it/alessandro/ Libri di testo:

Dettagli

Lezione 9/11/2012. Docente: Alessandro Melchiorri

Lezione 9/11/2012. Docente: Alessandro Melchiorri Astronomia Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Lezione 9/11/2012 Sito web per slides lezioni: oberon.roma1.infn.it:/alessandro/astro2012/ Le lezioni astronomia012_*.pdf

Dettagli

Docente: Alessandro Melchiorri

Docente: Alessandro Melchiorri Astronomia Lezione 22/11/2012 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Sito web per slides lezioni: oberon.roma1.infn.it:/alessandro/astro2012/ Le lezioni astronomia012_*.pdf

Dettagli

Docente: Alessandro Melchiorri Slides delle lezioni: oberon.roma1.infn.it/alessandro/astro2014

Docente: Alessandro Melchiorri Slides delle lezioni: oberon.roma1.infn.it/alessandro/astro2014 Astronomia Lezione 31/10/2014 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Slides delle lezioni: oberon.roma1.infn.it/alessandro/astro2014 Cosa possiamo imparare sulle stelle

Dettagli

Astronomia Lezione 5/12/2011

Astronomia Lezione 5/12/2011 Astronomia Lezione 5/12/2011 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Slides: oberon.roma1.infn.it/alessandro/ Libri di testo: - An introduction to modern astrophysics

Dettagli

Docente: Alessandro Melchiorri

Docente: Alessandro Melchiorri Astronomia Lezione 23/11/2012 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Sito web per slides lezioni: oberon.roma1.infn.it:/alessandro/astro2012/ Le lezioni astronomia012_*.pdf

Dettagli

Docente: Alessandro Melchiorri Slides delle lezioni: oberon.roma1.infn.it/alessandro/astro2014

Docente: Alessandro Melchiorri Slides delle lezioni: oberon.roma1.infn.it/alessandro/astro2014 Astronomia Lezione 21/11/2014 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Slides delle lezioni: oberon.roma1.infn.it/alessandro/astro2014 Equazione del Trasporto Radiativo

Dettagli

Astronomia Lezione 17/10/2011

Astronomia Lezione 17/10/2011 Astronomia Lezione 17/10/2011 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Libri di testo: - An introduction to modern astrophysics B. W. Carroll, D. A. Ostlie, Addison Wesley

Dettagli

Astronomia Lezione 23/1/2012

Astronomia Lezione 23/1/2012 Astronomia Lezione 23/1/2012 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Slides: oberon.roma1.infn.it/alessandro/ Libri di testo: - An introduction to modern astrophysics

Dettagli

Astronomia Lezione 20/10/2011

Astronomia Lezione 20/10/2011 Astronomia Lezione 20/10/2011 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Slides: oberon.roma1.infn.it/alessandro/ Libri di testo: - An introduction to modern astrophysics

Dettagli

Docente: Alessandro Melchiorri

Docente: Alessandro Melchiorri Astronomia Lezione 26/11/2012 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Sito web per slides lezioni: oberon.roma1.infn.it:/alessandro/astro2012/ Le lezioni astronomia012_*.pdf

Dettagli

RILEVAZIONE OPINIONI STUDENTI on-line OPISONLINE Nucleo di Valutazione della Facolta di Scienze Matematiche Fisiche e Naturali

RILEVAZIONE OPINIONI STUDENTI on-line OPISONLINE Nucleo di Valutazione della Facolta di Scienze Matematiche Fisiche e Naturali RILEVAZIONE OPINIONI STUDENTI on-line 2011-2012 OPISONLINE Nucleo di Valutazione della Facolta di Scienze Matematiche Fisiche e Naturali http://www.scienzemfn.uniroma1.it/ Dall anno accademico in corso,

Dettagli

Astronomia Lezione 2/12/2011

Astronomia Lezione 2/12/2011 Astronomia Lezione 2/12/2011 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Slides: oberon.roma1.infn.it/alessandro/ Libri di testo: - An introduction to modern astrophysics

Dettagli

Docente: Alessandro Melchiorri

Docente: Alessandro Melchiorri Astronomia Lezione 25/10/2012 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Sito web per slides lezioni: oberon.roma1.infn.it:/alessandro/astro2012/ Le lezioni astronomia012_*.pdf

Dettagli

AC5 Distanze nella Via Lattea

AC5 Distanze nella Via Lattea AC5 Distanze nella Via Lattea Misure di parallasse. Il satellite Hypparcos La misura della temperatura superficiale delle stelle ( corpo nero, larghezza delle righe, luminosità ) Spettri stellari e loro

Dettagli

Introduzione allo spettro solare

Introduzione allo spettro solare Introduzione allo spettro solare Insegnamento di Fisica Solare e relazioni Sole-Terra Fabio Lepreti Corso di Laurea in Fisica Università della Calabria A.A. 2015/2016 Fabio Lepreti Introduzione allo spettro

Dettagli

L energia assorbita dall atomo durante l urto iniziale è la stessa del fotone che sarebbe emesso nel passaggio inverso, e quindi vale: m

L energia assorbita dall atomo durante l urto iniziale è la stessa del fotone che sarebbe emesso nel passaggio inverso, e quindi vale: m QUESITI 1 Quesito Nell esperimento di Rutherford, una sottile lamina d oro fu bombardata con particelle alfa (positive) emesse da una sorgente radioattiva. Secondo il modello atomico di Thompson le particelle

Dettagli

La struttura stellare ( II ) Lezione 4

La struttura stellare ( II ) Lezione 4 La struttura stellare ( II ) Lezione 4 Il trasporto radiativo dell energia Il gradiente di pressione P(r) che sostiene una stella è prodotto da un gradiente in ρ(r) e T(r) e quindi L(r), ovvero l energia

Dettagli

Astronomia Lezione 9/1/2012

Astronomia Lezione 9/1/2012 Astronomia Lezione 9/1/2012 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Slides: oberon.roma1.infn.it/alessandro/ Libri di testo: - An introduction to modern astrophysics B.

Dettagli

4. Lo spettro discreto: emissione e assorbimento di luce da parte di atomi stato fondamentale stati eccitati

4. Lo spettro discreto: emissione e assorbimento di luce da parte di atomi stato fondamentale stati eccitati 4. Lo spettro discreto: emissione e assorbimento di luce da parte di atomi Accanto allo spettro continuo che i corpi emettono in ragione del loro stato termico, si osservano spettri discreti che sono caratteristici

Dettagli

ESERCITAZIONI ASTROFISICA STELLARE

ESERCITAZIONI ASTROFISICA STELLARE ESERCITAZIONI per ASTROFISICA STELLARE (AA 2011-2012) (ultimo aggiornamento: 23/03/2012) Esercizio 1: Una stella con gravita` superficiale pari a 3.42 10 4 cm -2 e luminosita` pari a 562 L ha il massimo

Dettagli

Olimpiadi Italiane di Astronomia MAGNITUDINI

Olimpiadi Italiane di Astronomia MAGNITUDINI Olimpiadi Italiane di Astronomia Preparazione alla fase interregionale delle Olimpiadi Italiane di Astronomia MAGNITUDINI By Giuseppe Cutispoto Magnitudine apparente La magnitudine apparente (m) di una

Dettagli

Magnitudini e Diagramma H-R Giuseppe Cutispoto

Magnitudini e Diagramma H-R Giuseppe Cutispoto Magnitudini e Diagramma H-R Giuseppe Cutispoto INAF Osservatorio Astrofisico di Catania gcutispoto@oact.inaf.it Versione: 4 febbraio 018 Magnitudine apparente La magnitudine apparente (m) di una stella

Dettagli

La classificazione delle stelle

La classificazione delle stelle La classificazione delle stelle Primo Levi 2013 Roberto Bedogni INAF Osservatorio Astronomico di Bologna via Ranzani, 1 40127 - Bologna - Italia Tel, 051-2095721 Fax, 051-2095700 http://www.bo.astro.it/~bedogni/primolevi

Dettagli

Storia Termica dell Universo 1

Storia Termica dell Universo 1 Storia Termica dell Universo 1 All epoca attuale la densita totale dell Universo e : e la pressione: I fotoni prodotti attraverso processi astrofisici costituiscono una piccola frazione di quelli che costituiscono

Dettagli

13 ottobre Prof. Manlio Bellesi

13 ottobre Prof. Manlio Bellesi XV OLIMPIADI ITALIANE DI ASTRONOMIA MODENA 2015 13 ottobre 2014 Prof. Manlio Bellesi Fin dalle origini gli esseri umani hanno osservato il cielo. Cosmologie, miti, religioni, aspirazioni e sogni hanno

Dettagli

Astronomia Lezione 27/10/2011

Astronomia Lezione 27/10/2011 Astronomia Lezione 27/10/2011 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Slides: oberon.roma1.infn.it/alessandro/ Libri di testo: - An introduction to modern astrophysics

Dettagli

Crisi della Fisica Classica & Fisica Quantistica

Crisi della Fisica Classica & Fisica Quantistica Crisi della Fisica Classica & Fisica Quantistica Guido Montagna Dipartimento di Fisica, Università di Pavia & INFN, Sezione di Pavia February 11, 2018 G. Montagna, Università di Pavia & INFN (Dipartimento

Dettagli

Materia e radiazione. Lezione 6

Materia e radiazione. Lezione 6 Materia e radiazione Lezione 6 Sommario Luce e radiazione: come estrarre l informazione fisica dalla luce delle stelle. La radiazione di corpo nero: leggi di Wien e di Stefan. Struttura Atomica: nucleo

Dettagli

STRUTTURA ATOMICA. Per lo studio della struttura dell atomo ci si avvale della Spettroscopia.

STRUTTURA ATOMICA. Per lo studio della struttura dell atomo ci si avvale della Spettroscopia. STRUTTURA ATOMICA Il modello planetario dell atomo secondo Rutherford si appoggia sulla meccanica classica. Il modello non può essere corretto visto che per descrivere il comportamento delle particelle

Dettagli

1 3 STRUTTURA ATOMICA

1 3 STRUTTURA ATOMICA 1 3 STRUTTURA ATOMICA COME SI SPIEGA LA STRUTTURA DELL ATOMO? Secondo il modello atomico di Rutherford e sulla base della fisica classica, gli elettroni dovrebbero collassare sul nucleo per effetto delle

Dettagli

UNIVERSITA' DEGLI STUDI DI CATANIA Facoltà di Scienze Matematiche, Fisiche, Naturali Corso di Laurea Specialistica in Fisica

UNIVERSITA' DEGLI STUDI DI CATANIA Facoltà di Scienze Matematiche, Fisiche, Naturali Corso di Laurea Specialistica in Fisica UNIVERSITA' DEGLI STUDI DI CATANIA Facoltà di Scienze Matematiche, Fisiche, Naturali Corso di Laurea Specialistica in Fisica CURRICULUM ASTROFISICA E FISICA DELLO SPAZIO Anno Accademico 2011-2012 PROGRAMMA

Dettagli

Unità Didattica 6. Spettroscopia delle nebulose

Unità Didattica 6. Spettroscopia delle nebulose Diapositiva 1 Unità Didattica 6 Spettroscopia delle nebulose Questa unità presenta i fondamenti della fisica del gas ionizzato che servono a comprendere gli spettri a righe d emissione osservati in alcune

Dettagli

Interazione radiazione materia Dott.ssa Alessandra Bernardini

Interazione radiazione materia Dott.ssa Alessandra Bernardini Interazione radiazione materia Dott.ssa Alessandra Bernardini 1 Un po di storia Lo studio delle radiazioni ionizzanti come materia di interesse nasce nel novembre del 1895 ad opera del fisico tedesco Wilhelm

Dettagli

Il modello di Bohr. Lezioni d'autore di Giorgio Benedetti

Il modello di Bohr. Lezioni d'autore di Giorgio Benedetti Il modello di Bohr Lezioni d'autore di Giorgio Benedetti VIDEO Gli spettri di emissione Nel 1859 il fisico G.R. Kirchoff scoprì che ogni elemento chimico presenta uno spettro di emissione caratteristico,

Dettagli

a) Discutere lo spettro osservato e ricavare la costante rotazionale B e la frequenza vibrazionale ν 0 ;

a) Discutere lo spettro osservato e ricavare la costante rotazionale B e la frequenza vibrazionale ν 0 ; Esercizio 2 Un gas di molecole biatomiche viene illuminato da radiazione elettromagnetica dando in uscita uno spettro di diffusione e di assorbimento. La radiazione inviata con lunghezza d onda λ 0 = 4358Å

Dettagli

Parte I Le informazioni fisiche contenute negli spettri

Parte I Le informazioni fisiche contenute negli spettri Parte I Le informazioni fisiche contenute negli spettri Cara$eris(che importan( delle Onde: Lunghezza d onda λ : in metri Per le onde luminose si una il nano- metro (nm) o l Ångstrom (Å) Frequenza ν :

Dettagli

Docente: Alessandro Melchiorri Slides delle lezioni: oberon.roma1.infn.it/alessandro/astro2014

Docente: Alessandro Melchiorri Slides delle lezioni: oberon.roma1.infn.it/alessandro/astro2014 Astronomia Lezione 11/12/2014 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Slides delle lezioni: oberon.roma1.infn.it/alessandro/astro2014 Quali sono i processi nucleari? Nucleosintesi:

Dettagli

Emissione α. La sua carica elettrica è pari a +2e La sua massa a riposo è circa 7x10-27 kg.

Emissione α. La sua carica elettrica è pari a +2e La sua massa a riposo è circa 7x10-27 kg. Reazioni nucleari Un nucleo instabile può raggiungere una nuova condizione di stabilità attraverso una serie di decadimenti con emissione di particelle α, β, γ o di frammenti nucleari (fissione). Emissione

Dettagli

La radiazione elettromagnetica. aumento della frequenza n della radiazione aumento dell energia E della radiazione

La radiazione elettromagnetica. aumento della frequenza n della radiazione aumento dell energia E della radiazione La radiazione elettromagnetica aumento della frequenza n della radiazione aumento dell energia E della radiazione La radiazione elettromagnetica Un onda elettromagnetica è caratterizzata dalla lunghezza

Dettagli

Fisica Atomica - Giugno 2017

Fisica Atomica - Giugno 2017 Fisica Atomica - Giugno 2017 1. Sapendo che l energia di seconda ionizzazione dell atomo di calcio è 95000 cm 1 e che i livelli elettronici dello ione Ca + sono ben approssimati dai difetti quantici δ

Dettagli

AC7 La fotosfera delle stelle

AC7 La fotosfera delle stelle AC7 La fotosfera delle stelle Diffusione Thompson e Compton Diffusione classica da elettroni legati elasticamente Effetto fotoelettrico Classificazione dei processi di interazione delle radiazioni Concetto

Dettagli

Evoluzione stellare: dalla nascita di una stella alla sua fine. Serafina Carpino

Evoluzione stellare: dalla nascita di una stella alla sua fine. Serafina Carpino Evoluzione stellare: dalla nascita di una stella alla sua fine Serafina Carpino Oltre a miliardi di stelle, nello spazio ci sono nubi di materia interstellare, formate da estese condensazioni di gas e

Dettagli

Materia e radiazione. Lezione 6

Materia e radiazione. Lezione 6 Materia e radiazione Lezione 6 Sommario Luce e radiazione: come estrarre l informazione fisica dalla luce delle stelle. La radiazione di corpo nero: leggi di Wien e di Stefan. Struttura Atomica: nucleo

Dettagli

Astronomia Lezione 16/12/2011

Astronomia Lezione 16/12/2011 Astronomia Lezione 16/12/2011 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Slides: oberon.roma1.infn.it/alessandro/ Libri di testo: - An introduction to modern astrophysics

Dettagli

Università degli Studi dell Aquila Corso di Laurea in Scienze e Tecnologie Chimiche e dei Materiali Corso di Fisica della Materia Prof. L.

Università degli Studi dell Aquila Corso di Laurea in Scienze e Tecnologie Chimiche e dei Materiali Corso di Fisica della Materia Prof. L. Università degli Studi dell Aquila Corso di Laurea in Scienze e Tecnologie Chimiche e dei Materiali Corso di Fisica della Materia Prof. L. Lozzi Testi degli esercizi svolti in aula Corpo Nero 1. Il corpo

Dettagli

Esercizio8: il lavoro di estrazione per il tungsteno é 4.49 ev. Calcolare la lunghezza d onda massima per ottenere effetto fotoelettrico [275.6 nm].

Esercizio8: il lavoro di estrazione per il tungsteno é 4.49 ev. Calcolare la lunghezza d onda massima per ottenere effetto fotoelettrico [275.6 nm]. Esercizio8: il lavoro di estrazione per il tungsteno é 4.49 ev. Calcolare la lunghezza d onda massima per ottenere effetto fotoelettrico [275.6 nm]. Esercizio9: un fotone gamma sparisce formando una coppia

Dettagli

LASER. Light Amplification by Stimulated Emission of Radiation. Introduzione. Assorbimento, emissione spontanea, emissione stimolata

LASER. Light Amplification by Stimulated Emission of Radiation. Introduzione. Assorbimento, emissione spontanea, emissione stimolata LASER Light Amplification by Stimulated Emission of Radiation Introduzione. Assorbimento, emissione spontanea, emissione stimolata Cenni storici 1900 Max Planck introduce la teoria dei quanti (la versione

Dettagli

01. Le basi della meccanica quantistica. 01 j-k. Gli atomi con più elettroni

01. Le basi della meccanica quantistica. 01 j-k. Gli atomi con più elettroni 01. 01 j-k. Gli atomi con più elettroni 01. Contenuti 1.j Gli atomi con più elettroni: il modello a elettroni indipendenti, il Principio di esclusione di Pauli, la struttura elettronica, la tavola di Mendeleev.

Dettagli

Luce termica e luce coerente

Luce termica e luce coerente Luce termica e luce coerente Nice Terzi Prof. Ord. in pensione Docente di Fisica dello Stato Solido alla Statale di Milano e a Milano-Bicocca (dal 1979 al 2009) Docente di Fisica e sua didattica alla SILSIS

Dettagli

Nuclei Galattici Attivi nei raggi X. Sunday, December 16, 12

Nuclei Galattici Attivi nei raggi X. Sunday, December 16, 12 Nuclei Galattici Attivi nei raggi X - SED degli AGN: emissione X in forte eccesso rispetto alla coda attesa per un disco di accrescimento - Emissione 0.1-100 kev: 1-20% della luminosita totale - E una

Dettagli

Lo Spettro Elettromagnetico

Lo Spettro Elettromagnetico Spettroscopia 1 Lo Spettro Elettromagnetico Lo spettro elettromagnetico è costituito da un insieme continuo di radiazioni (campi elettrici e magnetici che variano nel tempo, autogenerandosi) che va dai

Dettagli

Capitolo 8 La struttura dell atomo

Capitolo 8 La struttura dell atomo Capitolo 8 La struttura dell atomo 1. La doppia natura della luce 2. La «luce» degli atomi 3. L atomo di Bohr 4. La doppia natura dell elettrone 5. L elettrone e la meccanica quantistica 6. L equazione

Dettagli

Per improvvisa morte del computer oberon le slides sono temporaneamente qui:

Per improvvisa morte del computer oberon le slides sono temporaneamente qui: Astronomia Lezione 29/11/2012 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Per improvvisa morte del computer oberon le slides sono temporaneamente qui: https://www.dropbox.com/sh/anj0ijvcgu71cir/c5nk_-nomg

Dettagli

LA STRUTTURA DEGLI ATOMI GLI SPETTRI ATOMICI DI EMISSIONE

LA STRUTTURA DEGLI ATOMI GLI SPETTRI ATOMICI DI EMISSIONE LA STRUTTURA DEGLI ATOMI GLI SPETTRI ATOMICI DI EMISSIONE LA RADIAZIONE ELETTROMAGNETICA LA RADIAZIONE ELETTROMAGNETICA LA RADIAZIONE ELETTROMAGNETICA LO SPETTRO ELETTROMAGNETICO LA QUANTIZZAZIONE DELL

Dettagli

ATOMO. Legge della conservazione della massa Legge delle proporzioni definite Dalton

ATOMO. Legge della conservazione della massa Legge delle proporzioni definite Dalton Democrito IV secolo A.C. ATOMO Lavoisier Proust Legge della conservazione della massa Legge delle proporzioni definite Dalton (1808) Teoria atomica Gay-Lussac volumi di gas reagiscono secondo rapporti

Dettagli

Esploriamo la chimica

Esploriamo la chimica 1 Valitutti, Tifi, Gentile Esploriamo la chimica Seconda edizione di Chimica: molecole in movimento Capitolo 8 La struttura dell atomo 1. La doppia natura della luce 2. L atomo di Bohr 3. Il modello atomico

Dettagli

Introduzione al corso. Cenni storici ed evidenze sperimentali determinanti lo sviluppo della fisica atomica come la conosciamo ora...

Introduzione al corso. Cenni storici ed evidenze sperimentali determinanti lo sviluppo della fisica atomica come la conosciamo ora... Introduzione al corso Cenni storici ed evidenze sperimentali determinanti lo sviluppo della fisica atomica come la conosciamo ora... Legge di Boyle (1662)-> La pressione di un gas cresce quando decresce

Dettagli

LE ONDE E I FONDAMENTI DELLA TEORIA QUANTISTICA

LE ONDE E I FONDAMENTI DELLA TEORIA QUANTISTICA LE ONDE E I FONDAMENTI DELLA TEORIA QUANTISTICA I PROBLEMI DEL MODELLO PLANETARIO F Secondo Rutherford l elettrone si muoverebbe sulla sua orbita in equilibrio tra la forza elettrica di attrazione del

Dettagli

Atomi a più elettroni

Atomi a più elettroni Atomi a più elettroni L atomo di elio è il più semplice sistema di atomo a più elettroni. Due sistemi di livelli tra i quali non si osservano transizioni Sistema di singoletto->paraelio Righe singole,

Dettagli

Risultato: ELABORAZIONE della MECCANICA QUANTISTICA e sua applicazione sistematica ai nuovi fenomeni

Risultato: ELABORAZIONE della MECCANICA QUANTISTICA e sua applicazione sistematica ai nuovi fenomeni Tra la fine del XIX e inizio del XX secolo una serie di fenomeni non trovano interpretazione adeguata, basata su fisica classica (meccanica, elettromagnetismo, ottica e termodinamica) Essi risultarono

Dettagli

Radiazione elettromagnetica

Radiazione elettromagnetica Spettroscopia Radiazione elettromagnetica: energia che si propaga in un mezzo fenomeno ondulatorio dovuto alla propagazione simultanea nello spazio di un campo elettrico (E) e di uno magnetico (M) perpendicolari

Dettagli

TECNICHE SPETTROSCOPICHE

TECNICHE SPETTROSCOPICHE TECNICHE SPETTROSCOPICHE L interazione delle radiazioni elettromagnetiche con la materia e essenzialmente un fenomeno quantico, che dipende sia dalle proprieta della radiazione sia dalla natura della materia

Dettagli

Astronomia Strumenti di analisi

Astronomia Strumenti di analisi Corso facoltativo Astronomia Strumenti di analisi Christian Ferrari & Gianni Boffa Liceo di Locarno Parte E: Strumenti di analisi Radiazione elettromagnetica Interazione radiazione - materia Redshift Misura

Dettagli

Allargamento di riga

Allargamento di riga Allargamento di riga Le linee spettrali hanno un allargamento in frequenza (larghezza spettrale di riga). Le forme delle curve sono descritte da una funzione di forma di riga g( ) che fornisce anche la

Dettagli

5.4 Larghezza naturale di una riga

5.4 Larghezza naturale di una riga 5.4 Larghezza naturale di una riga Un modello classico più soddisfacente del processo di emissione è il seguente. Si considera una carica elettrica puntiforme in moto armonico di pulsazione ω 0 ; la carica,

Dettagli

Tabella 1 80,0 5,7 70,0 5,0 60,0 4,3 50,0 3,6 40,0 2,9 30,0 2,2 20,0 1,5 10,0 0,9 5,0 0,5

Tabella 1 80,0 5,7 70,0 5,0 60,0 4,3 50,0 3,6 40,0 2,9 30,0 2,2 20,0 1,5 10,0 0,9 5,0 0,5 PROBLEMA 1 Un piccolo magnete permanente di massa viene lasciato cadere liberamente in un tubo verticale e fisso, di materiale isolante come il plexiglas; si osserva che esso cade con la stessa accelerazione

Dettagli

I legami chimici. Programma: a che punto siamo? Funzioni di stato. Corso di Studi di Fisica Corso di Chimica. Luigi Cerruti

I legami chimici. Programma: a che punto siamo? Funzioni di stato. Corso di Studi di Fisica Corso di Chimica. Luigi Cerruti Corso di Studi di Fisica Corso di Chimica Programma: a che punto siamo? Luigi Cerruti www.minerva.unito.it Lezioni 11-12 2010 I legami chimici Un volume di gas, una certa quantità di soluzione, un cristallo

Dettagli

Corso di Studi di Fisica Corso di Chimica

Corso di Studi di Fisica Corso di Chimica Corso di Studi di Fisica Corso di Chimica Luigi Cerruti www.minerva.unito.it Lezioni 11-12 2010 Programma: a che punto siamo? I legami chimici Un volume di gas, una certa quantità di soluzione, un cristallo

Dettagli

L atomo. Il neutrone ha una massa 1839 volte superiore a quella dell elettrone. 3. Le particelle fondamentali dell atomo

L atomo. Il neutrone ha una massa 1839 volte superiore a quella dell elettrone. 3. Le particelle fondamentali dell atomo L atomo 3. Le particelle fondamentali dell atomo Gli atomi sono formati da tre particelle fondamentali: l elettrone con carica negativa; il protone con carica positiva; il neutrone privo di carica. Il

Dettagli

SPETTROMETRIA DI ASSORBIMENTO ATOMICO

SPETTROMETRIA DI ASSORBIMENTO ATOMICO SPETTROMETRIA DI ASSORBIMENTO ATOMICO E una metodica spettroscopica atta alla determinazione qualiquantitativa di metalli. E basata sull assorbimento di radiazioni elettromagnetiche da parte di atomi nell

Dettagli

LA STRUTTURA DEGLI ATOMI GLI SPETTRI ATOMICI DI EMISSIONE

LA STRUTTURA DEGLI ATOMI GLI SPETTRI ATOMICI DI EMISSIONE LA STRUTTURA DEGLI ATOMI GLI SPETTRI ATOMICI DI EMISSIONE LA RADIAZIONE ELETTROMAGNETICA LA RADIAZIONE ELETTROMAGNETICA LA RADIAZIONE ELETTROMAGNETICA LO SPETTRO ELETTROMAGNETICO LA QUANTIZZAZIONE DELL

Dettagli

Esp. 4: Spettrofotometro

Esp. 4: Spettrofotometro Esp. 4: Spettrofotometro Spettrofotometria Reticolo di diffrazione d sinϑ = mλ Schermo Nel nostro esp. Si acquisisce al variare dell angolo l intensità luminosa. Noi riusciamo a misurare solo il primo

Dettagli

Produzione dei raggi X

Produzione dei raggi X I RAGGI X Produzione dei raggi X Tubo a raggi X Emissione per frenamento Emissione per transizione Spettro di emissione pag.1 Lunghezza d onda, frequenza, energia (fm) λ (m) 10 14 RAGGI GAMMA ν 10 12 (Å)

Dettagli

LABORATORIO BAGLIORI NEL VUOTO

LABORATORIO BAGLIORI NEL VUOTO LABORATORIO BAGLIORI NEL VUOTO Scariche elettriche nei gas Per osservare il fenomeno della scarica elettrica in un gas, lo si racchiude in un tubo trasparente, fissando in tal modo il tipo di gas (o miscela

Dettagli

L ATOMO SECONDO LA MECCANICA ONDULATORIA IL DUALISMO ONDA-PARTICELLA. (Plank Einstein)

L ATOMO SECONDO LA MECCANICA ONDULATORIA IL DUALISMO ONDA-PARTICELLA. (Plank Einstein) L ATOMO SECONDO LA MECCANICA ONDULATORIA IL DUALISMO ONDA-PARTICELLA POSTULATO DI DE BROGLIÈ Se alla luce, che è un fenomeno ondulatorio, sono associate anche le caratteristiche corpuscolari della materia

Dettagli

Corso di laboratorio di fisica della materia Prof. Mario Rocca AA Il progresso delle conoscenze in Fisica è indissolubilmente legato al

Corso di laboratorio di fisica della materia Prof. Mario Rocca AA Il progresso delle conoscenze in Fisica è indissolubilmente legato al Corso di laboratorio di fisica della materia Prof. Mario Rocca AA 2012-2013 Il progresso delle conoscenze in Fisica è indissolubilmente legato al progresso nei metodi di indagine sperimentale. Il corso

Dettagli

Come classificare uno spettro stellare. Francesca Onori

Come classificare uno spettro stellare. Francesca Onori Come classificare uno spettro stellare Francesca Onori Riassumendo.. A seconda della loro temperatura superficiale, le stelle mostrano differenti colori e differenti spettri di corpo nero. Riassumendo..

Dettagli

Sito web per slides lezioni: oberon.roma1.infn.it:/alessandro/astro2012/

Sito web per slides lezioni: oberon.roma1.infn.it:/alessandro/astro2012/ Astronomia Lezione 10/12/2012 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Sito web per slides lezioni: oberon.roma1.infn.it:/alessandro/astro2012/ Libri di testo consigliati:

Dettagli

Teoria Atomica Moderna. Chimica generale ed Inorganica: Chimica Generale. sorgenti di emissione di luce. E = hν. νλ = c. E = mc 2

Teoria Atomica Moderna. Chimica generale ed Inorganica: Chimica Generale. sorgenti di emissione di luce. E = hν. νλ = c. E = mc 2 sorgenti di emissione di luce E = hν νλ = c E = mc 2 FIGURA 9-9 Spettro atomico, o a righe, dell elio Spettri Atomici: emissione, assorbimento FIGURA 9-10 La serie di Balmer per gli atomi di idrogeno

Dettagli

Astronomia INTRODUZIONE

Astronomia INTRODUZIONE Astronomia 2015-16 INTRODUZIONE Contenuti: Corso di Astronomia 2015-2016 Prof. Marco Bersanelli Fondamenti Struttura stellare Evoluzione stellare Strumentazione per astrofisica Astrofisica galattica Astrofisica

Dettagli

(c) laura Condorelli 2009

(c) laura Condorelli 2009 Legge di Wien Emissione del corpo nero Il numero massimo di radiazione emmesse è chiamato lambda max. Quando la temperatura è minore, lambda max è maggiore. Quando la temperatura è maggiore, lambda max

Dettagli

Formazione di orbitali π. La differenza di energia tra due orbitali π è minore di quella tra due orbitali. Orbitali di non legame, n

Formazione di orbitali π. La differenza di energia tra due orbitali π è minore di quella tra due orbitali. Orbitali di non legame, n Spettroscopia Studia le interazione tra le radiazioni elettromagnetiche e la materia. Come sono fatti questi sistemi? La formazione dei legami chimici viene spiegata in termini di interazioni di orbitali

Dettagli

Università degli Studi di Milano. Dipartimento di Fisica Corso di laurea triennale in FISICA. Anno accademico 2013/14. Figure utili da libri di testo

Università degli Studi di Milano. Dipartimento di Fisica Corso di laurea triennale in FISICA. Anno accademico 2013/14. Figure utili da libri di testo Università degli Studi di Milano Dipartimento di Fisica Corso di laurea triennale in FISICA Anno accademico 2013/14 Figure utili da libri di testo Onde & Oscillazioni Corso A Studenti con il cognome che

Dettagli

LUCE E ONDE ELETTROMAGNETICHE

LUCE E ONDE ELETTROMAGNETICHE LUCE E ONDE ELETTROMAGNETICHE QUASI TUTTO QUELLO CHE SAPPIAMO SULLA STRUTTURA DELL ATOMO DERIVA DALL ANALISI DELLA LUCE EMESSA O ASSORBITA DALLE SOSTANZE CHI FU IL PRIMO AD ACCORGERSI CHE I SINGOLI ELEMENTI

Dettagli

Quesito N Considerate un modello di stella che consista di un corpo nero sferico di temperatura superficiale T e

Quesito N Considerate un modello di stella che consista di un corpo nero sferico di temperatura superficiale T e Considerate un modello di stella che consista di un corpo nero sferico di temperatura superficiale T e K e un raggio di raggi solari La parallasse di questa stella sia di (secondi d arco) Di questa stella

Dettagli

Domanda: Discutere brevemente differenze e analogie tra fotoni e fononi. Si suggerisce di consultare la Sezione 19.2

Domanda: Discutere brevemente differenze e analogie tra fotoni e fononi. Si suggerisce di consultare la Sezione 19.2 Verifica dei Concetti 21.1 Domanda: Discutere brevemente differenze e analogie tra fotoni e fononi. Si suggerisce di consultare la Sezione 19.2 Risposta: Le similarità fra fotoni e fononi sono: 1) Entrambi

Dettagli

TERMOLOGIA & TERMODINAMICA II

TERMOLOGIA & TERMODINAMICA II TERMOLOGIA & TERMODINAMICA II 1 TRASMISSIONE DEL CALORE Il calore può essere trasmesso attraverso tre modalità: conduzione: il trasporto avviene per contatto, a causa degli urti fra le molecole dei corpi,

Dettagli

Radiazioni ionizzanti

Radiazioni ionizzanti Dipartimento di Fisica a.a. 2004/2005 Fisica Medica 2 Radiazioni ionizzanti 11/3/2005 Struttura atomica Atomo Nucleo Protone 10 10 m 10 14 m 10 15 m ev MeV GeV 3 3,0 0,3 0 0 0 Atomo Dimensioni lineari

Dettagli

COMPETENZE ABILITÀ CONOSCENZE. descrivere la. Comprendere ed applicare analogie relative ai concetti presi in analisi. struttura.

COMPETENZE ABILITÀ CONOSCENZE. descrivere la. Comprendere ed applicare analogie relative ai concetti presi in analisi. struttura. ca descrivere la struttura dell atomo, la tavola periodica e le sue caratteristiche per spiegare le differenze tra i vari tipi di legami, descrivendoli e interpretandoli alla luce degli elettroni di valenza

Dettagli

catastrofe ultravioletta

catastrofe ultravioletta Fisica moderna Radiazione termica La radiazione termica è l insieme di onde elettromagnetiche che ogni corpo emette per effetto della sua temperatura Un corpo nero è un corpo che assorbe completamente

Dettagli