Breve introduzione al metodo del Analytic Hierarchy Process (AHP)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Breve introduzione al metodo del Analytic Hierarchy Process (AHP)"

Transcript

1 Breve introduzione al metodo del Analytic Hierarchy Process (AHP) Massimo Paolucci DIST Università di Genova 2 Il metodo SAW costruisce un peso con cui valutare le alternative come dove di solito n w Si n n w w j jxij j

2 3 I valori x ij si possono interpretare come il punteggio di A i in base al criterio j x j (x j, x 2j,..., x mj ) fornisce quindi l importanza delle alternative rispetto al criterio j w rappresenta il vettore dei pesi che misurano l importanza relativa dei criteri L idea di AHP sta nel derivare (o valutare) l importanza relativa delle alternative rispetto ad i singoli criteri, ossia m xij i j 4 La decisione può essere strutturata secondo una gerarchia Goal w w 2 w n Crit Crit 2 Crit n x x 2 xn xmn A A A m

3 5 Scopo del metodo: definire le priorità relative delle alternative rispetto il goal (il nodo al più alto livello della gerarchia) Il metodo procede bottom-up: si comparano le alternative (livello più basso) tra loro in relazione ad ogni singolo criterio del livello immediatamente superiore e si determina la loro priorità relativa si sale di un livello e si comparano tra loro i criteri (subcriteri) rispetto al goal (ad ogni singolo criterio) a livello superiore e si determina il loro peso relativo si aggregano tutte le priorità della gerarchia calcolando la priorità delle alternative rispetto al goal (decisione) 6 Passi formali di AHP Dati k livelli (k livello delle alternative): Elementi al livello k (alternative): x,...,x k Elementi al livello k- (criteri o subcriteri): y,...,y k- Elementi al livello k-2 (criteri, subcriteri o goal): z,...,z k-2 W k [w yj (x i )] matrice dei pesi relativi delle alternative rispetto ai criteri y j al livello superiore W k- [w zh (y j )] matrice dei pesi relativi dei criteri a livello k- rispetto al criterio (goal) z h al livello superiore La priorità di x i rispetto a z h k wz (xi) wz (yj) wy (xi) h h j

4 7 Passi formali di AHP In forma matriciale: [ wz (xi),i,...,k] Pk [wz (y j), j,...,k ] h Nel caso di 3 livelli (Goal, Criteri, Alternative) Wz P2 W dove: W è il vettore dei pesi dei criteri (al primo livello) rispetto l unico elemento del livello superiore, il goal P 2 è la matrice (alternative x criteri) le cui colonne sono i vettori dei pesi relativi delle alternative rispetto ai criteri W z è il vettore dei pesi (importanza) delle alternative rispetto al goal (la preferenza) h 8 Passi formali di AHP In generale: Wz Pn Pn P2 W y Goal w w 2 w k C C C k SC SC 2 SC..... n x x 2 x n x mn A A A m y k Ad esempio su 4 livelli: w W M wk y L yk P2 M M yn L ynk x L xn P3 M M xm L xnm

5 9 Informazioni assolute e relative Informazioni assolute viene fornita la matrice delle decisioni i pesi dei criteri rispetto ai subcriteri ed al goal sono misure oggettive Informazioni relative non si conoscono misure oggettive ma si comparano le alternative in relazione ad i singoli criteri ed i criteri in relazione al goal o ai sottocriteri possono verificarsi inconsistenze 0 In caso di informazioni assolute il CI0 (consistenza totale) Come viene calcolato? D [xij,i,...,m, j,...,n] Matrice delle decisioni xkj x ej xkj xej MC j [ ake] aek xej xkj ake Matrice di comparazione rispetto al criterio j

6 Così costruita la matrice MC j è perfettamente consistente Il più grande autovalore della matrice MC j è pari al numero delle alternative, mentre gli altri autovalori sono nulli λ max m Nel caso di informazioni relative i rapporti x kj /x ej sono stimati (soggettivi) quindi la matrice di comparazione può non risultare completamente consistente In questi casi il massimo autovalore si discosta da m (ed i restanti possono essere non nulli) ~ max m λ 2 L indice di consistenza è calcolato come λ ~ m CI max m quindi CI0 consistenza completa L indice misura quanto il DM si discosta con i propri giudizi da una situazione di consistenza completa Lo scostamento dovrebbe essere causato da limitate violazioni alla transitività dei giudizi e non da giudizi espressi in maniera del tutto casuale

7 3 Per verificare che un CI non corrisponde a giudizi totalmente randomici si confronta il CI con un Random Index (RI) Gli RI sono misure random tabulate e generate per numeri fissati di alternative Per lo stesso numero m di alternative si calcola il Rapporto di Consistenza (CR) CR Empiricamente una soglia di accettabilità per CR è 0. Per valori superiori si suggerisce al DM di verificare i propri giudizi CI RI 4 CR - implementazioni Poichè il calcolo degli autovalori delle matrici di comparazione risulta non risolubile in maniera esatta per m 5 si adottano dei metodi numerici per la stima di del massimo autovalore

4. Confronto tra medie di tre o più campioni indipendenti

4. Confronto tra medie di tre o più campioni indipendenti BIOSTATISTICA 4. Confronto tra medie di tre o più campioni indipendenti Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA. Filippo Romano 1

UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA. Filippo Romano 1 UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA Filippo Romano 1 1. Introduzione 2. Analisi Multicriteri o Multiobiettivi 2.1 Formule per l attribuzione del

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dottssa MC De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Corso di Calcolo Numerico - Dottssa MC De Bonis

Dettagli

L offerta economicamente più vantaggiosa. Alessandro Simonetta Consulenza per l Innovazione Tecnologica alessandro.simonetta@gmail.

L offerta economicamente più vantaggiosa. Alessandro Simonetta Consulenza per l Innovazione Tecnologica alessandro.simonetta@gmail. L offerta economicamente più vantaggiosa Alessandro Simonetta Consulenza per l Innovazione Tecnologica alessandro.simonetta@gmail.com 1 Quadro Legislativo D.P.R. n.544/99 D.Lgs n.163/06 e s.m.i. D. Lgs

Dettagli

- Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo)

- Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo) Se si ha un problema lineare e' possibile risolverlo in piu' modi (equivalenti ) - Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo) - Trovare soluzione ottima duale (con il simplesso

Dettagli

Approssimazione polinomiale di funzioni e dati

Approssimazione polinomiale di funzioni e dati Approssimazione polinomiale di funzioni e dati Approssimare una funzione f significa trovare una funzione f di forma più semplice che possa essere usata al posto di f. Questa strategia è utilizzata nell

Dettagli

ORIENTAMENTO E COMUNICAZIONE. Analisi del territorio. Definizione di alternative. Analisi e rappresentazione degli effetti. Scelta tra alternative

ORIENTAMENTO E COMUNICAZIONE. Analisi del territorio. Definizione di alternative. Analisi e rappresentazione degli effetti. Scelta tra alternative SOFTWARE ORIENTAMENTO E COMUNICAZIONE Diario del processo Mappa degli attori Trasparenza delle procedure Analisi del territorio Catalogo dati e indicatori Sistema informativo leggero Definizione di Generazione

Dettagli

Il Metodo di analisi multicriterio Analitic Hierarchy Process (AHP) Corso di Analisi delle Decisioni Chiara Mocenni (mocenni@dii.unisi.

Il Metodo di analisi multicriterio Analitic Hierarchy Process (AHP) Corso di Analisi delle Decisioni Chiara Mocenni (mocenni@dii.unisi. Il Metodo di analisi multicriterio Analitic Hierarchy Process (AHP) Corso di Analisi delle Decisioni Chiara Mocenni (mocenni@dii.unisi.it) L analisi multicriterio e il processo decisionale L analisi multicriterio

Dettagli

Barriere assorbenti nelle catene di Markov e una loro applicazione al web

Barriere assorbenti nelle catene di Markov e una loro applicazione al web Università Roma Tre Facoltà di Scienze M.F.N Corso di Laurea in Matematica a.a. 2001/2002 Barriere assorbenti nelle catene di Markov e una loro applicazione al web Giulio Simeone 1 Sommario Descrizione

Dettagli

Modalità di attribuzione del punteggio relativo all offerta economica

Modalità di attribuzione del punteggio relativo all offerta economica Informationssystem für Öffenliche Verträge Modalità di attribuzione del punteggio relativo all offerta economica Per una gara ad offerta economicamente più vantaggiosa esistono vari algoritmi che consentono

Dettagli

CIRCUITI INTELLIGENTI Parte 5: PCA e ICA

CIRCUITI INTELLIGENTI Parte 5: PCA e ICA Ing. Simone SCARDAPANE Circuiti e Algoritmi per l Elaborazione dei Segnali Anno Accademico 2012/2013 Indice della Lezione 1. Analisi delle Componenti Principali 2. Auto-Associatori 3. Analisi delle Componenti

Dettagli

ANALISI DEI DATI PER IL MARKETING 2014

ANALISI DEI DATI PER IL MARKETING 2014 ANALISI DEI DATI PER IL MARKETING 2014 Marco Riani mriani@unipr.it http://www.riani.it LA CLASSIFICAZIONE CAP IX, pp.367-457 Problema generale della scienza (Linneo, ) Analisi discriminante Cluster Analysis

Dettagli

2 Formulazione dello shortest path come problema di flusso

2 Formulazione dello shortest path come problema di flusso Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10 Lecture 20: 28 Maggio 2010 Cycle Monotonicity Docente: Vincenzo Auletta Note redatte da: Annibale Panichella Abstract In questa lezione

Dettagli

Programmazione dinamica

Programmazione dinamica Capitolo 6 Programmazione dinamica 6.4 Il problema della distanza di edit tra due stringhe x e y chiede di calcolare il minimo numero di operazioni su singoli caratteri (inserimento, cancellazione e sostituzione)

Dettagli

Analisi di dati di frequenza

Analisi di dati di frequenza Analisi di dati di frequenza Fase di raccolta dei dati Fase di memorizzazione dei dati in un foglio elettronico 0 1 1 1 Frequenze attese uguali Si assuma che dalle risposte al questionario sullo stato

Dettagli

Effetto Feedback fra somiglianza e influenza sociale nelle community on line

Effetto Feedback fra somiglianza e influenza sociale nelle community on line ALMA MATER STUDIORUM A.D. 1088 UNIVERSITÁ DI BOLOGNA Scuola di Scienze MM FF NN Corso di Laurea Magistrale in Informatica Effetto Feedback fra somiglianza e influenza sociale nelle community on line Claudia

Dettagli

Analisi dei segnali nel dominio della frequenza

Analisi dei segnali nel dominio della frequenza Laboratorio di Telecomunicazioni - a.a. 2010/2011 Lezione n. 7 Analisi dei segnali nel dominio della frequenza docente L.Verdoliva In questa lezione affrontiamo il problema dell analisi dei segnali tempo

Dettagli

Massimo Paolucci (paolucci@dist.unige.it) DIST Università di Genova. Metodi per supportare le decisioni relative alla gestione di progetti

Massimo Paolucci (paolucci@dist.unige.it) DIST Università di Genova. Metodi per supportare le decisioni relative alla gestione di progetti Project Management Massimo Paolucci (paolucci@dist.unige.it) DIST Università di Genova Project Management 2 Metodi per supportare le decisioni relative alla gestione di progetti esempi sono progetti nell

Dettagli

Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008

Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008 Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica 18 dicembre 008 Esame sull intero programma: esercizi da A a D Esame sulla seconda parte del programma: esercizi

Dettagli

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Scopo: Stimare l onere computazionale per risolvere problemi di ottimizzazione e di altra natura

Dettagli

La modellazione delle strutture

La modellazione delle strutture La modellazione delle strutture 1 Programma 31-1-2012 Introduzione e brevi richiami al metodo degli elementi finiti 7-2-2012 La modellazione della geometria 14-2-2012 21-2-2012 28-2-2012 6-3-2012 13-32012

Dettagli

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,...

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... Entropia Motivazione Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... ) s,s 2,s 3,... ognuno dei quali appartiene ad un alfabeto A di M elementi.? Quant è l informazione portata

Dettagli

Calcolo Parallelo. Domanda. In particolare. Qual è l algoritmo parallelo. PROBLEMA: Prodotto Matrice-Vettore

Calcolo Parallelo. Domanda. In particolare. Qual è l algoritmo parallelo. PROBLEMA: Prodotto Matrice-Vettore Calcolo Parallelo Algoritmi Paralleli per il prodotto Matrice-Vettore Laura Antonelli PROBLEMA: Prodotto Matrice-Vettore Progettazione di un algoritmo parallelo per architettura MIMD a memoria distribuita

Dettagli

Sistemi Informativi Territoriali. Map Algebra

Sistemi Informativi Territoriali. Map Algebra Paolo Mogorovich Sistemi Informativi Territoriali Appunti dalle lezioni Map Algebra Cod.735 - Vers.E57 1 Definizione di Map Algebra 2 Operatori locali 3 Operatori zonali 4 Operatori focali 5 Operatori

Dettagli

Metodi basati sugli autovettori per il Web Information Retrieval

Metodi basati sugli autovettori per il Web Information Retrieval Metodi basati sugli autovettori per il Web Information Retrieval HITS, PageRank e il metodo delle potenze LSI e SVD LSI è diventato famoso per la sua abilità nel permettere di manipolare i termini (all

Dettagli

Controllo Statistico della Qualità. Qualità come primo obiettivo dell azienda produttrice di beni

Controllo Statistico della Qualità. Qualità come primo obiettivo dell azienda produttrice di beni Controllo Statistico della Qualità Qualità come primo obiettivo dell azienda produttrice di beni Qualità come costante aderenza del prodotto alle specifiche tecniche Qualità come controllo e riduzione

Dettagli

Metodi Computazionali

Metodi Computazionali Metodi Computazionali Elisabetta Fersini fersini@disco.unimib.it A.A. 2009/2010 Catene di Markov Applicazioni: Fisica dinamica dei sistemi Web simulazione del comportamento utente Biologia evoluzione delle

Dettagli

Analisi Statistica Spaziale

Analisi Statistica Spaziale Analisi Statistica Spaziale Posa D., De Iaco S. posa@economia.unile.it s.deiaco@economia.unile.it UNIVERSITÀ del SALENTO DIP.TO DI SCIENZE ECONOMICHE E MATEMATICO-STATISTICHE FACOLTÀ DI ECONOMIA ANNO ACCADEMICO

Dettagli

Dai dati al modello teorico

Dai dati al modello teorico Dai dati al modello teorico Analisi descrittiva univariata in R 1 Un po di terminologia Popolazione: (insieme dei dispositivi che verranno messi in produzione) finito o infinito sul quale si desidera avere

Dettagli

Prerequisiti didattici

Prerequisiti didattici Università degli Studi di Ferrara 2014-2015 Corso TFA - A048 Matematica applicata Didattica della matematica applicata all economia e alla finanza 18 marzo 2015 Appunti di didattica della matematica applicata

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU 9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A LU 9.1 Il metodo di Gauss Come si è visto nella sezione 3.3, per la risoluzione di un sistema lineare si può considerare al posto

Dettagli

3. Confronto tra medie di due campioni indipendenti o appaiati

3. Confronto tra medie di due campioni indipendenti o appaiati BIOSTATISTICA 3. Confronto tra medie di due campioni indipendenti o appaiati Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza Il problema di flusso di costo minimo (MCF) Dati : grafo orientato G = ( N, A ) i N, deficit del nodo i : b i (i, j) A u ij, capacità superiore (max quantità di flusso che può transitare) c ij, costo di

Dettagli

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Localizzazione

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Localizzazione Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Localizzazione Posizionamento di antenne È dato un insieme A di possibili siti in cui installare antenne, a ciascuno

Dettagli

Condizionamento del problema

Condizionamento del problema Condizionamento del problema x 1 + 2x 2 = 3.499x 1 + 1.001x 2 = 1.5 La soluzione esatta è x = (1, 1) T. Perturbando la matrice dei coefficienti o il termine noto: x 1 + 2x 2 = 3.5x 1 + 1.002x 2 = 1.5 x

Dettagli

Esercizio 1. Verifica di ipotesi sulla media (varianza nota), p-value del test

Esercizio 1. Verifica di ipotesi sulla media (varianza nota), p-value del test STATISTICA (2) ESERCITAZIONE 6 05.03.2014 Dott.ssa Antonella Costanzo Esercizio 1. Verifica di ipotesi sulla media (varianza nota), p-value del test Il preside della scuola elementare XYZ sospetta che

Dettagli

LE FIBRE DI UNA APPLICAZIONE LINEARE

LE FIBRE DI UNA APPLICAZIONE LINEARE LE FIBRE DI UNA APPLICAZIONE LINEARE Sia f:a B una funzione tra due insiemi. Se y appartiene all immagine di f si chiama fibra di f sopra y l insieme f -1 y) ossia l insieme di tutte le controimmagini

Dettagli

MODULO GRAT PROCEDURA TRASFXY TEST CASES

MODULO GRAT PROCEDURA TRASFXY TEST CASES TC GRAT/TrasfXY 1 MODULO GRAT PROCEDURA TRASFXY TEST CASES 1 TC TRASFXY 1 - Graticcio a 17 aste carico nel perimetro aste ripartizione in direz. Y Trave 1 Trave 2 Trave 3 Traverso 1 Traverso 2 Traverso

Dettagli

Autorità per la vigilanza sui contratti pubblici di lavori, servizi e forniture QUADERNO

Autorità per la vigilanza sui contratti pubblici di lavori, servizi e forniture QUADERNO Autorità per la vigilanza sui contratti pubblici di lavori, servizi e forniture QUADERNO IL CRITERIO DI AGGIUDICAZIONE DELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA Dicembre 2011 IL CRITERIO DI AGGIUDICAZIONE

Dettagli

L OFFERTA ECONOMICAMENTE PIU VANTAGGIOSA Valutazione con il Confronto a coppie delle offerte e l uso della tabella triangolare

L OFFERTA ECONOMICAMENTE PIU VANTAGGIOSA Valutazione con il Confronto a coppie delle offerte e l uso della tabella triangolare L PIU VANTAGGIOSA Valutazione con il Confronto a coppie delle offerte e l uso della tabella triangolare L Aquila, 10/08/2009 (Dott.Ing. Ernesto PERINETTI) (Geom. Giuseppe CANTELMI) A molti sarà capitato

Dettagli

ANALISI DEL CONDIZIONAMENTO DI UN SISTEMA LINEARE

ANALISI DEL CONDIZIONAMENTO DI UN SISTEMA LINEARE ANALISI DEL CONDIZIONAMENTO DI UN SISTEMA LINEARE Algebra lineare numerica 121 Ax = b A, b affetti dall errore di round-off si risolve sempre un sistema perturbato: con (A + A)(x + x) = b + b A = ( a i,j

Dettagli

Economia Applicata ai sistemi produttivi. 06.05.05 Lezione II Maria Luisa Venuta 1

Economia Applicata ai sistemi produttivi. 06.05.05 Lezione II Maria Luisa Venuta 1 Economia Applicata ai sistemi produttivi 06.05.05 Lezione II Maria Luisa Venuta 1 Schema della lezione di oggi Argomento della lezione: il comportamento del consumatore. Gli economisti assumono che il

Dettagli

Esercitazione ENS su processi casuali (13 e 14 Maggio 2008)

Esercitazione ENS su processi casuali (13 e 14 Maggio 2008) Esercitazione ES su processi casuali ( e 4 Maggio 2008) D. Donno Esercizio : Calcolo di autovalori e autovettori Si consideri un processo x n somma di un segnale e un disturbo: x n = Ae π 2 n + w n, n

Dettagli

Manuale d'uso di FPM c. Poderico Luigi

Manuale d'uso di FPM c. Poderico Luigi Manuale d'uso di FPM c Poderico Luigi Introduzione Il presente documento fa parte della documentazione relativa al programma FPM c, nato dalla traduzione in c-ansi di un programma scritto in Fortran presso

Dettagli

Economia e Finanza delle Assicurazioni Università di Macerata Facoltà di. Economia. I flussi monetari generati dalle gestioni assicurative

Economia e Finanza delle Assicurazioni Università di Macerata Facoltà di. Economia. I flussi monetari generati dalle gestioni assicurative Economia e Finanza delle Assicurazioni Università di Macerata Facoltà di Economia Mario Parisi I flussi monetari generati dalle gestioni assicurative 1 Le passività della compagnia di assicurazione La

Dettagli

FAQ: Gestione dei Rifiuti e SISTRI. 30 novembre 2010

FAQ: Gestione dei Rifiuti e SISTRI. 30 novembre 2010 FAQ: Gestione dei Rifiuti e SISTRI 30 novembre 2010 Domanda 1: come codificare correttamente un rifiuto (1/3) Come codificare correttamente un rifiuto attribuendo il giusto codice CER? 2 DPCM 02/12/08

Dettagli

Corso di Psicometria Progredito

Corso di Psicometria Progredito Corso di Psicometria Progredito Soluzioni della simulazione del 17/05/2011 Gianmarco Altoè Dipartimento di Psicologia Università di Cagliari, Anno Accademico 2010-2011 Leggere BENE le avvertenze prima

Dettagli

Work Breakdown Structure Diagramma di Gantt PERT/CPM

Work Breakdown Structure Diagramma di Gantt PERT/CPM Work Breakdown Structure Diagramma di Gantt PERT/CPM C. Noè WBS Si tratta di uno strumento di supporto alla scomposizione analitica di un progetto in tutte le sue parti. Ciò facilita l attribuzione di

Dettagli

Interpolazione ed approssimazione di funzioni

Interpolazione ed approssimazione di funzioni Interpolazione ed approssimazione di funzioni Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 9 novembre 2007 Outline 1 Polinomi Valutazione di un polinomio Algoritmo di Horner

Dettagli

Test statistici di verifica di ipotesi

Test statistici di verifica di ipotesi Test e verifica di ipotesi Test e verifica di ipotesi Il test delle ipotesi consente di verificare se, e quanto, una determinata ipotesi (di carattere biologico, medico, economico,...) è supportata dall

Dettagli

Titolo della lezione. Analisi dell associazione tra due caratteri: indipendenza e dipendenza

Titolo della lezione. Analisi dell associazione tra due caratteri: indipendenza e dipendenza Titolo della lezione Analisi dell associazione tra due caratteri: indipendenza e dipendenza Introduzione Analisi univariata, bivariata, multivariata Analizzare le relazioni tra i caratteri, per cercare

Dettagli

Esercitazione n.2 Inferenza su medie

Esercitazione n.2 Inferenza su medie Esercitazione n.2 Esercizio L ufficio del personale di una grande società intende stimare le spese mediche familiari dei suoi impiegati per valutare la possibilità di attuare un programma di assicurazione

Dettagli

RICERCHE DI MERCATO. 5.6 Analisi Fattoriale (Componenti Principali)

RICERCHE DI MERCATO. 5.6 Analisi Fattoriale (Componenti Principali) RICERCHE DI MERCATO 5.6 Analisi Fattoriale (Componenti Principali) Prof. L. Neri Dip. di Economia Politica Premessa Come evidenziato in precedenza l approccio di segmentazione per omogeneità prevede la

Dettagli

Pianificazione di Produzione in DEC

Pianificazione di Produzione in DEC Pianificazione di Produzione in DEC L esempio considerato qui è un problema reale che la Digital Equipment Corporation (DEC) ha dovuto affrontare nell autunno del 1988 per preparare la pianificazione di

Dettagli

Mappatura dei processi aziendali. Una metodologia per l analisi dei processi

Mappatura dei processi aziendali. Una metodologia per l analisi dei processi Mappatura dei processi aziendali Una metodologia per l analisi dei processi Perché Essere un azienda competitiva = rivedere l organizzazione e progettare l intera azienda lungo la catena del valore in

Dettagli

Problema del trasporto

Problema del trasporto p. 1/1 Problema del trasporto Supponiamo di avere m depositi in cui è immagazzinato un prodotto e n negozi che richiedono tale prodotto. Nel deposito i è immagazzinata la quantità a i di prodotto. Nel

Dettagli

Complessità Computazionale

Complessità Computazionale Complessità Computazionale Analisi Algoritmi e pseudocodice Cosa significa analizzare un algoritmo Modello di calcolo Analisi del caso peggiore e del caso medio Esempio di algoritmo in pseudocodice INSERTION

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Parte 3: Gestione dei progetti, Shop scheduling

Parte 3: Gestione dei progetti, Shop scheduling Parte : Gestione dei progetti, Shop scheduling Rappresentazione reticolare di un progetto Insieme di attività {,...,n} p i durata (nota e deterministica dell attività i) relazione di precedenza fra attività:

Dettagli

Processi stocastici. variabile casuale: funzione da uno spazio campione S a valori nello spazio E R X(t) : S E. spazio degli stati del processo

Processi stocastici. variabile casuale: funzione da uno spazio campione S a valori nello spazio E R X(t) : S E. spazio degli stati del processo Processi stocastici Processo stocastico: famiglia di variabili casuali {X(t) t T} definite su uno spazio di probabilità indiciate dal parametro t (tempo) X(t) variabile casuale: funzione da uno spazio

Dettagli

1 Applicazioni Lineari tra Spazi Vettoriali

1 Applicazioni Lineari tra Spazi Vettoriali 1 Applicazioni Lineari tra Spazi Vettoriali Definizione 1 (Applicazioni lineari) Si chiama applicazione lineare una applicazione tra uno spazio vettoriale ed uno spazio vettoriale sul campo tale che "!$%!

Dettagli

un nuovo strumento per valutare i rischi aziendali

un nuovo strumento per valutare i rischi aziendali Analisi del Valore un nuovo strumento per valutare i rischi aziendali Il metodo presentato assegna ai possibili fattori di pericolo un indice di valore e consente di individuare la soluzione ottimale per

Dettagli

Relazione di fine tirocinio. Andrea Santucci

Relazione di fine tirocinio. Andrea Santucci Relazione di fine tirocinio Andrea Santucci 10/04/2015 Indice Introduzione ii 1 Analisi numerica con COMSOL R 1 1.1 Il Software.................................... 1 1.1.1 Geometria................................

Dettagli

Sommario. 1 Realizzazione del STG. Introduzione. 1 traduzione delle specifiche informali in specifiche formali (STG o

Sommario. 1 Realizzazione del STG. Introduzione. 1 traduzione delle specifiche informali in specifiche formali (STG o Sommario Sintesi di macchine a stati finiti 1 Realizzazione del ST M. avalli 2 utoma minimo di SM completamente specificate 6th June 2007 3 Ottimizzazione di SM non completamente specificate Sommario ()

Dettagli

4. Matrici e Minimi Quadrati

4. Matrici e Minimi Quadrati & C. Di Natale: Matrici e sistemi di equazioni di lineari Formulazione matriciale del metodo dei minimi quadrati Regressione polinomiale Regressione non lineare Cross-validazione e overfitting Regressione

Dettagli

Intelligenza Artificiale

Intelligenza Artificiale Intelligenza Artificiale Anno accademico 2008-2009 Information Retrieval: Text Categorization Una definizione formale Sia D il dominio dei documenti Sia C = {c 1,,c C } un insieme di categorie predefinite

Dettagli

GRADUATORIA DEL CORSO NR. 060548 DI II LIVELLO "OPERATORE DEL DISAGIO PSICHICO ADOLESCENZIALE E GIOVANILE"

GRADUATORIA DEL CORSO NR. 060548 DI II LIVELLO OPERATORE DEL DISAGIO PSICHICO ADOLESCENZIALE E GIOVANILE , Z, Z ZZ H. 060548 " H Z " ' 1 19.07.81 18/07/2006 110 2 30.06.81.. 08/07/2006 110 3 Z 25.05.81 08/07/2006 110 4 23.08.69 07/03/2006 110 5 H 15.12.80 06/03/2006 110 6 31.07.81. '..H. 01/02/2006 110 7

Dettagli

NORMA DI UN VETTORE. Una NORMA VETTORIALE su R n è una funzione. : R n R +

NORMA DI UN VETTORE. Una NORMA VETTORIALE su R n è una funzione. : R n R + NORMA DI UN VETTORE Una NORMA VETTORIALE su R n è una funzione. : R n R + {0}, che associa ad ogni vettore x R n di componenti x i, i = 1,..., n, uno scalare in modo che valgano le seguenti proprietà:

Dettagli

PERCORSO CAF EDUCATION

PERCORSO CAF EDUCATION PERCORSO CAF EDUCATION FEEDBACK REPORT INTEGRATO RAV-PDM CODICE MECCANOGRAFICO MEIC851001 SCUOLA IC SALVO D ACQUISTO MESSINA AMBITO DI AV DELLA SCUOLA* (X ) COMPLETO - ( ) PARZIALE GENNAIO 2014 1 PARTE

Dettagli

Logistica - Il problema del trasporto

Logistica - Il problema del trasporto Logistica - Il problema del trasporto Federico Di Palma December 17, 2009 Il problema del trasporto sorge ogniqualvolta si debba movimentare della merce da una o più sorgenti verso una o più destinazioni

Dettagli

Rappresentazione dei numeri in un calcolatore

Rappresentazione dei numeri in un calcolatore Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri in un calcolatore Lezione 2 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione dei numeri

Dettagli

Sequenziamento a minimo costo di commutazione in macchine o celle con costo lineare e posizione home (In generale il metodo di ottimizzazione

Sequenziamento a minimo costo di commutazione in macchine o celle con costo lineare e posizione home (In generale il metodo di ottimizzazione Sequenziamento a minimo costo di commutazione in macchine o celle con costo lineare e posizione home (In generale il metodo di ottimizzazione presentato in questo file trova la seq. a costo minimo per

Dettagli

Inferenza statistica. Statistica medica 1

Inferenza statistica. Statistica medica 1 Inferenza statistica L inferenza statistica è un insieme di metodi con cui si cerca di trarre una conclusione sulla popolazione sulla base di alcune informazioni ricavate da un campione estratto da quella

Dettagli

Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011

Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011 Università degli Studi di Padova Facoltà di Psicologia, L4, Psicometria, Modulo B Dr. Marco Vicentini marco.vicentini@unipd.it Anno Accademico 2010 2011 Rev 30/03/2011 Statistica descrittiva e inferenziale

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Introduzione Livelli di significatività Verifica di ipotesi sulla media di una popolazione normale Verifica di ipotesi sulla varianza di una popolazione normale Verifica di ipotesi

Dettagli

Come si analizza un gioco

Come si analizza un gioco Come si analizza un gioco Parte II Giochi strategici a somma zero Alberto Abbondandolo Filippo Giuliani Alessandro Montagnani Università di Pisa Settimana di orientamento in Matematica 2010 Alice e Bruno

Dettagli

Indice. 1 Introduzione ai modelli lineari 2. 2 Dataset 3. 3 Il Modello 8. 4 In pratica 12 4.1 Peso e percorrenza... 12

Indice. 1 Introduzione ai modelli lineari 2. 2 Dataset 3. 3 Il Modello 8. 4 In pratica 12 4.1 Peso e percorrenza... 12 Indice 1 Introduzione ai modelli lineari 2 2 Dataset 3 3 Il Modello 8 4 In pratica 12 41 Peso e percorrenza 12 1 Capitolo 1 Introduzione ai modelli lineari Quando si analizzano dei dati, spesso si vuole

Dettagli

GRANDEZZE ALTERNATE SINUSOIDALI

GRANDEZZE ALTERNATE SINUSOIDALI GRANDEZZE ALTERNATE SINUSOIDALI 1 Nel campo elettrotecnico-elettronico, per indicare una qualsiasi grandezza elettrica si usa molto spesso il termine di segnale. L insieme dei valori istantanei assunti

Dettagli

Codifica binaria dei numeri relativi

Codifica binaria dei numeri relativi Codifica binaria dei numeri relativi Introduzione All interno di un calcolatore, è possibile utilizzare solo 0 e 1 per codificare qualsiasi informazione. Nel caso dei numeri, non solo il modulo ma anche

Dettagli

ANALISI DEI DATI PER IL MARKETING 2014

ANALISI DEI DATI PER IL MARKETING 2014 ANALISI DEI DATI PER IL MARKETING 2014 Marco Riani mriani@unipr.it http://www.riani.it TRATTAMENTI PRELIMINARI DEI DATI Pulizia dei dati (data cleaning) = processo capace di garantire, con una certa soglia

Dettagli

Prestazioni di capitale caso morte

Prestazioni di capitale caso morte Prestazioni di capitale caso morte Giovanni Zambruno e Asmerilda Hitaj Bicocca, 2014 Outline Assicurazione elementare caso morte 1 Assicurazione elementare caso morte 2 3 4 5 6 Assicurazione elementare

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

Università del Piemonte Orientale. Corsi di Specialità. Corso di Statistica Medica. Analisi dei dati quantitativi : Analisi della varianza

Università del Piemonte Orientale. Corsi di Specialità. Corso di Statistica Medica. Analisi dei dati quantitativi : Analisi della varianza Università del Piemonte Orientale Corsi di Specialità Corso di Statistica Medica Analisi dei dati quantitativi : Analisi della varianza Università del Piemonte Orientale Corso di laurea in biotecnologie

Dettagli

TABELLA OBBLIGO-FACOLTÀ DAL 3 OTTOBRE 2013 Strumenti del Programma di razionalizzazione degli acquisti

TABELLA OBBLIGO-FACOLTÀ DAL 3 OTTOBRE 2013 Strumenti del Programma di razionalizzazione degli acquisti TABELLA OBBLIGO-FACOLTÀ DAL 3 OTTOBRE 2013 Strumenti del Programma di razionalizzazione degli acquisti Merceologia Importo Amministrazioni statali Amministrazioni regionali i Enti del servizio sanitario

Dettagli

GRIGLIA DI VALUTAZIONE PER L ANALISI E IL COMMENTO DI UN TESTO LETTERARIO (Tipologia A) STUDENTE... SUFFICIENTE Punti 10.

GRIGLIA DI VALUTAZIONE PER L ANALISI E IL COMMENTO DI UN TESTO LETTERARIO (Tipologia A) STUDENTE... SUFFICIENTE Punti 10. GRIGLIA DI VALUTAZIONE PER L ANALISI E IL COMMENTO DI UN TESTO LETTERARIO (Tipologia A) IN (min. 5- max. 7,5) DISCRETO BUONO E (max 5) Analisi dei livelli e degli elementi del testo incompleta incompleta

Dettagli

Metodi Decisionali Multicriterio

Metodi Decisionali Multicriterio Metodi Decisionali Multicriterio Decisore Si hanno individuano due proprietà di un decisore: -intelligenza possiede capacità logiche per individuare senza errori la scelta che gli assicura il miglior risultato

Dettagli

PERCORSO CAF EDUCATION AULA VIRTUALE 2 INCONTRO TERRITORIALE 1 AULA VIRTUALE 2. Suggerimenti per la stesura del RAV.

PERCORSO CAF EDUCATION AULA VIRTUALE 2 INCONTRO TERRITORIALE 1 AULA VIRTUALE 2. Suggerimenti per la stesura del RAV. Suggerimenti per la stesura del RAV Teresa Ascione OBIETTIVO DELLA PRESENTAZIONE: Ricapitolare con le scuole partecipanti: La struttura del RAV Come si compila sintesi dei fattori abilitanti e dei risultati

Dettagli

i=1 Y i, dove Y i, i = 1,, n sono indipendenti e somiglianti e con la stessa distribuzione di Y.

i=1 Y i, dove Y i, i = 1,, n sono indipendenti e somiglianti e con la stessa distribuzione di Y. Lezione n. 5 5.1 Grafici e distribuzioni Esempio 5.1 Legame tra Weibull ed esponenziale; TLC per v.a. esponenziali Supponiamo che X Weibull(α, β). (i) Si consideri la distribuzione di Y = X β. (ii) Fissato

Dettagli

ANALISI NUMERICA. Elementi finiti bidimensionali. a.a. 2014 2015. Maria Lucia Sampoli. ANALISI NUMERICA p.1/23

ANALISI NUMERICA. Elementi finiti bidimensionali. a.a. 2014 2015. Maria Lucia Sampoli. ANALISI NUMERICA p.1/23 ANALISI NUMERICA Elementi finiti bidimensionali a.a. 2014 2015 Maria Lucia Sampoli ANALISI NUMERICA p.1/23 Elementi Finiti 2D Consideriamo 3 aspetti per la descrizione di elementi finiti bidimensionali:

Dettagli

QUARTO INCONTRO LABORATORIO CORSO INDAGINI CAMPIONARIE. Laboratorio Stefania Porchia

QUARTO INCONTRO LABORATORIO CORSO INDAGINI CAMPIONARIE. Laboratorio Stefania Porchia QUARTO INCONTRO LABORATORIO CORSO INDAGINI CAMPIONARIE Laboratorio Stefania Porchia Incontri e argomenti trattati nel laboratorio 29 marzo 14.00 15.30 l indagine qualitativa come strategia di formulazione

Dettagli

RELAZIONE TRA DUE VARIABILI QUANTITATIVE

RELAZIONE TRA DUE VARIABILI QUANTITATIVE RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quando si considerano due o più caratteri (variabili) si possono esaminare anche il tipo e l'intensità delle relazioni che sussistono tra loro. Nel caso in cui

Dettagli

Verifica e Validazione del Simulatore

Verifica e Validazione del Simulatore Verifica e del Simulatore I 4 passi principali del processo simulativo Formulare ed analizzare il problema Sviluppare il Modello del Sistema Raccolta e/o Stima dati per caratterizzare l uso del Modello

Dettagli

Tecniche di valutazione ambientale di piani e progetti

Tecniche di valutazione ambientale di piani e progetti Università degli Studi Roma Tre Facoltà di Architettura corso Tecniche di valutazione ambientale di piani e progetti a.a. 2008/2009 Prof. Alessandro Giangrande AHP (ANALYTIC HIERARCHY PROCESS) Teoria ed

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Nella verifica delle ipotesi è necessario fissare alcune fasi prima di iniziare ad analizzare i dati. a) Si deve stabilire quale deve essere l'ipotesi nulla (H0) e quale l'ipotesi

Dettagli

6. Modelli statistici: analisi della regressione lineare

6. Modelli statistici: analisi della regressione lineare BIOSTATISTICA 6. Modelli statistici: analisi della regressione lineare Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

La Concorrenza Monopolistica

La Concorrenza Monopolistica La Concorrenza Monopolistica Caratteristiche Molteplicità di imprese Libertà di entrata (entreranno imprese finché vi sarà possibilità di profitti positivi). L entrata di nuove imprese favorisce i consumatori

Dettagli

Differenziazione del Prodotto (DP)

Differenziazione del Prodotto (DP) Differenziazione del Prodotto (DP) DP significa che le imprese vendono beni che il consumatore percepisce come differenti In caso contrario beni omogenei DP è molto diffusa, anche in presenza di beni apparentemente

Dettagli

Formule per il criterio dell offerta economicamente più vantaggiosa alla luce del dpr n. 207/2010: una proposta Ing. Alessandro Coletta

Formule per il criterio dell offerta economicamente più vantaggiosa alla luce del dpr n. 207/2010: una proposta Ing. Alessandro Coletta Formule per il criterio dell offerta economicamente più vantaggiosa alla luce del dpr n. 207/2010: una proposta Ing. Alessandro Coletta 1. Introduzione 2. I principi dell offerta economicamente più vantaggiosa

Dettagli

b i 1,1,1 1,1,1 0,1,2 0,3,4

b i 1,1,1 1,1,1 0,1,2 0,3,4 V o Appello // RICERCA OPERATIVA - Corso A (a.a. 9/) Nome Cognome: Corso di Laurea: L C6 LS LM Matricola: ) Si consideri il problema di flusso di costo minimo in figura. Si verifichi se il flusso ammissibile

Dettagli