Breve introduzione al metodo del Analytic Hierarchy Process (AHP)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Breve introduzione al metodo del Analytic Hierarchy Process (AHP)"

Transcript

1 Breve introduzione al metodo del Analytic Hierarchy Process (AHP) Massimo Paolucci DIST Università di Genova 2 Il metodo SAW costruisce un peso con cui valutare le alternative come dove di solito n w Si n n w w j jxij j

2 3 I valori x ij si possono interpretare come il punteggio di A i in base al criterio j x j (x j, x 2j,..., x mj ) fornisce quindi l importanza delle alternative rispetto al criterio j w rappresenta il vettore dei pesi che misurano l importanza relativa dei criteri L idea di AHP sta nel derivare (o valutare) l importanza relativa delle alternative rispetto ad i singoli criteri, ossia m xij i j 4 La decisione può essere strutturata secondo una gerarchia Goal w w 2 w n Crit Crit 2 Crit n x x 2 xn xmn A A A m

3 5 Scopo del metodo: definire le priorità relative delle alternative rispetto il goal (il nodo al più alto livello della gerarchia) Il metodo procede bottom-up: si comparano le alternative (livello più basso) tra loro in relazione ad ogni singolo criterio del livello immediatamente superiore e si determina la loro priorità relativa si sale di un livello e si comparano tra loro i criteri (subcriteri) rispetto al goal (ad ogni singolo criterio) a livello superiore e si determina il loro peso relativo si aggregano tutte le priorità della gerarchia calcolando la priorità delle alternative rispetto al goal (decisione) 6 Passi formali di AHP Dati k livelli (k livello delle alternative): Elementi al livello k (alternative): x,...,x k Elementi al livello k- (criteri o subcriteri): y,...,y k- Elementi al livello k-2 (criteri, subcriteri o goal): z,...,z k-2 W k [w yj (x i )] matrice dei pesi relativi delle alternative rispetto ai criteri y j al livello superiore W k- [w zh (y j )] matrice dei pesi relativi dei criteri a livello k- rispetto al criterio (goal) z h al livello superiore La priorità di x i rispetto a z h k wz (xi) wz (yj) wy (xi) h h j

4 7 Passi formali di AHP In forma matriciale: [ wz (xi),i,...,k] Pk [wz (y j), j,...,k ] h Nel caso di 3 livelli (Goal, Criteri, Alternative) Wz P2 W dove: W è il vettore dei pesi dei criteri (al primo livello) rispetto l unico elemento del livello superiore, il goal P 2 è la matrice (alternative x criteri) le cui colonne sono i vettori dei pesi relativi delle alternative rispetto ai criteri W z è il vettore dei pesi (importanza) delle alternative rispetto al goal (la preferenza) h 8 Passi formali di AHP In generale: Wz Pn Pn P2 W y Goal w w 2 w k C C C k SC SC 2 SC..... n x x 2 x n x mn A A A m y k Ad esempio su 4 livelli: w W M wk y L yk P2 M M yn L ynk x L xn P3 M M xm L xnm

5 9 Informazioni assolute e relative Informazioni assolute viene fornita la matrice delle decisioni i pesi dei criteri rispetto ai subcriteri ed al goal sono misure oggettive Informazioni relative non si conoscono misure oggettive ma si comparano le alternative in relazione ad i singoli criteri ed i criteri in relazione al goal o ai sottocriteri possono verificarsi inconsistenze 0 In caso di informazioni assolute il CI0 (consistenza totale) Come viene calcolato? D [xij,i,...,m, j,...,n] Matrice delle decisioni xkj x ej xkj xej MC j [ ake] aek xej xkj ake Matrice di comparazione rispetto al criterio j

6 Così costruita la matrice MC j è perfettamente consistente Il più grande autovalore della matrice MC j è pari al numero delle alternative, mentre gli altri autovalori sono nulli λ max m Nel caso di informazioni relative i rapporti x kj /x ej sono stimati (soggettivi) quindi la matrice di comparazione può non risultare completamente consistente In questi casi il massimo autovalore si discosta da m (ed i restanti possono essere non nulli) ~ max m λ 2 L indice di consistenza è calcolato come λ ~ m CI max m quindi CI0 consistenza completa L indice misura quanto il DM si discosta con i propri giudizi da una situazione di consistenza completa Lo scostamento dovrebbe essere causato da limitate violazioni alla transitività dei giudizi e non da giudizi espressi in maniera del tutto casuale

7 3 Per verificare che un CI non corrisponde a giudizi totalmente randomici si confronta il CI con un Random Index (RI) Gli RI sono misure random tabulate e generate per numeri fissati di alternative Per lo stesso numero m di alternative si calcola il Rapporto di Consistenza (CR) CR Empiricamente una soglia di accettabilità per CR è 0. Per valori superiori si suggerisce al DM di verificare i propri giudizi CI RI 4 CR - implementazioni Poichè il calcolo degli autovalori delle matrici di comparazione risulta non risolubile in maniera esatta per m 5 si adottano dei metodi numerici per la stima di del massimo autovalore

UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA. Filippo Romano 1

UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA. Filippo Romano 1 UTILIZZO DEI METODI MULTICRITERI O MULTIOBIETTIVI NELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA Filippo Romano 1 1. Introduzione 2. Analisi Multicriteri o Multiobiettivi 2.1 Formule per l attribuzione del

Dettagli

L offerta economicamente più vantaggiosa. Alessandro Simonetta Consulenza per l Innovazione Tecnologica alessandro.simonetta@gmail.

L offerta economicamente più vantaggiosa. Alessandro Simonetta Consulenza per l Innovazione Tecnologica alessandro.simonetta@gmail. L offerta economicamente più vantaggiosa Alessandro Simonetta Consulenza per l Innovazione Tecnologica alessandro.simonetta@gmail.com 1 Quadro Legislativo D.P.R. n.544/99 D.Lgs n.163/06 e s.m.i. D. Lgs

Dettagli

Approssimazione polinomiale di funzioni e dati

Approssimazione polinomiale di funzioni e dati Approssimazione polinomiale di funzioni e dati Approssimare una funzione f significa trovare una funzione f di forma più semplice che possa essere usata al posto di f. Questa strategia è utilizzata nell

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dottssa MC De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Corso di Calcolo Numerico - Dottssa MC De Bonis

Dettagli

- Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo)

- Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo) Se si ha un problema lineare e' possibile risolverlo in piu' modi (equivalenti ) - Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo) - Trovare soluzione ottima duale (con il simplesso

Dettagli

Il Metodo di analisi multicriterio Analitic Hierarchy Process (AHP) Corso di Analisi delle Decisioni Chiara Mocenni (mocenni@dii.unisi.

Il Metodo di analisi multicriterio Analitic Hierarchy Process (AHP) Corso di Analisi delle Decisioni Chiara Mocenni (mocenni@dii.unisi. Il Metodo di analisi multicriterio Analitic Hierarchy Process (AHP) Corso di Analisi delle Decisioni Chiara Mocenni (mocenni@dii.unisi.it) L analisi multicriterio e il processo decisionale L analisi multicriterio

Dettagli

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Localizzazione

Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Localizzazione Progetto di Reti di Telecomunicazione Modelli in Programmazione Lineare Problemi di Localizzazione Posizionamento di antenne È dato un insieme A di possibili siti in cui installare antenne, a ciascuno

Dettagli

Problema del trasporto

Problema del trasporto p. 1/1 Problema del trasporto Supponiamo di avere m depositi in cui è immagazzinato un prodotto e n negozi che richiedono tale prodotto. Nel deposito i è immagazzinata la quantità a i di prodotto. Nel

Dettagli

4. Confronto tra medie di tre o più campioni indipendenti

4. Confronto tra medie di tre o più campioni indipendenti BIOSTATISTICA 4. Confronto tra medie di tre o più campioni indipendenti Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

CIRCUITI INTELLIGENTI Parte 5: PCA e ICA

CIRCUITI INTELLIGENTI Parte 5: PCA e ICA Ing. Simone SCARDAPANE Circuiti e Algoritmi per l Elaborazione dei Segnali Anno Accademico 2012/2013 Indice della Lezione 1. Analisi delle Componenti Principali 2. Auto-Associatori 3. Analisi delle Componenti

Dettagli

ANALISI DEL CONDIZIONAMENTO DI UN SISTEMA LINEARE

ANALISI DEL CONDIZIONAMENTO DI UN SISTEMA LINEARE ANALISI DEL CONDIZIONAMENTO DI UN SISTEMA LINEARE Algebra lineare numerica 121 Ax = b A, b affetti dall errore di round-off si risolve sempre un sistema perturbato: con (A + A)(x + x) = b + b A = ( a i,j

Dettagli

Programmazione dinamica

Programmazione dinamica Capitolo 6 Programmazione dinamica 6.4 Il problema della distanza di edit tra due stringhe x e y chiede di calcolare il minimo numero di operazioni su singoli caratteri (inserimento, cancellazione e sostituzione)

Dettagli

RICERCHE DI MERCATO. 5.6 Analisi Fattoriale (Componenti Principali)

RICERCHE DI MERCATO. 5.6 Analisi Fattoriale (Componenti Principali) RICERCHE DI MERCATO 5.6 Analisi Fattoriale (Componenti Principali) Prof. L. Neri Dip. di Economia Politica Premessa Come evidenziato in precedenza l approccio di segmentazione per omogeneità prevede la

Dettagli

Analisi dei segnali nel dominio della frequenza

Analisi dei segnali nel dominio della frequenza Laboratorio di Telecomunicazioni - a.a. 2010/2011 Lezione n. 7 Analisi dei segnali nel dominio della frequenza docente L.Verdoliva In questa lezione affrontiamo il problema dell analisi dei segnali tempo

Dettagli

FAQ: Gestione dei Rifiuti e SISTRI. 30 novembre 2010

FAQ: Gestione dei Rifiuti e SISTRI. 30 novembre 2010 FAQ: Gestione dei Rifiuti e SISTRI 30 novembre 2010 Domanda 1: come codificare correttamente un rifiuto (1/3) Come codificare correttamente un rifiuto attribuendo il giusto codice CER? 2 DPCM 02/12/08

Dettagli

GRADUATORIA DEL CORSO NR. 060548 DI II LIVELLO "OPERATORE DEL DISAGIO PSICHICO ADOLESCENZIALE E GIOVANILE"

GRADUATORIA DEL CORSO NR. 060548 DI II LIVELLO OPERATORE DEL DISAGIO PSICHICO ADOLESCENZIALE E GIOVANILE , Z, Z ZZ H. 060548 " H Z " ' 1 19.07.81 18/07/2006 110 2 30.06.81.. 08/07/2006 110 3 Z 25.05.81 08/07/2006 110 4 23.08.69 07/03/2006 110 5 H 15.12.80 06/03/2006 110 6 31.07.81. '..H. 01/02/2006 110 7

Dettagli

LE FIBRE DI UNA APPLICAZIONE LINEARE

LE FIBRE DI UNA APPLICAZIONE LINEARE LE FIBRE DI UNA APPLICAZIONE LINEARE Sia f:a B una funzione tra due insiemi. Se y appartiene all immagine di f si chiama fibra di f sopra y l insieme f -1 y) ossia l insieme di tutte le controimmagini

Dettagli

Autorità per la vigilanza sui contratti pubblici di lavori, servizi e forniture QUADERNO

Autorità per la vigilanza sui contratti pubblici di lavori, servizi e forniture QUADERNO Autorità per la vigilanza sui contratti pubblici di lavori, servizi e forniture QUADERNO IL CRITERIO DI AGGIUDICAZIONE DELL OFFERTA ECONOMICAMENTE PIÙ VANTAGGIOSA Dicembre 2011 IL CRITERIO DI AGGIUDICAZIONE

Dettagli

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU 9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A LU 9.1 Il metodo di Gauss Come si è visto nella sezione 3.3, per la risoluzione di un sistema lineare si può considerare al posto

Dettagli

Condizionamento del problema

Condizionamento del problema Condizionamento del problema x 1 + 2x 2 = 3.499x 1 + 1.001x 2 = 1.5 La soluzione esatta è x = (1, 1) T. Perturbando la matrice dei coefficienti o il termine noto: x 1 + 2x 2 = 3.5x 1 + 1.002x 2 = 1.5 x

Dettagli

2 Formulazione dello shortest path come problema di flusso

2 Formulazione dello shortest path come problema di flusso Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10 Lecture 20: 28 Maggio 2010 Cycle Monotonicity Docente: Vincenzo Auletta Note redatte da: Annibale Panichella Abstract In questa lezione

Dettagli

ANALISI DEI DATI PER IL MARKETING 2014

ANALISI DEI DATI PER IL MARKETING 2014 ANALISI DEI DATI PER IL MARKETING 2014 Marco Riani mriani@unipr.it http://www.riani.it TRATTAMENTI PRELIMINARI DEI DATI Pulizia dei dati (data cleaning) = processo capace di garantire, con una certa soglia

Dettagli

ORIENTAMENTO E COMUNICAZIONE. Analisi del territorio. Definizione di alternative. Analisi e rappresentazione degli effetti. Scelta tra alternative

ORIENTAMENTO E COMUNICAZIONE. Analisi del territorio. Definizione di alternative. Analisi e rappresentazione degli effetti. Scelta tra alternative SOFTWARE ORIENTAMENTO E COMUNICAZIONE Diario del processo Mappa degli attori Trasparenza delle procedure Analisi del territorio Catalogo dati e indicatori Sistema informativo leggero Definizione di Generazione

Dettagli

Controllo Statistico della Qualità. Qualità come primo obiettivo dell azienda produttrice di beni

Controllo Statistico della Qualità. Qualità come primo obiettivo dell azienda produttrice di beni Controllo Statistico della Qualità Qualità come primo obiettivo dell azienda produttrice di beni Qualità come costante aderenza del prodotto alle specifiche tecniche Qualità come controllo e riduzione

Dettagli

STATISTICA DESCRITTIVA BIVARIATA

STATISTICA DESCRITTIVA BIVARIATA STATISTICA DESCRITTIVA BIVARIATA Si parla di Analisi Multivariata quando su ogni unità statistica, appartenente ad una determinata popolazione, si rileva un certo numero s di caratteri X 1, X 2,,X s. Si

Dettagli

ANALISI NUMERICA. Elementi finiti bidimensionali. a.a. 2014 2015. Maria Lucia Sampoli. ANALISI NUMERICA p.1/23

ANALISI NUMERICA. Elementi finiti bidimensionali. a.a. 2014 2015. Maria Lucia Sampoli. ANALISI NUMERICA p.1/23 ANALISI NUMERICA Elementi finiti bidimensionali a.a. 2014 2015 Maria Lucia Sampoli ANALISI NUMERICA p.1/23 Elementi Finiti 2D Consideriamo 3 aspetti per la descrizione di elementi finiti bidimensionali:

Dettagli

Metodi Computazionali

Metodi Computazionali Metodi Computazionali Elisabetta Fersini fersini@disco.unimib.it A.A. 2009/2010 Catene di Markov Applicazioni: Fisica dinamica dei sistemi Web simulazione del comportamento utente Biologia evoluzione delle

Dettagli

Java: Esercitazione 1

Java: Esercitazione 1 18 ottobre 2006 Obiettivi 1 Compilare ed eseguire un programma Java 2 Parametri da riga di comando 3 Array Un semplice esegubile Il primo programma che realizziamo e davvero semplicissimo......non prende

Dettagli

ANALISI DEI DATI PER IL MARKETING 2014

ANALISI DEI DATI PER IL MARKETING 2014 ANALISI DEI DATI PER IL MARKETING 2014 Marco Riani mriani@unipr.it http://www.riani.it LA CLASSIFICAZIONE CAP IX, pp.367-457 Problema generale della scienza (Linneo, ) Analisi discriminante Cluster Analysis

Dettagli

4. Matrici e Minimi Quadrati

4. Matrici e Minimi Quadrati & C. Di Natale: Matrici e sistemi di equazioni di lineari Formulazione matriciale del metodo dei minimi quadrati Regressione polinomiale Regressione non lineare Cross-validazione e overfitting Regressione

Dettagli

Complessità Computazionale

Complessità Computazionale Complessità Computazionale Analisi Algoritmi e pseudocodice Cosa significa analizzare un algoritmo Modello di calcolo Analisi del caso peggiore e del caso medio Esempio di algoritmo in pseudocodice INSERTION

Dettagli

Esercizi su Autovalori e Autovettori

Esercizi su Autovalori e Autovettori Esercizi su Autovalori e Autovettori Esercizio n.1 5 A = 5, 5 5 5 Esercizio n.6 A =, Esercizio n.2 4 2 9 A = 2 1 8, 4 2 9 Esercizio n.7 6 3 3 A = 6 3 6, 3 3 6 Esercizio n.3 A = 4 6 6 2 2, 6 6 2 Esercizio

Dettagli

Tecniche di valutazione ambientale di piani e progetti

Tecniche di valutazione ambientale di piani e progetti Università degli Studi Roma Tre Facoltà di Architettura corso Tecniche di valutazione ambientale di piani e progetti a.a. 2008/2009 Prof. Alessandro Giangrande AHP (ANALYTIC HIERARCHY PROCESS) Teoria ed

Dettagli

30-12-2014. Supplemento straordinario n. 16 alla GAZZETTA UFFICIALE Serie generale - n. 301

30-12-2014. Supplemento straordinario n. 16 alla GAZZETTA UFFICIALE Serie generale - n. 301 964 965 966 967 968 969 { [ ]} = { [ ]} = 970 . 971 972 . 973 [2 x soglia massima x ( Costo del venduto e per la produzione di servizi (2 x soglia massima + 365) Rimanenzefinali) - ( Esistenzeiniziali

Dettagli

Dai dati al modello teorico

Dai dati al modello teorico Dai dati al modello teorico Analisi descrittiva univariata in R 1 Un po di terminologia Popolazione: (insieme dei dispositivi che verranno messi in produzione) finito o infinito sul quale si desidera avere

Dettagli

Processi stocastici. variabile casuale: funzione da uno spazio campione S a valori nello spazio E R X(t) : S E. spazio degli stati del processo

Processi stocastici. variabile casuale: funzione da uno spazio campione S a valori nello spazio E R X(t) : S E. spazio degli stati del processo Processi stocastici Processo stocastico: famiglia di variabili casuali {X(t) t T} definite su uno spazio di probabilità indiciate dal parametro t (tempo) X(t) variabile casuale: funzione da uno spazio

Dettagli

PERCORSO CAF EDUCATION

PERCORSO CAF EDUCATION PERCORSO CAF EDUCATION FEEDBACK REPORT INTEGRATO RAV-PDM CODICE MECCANOGRAFICO MEIC851001 SCUOLA IC SALVO D ACQUISTO MESSINA AMBITO DI AV DELLA SCUOLA* (X ) COMPLETO - ( ) PARZIALE GENNAIO 2014 1 PARTE

Dettagli

SISTEMI LINEARI QUADRATI: METODI ITERATIVI

SISTEMI LINEARI QUADRATI: METODI ITERATIVI SISTEMI LINEARI QUADRATI: METODI ITERATIVI CALCOLO NUMERICO e PROGRAMMAZIONE SISTEMI LINEARI QUADRATI:METODI ITERATIVI p./54 RICHIAMI di ALGEBRA LINEARE DEFINIZIONI A R n n simmetrica se A = A T ; A C

Dettagli

2. Differenze Finite. ( ) si

2. Differenze Finite. ( ) si . Differenze Finite In questa Nota tratteremo della soluzione numerica di equazioni a derivate parziali scalari attraverso il metodo delle differenze finite. In particolare, affronteremo il problema della

Dettagli

Assicurazioni sulla vita: nozioni fondamentali Unità 82

Assicurazioni sulla vita: nozioni fondamentali Unità 82 Prerequisiti: - Nozioni di probabilità e statistica OBIETTIVI DI APPRENDIMENTO Una volta completata l unità, gli allievi devono essere in grado di: - definire i tassi di sopravvivenza e di mortalità -

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Processi. Giuseppe Sanfilippo. 27 febbraio 2006. 1 Catene di Markov a tempo discreto DTMC

Processi. Giuseppe Sanfilippo. 27 febbraio 2006. 1 Catene di Markov a tempo discreto DTMC Processi Giuseppe Sanfilippo 27 febbraio 2006 1 Catene di Markov a tempo discreto DTMC 11 Introduzione ed esempi DTCM (vedi [3]) Sia {X n, n = 0, 1, 2, } un processo stocastico a parametro discreto e a

Dettagli

Generazione di numeri casuali. Daniela Picin

Generazione di numeri casuali. Daniela Picin Daniela Picin Testi di consultazione Gentle I.E. Random Number Generation and Monte Carlo Methods, 2nd ed. Springer Verlag, 2005 Raj Jain - The Art of Computer Systems Performance Analysis: Techniques

Dettagli

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza Il problema di flusso di costo minimo (MCF) Dati : grafo orientato G = ( N, A ) i N, deficit del nodo i : b i (i, j) A u ij, capacità superiore (max quantità di flusso che può transitare) c ij, costo di

Dettagli

Prestazioni di capitale caso morte

Prestazioni di capitale caso morte Prestazioni di capitale caso morte Giovanni Zambruno e Asmerilda Hitaj Bicocca, 2014 Outline Assicurazione elementare caso morte 1 Assicurazione elementare caso morte 2 3 4 5 6 Assicurazione elementare

Dettagli

Metodi diretti per la soluzione di sistemi lineari

Metodi diretti per la soluzione di sistemi lineari Metodi diretti per la soluzione di sistemi lineari N Del Buono 1 Introduzione Consideriamo un sistema di n equazioni in n incognite a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1, a 21 x 1 + a 22 x

Dettagli

Interpolazione ed approssimazione di funzioni

Interpolazione ed approssimazione di funzioni Interpolazione ed approssimazione di funzioni Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 9 novembre 2007 Outline 1 Polinomi Valutazione di un polinomio Algoritmo di Horner

Dettagli

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Scopo: Stimare l onere computazionale per risolvere problemi di ottimizzazione e di altra natura

Dettagli

Economia Applicata ai sistemi produttivi. 06.05.05 Lezione II Maria Luisa Venuta 1

Economia Applicata ai sistemi produttivi. 06.05.05 Lezione II Maria Luisa Venuta 1 Economia Applicata ai sistemi produttivi 06.05.05 Lezione II Maria Luisa Venuta 1 Schema della lezione di oggi Argomento della lezione: il comportamento del consumatore. Gli economisti assumono che il

Dettagli

Capitolo 6: Algoritmi per la rilevazione del QRS ed il riconoscimento di aritmie

Capitolo 6: Algoritmi per la rilevazione del QRS ed il riconoscimento di aritmie Capitolo 6: Algoritmi per la rilevazione del QRS ed il riconoscimento di aritmie 6.1 Algoritmi per la rilevazione del complesso QRS Esistono varie classi di algoritmi di riconoscimento del QRS presenti

Dettagli

= E(X t+k X t+k t ) 2 + 2E [( X t+k X t+k t + E

= E(X t+k X t+k t ) 2 + 2E [( X t+k X t+k t + E 1. Previsione per modelli ARM A Questo capitolo è dedicato alla teoria della previsione lineare per processi stocastici puramente non deterministici, cioè per processi che ammettono una rappresentazione

Dettagli

Analisi Statistica Spaziale

Analisi Statistica Spaziale Analisi Statistica Spaziale Posa D., De Iaco S. posa@economia.unile.it s.deiaco@economia.unile.it UNIVERSITÀ del SALENTO DIP.TO DI SCIENZE ECONOMICHE E MATEMATICO-STATISTICHE FACOLTÀ DI ECONOMIA ANNO ACCADEMICO

Dettagli

MODULO GRAT PROCEDURA TRASFXY TEST CASES

MODULO GRAT PROCEDURA TRASFXY TEST CASES TC GRAT/TrasfXY 1 MODULO GRAT PROCEDURA TRASFXY TEST CASES 1 TC TRASFXY 1 - Graticcio a 17 aste carico nel perimetro aste ripartizione in direz. Y Trave 1 Trave 2 Trave 3 Traverso 1 Traverso 2 Traverso

Dettagli

Parte 3: Gestione dei progetti, Shop scheduling

Parte 3: Gestione dei progetti, Shop scheduling Parte : Gestione dei progetti, Shop scheduling Rappresentazione reticolare di un progetto Insieme di attività {,...,n} p i durata (nota e deterministica dell attività i) relazione di precedenza fra attività:

Dettagli

SPERIMENTAZIONE CON LINDO SU UN PROBLEMA DI SCHEDULING

SPERIMENTAZIONE CON LINDO SU UN PROBLEMA DI SCHEDULING UNIVERSITA DEGLI STUDI DI PADOVA FACOLTA DI SCIENZE STATISTICHE CORSO DI LAUREA IN SCIENZE STATISTICHE ED ECONOMICHE TESI DI LAUREA SPERIMENTAZIONE CON LINDO SU UN PROBLEMA DI SCHEDULING Relatore: Ch.mo

Dettagli

RELAZIONE TRA DUE VARIABILI QUANTITATIVE

RELAZIONE TRA DUE VARIABILI QUANTITATIVE RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quando si considerano due o più caratteri (variabili) si possono esaminare anche il tipo e l'intensità delle relazioni che sussistono tra loro. Nel caso in cui

Dettagli

Proprietá dell immagine digitale

Proprietá dell immagine digitale Capitolo 5 Proprietá dell immagine digitale 5.1 Metrica delle immagini 5.1.1 Distanza Euclidea D E Per una immagine digitale, definita come una matrice bidimensionale, rappresenta una misura quantitativa

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di Analisi Numerica 8 - METODI ITERATIVI PER I SISTEMI LINEARI Lucio Demeio Dipartimento di Scienze Matematiche 1 Norme e distanze 2 3 4 Norme e distanze

Dettagli

IL PIANO DI RISANAMENTO ACUSTICO DEL COMUNE DI GENOVA: FASE OPERATIVA, METODOLOGIA DI ANALISI D.C.C. 140/2010.

IL PIANO DI RISANAMENTO ACUSTICO DEL COMUNE DI GENOVA: FASE OPERATIVA, METODOLOGIA DI ANALISI D.C.C. 140/2010. IL PIANO DI RISANAMENTO ACUSTICO DEL COMUNE DI GENOVA: FASE OPERATIVA, METODOLOGIA DI ANALISI D.C.C. 140/2010. Grazia Mangili 1, Eliana Botti 2, Cecilia Maggi 3 1 Comune di Genova/Direzione Ambiente Igiene

Dettagli

Corso di Analisi Numerica - AN1. Parte 2: metodi diretti per sistemi lineari. Roberto Ferretti

Corso di Analisi Numerica - AN1. Parte 2: metodi diretti per sistemi lineari. Roberto Ferretti Corso di Analisi Numerica - AN1 Parte 2: metodi diretti per sistemi lineari Roberto Ferretti Richiami sulle norme e sui sistemi lineari Il Metodo di Eliminazione di Gauss Il Metodo di Eliminazione con

Dettagli

Alcuni Metodi di Analisi dei Rischi

Alcuni Metodi di Analisi dei Rischi Università degli Studi di Roma La Sapienza Cattedra di Sicurezza degli Impianti Industriali Alcuni Metodi di Analisi dei Rischi 1 di 28 INDICE 1. METODI DI ANALISI DEL RISCHIO 1.1 CLASSIFICAZIONE DEI METODI

Dettagli

Logistica - Il problema del trasporto

Logistica - Il problema del trasporto Logistica - Il problema del trasporto Federico Di Palma December 17, 2009 Il problema del trasporto sorge ogniqualvolta si debba movimentare della merce da una o più sorgenti verso una o più destinazioni

Dettagli

09 - Funzioni reali di due variabili reali

09 - Funzioni reali di due variabili reali Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 09 - Funzioni reali di due variabili reali Anno Accademico 2013/2014

Dettagli

Argomento 13 Sistemi lineari

Argomento 13 Sistemi lineari Sistemi lineari: definizioni Argomento 3 Sistemi lineari I Un equazione nelle n incognite x,,x n della forma c x + + c n x n = b ove c,,c n sono numeri reali (detti coefficienti) eb è un numero reale (detto

Dettagli

Modalità di attribuzione del punteggio relativo all offerta economica

Modalità di attribuzione del punteggio relativo all offerta economica Informationssystem für Öffenliche Verträge Modalità di attribuzione del punteggio relativo all offerta economica Per una gara ad offerta economicamente più vantaggiosa esistono vari algoritmi che consentono

Dettagli

LA VALIDAZIONE DEI METODI ANALITICI

LA VALIDAZIONE DEI METODI ANALITICI Ancona 7 ottobre 003 Validazione dei metodi ed incertezza di misura nei laboratori di prova: le linee guida della Agenzie Ambientali. LA VALIDAZIONE DEI METODI ANALITICI Graziano Bonacchi ARPAT Agenzia

Dettagli

Commissione indipendente per la Valutazione, la Trasparenza e l Integritàdelle amministrazioni pubbliche Autorità Nazionale Anticorruzione

Commissione indipendente per la Valutazione, la Trasparenza e l Integritàdelle amministrazioni pubbliche Autorità Nazionale Anticorruzione Commissione indipendente per la Valutazione, la Trasparenza e l Integritàdelle amministrazioni pubbliche Autorità Nazionale Anticorruzione Testo revisionato e approvato dalla Commissione il 29/05/2013

Dettagli

Lezioni di Econometria. Gianni Amisano

Lezioni di Econometria. Gianni Amisano Lezioni di Econometria Gianni Amisano Febbraio 1999 2 Premessa Queste note, che costituiscono il materiale di riferimento per gli studenti del corso di econometria attivato presso la Facoltà di Economia

Dettagli

CAPITOLO 6 La programmazione operativa (operations scheduling)

CAPITOLO 6 La programmazione operativa (operations scheduling) CAPITOLO 6 La programmazione operativa (operations scheduling) Contenuti Le funzioni della PO Gli obiettivi della PO Il job loading Il metodo dell assegnazione Il job sequencing Regole e tecniche di priorità

Dettagli

Sono definite in sottoinsiemi di R n (n N), a valori in R Ci si limiterà al caso di R 2 o di R 3

Sono definite in sottoinsiemi di R n (n N), a valori in R Ci si limiterà al caso di R 2 o di R 3 1 FUNZIONI DI PIÙ VARIABILI 1 1 Funzioni di più variabili Sono definite in sottoinsiemi di R n (n N), a valori in R Ci si limiterà al caso di R 2 o di R 3 Definizione 1.1 Dati D R 2 e f : D R, l insieme

Dettagli

decidiamo, sulla base di un campione, se l ipotesi formulata è plausibile oppure no.

decidiamo, sulla base di un campione, se l ipotesi formulata è plausibile oppure no. LA VERIFICA D IPOTESI Alla base dell inferenza statistica vi è l assunzione che i fenomeni collettivi possano essere descritti efficacemente mediante delle distribuzioni di probabilità. Abbiamo già considerato

Dettagli

Appunti sulla regressione lineare semplice e multipla

Appunti sulla regressione lineare semplice e multipla Appunti sulla regressione lineare semplice e multipla Germano Rossi 9 aprile 004 vers. 0.3. Indice Indice 1 1 Appunti sulla regressione lineare semplice e multipla 1.1 Introduzione.......................................

Dettagli

Livello di Benessere Organizzativo, Grado di condivisione del Sistema di Valutazione e Valutazione del superiore gerarchico

Livello di Benessere Organizzativo, Grado di condivisione del Sistema di Valutazione e Valutazione del superiore gerarchico AZIENDA SANITARIA LOCALE - BRINDISI Via Napoli n. 8-72100 Brindisi - Casale - C.F. P. IVA - 01647800745 Web:http://www.sanita.puglia.it Livello di Benessere Organizzativo, Grado di condivisione del Sistema

Dettagli

Politecnico di Milano Facoltà di Ingegneria dell Informazione AGENTI AUTONOMI E SISTEMI MULTIAGENTE Appello COGNOME E NOME

Politecnico di Milano Facoltà di Ingegneria dell Informazione AGENTI AUTONOMI E SISTEMI MULTIAGENTE Appello COGNOME E NOME Politecnico di Milano Facoltà di Ingegneria dell Informazione AGENTI AUTONOMI E SISTEMI MULTIAGENTE Appello COGNOME E NOME 5 luglio 2006 RIGA COLONNA MATRICOLA Il presente plico pinzato, composto di quattro

Dettagli

TECNOLOGIE APPROPRIATE NELLA COOPERAZIONE INTERNAZIONALE ALLO SVILUPPO. Brescia, 18 dicembre 2009

TECNOLOGIE APPROPRIATE NELLA COOPERAZIONE INTERNAZIONALE ALLO SVILUPPO. Brescia, 18 dicembre 2009 TECNOLOGIE APPROPRIATE NELLA COOPERAZIONE INTERNAZIONALE ALLO SVILUPPO Brescia, 18 dicembre 2009 Un progetto di gestione dei rifiuti per il campo profughi Saharawi in Algeria Alessandra Bonoli Facoltà

Dettagli

Interpolazione di immagini

Interpolazione di immagini Interpolazione di immagini Data un immagine in formato png (o jpeg o altro) di m n pixel, la si vuole portare ad una dimensione maggiore (ad esempio 2m 2n pixel). c Paola Gervasio - Calcolo Scientifico

Dettagli

L OFFERTA ECONOMICAMENTE PIU VANTAGGIOSA Valutazione con il Confronto a coppie delle offerte e l uso della tabella triangolare

L OFFERTA ECONOMICAMENTE PIU VANTAGGIOSA Valutazione con il Confronto a coppie delle offerte e l uso della tabella triangolare L PIU VANTAGGIOSA Valutazione con il Confronto a coppie delle offerte e l uso della tabella triangolare L Aquila, 10/08/2009 (Dott.Ing. Ernesto PERINETTI) (Geom. Giuseppe CANTELMI) A molti sarà capitato

Dettagli

Algebre di Lie semisemplici, sistemi di radici e loro classificazione

Algebre di Lie semisemplici, sistemi di radici e loro classificazione UNIVERSITÀ DEGLI STUDI DI CAGLIARI FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA MAGISTRALE IN MATEMATICA Algebre di Lie semisemplici, sistemi di radici e loro classificazione Relatore

Dettagli

CAPITOLO 1 INTRODUZIONE ALLE RETI COMPLESSE

CAPITOLO 1 INTRODUZIONE ALLE RETI COMPLESSE CAPITOLO 1 INTRODUZIONE ALLE RETI COMPLESSE Negli ultimi anni si è compreso che sistemi anche molto diversi tra loro possono essere efficacemente descritti in termini di cosiddetti "networks" o reti complesse.

Dettagli

Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici

Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici C. Vergara 3. Metodo della fattorizzazione LU per la risoluzione di un sistema lineare Errori di arrotondamento. Prima di affrontare la

Dettagli

METODO DEL POTENZIALE AI NODI

METODO DEL POTENZIALE AI NODI NENERA NFORMATCA E DELL'AUTOMAZONE D.M. 70/0) l metodo del potenziale ai nodi consente di risolvere una rete avente l lati risolvendounsistema di dimensioni minori di l. Consideriamo un circuito avente

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

Modelli stocastici a valori discreti

Modelli stocastici a valori discreti Modelli stocastici a valori discreti Note del corso di CP per la L.M. in Informatica A.Calzolari 1 Indice 1 Catene di Markov a tempo discreto 4 1.1 Richiami sull indipendenza stocastica per eventi e variabili

Dettagli

Introduzione alle Basi di Dati

Introduzione alle Basi di Dati 1 Introduzione alle Basi di Dati Massimo Paolucci (paolucci@dist.unige.it) DIST Università di Genova Sistema Azienda 2 Sistema organizzativo è costituito da una serie di risorse e di regole necessarie

Dettagli

Esercitazione 4. Richiami di Teoria

Esercitazione 4. Richiami di Teoria Esercitazione 4 Richiami di Teoria B-spline Le curve costituite da un unico polinomio sono spesso poco adeguate per descrivere forme geometriche complesse. I principali inconvenienti sono i seguenti: ˆ

Dettagli

Sistemi Informativi Territoriali. Map Algebra

Sistemi Informativi Territoriali. Map Algebra Paolo Mogorovich Sistemi Informativi Territoriali Appunti dalle lezioni Map Algebra Cod.735 - Vers.E57 1 Definizione di Map Algebra 2 Operatori locali 3 Operatori zonali 4 Operatori focali 5 Operatori

Dettagli

QUESTIONARIO 1: PROCESSO DI AUTOVALUTAZIONE

QUESTIONARIO 1: PROCESSO DI AUTOVALUTAZIONE QUESTIONARIO 1: PROCESSO DI AUTOVALUTAZIONE Step 1 - Decidere come organizzare e pianificare l autovalutazione (AV) 1.1. Assicurare l impegno e il governo del management per avviare il processo. 1.2. Assicurare

Dettagli

Capitolo 5: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano

Capitolo 5: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano Capitolo 5: Ottimizzazione Discreta E. Amaldi DEI, Politecnico di Milano 5.1 Modelli di PLI, formulazioni equivalenti ed ideali Il modello matematico di un problema di Ottimizzazione Discreta è molto spesso

Dettagli

Risultati dell indagine sul benessere dei dipendenti 2014

Risultati dell indagine sul benessere dei dipendenti 2014 Risultati dell indagine sul benessere dei dipendenti 2014 (art. 14 comma 5 - d.lgs 150/2009) sintesi dati Generali, per Area e tipologia di dipendente Le Amministrazioni pubbliche, nella prospettiva di

Dettagli

Formule per il criterio dell offerta economicamente più vantaggiosa alla luce del dpr n. 207/2010: una proposta Ing. Alessandro Coletta

Formule per il criterio dell offerta economicamente più vantaggiosa alla luce del dpr n. 207/2010: una proposta Ing. Alessandro Coletta Formule per il criterio dell offerta economicamente più vantaggiosa alla luce del dpr n. 207/2010: una proposta Ing. Alessandro Coletta 1. Introduzione 2. I principi dell offerta economicamente più vantaggiosa

Dettagli

3 Applicazioni lineari e matrici

3 Applicazioni lineari e matrici 3 Applicazioni lineari e matrici 3.1 Applicazioni lineari Definizione 3.1 Siano V e W dei K spazi vettoriali. Una funzione f : V W è detta applicazione lineare se: i u, v V, si ha f(u + v = f(u + f(v;

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani Ricerca Operativa Esercizi sul metodo del simplesso Luigi De Giovanni, Laura Brentegani 1 1) Risolvere il seguente problema di programmazione lineare. ma + + 3 s.t. 2 + + 2 + 2 + 3 5 2 + 2 + 6,, 0 Soluzione.

Dettagli

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0 LEZIONE 23 231 Diagonalizzazione di matrici Abbiamo visto nella precedente lezione che, in generale, non è immediato che, data una matrice A k n,n con k = R, C, esista sempre una base costituita da suoi

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

Federico Lastaria. Analisi e Geometria 2. Integrali multipli. Cambi di variabili. 1/21

Federico Lastaria. Analisi e Geometria 2. Integrali multipli. Cambi di variabili. 1/21 Contenuto Integrali doppi. Teorema di Fubini Cambio di variabili: coordinate polari. Cambio di variabili: caso generale. Coordinate sferiche. Federico Lastaria. Analisi e Geometria 2. Integrali multipli.

Dettagli

Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b :

Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b : Forme bilineari e prodotti scalari Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione b : { V V K ( v, w) b( v, w), si dice forma bilineare su V se per ogni u, v, w V e per ogni k K:

Dettagli

APPLICAZIONI DELLA RICERCA OPERATIVA

APPLICAZIONI DELLA RICERCA OPERATIVA Università degli Studi della Calabria Laurea in Informatica A.A. 2004/2005 Appunti di supporto didattico al corso di APPLICAZIONI DELLA RICERCA OPERATIVA Indice 1 Introduzione alla teoria dello Scheduling

Dettagli

1. 4 ) 1 1 57 ) *) +). C E 1 B H =JEL + 6 4 " 9* 61,2 516 9* +0 + 5) 1 + 6 + 44 6 +0 + 5) 1 61,2 516 9* + J? HHA JA = F=??DAJJ HEIAHL=J =E? IK =J HE 1 5481 1 + /)61 ) + 6 + 44 6 +)4)6641561+0, + 6 + 44

Dettagli