La retta è il luogo geometrico dei punti che soddisfano la seguente relazione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "La retta è il luogo geometrico dei punti che soddisfano la seguente relazione"

Transcript

1 RETTE Definizine intuitiva La retta linea retta è un dei tre enti gemetrici fndamentali della gemetria euclidea. Viene definita da Euclide nei sui Elementi cme un cncett primitiv. Un fil di ctne di spag ben tes tra due punti è un mdell materiale che ci può aiutare a capire csa sia la retta, un ente gemetric immateriale senza spessre e cn una sla dimensine. La retta è inltre illimitata in entrambe le direzini, ciè è infinita. Viene generalmente cntrassegnata cn una lettera minuscla dell'alfabet latin. Definizine La retta è il lug gemetric dei punti che sddisfan la seguente relazine ax + by + c = 0 (frma implicita della retta) Assi cartesiani Gli assi che frman il pian cartesian sn due rette particlari le cui euazini sn: asse x y = 0 asse y x = 0 Rette parallele agli assi In generale però si hann le seguenti euazini per rette parallele all asse x y dve k rappresenta una cstante. rette parallele asse x y = k rette parallele asse y x = k Rette parallele asse y Rette parallele asse x 1

2 Terema Per due punti passa una e una sla retta. Bisettrici Tra tutte le rette particlari che si pssn definire ci sn le bisettrici, rette passanti per l rigine che dividn i uadranti in due zne euivalenti: bisettrice I III uadrante y = x bisettrice II IV uadrante y = x Retta passante per l rigine Pi vi sn le rette che passan per l rigine y = mx dve m è una cstante il cui significat si vedrà tra un attim. Euazine generica di una retta In generale una retta che nn sia parallela all asse y si scrive: y = mx + uesta viene chiamata frma esplicita di una retta, dve: m si chiama cefficiente anglare della retta pendenza e mi indica uant è inclinata la retta yb ya stessa e si calcla cn m = ; x x si chiama intercetta e indica la crdinata y del punt di intersezine tra la retta e l asse y. B A Riassunt In generale allra tutte le rette le descriv in uesta maniera: y = mx + rette nn parallele asse y x = k rette parallele asse y 2

3 Euazine di una retta passante per due punti Dati due punti A(x A ;y A ) e B(x B ;y B ) la retta che passa per uesti punti si calcla nel seguente md: y ya x xa = y y x x B A B A Rette parallele Date due rette di euazine: y = mx + = + ' ' y mx Esse sn parallele se viene sddisfatta la seguente eguaglianza ' m = m Quand due rette sn parallele si usa il simbl Rette perpendiclari Date due rette di euazine: y = mx + = + ' ' y mx Esse sn perpendiclari se viene sddisfatta la seguente eguaglianza m = m ' 1 Quand due rette sn perpendiclari si usa il simbl 3

4 Distanza punt-retta Data una retta di euazine ax + by + c = 0 e un punt estern alla retta di crdinate P(x ;y ), la distanza tra il punt e la retta si calcla: d = ax + by + c a + b 2 2 Esercizi guidat Dati tre punti A(-; 3), B(3; -5), P(2; 7) trvare 1. Retta r passante per A e B 2. Retta parallela a r e passante per P 3. Retta perpendiclare a r e passante per P. Distanza di P da r y ya x xa 1. Per trvare la retta per A e B dev utilizzare la seguente frmula = y y x x E facci i calcli y 3 x+ = x + y 3= y = x + 3 y = x y = x+ Da cui y 3 x+ = B A B A 7 y = x euazine della retta r per A e B 3

5 2. Per trvare la retta parallela a r bisgna trvare il cefficiente anglare di r che cnsciam Dunue la retta parallela sarà del tip: y = x+ m =. Perché hann l stess cefficiente anglare. Ora cme prima dev ricavare, ma uesta vlta sn bbligat ad utilizzare cme punt P. E facci i cnti 1 7 = = = 7 = 7= 2+ La retta parallela ha euazine 7 y = x+ 3. Facci un prcediment mlt simile per trvare la retta perpendiclare. Dunue la retta parallela sarà del tip: y = x+ Perché hann il cefficiente anglare è men il reciprc, perciò cambi il segn e l ribalt. Ora cme prima dev ricavare, ma uesta vlta sn bbligat ad utilizzare cme punt P. 5 7= 2+

6 E facci i cnti 1 7 = + 7 = + 7 = 2 = 17 = La retta parallela ha euazine 17 y = x+. dev trvare la distanza da r a P. Per fare uest dev trasfrmare la retta dalla sua frma esplicita a uella implicita: 7 y = x 3 Ciè dev prtare tutt dalla stessa parte: 7 y = x 3 7 x+ y+ = 0 3 x+ y+ 21 = 0 Da cui si ricava la frma implicita cme x+ y+ 21 = 0 Di uesta frma dev sapere i parametri a, b e c che sn in uest cas a = b = c = 21

7 Ora applic la frmula per la distanza punt-retta d = ax + by + c a + b 2 2 che ci numeri è d = = = = = =

Prof. Silvio Reato Valcavasia Ricerche. Il piano cartesiano

Prof. Silvio Reato Valcavasia Ricerche. Il piano cartesiano Il piano cartesiano Per la rappresentazione di grafici su di un piano si utilizza un sistema di riferimento cartesiano. Su questo piano si rappresentano due rette orientate (con delle frecce all estremità

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MDELLI SCHEDA DI LAVR 1 Luci sul palc La ptenza elettrica P assrbita da ciascuna lampada utilizzata per illuminare un palcscenic segue la seguente legge: Pr () V R = R Rr r dve V indica la tensine

Dettagli

Per risolvere le equazioni alle differenze si può utilizzare il metodo della Z-trasformata.

Per risolvere le equazioni alle differenze si può utilizzare il metodo della Z-trasformata. 8.. STRUMENTI MATEMATICI 8. Equazini alle differenze. Sn legami statici che legan i valri attuali (all istante k) e passati (negli istanti k, k, ecc.) dell ingress e k e dell uscita u k : u k = f(e 0,

Dettagli

CURRICOLO DI MATEMATICA della scuola primaria

CURRICOLO DI MATEMATICA della scuola primaria ISTITUTO COMPRENSIVO CASALPUSTERLENGO (Ldi) CURRICOLO DI MATEMATICA della scula primaria CURRICOLO DI MATEMATICA al termine della classe prima della scula primaria...2 CURRICOLO DI MATEMATICA al termine

Dettagli

LICEO MAZZINI - Peof.ssa BORZACCA Cristina LA RETTA

LICEO MAZZINI - Peof.ssa BORZACCA Cristina LA RETTA LA RETTA Che cos è una FUNZIONE Dati 2 insiemi A e B non vuoti si definisce Funzione una legge o relazione che a ogni elemento x di A associa uno e un solo elemento y di B x è detta variabile indipendente

Dettagli

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MDELLI SCHEDA DI LAVR 1 La siepe Sul retr di una villetta deve essere realizzat un piccl giardin rettanglare di m riparat da una siepe psta lung il brd Dat che un lat del giardin è ccupat dalla

Dettagli

PROGRAMMAZIONE D AREA DI MATEMATICA_. SECONDO BIENNIO e QUINTO ANNO (Liceo Scientifico/Scienze Applicate) ANNO SCOLASTICO 2015-2016 DOCENTI:

PROGRAMMAZIONE D AREA DI MATEMATICA_. SECONDO BIENNIO e QUINTO ANNO (Liceo Scientifico/Scienze Applicate) ANNO SCOLASTICO 2015-2016 DOCENTI: PROGRAMMAZIONE D AREA DI MATEMATICA_ SECONDO BIENNIO e QUINTO ANNO (Lice Scientific/Scienze Applicate) ANNO SCOLASTICO 2015-2016 DOCENTI: BRAMBILLA RITA CAMPOLONGO FRANCESO COLOMBO GIANMARIO GARDI DANIELA

Dettagli

MATEMATICA - CLASSE I. Obiettivi minimi di apprendimento matematica I. Competenze

MATEMATICA - CLASSE I. Obiettivi minimi di apprendimento matematica I. Competenze - CLASSE I Cmpetenze MATEMATICA Nucle tematic: il numer Utilizzare le tecniche e le prcedure del calcl aritmetic in N, rappresentandle anche in frma grafica. Rislvere i prblemi facend us delle perazini

Dettagli

Angoli formati da due rette parallele tagliate da una trasversale (alterni interni ed esterni, corrispondenti, coniugati).

Angoli formati da due rette parallele tagliate da una trasversale (alterni interni ed esterni, corrispondenti, coniugati). ppunti di gemetria.s. 15-16 1 Prf. Luigi ai PPUNTI ngli frmati da due rette parallele tagliate da una trasversale (alterni interni ed esterni, crrispndenti, cniugati). In un triangl l angl estern è cngruente

Dettagli

I TRASDUTTORI. Trasduttori Primari. Trasduttori Secondari

I TRASDUTTORI. Trasduttori Primari. Trasduttori Secondari I TRASDUTTORI Un trasduttre ( sensre) è un dispsitiv in grad di rilevare una grandezza fisica di tip qualsiasi (termic, lumins, magnetic, meccanic, chimic, eccetera) e di trasfrmarla in una grandezza di

Dettagli

Analisi Matematica II (Fisica e Astronomia) Esercizi di ricapitolazione n. 1

Analisi Matematica II (Fisica e Astronomia) Esercizi di ricapitolazione n. 1 Analisi Matematica II (Fisica e Astronomia) Esercizi di ricapitolazione n. Università di Padova - Lauree in Fisica ed Astronomia - A.A. 8/9 venerdì 8 maggio 9 Questi esercizi sono proposti come preparazione

Dettagli

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO LE TRASFORMAZIONI GEOMETRICHE NEL PIANO Una trasformazione geometrica è una funzione che fa corrispondere a ogni punto del piano un altro punto del piano stesso Si può pensare come MOVIMENTO di punti e

Dettagli

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E). MATEMATICA 2001 66. Quale fra le seguenti affermazioni è sbagliata? A) Tutte le funzioni ammettono la funzione inversa B) Una funzione dispari è simmetrica rispetto all origine C) Una funzione pari è simmetrica

Dettagli

TRASDUTTORI (cenni) La classificazione più utile dei trasduttori è quella che li distingue in primari e secondari.

TRASDUTTORI (cenni) La classificazione più utile dei trasduttori è quella che li distingue in primari e secondari. TRASDUTTORI (cenni) definizine Un trasduttre ( sensre) è un dispsitiv in grad di rilevare una grandezza fisica di tip qualsiasi (termic, lumins, magnetic, meccanic, chimic, eccetera) e di trasfrmarla in

Dettagli

La Pioneristica. Nodi di Base

La Pioneristica. Nodi di Base La Pineristica Saper fare i ndi è una delle nzini fndamentali per la vita scut. Nn c'è lavr di pinieristica e nn c'è mment di vita all'apert in cui essi nn vengan richiesti. Un nd fatt bene è un nd che

Dettagli

ISTRUZIONI PER INIZIARE

ISTRUZIONI PER INIZIARE I.C. Scarpa - Scula media Cairli ISTRUZIONI PER INIZIARE Questa è la barra di menu: serve per dare tutte le infrma zini sui file che devi creare, salvare, ecc. Questa icna serve per chiudere a brd pagina

Dettagli

110111 2 = 55 10 CAPITOLO I SISTEMI DI NUMERAZIONE E CODICI

110111 2 = 55 10 CAPITOLO I SISTEMI DI NUMERAZIONE E CODICI CAPITOLO I SISTEMI DI NUMERAZIONE E CODICI 1.1) Sistema di numerazine decimale. E dett sistema di numerazine l insieme di un numer finit di simbli e delle regle che assegnan un e un sl valre numeric ad

Dettagli

1. Il computer: un insieme di elementi

1. Il computer: un insieme di elementi Mdul A Cmputer e sistema perativ l cmputer 1. l cmputer: un insieme di elementi l cmputer è una macchina elettrnica destinata all'elabrazine dei dati secnd una sequenza di istruzini. l cmputer è frmat

Dettagli

Capitolo 13: L offerta dell impresa e il surplus del produttore

Capitolo 13: L offerta dell impresa e il surplus del produttore Capitolo 13: L offerta dell impresa e il surplus del produttore 13.1: Introduzione L analisi dei due capitoli precedenti ha fornito tutti i concetti necessari per affrontare l argomento di questo capitolo:

Dettagli

Relazione sulle Fuel Cells Robin%Dallimore%Mallaby% %Giuseppina%De%Bona% %Andrea%De%Nigris% %Fabio%Fabbris% Aldo %Tommaso%Grimaldi

Relazione sulle Fuel Cells Robin%Dallimore%Mallaby% %Giuseppina%De%Bona% %Andrea%De%Nigris% %Fabio%Fabbris% Aldo %Tommaso%Grimaldi Crs%di%Labratri%di%Energetica,%Ann%accademic%2012/13 Relazine sulle Fuel Cells Rbin%Dallimre%Mallaby% %Giuseppina%De%Bna% %Andrea%De%Nigris% %Fabi%Fabbris% Ald %Tmmas%Grimaldi Intrduzine Scp dell esperiment

Dettagli

Unità Didattica 2. e l atomo di idrogeno

Unità Didattica 2. e l atomo di idrogeno Diapsitiva 1 Unità Didattica La natura duale della luce e l atm di idrgen Questa unità descrive la natura duale (nda-particella) della luce attravers la descrizine e spiegazine di alcuni fenmeni, quali

Dettagli

DOCUMENTO di PROGRAMMAZIONE del DIPARTIMENTO di MATEMATICA

DOCUMENTO di PROGRAMMAZIONE del DIPARTIMENTO di MATEMATICA Istitut Tecnic Settre Tecnlgic "GIULIO CESARE FALCO" CAPUA (CE) SEDE ASSOCIATA: GRAZZANISE (CE) Specializzazini: MECCANICA E MECCATRONICA, ELETTRONICA ED ELETTROTECNICA, INFORMATICA E TELECOMUNICAZIONI,

Dettagli

Fisica II. 13 Esercitazioni

Fisica II. 13 Esercitazioni 3 Esercitazini Esercizi svlti Esercizi 3. Un fasci di luce passa dalla regine A alla regine B di un mezz cn indice di rifrazine n attravers una spessa lastra di materiale il cui indice di rifrazine è n.

Dettagli

PIANO DI LAVORO ANNUALE DELLA DISCIPLINA TECNOLOGIA E TECNICHE DI RAPPRESENTAZIONE GRAFICA Classi 1 ITI A.S. 2014-2015

PIANO DI LAVORO ANNUALE DELLA DISCIPLINA TECNOLOGIA E TECNICHE DI RAPPRESENTAZIONE GRAFICA Classi 1 ITI A.S. 2014-2015 Impssibile visualizzare l'immagine. La memria del cmputer ptrebbe essere insufficiente per aprire l'immagine ppure l'immagine ptrebbe essere danneggiata. Riavviare il cmputer e aprire di nuv il file. Se

Dettagli

Geometria dello spazio: Confezione di pacchetti-regalo. ATTIVITA Individuale e di classe

Geometria dello spazio: Confezione di pacchetti-regalo. ATTIVITA Individuale e di classe Gemetria dell spazi: Cnfezine di pacchetti-regal Autre: Franc Favilli (in cllabrazine cn Carl Rmanelli) Nucle: Spazi e figure; Relazini e funzini ATTIVITA Individuale e di classe Cn l utilizz di mdellini

Dettagli

LE FUNZIONI MATEMATICHE

LE FUNZIONI MATEMATICHE ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante

Dettagli

Nelle ipotesi fatte (popolazione di dimensione infinita), il numero di chiamate offerte assume una distribuzione di Poisson.

Nelle ipotesi fatte (popolazione di dimensione infinita), il numero di chiamate offerte assume una distribuzione di Poisson. Esercizi n 1 Una centralina telefnica per piccl uffici (PBX) sddisfa le richieste di chiamata mediante l impieg di circuiti. Si assuma che le richieste di chiamata arrivin da una pplazine di utenti di

Dettagli

Liceo G.B. Vico Corsico

Liceo G.B. Vico Corsico Liceo G.B. Vico Corsico Classe: 3A Materia: MATEMATICA Insegnante: Nicola Moriello Testo utilizzato: Bergamini Trifone Barozzi: Manuale blu.0 di Matematica Moduli S, L, O, Q, Beta ed. Zanichelli 1) Programma

Dettagli

Appendice 1 Elementi di elettrotecnica

Appendice 1 Elementi di elettrotecnica Appendice Elementi di elettrtecnica ntrduzine Questa appendice ha l scp di richiamare alcuni cncetti fndamentali di elettrtecnica, necessari per un adeguat sstegn al crs di elettrnica. prerequisiti indispensabili

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

a) usando la formula (x-x C ) 2 +(y-y C ) 2 +(z-z C ) 2 =r 2 Esercizi vari - Esercitazioni di Algebra e Geometria - Anno Accademico 2009-2010 1

a) usando la formula (x-x C ) 2 +(y-y C ) 2 +(z-z C ) 2 =r 2 Esercizi vari - Esercitazioni di Algebra e Geometria - Anno Accademico 2009-2010 1 Esercizi di riepilg Esercizi In E 3 (R) si determinin: [(a)] una rappresentazine cartesiana della sfera di centr C=(,,) e raggi R=5; [(b)] una rappresentazine cartesiana della retta passante per C e rtgnale

Dettagli

Appunti delle lezioni di Modellistica del moto ondoso PRIMIELEMENTI Eugenio Pugliese Carratelli Fabio Dentale

Appunti delle lezioni di Modellistica del moto ondoso PRIMIELEMENTI Eugenio Pugliese Carratelli Fabio Dentale Mdellistica del mt nds PRIMI ELEMENTI Le parti marcate in blu NON sn cmprese nel prgramma del Master e servn per rassicurare gli studenti più precisi -però male nn fann Le parti in crsiv sn da svlgere

Dettagli

APPUNTI DI MATEMATICA GEOMETRIA ANALITICA: LA RETTA ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA GEOMETRIA ANALITICA: LA RETTA ALESSANDRO BOCCONI APPUNTI DI MATEMATICA GEOMETRIA ANALITICA: LA RETTA ALESSANDRO BOCCONI Indice 1 La Geometria analitica: la retta 1.1 Introduzione......................................... 1. Il piano cartesiano.....................................

Dettagli

COME AIUTARE TUO FIGLIO A STUDIARE E A FARE I COMPITI A CASA

COME AIUTARE TUO FIGLIO A STUDIARE E A FARE I COMPITI A CASA Istitut Cmprensiv Enric Fermi Scula Secndaria di prim grad G.B. Rubini Rman di Lmbardia Rman di Lmbardia - BG! COME AIUTARE TUO FIGLIO A STUDIARE E A FARE I COMPITI A CASA LE INDICAZIONI DELLA SCUOLA PER

Dettagli

Geometria analitica di base (prima parte)

Geometria analitica di base (prima parte) SAPERE Al termine di questo capitolo, avrai appreso: come fissare un sistema di riferimento cartesiano ortogonale il significato di equazione di una retta il significato di coefficiente angolare di una

Dettagli

ISTITUTO DI ISTRUZIONE SUPERIORE P.ALDI - GROSSETO SEZIONE LICEO SCIENTIFICO

ISTITUTO DI ISTRUZIONE SUPERIORE P.ALDI - GROSSETO SEZIONE LICEO SCIENTIFICO ISTITUTO DI ISTRUZIONE SUPERIORE P.ALDI - GROSSETO SEZIONE LICEO SCIENTIFICO PROGRAMMAZIONE CLASSI PRIME ANNO SCOLASTICO 2013/2014 MATERIA: MATEMATICA ED INFORMATICA Test: MATEMATICA.BLU vl.1 Autri :BERGAMINI-TRIFONE-BAROZZI

Dettagli

Obiettivo. Dal problema al risultato Algoritmo. Imparare a PROGRAMMARE

Obiettivo. Dal problema al risultato Algoritmo. Imparare a PROGRAMMARE Obiettiv Imparare a PROGRAMMARE LA PROGRAMMAZIONE: Algritmi e prgrammi Imparare a cstruire PROGRAMMI che permettan, tramite l us di cmputer, di rislvere prblemi di divers tip. Prblema Dal prblema al risultat

Dettagli

PROGRAMMAZIONE DISCIPLINARE PER COMPETENZE PRIMO BIENNIO LICEO SCIENTIFICO OPZIONE SCIENZE APPLICATE

PROGRAMMAZIONE DISCIPLINARE PER COMPETENZE PRIMO BIENNIO LICEO SCIENTIFICO OPZIONE SCIENZE APPLICATE PROGRAMMAZIONE DISCIPLINARE PER COMPETENZE PRIMO BIENNIO LICEO SCIENTIFICO OPZIONE SCIENZE APPLICATE 1. PRIMO BIENNIO ANNO SCOLASTICO 2011-2012 DISCIPLINA MATEMATICA DOCENTI ZANINI- FATTORELLI Cmpetenze

Dettagli

4 C. Prati. Il teorema del campionamento

4 C. Prati. Il teorema del campionamento 4 C. Prati Il terema del campinament Esercizi di verifica degli argmenti svlti nel quart capitl del test Segnali e Sistemi per le Telecmunicazini McGraw-Hill. ESERCIZIO Sia dat il seguente segnale temp

Dettagli

IL SECONDO PRINCIPIO DELLA TERMODINAMICA

IL SECONDO PRINCIPIO DELLA TERMODINAMICA IL SECONDO PRINCIPIO DELLA TERMODINAMICA Osservazini preliminari il prim principi della termdinamica e (è) il principi di cnservazine dell energia: Il prim principi della termdinamica afferma che quella

Dettagli

Appendice A. Appunti di Matematica Discreta

Appendice A. Appunti di Matematica Discreta Appendice A Appunti di Matematica Discreta Regla della smma Suppniam di avere due insiemi A e B a intersezine nulla (per esempi, studenti e studentesse di una stessa classe) e di dver scegliere un unic

Dettagli

Via F. Lana, 1-25020 FLERO (BS) Tel. 0303582748 Fax 03072131184 www.themissoluzioni.it info@themissoluzioni.it. gruppo axelera.

Via F. Lana, 1-25020 FLERO (BS) Tel. 0303582748 Fax 03072131184 www.themissoluzioni.it info@themissoluzioni.it. gruppo axelera. Via F. Lana, 1-25020 FLERO (BS) Tel. 0303582748 Fax 03072131184 www.sluzini.it inf@sluzini.it grupp axelera sluzini Obiettiv Scp del presente dcument è descrivere il prdtt Nprinting, il più evlut add-in

Dettagli

FUNZIONE. Si scrive: A B f: A B x y=f(x) (si legge: f funzione da A in B) x f y= f(x)

FUNZIONE. Si scrive: A B f: A B x y=f(x) (si legge: f funzione da A in B) x f y= f(x) 1 FUNZIONE Dati gli insiemi A e B, si definisce funzione da A in B una relazione o legge o corrispondenza che ad ogni elemento di A associa uno ed un solo elemento di B. Si scrive: A B f: A B f() (si legge:

Dettagli

11. Resistenza all'urto

11. Resistenza all'urto 11. Resistenza all'urt 11.1. Generalità Sllecitazini dinamiche ed urt si verifican facilmente in mlte applicazini ingegneristiche dei materiali strutturali. Secnd una definizine classica si parla di urt

Dettagli

SenTaClAus Sentiment Tagging & Clustering Analysis on web & social contents

SenTaClAus Sentiment Tagging & Clustering Analysis on web & social contents Via Marche 10 56123 Pisa Phne +39.050.552574 Fax +39.1782239361 inf@netseven.it - www.netseven.it P.IVA 01577590506 REGIONE TOSCANA POR CReO FESR 2007 2013 LINEA D INTERVENTO 1.5.a - 1.6 BANDO UNICO R&S

Dettagli

PROGRAMMA di MATEMATICA APPLICATA. Prof. ONORATI Mariano

PROGRAMMA di MATEMATICA APPLICATA. Prof. ONORATI Mariano ESAMI DI STATO SESSIONE ORDINARIA 2014/2015 CLASSE V SEZIONE E PROGRAMMA di MATEMATICA APPLICATA Prof. ONORATI Mariano Libro/i di testo in adozione: Matematica.rosso vol.5 Autori: Bergamini Trifone - Barozzi

Dettagli

Guida a PGVex. Breve guida all uso dell Editor di Grafica Vettoriale PGVex. Alessio Arleo V. 1.0

Guida a PGVex. Breve guida all uso dell Editor di Grafica Vettoriale PGVex. Alessio Arleo V. 1.0 Guida a PGVex Breve guida all us dell Editr di Grafica Vettriale PGVex Alessi Arle V. 1.0 1 Parte I: Grafica vettriale: un intrduzine 1.1 Vettriale Vs. Raster Sebbene per mlti alla parla grafica il pensier

Dettagli

MODELLO DI PROGRAMMAZIONE DISCIPLINARE PER COMPETENZE ANNO SCOLASTICO 2015-16

MODELLO DI PROGRAMMAZIONE DISCIPLINARE PER COMPETENZE ANNO SCOLASTICO 2015-16 + LICEO STATALE G. CARDUCCI Scienze Umane, Linguistic, Scienze Umane pzine Ecnmic-sciale Via S.Zen 3 56127 Pisa TEL 050 555122 Fax 050 553014 C. F. 80006190500 - Cd. Mecc. PIPM030002 www.carducci.scule.pisa.it

Dettagli

Gruppi di Continuità (UPS)

Gruppi di Continuità (UPS) Gruppi di Cntinuità (UPS) Generalità Il grupp di cntinuità frnisce una alimentazine di riserva che supplisce alla mancanza dell alimentazine nrmale, senza alcuna interruzine (n break). Si dicn gruppi rtanti

Dettagli

Tecniche di stima del costo del capitale azionario

Tecniche di stima del costo del capitale azionario Finanza Aziendale Analisi e valutazini per le decisini aziendali Tecniche di stima del cst del capitale azinari Capitl 16 Indice degli argmenti 1. Cst del capitale: principi generali 2. Metdlgie di stima

Dettagli

- Si usa di più la bicicletta laddove le infrastrutture e la regolamentazione del traffico assicurano elevati livelli di sicurezza al ciclista;

- Si usa di più la bicicletta laddove le infrastrutture e la regolamentazione del traffico assicurano elevati livelli di sicurezza al ciclista; Il Cdice della strada all Art. 1 cmma 1 stabilisce.. A seguit di questa enunciazine di principi l spstament in bicicletta dvrebbe essere privilegiat rispett alle altre mdalità di spstament e invece è stt

Dettagli

DataCubex Business Intelligence. Soluzioni del futuro

DataCubex Business Intelligence. Soluzioni del futuro DataCubex Business Intelligence Sluzini del futur pagina 2 Intrduzine L analisi OLAP (On Line Analytical Prcessing) è un insieme di tecniche sftware utilizzate per analizzare velcemente grandi quantità

Dettagli

ARTICOLI E NORME DEL SETTORE CALZATURIERO

ARTICOLI E NORME DEL SETTORE CALZATURIERO MICROTECH e RUBFLEX MICROTECH è nat nel labratri Svere nel 1996 dall esigenza di creare un prdtt a base PVC che fsse riciclabile, legger, cn bune caratteristiche fisic meccaniche, stampabile su nrmali

Dettagli

INTERVENTI PER LA CORREZIONE ACUSTICA DI TEATRI LIRICI CON L AUSILIO DI PROGRAMMI DI SIMULAZIONE NUMERICA

INTERVENTI PER LA CORREZIONE ACUSTICA DI TEATRI LIRICI CON L AUSILIO DI PROGRAMMI DI SIMULAZIONE NUMERICA Assciazine Italiana di Acustica 36 Cnvegn Nazinale Trin, 10-12 giugn 2009 INTERVENTI PER LA CORREZIONE ACUSTICA DI TEATRI LIRICI CON L AUSILIO DI PROGRAMMI DI SIMULAZIONE NUMERICA Gianpier Evla, Luigi

Dettagli

I COSTI PROF. MATTIA LETTIERI

I COSTI PROF. MATTIA LETTIERI I COSTI ROF. MATTIA LETTIERI Indice 1. LE FUNZIONI DI COSTO --------------------------------------------------------------------------------------------------- 3 2. I COSTI DELL IMRESA NEL BREVE ERIODO

Dettagli

1. CORRENTE CONTINUA

1. CORRENTE CONTINUA . ONT ONTNUA.. arica elettrica e crrente elettrica e e e e P N NP e e arica elementare carica dell elettrne,6 0-9 Massa dell elettrne m 9, 0 - Kg L atm è neutr. Le cariche che pssn essere spstate nei slidi

Dettagli

10 suggerimenti per utilizzare PowerPoint per presentazioni brillanti

10 suggerimenti per utilizzare PowerPoint per presentazioni brillanti 10 suggerimenti per utilizzare PwerPint per presentazini brillanti 1. Prirità dell'biettiv sttlineata da materiale cnvincente Da un cert punt di vista, la facilità di impieg di PwerPint ptrebbe trasfrmarsi

Dettagli

Scommesse e Tabelline

Scommesse e Tabelline Brunett Pichi e Antni Mr Scmmesse e Tabelline Scmmesse e Tabelline Brunett Pichi e Antni Mr Nucle: Dati e previsini (Numeri. Spazi e Figure) Tematica: Intrduzine alla prbabilità. (Riflessini sulla tavla

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

UN METODO ANALITICO SEMPLIFICATO PER LA VERIFICA SEZIONALE A CALDO DI ELEMENTI COSTRUTTIVI IN C.A.

UN METODO ANALITICO SEMPLIFICATO PER LA VERIFICA SEZIONALE A CALDO DI ELEMENTI COSTRUTTIVI IN C.A. UN METODO ANALITICO SEMPLIFICATO PER LA VERIFICA SEZIONALE A CALDO DI ELEMENTI COSTRUTTIVI IN C.A. Brtl Balduzzi Abstraact Per valutare la rispsta a cald di sezini in C.A. nn serve, necessariamente, l

Dettagli

CORSO DI VELA PER PRINCIPIANTI

CORSO DI VELA PER PRINCIPIANTI CORSO DI VELA PER PRINCIPIANTI a cura di Cesare Spada Gli argmenti LA BARCA LE VELE Reglazine delle vele Riduzine della velatura IL VENTO Direzine del vent Orientament Direzine della barca Andatura della

Dettagli

PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA

PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA Istituto Istruzione Superiore A. Venturi Modena Liceo artistico - Istituto Professionale Grafica Via Rainusso, 66-41124 MODENA Sede di riferimento (Via de Servi, 21-41121 MODENA) tel. 059-222156 / 245330

Dettagli

CENTRALE TERMICA A GAS METANO O GPL (riscaldamento, produzione acqua calda, grandi cucine, forni da pane, etc.)

CENTRALE TERMICA A GAS METANO O GPL (riscaldamento, produzione acqua calda, grandi cucine, forni da pane, etc.) CENTRALE TERMICA A GAS METANO O (riscaldament, prduzine acqua calda, grandi cucine, frni da pane, etc.) Sistema di alimentazine: TT Nrme di riferiment: Nrma CEI 64-8 "Impianti elettrici utilizzatri a tensine

Dettagli

PIANO DIDATTICO PERSONALIZZATO SCUOLA SECONDARIA DI 1 GRADO G. MORANDI

PIANO DIDATTICO PERSONALIZZATO SCUOLA SECONDARIA DI 1 GRADO G. MORANDI Minister dell Istruzine, dell Università e della Ricerca ISTITUTO COMPRENSIVO PIAZZA COSTA Piazza Andrea Csta 23-20092 Cinisell Balsam (MI) MIIC8AP009 C.F. 85007630156 e-mail: miic8ap009@istruzine.it PEC:

Dettagli

E.C.M. Educazione Continua in Medicina. Servizi web. Manuale utente

E.C.M. Educazione Continua in Medicina. Servizi web. Manuale utente E.C.M. Educazine Cntinua in Medicina Servizi web Manuale utente Versine 1.0 maggi 2015 E.C.M. Servizi web: invi autmatic Indice 2 eventi e pian frmativ Indice Revisini 3 1. Intrduzine 4 2. 5 2.1 Verifica

Dettagli

APPUNTI DI MATEMATICA GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1)

APPUNTI DI MATEMATICA GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1) GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1) Un ente (geometrico) è un oggetto studiato dalla geometria. Per descrivere gli enti vengono utilizzate delle definizioni. Una definizione è una

Dettagli

ONIRIM 1-2 giocatori Gioco base. Ci sono quattro tipi di carte:

ONIRIM 1-2 giocatori Gioco base. Ci sono quattro tipi di carte: ONIRIM 1-2 gicatri Gic base Ci sn quattr tipi di carte: Le carte Prta Sn gli ggetti della tua ricerca (avere le 8 carte Prta sul tavl è la cndizine di vittria del gic). Ci sn 2 Carte Prta per gni clre

Dettagli

Funzioni. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Funzioni. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Funzioni Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

Chi deve fare la valutazione dei rischi

Chi deve fare la valutazione dei rischi VALUTARE I RISCHI L biettiv della lezine è frnire le cnscenze di base ai Rappresentanti dei lavratri per la sicurezza per metterli in cndizine di partecipare al prcess di valutazine dei rischi. Verrann

Dettagli

Esame di Geometria - 9 CFU (Appello del 28 gennaio 2013 - A)

Esame di Geometria - 9 CFU (Appello del 28 gennaio 2013 - A) Esame di Geometria - 9 CFU (Appello del 28 gennaio 23 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Nello spazio R 3, siano dati il piano e i punti P = (, 2, ), Q = (2,, ). π : x + 2y 3

Dettagli

CLASSE terza SEZIONE E A.S. 2014-15 PROGRAMMA SVOLTO

CLASSE terza SEZIONE E A.S. 2014-15 PROGRAMMA SVOLTO CLASSE terza SEZIONE E A.S. 2014-15 L insieme dei numeri razionali. Equazioni e disequazioni di primo grado Sistemi di equazioni e disequazioni di primo grado.. IL PIANO CARTESIANO Il piano cartesiano.

Dettagli

Trasformazioni geometriche nel piano cartesiano

Trasformazioni geometriche nel piano cartesiano Trasformazioni geometriche nel piano cartesiano Francesco Biccari 18 marzo 2013 Una trasformazione geometrica del piano è una legge (corrispondenza biunivoca) che consente di associare a un determinato

Dettagli

INTRODUZIONE ALLA GEOMETRIA ANALITICA LA RETTA E LA PARABOLA

INTRODUZIONE ALLA GEOMETRIA ANALITICA LA RETTA E LA PARABOLA INTRODUZIONE ALLA GEOMETRIA ANALITICA LA RETTA E LA PARABOLA Una Geometria non può essere più vera di un altra; può essere solamente più comoda. Ora la Geometria Euclidea è e resterà più comoda H. Poincaré

Dettagli

IMPIANTO ELETTRICO DI ILLUMINAZIONE STRADALE

IMPIANTO ELETTRICO DI ILLUMINAZIONE STRADALE Illuminazine stradale Ultim aggirnament: 1 apr. 2009 IMPIANTO ELETTRICO DI ILLUMINAZIONE STRADALE Sistema di alimentazine: TT, TN Nrme di riferiment: Nrma CEI 64-8 "Impianti elettrici utilizzatri a tensine

Dettagli

Osservazione 2 L elemento di arrivo ( output) deve essere unico corrispondenza univoca da A e B. f : A B

Osservazione 2 L elemento di arrivo ( output) deve essere unico corrispondenza univoca da A e B. f : A B FUNZIONI Definizione 1 Dati due insiemi A e B, si chiama funzione da A a B una legge che ad ogni elemento di A associa un (solo) elemento di B. L insieme A si chiama dominio della funzione e l insieme

Dettagli

MODELLO LETTERA DI PRESENTAZIONE EFFICACE

MODELLO LETTERA DI PRESENTAZIONE EFFICACE MODELLO LETTERA DI PRESENTAZIONE EFFICACE Simne Pietr Barbne Istruzini per l us! Mdell Lettera di Presentazine Efficace Istruzini per l us 1 Che girn è ggi? E il girn adatt per persnalizzare il mdell di

Dettagli

La notevole precisione raggiunta dal sistema non dipende solo misura delle varie tipologie di sensori ed aiutare nella futura

La notevole precisione raggiunta dal sistema non dipende solo misura delle varie tipologie di sensori ed aiutare nella futura TechNte T001 pagina 1 Sensri di precisine di spstament nnacntatt Intrduzine La richiesta di sensri per la misura dell spstament nei sui diversi aspetti (psizine, mviment, altezza, spessre, larghezza, diametr)

Dettagli

Introduzione pag. 3. Interventi di adeguamento derivanti da esigenze architettoniche pag. 3

Introduzione pag. 3. Interventi di adeguamento derivanti da esigenze architettoniche pag. 3 1 Indice Intrduzine pag. 3 Interventi di adeguament derivanti da esigenze architettniche pag. 3 Interventi di adeguament derivanti da esigenze strutturali pag. 4 Individuazine degli interventi e particlari

Dettagli

Margine di fase e margine di guadagno

Margine di fase e margine di guadagno Margine di fase e margine di guadagno Prendiamo in considerazione sistemi per i uali la funzione ad anello aperto, L(s), sia stabile e non presenti dunue, poli a parte reale positiva. In tal caso il criterio

Dettagli

Web Marketing Plan. Obiettivi e Strategie

Web Marketing Plan. Obiettivi e Strategie Web Marketing Plan Obiettivi e Strategie L imprtanza degli biettivi Avere biettivi ben precisi in un pian di web marketing è fndamentale! Gli biettivi devn essere: Realistici Attuabili Obiettivi realistici

Dettagli

PIANO DIDATTICO PERSONALIZZATO SCUOLA PRIMARIA

PIANO DIDATTICO PERSONALIZZATO SCUOLA PRIMARIA Scula dell Infanzia Primaria Secndaria 1 Grad Via San Bernard, 10 29017 Firenzula d Arda www.istitutcmprensivfirenzula.gv.it Email: pcic818008@istruzine.it Pec.:pcic818008@pec.istruzine.it PIANO DIDATTICO

Dettagli

SenTaClAus - Sentiment Tagging & Clustering Analysis on web & social contents

SenTaClAus - Sentiment Tagging & Clustering Analysis on web & social contents Via Marche 10 56123 Pisa Phne +39.050.552574 Fax +39.1782239361 inf@netseven.it - www.netseven.it P.IVA 01577590506 REGIONE TOSCANA POR CReO FESR 2007 2013 LINEA D INTERVENTO 1.5.a - 1.6 BANDO UNICO R&S

Dettagli

dott.ssa Cristina Menazza 29/09/2012

dott.ssa Cristina Menazza 29/09/2012 STRATEGIE PER MIGLIORARE L ATTENZIONE Udine - 28 Settembre 2012 Mdelli Neurpsiclgici 1. Deficit nella reglazine di stat (Sergeant, 1999) 2. Deficit nella prcessazine delle infrmazini temprali (Castellans

Dettagli

Domande. 1. Possono diventare senatori della Repubblica Italiana tutti gli elettori che abbiano compiuto:

Domande. 1. Possono diventare senatori della Repubblica Italiana tutti gli elettori che abbiano compiuto: inserisci il tu indirizz di psta elettrnica, città, classe e scula di prvenienza. email: (a) Città: (a) Classe di appartenenza: (a) Scula di Prvenienza: (a) Dmande 1. Pssn diventare senatri della Repubblica

Dettagli

I tre concetti si possono descrivere in modo unitario dicendo che f e iniettiva, suriettiva, biiettiva se e solo se per ogni b B l equazione

I tre concetti si possono descrivere in modo unitario dicendo che f e iniettiva, suriettiva, biiettiva se e solo se per ogni b B l equazione Lezioni del 29 settembre e 1 ottobre. 1. Funzioni iniettive, suriettive, biiettive. Sia f : A B una funzione da un insieme A ad un insieme B. Sia a A e sia b = f (a) B l elemento che f associa ad a, allora

Dettagli

66 anni 66 anni e 6 mesi

66 anni 66 anni e 6 mesi Medici di medicina generale Pediatri di libera scelta Addetti alla cntinuità assistenziale e all emergenza territriale Specialisti ambulatriali Medici della medicina dei servizi Specialisti esterni PRESTAZIONI

Dettagli

Autostima e adolescenza: 4 regole per motivare

Autostima e adolescenza: 4 regole per motivare Autstima e adlescenza: 4 regle per mtivare 0 credit: Erin MC Hammer. Remixed: Giuseppe Franc Cme aiutare i tui figli ad avere autstima? Quali sn le tecniche di dialg per cmunicare cn tu figli adlescente?

Dettagli

3) MECCANISMI DI RILASSAMENTO

3) MECCANISMI DI RILASSAMENTO 3) MECCANSM D RLASSAMENTO nuclei eccitati tendn a cedere l'energia acquisita ed a ritrnare nella "psizine" di equilibri. meccanismi del rilassament sn mlt cmplessi (sprattutt nei slidi) e pssn essere classificati

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso

Dettagli

Doppio appuntamento in programma con i workshop di fotografia di moda e postproduzione in Sardegna

Doppio appuntamento in programma con i workshop di fotografia di moda e postproduzione in Sardegna WORKSHOP DI MODA E POSTPRODUZIONE A QUARTU S.ELENA 20/21 APRILE 2013 1 Dppi appuntament in prgramma cn i wrkshp di ftgrafia di mda e pstprduzine in Sardegna Quartu S.Elena (CA), sabat 20/dmenica 21 aprile

Dettagli

4. Funzioni elementari algebriche

4. Funzioni elementari algebriche ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 4. Funzioni elementari algebriche A. A. 2013-2014 1 Funzioni elementari Sono dette elementari un insieme di funzioni dalle quali si ottengono, mediante

Dettagli

Scegli la specie di camaleonte che preferisci. Organizza e mantieni pulito il suo habitat, chiamato terrario.

Scegli la specie di camaleonte che preferisci. Organizza e mantieni pulito il suo habitat, chiamato terrario. 1. 1 Scegli la specie di camalente che preferisci. Le specie più semplici da tenere sn quelle del camalente velat, del camalente di Jacksn e del camalente furcifer pardalis. La maggir parte dei camalenti

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

BILANCIO DI CARRIERA E PERSONALE

BILANCIO DI CARRIERA E PERSONALE BILANCIO DI CARRIERA E PERSONALE Cnsci te stess. Scrate Se nn sai dve andare nn pss dirti cme arrivare. Prverbi Il bilanci di cmpetenze è un percrs di rientament che serve a realizzare scelte e/ cambiamenti

Dettagli

FUZZY CONTRAST ENHANCEMENT

FUZZY CONTRAST ENHANCEMENT UNIVERSITÀ DEGLI STUDI DI BARI ALDO MORO FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI DIPARTIMENTO DI INFORMATICA CORSO DI LAUREA MAGISTRALE IN INFORMATICA ESAME DI ELABORAZIONE DI IMMAGINI E TECNICHE

Dettagli

visibilità su acquistiverdi.it green web marketing listino nov 2012/nov 2013 green matching I SERVIZI DI AcquistiVerdi.it

visibilità su acquistiverdi.it green web marketing listino nov 2012/nov 2013 green matching I SERVIZI DI AcquistiVerdi.it www.acquistiverdi.it inf@acquistiverdi.it Tel. 0532 762673 Fax 0532 769666 visibilità su acquistiverdi.it listin nv 2012/nv 2013 green web marketing green matching I SERVIZI DI AcquistiVerdi.it AcquistiVerdi.it

Dettagli

1. Microsoft Power Point: costruire una presentazione

1. Microsoft Power Point: costruire una presentazione Dtt. Pal Mnella Labratri di Infrmatica Specialistica per Lettere Mderne 2 semestre, A.A. 2009-2010 Dispensa n. 3: Presentazini Indice Dispensa n. 3: Presentazini...1 1. Micrsft Pwer Pint: cstruire una

Dettagli