La domanda che ci si deve porre innanzitutto per iniziare a risolvere questa disequazione è la seguente:

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "La domanda che ci si deve porre innanzitutto per iniziare a risolvere questa disequazione è la seguente:"

Transcript

1 Disequazioni: caso generale Consideriamo ora la risoluzione di disequazioni che presentino al suo interno valori assoluti e radici. Cercheremo di stabilire con degli esempio delle linee guida per la risoluzione di tali esercizi Esempio 4 Poiché all interno dell esercizio abbiamo valori assoluti e radici, dobbiamo individuare un percorso risolutivo che tenga conto in primo luogo della natura della disequazione. La domanda che ci si deve porre innanzitutto per iniziare a risolvere questa disequazione è la seguente: Che tipo di disequazione devo risolvere? La risposta deve individuare il carattere fondamentale dell equazione, essa infatti è principalmente Una disequazione fratta Ecco che la risposta mi porta ad avere un primo percorso risolutivo: in una disequazione fratta si deve studiare separatamente il segno numeratore e del denominatore. Pertanto: 4 Si inizia con il porre N : 4 4 Che è una disequazione irrazionale la cui risoluzione è equivalente alla risoluzioni di due sistemi 4 ( ) 4

2 Le cui soluzioni sono. D : Poiché il valore assoluto rappresenta sempre una quantità positiva, possiamo osservare che la somma di due quantità positive, di cui una è il valore, rappresenta sempre una quantità maggiore di zero. In alternativa, nel caso in cui non si riconoscesse questa proprietà, si procede nel modo tradizionale. Essa è una disequazione modulare che si risolve come visto in precedenza, studiando il segno del valore assoluto e poi scomponendo la disequazione iniziale in due sistemi di disequazioni. Le cui soluzioni sono. Ora le soluzioni della disequazione iniziale, che è una disequazione fratta, si determinano con la regola dei segni. A questo punto si deve fare un osservazione importante: nello studio del numeratore, il sistema che risolve al disequazione irrazionale tiene conto del campo di esistenza della radice; nello studio del denominatore, il campo si esistenza non tiene conto del dominio del numeratore. Pertanto, quando si applica la regola dei segni finale si tracciano due rette, ma proprio dal fatto che a denominatore non si tiene conto del campo di esistenza del numeratore, anche per quest ultimo si considerano valori che inizialmente erano stati esclusi. Come ovviare questo problema per disequazioni razionali con valore assoluto e radici? Prima di tutto si deve studiare il campo di esistenza di ogni radicale che compare nel testo della disequazione. C.E. 4.

3 Pertanto le soluzioni che si determinano con la regola dei segni dovranno essere compatibili con C.E. Queste condizioni sono facili da dimenticare in una disequazione di questo genere, quindi è il caso, visto l incidenza che possono avere nella soluzione di una disequazione, porre come primo punto per risolvere questi esercizi lo studio di eventuali condizioni esistenza. Per determinare le soluzioni finali, allora si procede come segue. Passo : determiniamo le soluzioni della disequazione iniziale con la regola dei segni, senza tener conto delle C.E Poiché il vero generale della disequazione era, si devono prendere i valori negativi. Quindi. Passo : si deve ora applicare la condizione di esistenza della radice. Abbiamo possibilità per tener conto del dominio. possibilità Applichiamo la condizioni di esistenza direttamente allo schema della regola dei segni cancellando tutti i valori che non sono compresi nell intervallo del campo di esistenza, cioè essendo il dominio, devo cancellare i valori compresi tra - e, inoltre poiché gli estremi fanno parte del campo di esistenza essi vanno compresi nelle eventuali soluzioni accettabili, pertanto:

4 Pertanto le soluzioni cercate sono. possibilità Metto a sistema: ) le soluzioni ottenute dalla risoluzione iniziale, cioè quella ottenuta dalla regola dei segni e che non tiene conto delle condizioni di esistenza ; ) le condizioni di esistenza. Quindi: Si ottiene quindi. Le due possibilità illustrate sono equivalenti, vale a dire non ce n è una migliore dell altra, si utilizza quella con cui ci si trova meglio per considerare le C.E. Esempio 4 4 Che tipo di esercizio devo risolvere? Una disequazione razionale. Vi sono particolari condizioni di esistenza da porre per numeratore e denominatore? Si poiché esso è costituito da un numeratore che ha limitazioni per il C.E. in quanto contiene una radice, mentre il denominatore non presenta problemi per il campo di esistenza.

5 C.E Percorso risolutivo : in una disequazione fratta si deve studiare separatamente il segno numeratore e del denominatore. Pertanto: N : 4 4 Osserviamo che il valore assoluto restituisce un valore positivo, inoltre anche la radice restituisce un valore positivo, quindi la somma di due valori positivi è positiva. Vi è solo un caso eventuale caso su cui prestare attenzione, poiché la disequazione ha disuguaglianza, si devono escludere quei casi, se esistono, in cui 4 4 = 4 = 4 ( 4 ) ( ) = = 4 9 = Da cui segue, 9 ± = ± = Poiché l equazione iniziale considerata era una equazione irrazionale, si deve procedere con la verifica delle soluzioni ottenute, da cui 9 = non accettabile 9 = non accettabile Quindi l equazione 4 4 = non ha soluzioni, cioè 4 4 sempre verificata

6 D : È una disequazione modulare, equivalente a tre sistemi di disequazioni (lo si deduce dallo studio dei segni degli argomenti dei moduli). Risolvendo la disequazione si osserva che essa non è mai verificata. Applicando ora la regola dei segni per quanto ottenuto a numeratore e a denominatore e tenendo conto delle C.E. si ha: Poiché il verso generale della disequazione è, si devono prendere le soluzioni positive, quindi S =. Esempio 4 Che tipo di esercizio devo risolvere? Una disequazione razionale. Vi sono particolari condizioni di esistenza da porre per numeratore e denominatore? Si poiché esso è costituito da un numeratore che non ha limitazioni per il C.E., mentre il denominatore presenta due radici che richiedono la determinazione del campo di esistenza. Allora C.E Percorso risolutivo : in una disequazione fratta si deve studiare separatamente il segno numeratore e del denominatore.

7 N : si può elevare entrambi i membri al cubo, in quanto la radice cubica non necessita di considerazioni riguardo il dominio Le soluzioni sono 7. D : 4 4 Poiché la disequazione coinvolge due radicali quadratici, e non è del tipo f ( ) g( ) un radicale ed un polinomio è sufficiente porre a sistema le condizioni di esistenza per entrambi gli argomenti dei radicali; elevare al quadrato entrambi i membri. 4 4 Le cui soluzioni sono S =., cioè tra Applicando ora la regola dei segni per quanto ottenuto a numeratore e a denominatore e tenendo conto delle C.E. si ha: Poiché il verso generale della disequazione è, si devono prendere le soluzioni negative, quindi Esempio 4 S : 7. Che tipo di esercizio devo risolvere? Una sistema.

8 Percorso risolutivo : in un sistema risolviamo separatamente le prima e la seconda disequazione, prendendo alla fine le soluzioni comuni ad entrambe. Prima disequazione Che tipo di disequazione devo risolvere? Una disequazione irrazionale, quindi essa equivale ad un sistema di tre disequazioni tradizionale, in quanto la radice ha verso di sé il minore. che equivale a risolvere Le cui soluzioni sono. Seconda disequazione Che tipo di disequazione devo risolvere? È una disequazione modulare, pertanto si deve studiare il segno dell argomento del valore assoluto e suddividere la disequazione originaria nell unione si più sistemi di disequazioni tradizionali. Studio del segno dell argomento del modulo Le cui soluzioni sono. La disequazione assegnata equivale allora al unione dei seguenti sistemi:

9 Le cui soluzioni sono, 4 8. Quindi le soluzioni del sistema sono: 8 4 Si ottiene quindi 4 8. Esempio 4 Che tipo di esercizio devo risolvere? Una sistema. Percorso risolutivo : in un sistema risolviamo separatamente le prima e la seconda disequazione, prendendo alla fine le soluzioni comuni ad entrambe. Prima disequazione 4 Che tipo di disequazione devo risolvere? Una disequazione razionale. Vi sono particolari condizioni di esistenza da porre per numeratore e denominatore? Si poiché esso è costituito da un numeratore che ha una radice, mentre il denominatore, tranne il fatto che deve essere diverso da zero, non presenta problemi il del campo di esistenza.

10 C.E. 4 N : 4 4 Le cui soluzioni sono D : Poiché ho la somma (che non si annulla mai) di due quantità positive. Le soluzioni della prima disequazione sono quindi. Seconda disequazione Che tipo di disequazione devo risolvere? Una disequazione razionale. Vi sono particolari condizioni di esistenza da porre per numeratore e denominatore? Si poiché esso è costituito da un numeratore che non presenta problemi per il campo di esistenza, mentre il denominatore contiene una radice di cui deve essere determinato il dominio. C.E. In questo caso abbiamo posto l argomento del denominatore e non, in quanto essendo il denominatore costituito unicamente dalla radice, se esso si annulla avremmo zero a denominatore, che non è accettabile come condizione. Osservazione Se il denominatore fosse stato, avremmo dovuto porre, in quanto l annullarsi dell argomento della radice, in questo caso, non avrebbe annullato il denominatore,

11 poiché il radicale è una parte del polinomio, infatti il suo argomento si annulla per =, ma tale valore non fa annullare tutto il denominatore, che si annulla invece per = ed è proprio quest ultimo il valore da escludere per questa condizione (oltre ai valori da escludere legati alla presenza del radicale). Torniamo ora alla risoluzione dell esercizio assegnato : N Disequazione modulare Si studiano i segni degli argomenti dei moduli La disequazione assegnata equivale alla risoluzione di tre sistemi di disequazioni: : D (ovviamente che soddisfi il dominio del radicale). Applicando al regola dei segni e tenendo conto delle C.E. si ottengono le soluzioni della seconda disequazione 7 : S Quindi le soluzioni del sistema sono: 7 7 : S

12 Osservazione Vi sono alcuni casi il cui lo studio del segno è particolarmente veloce se si tiene conto di alcune osservazioni: f ( ) Dom( f ) f ( ) cui risulta ( ) = f ); f ( ) Dom( f ) ( si devono escludere gli eventuali valori della per ; f ( ) Dom( f ) f ( ) cui risulta ( ) = f ); f ( ) Dom( f ) ( si devono escludere gli eventuali valori della per. Allora basta osservare che: ) il prodotto di quantità positive è sempre positivo: f ( ) g( ) Dom( f, g) f ( ) g( ) Dom( f, g) f ( ) g( ) ) La somma di quantità positive è sempre positivo: f ( ) g( ) Dom( f, g) f ( ) g( ) Dom( f, g) f ( ) g( ) f ( ) k Dom( f ) con k g ( ) k Dom( g) con k Con considerazioni simili si possono risolvere rapidamente i casi in cui si hanno quantità negative. Osservazione Riguardo le condizioni da porre all inizio per il campo di esistenza esse devono essere inserite all inizio della risoluzione dell esercizio quando il numeratore (o il denominatore) presenta delle restrizioni, mentre il denominatore (o il numeratore) non ha problemi per le condizioni di esistenza.

( x) Definizione: si definisce dominio (o campo di esistenza) di una funzione f ( x) l insieme dei valori

( x) Definizione: si definisce dominio (o campo di esistenza) di una funzione f ( x) l insieme dei valori Definizione: si definisce dominio (o campo di esistenza) di una funzione f ( ) l insieme dei valori che la variabile può assumere affinché la funzione f ( ) abbia significato. Vediamo di individuare alcune

Dettagli

ESERCITAZIONE 11 : EQUAZIONI E DISEQUAZIONI

ESERCITAZIONE 11 : EQUAZIONI E DISEQUAZIONI ESERCITAZIONE 11 : EQUAZIONI E DISEQUAZIONI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: Martedi 16-18 Dipartimento di Matematica, piano terra, studio 126 18 Dicembre 2012 Esercizio

Dettagli

3x + x 5x = x = = 4 + 3x ; che equivale, moltiplicando entrambi i membri per 2, a risolvere. 4x + 6 x = 4 + 3x.

3x + x 5x = x = = 4 + 3x ; che equivale, moltiplicando entrambi i membri per 2, a risolvere. 4x + 6 x = 4 + 3x. 1 Soluzioni esercizi 1.1 Equazioni di 1 e grado Risolvere le seguenti equazioni di 1 grado: 1) 3x 5x = 1 x. Abbiamo: 3x + x 5x = 1 + x = 1 + 4 x = 5. ) x + 3 x = + 3x. Facciamo il m.c.m. : 4x + 6 x = 4

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequazioni di secondo grado. Disequazioni Definizione: una disequazione è una relazione di disuguaglianza tra due espressioni. Detti p() e g() due polinomi definiti in un insieme A, una disequazione

Dettagli

1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari

1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari Secondo modulo: Algebra Obiettivi 1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari 2. risolvere equazioni intere e frazionarie di primo grado, secondo grado, grado superiore

Dettagli

ESERCIZI SULLE DISEQUAZIONI I

ESERCIZI SULLE DISEQUAZIONI I ESERCIZI SULLE DISEQUAZIONI I Risolvere le seguenti disequazioni: 1 1) { x < x + 1 4x + 4 x ) { x + 1 > x 4x x 10 ) x 4 x 5 4x + > ; 4) ; 5) x 1 x + 1 x + 1 0 ) x > x 0 7) x > 4x + 1; 8) 4 5 x 1 < 1 x

Dettagli

Le disequazioni frazionarie (o fratte)

Le disequazioni frazionarie (o fratte) Le disequazioni frazionarie (o fratte) Una disequazione si dice frazionaria (o fratta) se l'incognita compare al denominatore. Esempi di disequazioni fratte sono: 0 ; ; < 0 ; ; Come per le equazioni fratte,

Dettagli

LE DISEQUAZIONI LINEARI

LE DISEQUAZIONI LINEARI LE DISEQUAZIONI LINEARI Per ricordare H Una disequazione si rappresenta come una disuguaglianza fra due espressioni algebriche A e B ; essa assume dunque la forma A Per risolvere una disequazione

Dettagli

Definizione. Il valore assoluto lascia inalterato ciò che è già positivo e rende positivo ciò che positivo non è.

Definizione. Il valore assoluto lascia inalterato ciò che è già positivo e rende positivo ciò che positivo non è. VALORE ASSOLUTO Definizione a a, a, se a se a 0 0 Esempi.. 7 7. 9 9 4. x x, x, se x se x Il valore assoluto lascia inalterato ciò che è già positivo e rende positivo ciò che positivo non è. Utilizzando

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA EQUAZIONI E DISEQUAZIONI DI SECONDO GRADO Dr. Erasmo Modica erasmo@galois.it EQUAZIONI DI SECONDO GRADO Definizione: Dicesi

Dettagli

Esercizi 2016/17 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi

Esercizi 2016/17 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi Esercizi 06/7 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi Esercizio. Risolvere la seguente equazione: Soluzione. ) x+ ) x 7 x = 0 7 L equazione è definita per ogni x 0, valore in cui

Dettagli

Liceo Scientifico Statale G. Stampacchia Tricase

Liceo Scientifico Statale G. Stampacchia Tricase Luigi Lecci\Compito 2D\Lunedì 10 Novembre 2003 1 Oggetto: compito in Classe 2D/PNI Liceo Scientifico Statale G. Stampacchia Tricase Tempo di lavoro 60 minuti Argomenti: Equazioni e disequazioni immediate

Dettagli

Δ > 0, f(x)<0 quindi valori interni 0<x<4. Δ <0 f(x)>0 quindi sempre verificata

Δ > 0, f(x)<0 quindi valori interni 0<x<4. Δ <0 f(x)>0 quindi sempre verificata Classe TERZA A inf. MATEMATICA : SOSPENSIONE DEL GIUDIZIO Devi svolgere su di un quaderno tutti gli esercizi di queste pagine, anche quelli già risolti come esempio e consegnarmelo il giorno della prova

Dettagli

EQUAZIONI, DISEQUAZIONI E SISTEMI

EQUAZIONI, DISEQUAZIONI E SISTEMI EQUAZIONI, DISEQUAZIONI E SISTEMI RICHIAMI DI TEORIA Definizione: sia f una funzione reale di variabile reale. Gli elementi del dominio di f su cui la funzione assume valore nullo costituiscono l' insieme

Dettagli

Elementi sulle diseguaglianze tra numeri relativi

Elementi sulle diseguaglianze tra numeri relativi Elementi sulle diseguaglianze tra numeri relativi Dati due numeri disuguali a e b risulta a>b oppure ao oppure a-b

Dettagli

D) LE DISEQUAZIONI COL SIMBOLO DI VALORE ASSOLUTO

D) LE DISEQUAZIONI COL SIMBOLO DI VALORE ASSOLUTO 364 ) LE ISEQUAZIONI COL SIMBOLO I VALORE ASSOLUTO Iniziamo da alcuni casi particolari. 1) 5 < 3 Il valore assoluto di un numero è uguale (vedi pag. 354, definizione 3) alla distanza dall origine del punto

Dettagli

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio Liceo Classico D. Alighieri A.S. 0-3 y Data la funzione: Studio di Funzione tracciatene il grafico nel piano cartesiano. Prof. A. Pisani Esempio ) Tipo e grado della funzione La funzione è analitica, data

Dettagli

Argomento 2 IIparte Funzioni elementari e disequazioni

Argomento 2 IIparte Funzioni elementari e disequazioni Argomento IIparte Funzioni elementari e disequazioni Applicazioni alla risoluzione di disequazioni Disequazioni di I grado Per la risoluzione delle disequazioni di primo grado per via algebrica, si veda

Dettagli

Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n

Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n Si tratta del quadrato di un binomio. Si ha pertanto (x m y n ) 2 = x 2m 2x m y n + y 2n 4. La divisione (x 3 3x 2 + 5x 2) : (x 2) ha Q(x) = x 2 x + 3 e R = 4 Dalla divisione tra i polinomi risulta (x

Dettagli

1 Fattorizzazione di polinomi

1 Fattorizzazione di polinomi 1 Fattorizzazione di polinomi Polinomio: un polinomio di grado n nella variabile x, è dato da p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 con a n 0, a 0 è detto termine noto, a k è detto coefficiente

Dettagli

Disequazioni - ulteriori esercizi proposti 1

Disequazioni - ulteriori esercizi proposti 1 Disequazioni - ulteriori esercizi proposti Trovare le soluzioni delle seguenti disequazioni o sistemi di disequazioni:. 5 4 >. 4. < 4. 4 9 5. 9 > 6. > 7. < 8. 5 4 9. > > 4. < 4. < > 9 4 Non esitate a comunicarmi

Dettagli

Radicali. Consideriamo la funzione che associa ad un numero reale il suo quadrato:

Radicali. Consideriamo la funzione che associa ad un numero reale il suo quadrato: Radicali Radice quadrata Consideriamo la funzione che associa ad un numero reale il suo quadrato: il cui grafico è il seguente: Il grafico della funzione si trova al di sopra dell asse delle x ed è simmetrico

Dettagli

Equazioni con valore assoluto

Equazioni con valore assoluto Equazioni del tipo A(x) =a, con a Є R Equazioni con valore assoluto 1. a

Dettagli

Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x).

Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x). Esercizi svolti. Discutendo graficamente la disequazione > 3 +, verificare che l insieme delle soluzioni è un intervallo e trovarne gli estremi.. Descrivere in forma elementare l insieme { R : + > }. 3.

Dettagli

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2 Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in CTF - anno acc. 2013/2014 docente: Giulia Giantesio, gntgli@unife.it Esercizi 8: Studio di funzioni Studio

Dettagli

Richiami di Matematica - Esercizi 21/98

Richiami di Matematica - Esercizi 21/98 Richiami di Matematica - Esercizi 1/98 ESERCIZI. Principi di equivalenza: 1) A(x) > B(x) A(x) + C(x) > B(x) + C(x) ) Se k > 0 allora A(x) > B(x) ka(x) > kb(x) 3) Se k < 0 allora A(x) > B(x) ka(x) < kb(x)

Dettagli

3. Segni della funzione (positività e negatività)

3. Segni della funzione (positività e negatività) . Segni della funzione (positività e negatività) Questo punto, qualora sia possibile algebricamente, ci permette di stabilire il segno che assume la variabile dipendente y (che esprime il valore della

Dettagli

3 Equazioni e disequazioni.

3 Equazioni e disequazioni. 3 Equazioni e disequazioni. 3. Equazioni. Una equazione algebrica è un uguaglianza tra espressioni letterali soddisfatta per alcuni valori attribuiti alle lettere che vi compaiono. Tali valori sono detti

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni

Dettagli

Funzioni implicite - Esercizi svolti

Funzioni implicite - Esercizi svolti Funzioni implicite - Esercizi svolti Esercizio. È data la funzione di due variabili F (x, y) = y(e y + x) log x. Verificare che esiste un intorno I in R del punto di ascissa x 0 = sul quale è definita

Dettagli

Recupero primo quadrimestre CLASSE QUARTA FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA

Recupero primo quadrimestre CLASSE QUARTA FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA Recupero primo quadrimestre CLASSE QUARTA FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA Si dice campo di esistenza (C.E.) di una funzione = f(), l'insieme di tutti i valori reali che assegnati

Dettagli

Precorso CLEF-CLEI, esercizi di preparazione al test finale con soluzioni

Precorso CLEF-CLEI, esercizi di preparazione al test finale con soluzioni Precorso CLEF-CLEI, esercizi di preparazione al test finale con soluzioni ARITMETICA 1. Scomporre in fattori primi 2500 e 5600. Soluzione: Osserviamo che entrambi i numeri sono multipli di 100 = 2 2 5

Dettagli

DISEQUAZIONI ALGEBRICHE

DISEQUAZIONI ALGEBRICHE DISEQUAZIONI ALGEBICHE Classe II a.s. 00/0 prof.ssa ita Schettino INTEVALLI DI Impariamo cosa sono gli intervalli di numeri reali Sono sottoinsiemi continui di numeri reali e possono essere limitati o

Dettagli

LE EQUAZIONI DI SECONDO GRADO

LE EQUAZIONI DI SECONDO GRADO LE EQUAZIONI DI SECONDO GRADO Definizione: un equazione è di secondo grado se, dopo aver applicato i principi di equivalenza, si può scrivere nella forma, detta normale: ax + bx + c 0!!!!!con!a 0 Le lettere

Dettagli

Equazioni e disequazioni goniometriche. Guida alla risoluzione di esercizi

Equazioni e disequazioni goniometriche. Guida alla risoluzione di esercizi Equazioni e disequazioni goniometriche Guida alla risoluzione di esercizi Valori noti per seno e eno per angoli particolari α α Funzioni goniometriche espresse tramite una di esse α α tan α ctg α ± α tanα

Dettagli

Equazioni di 2 grado

Equazioni di 2 grado Equazioni di grado Tipi di equazioni: Un equazione (ad una incognita) è di grado se può essere scritta nella forma generale (o forma tipica o ancora forma canonica): a b c con a, b e c numeri reali (però

Dettagli

Premessa. retta orientata diseguaglianze diverso intervallo di estremi a e b 1) a < x < b aperto N.B.: 2) a x b chiuso N.B.: 3) a x < b semichiuso

Premessa. retta orientata diseguaglianze diverso intervallo di estremi a e b 1) a < x < b aperto N.B.: 2) a x b chiuso N.B.: 3) a x < b semichiuso Premessa. Ci sono problemi, alcuni appartenenti anche alla vita quotidiana, che possono essere risolti attraverso una disequazione, ossia un espressione algebrica formata da due membri, contenenti un incognita,

Dettagli

1 Disquazioni di primo grado

1 Disquazioni di primo grado 1 Disquazioni di primo grado 1 1 Disquazioni di primo grado Si assumono assodate le regole per la risoluzione delle equazioni lineari Ricordando che una disuguaglianza è una scrittura tra due espressioni

Dettagli

Equazioni e disequazioni. M.Simonetta Bernabei, Horst Thaler

Equazioni e disequazioni. M.Simonetta Bernabei, Horst Thaler Equazioni e disequazioni M.Simonetta Bernabei, Horst Thaler A(x)=0 x si chiama incognita dell equazione. Se oltre all incognita non compaiono altre lettere l equazione si dice numerica, altrimenti letterale.

Dettagli

Anno 2. Radicali algebrici e aritmetici: condizioni di esistenza

Anno 2. Radicali algebrici e aritmetici: condizioni di esistenza Anno 2 Radicali algebrici e aritmetici: condizioni di esistenza 1 Introduzione Perché studiare i radicali? In matematica ogni volta che facciamo un operazione dobbiamo anche vedere se è possibile tornare

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA RADICALI Dr. Erasmo Modica erasmo@galois.it LE RADICI Abbiamo visto che l insieme dei numeri reali è costituito da tutti

Dettagli

Equazioni intere...1 Equazioni fratte...3 Equazioni irrazionali...4 Equazioni in valore assoluto...5

Equazioni intere...1 Equazioni fratte...3 Equazioni irrazionali...4 Equazioni in valore assoluto...5 Equazioni Indice Equazioni intere...1 Equazioni fratte...3 Equazioni irrazionali...4 Equazioni in valore assoluto...5 Equazioni. Equazioni intere Un'equazione algebrica (o polinomiale) ha sempre la forma,

Dettagli

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti INTEGRALI INDEFINITI e DEFINITI Esercizi risolti E data la funzione f( = (a Provare che la funzione F ( = + arcsin è una primitiva di f( sull intervallo (, (b Provare che la funzione G( = + arcsin π è

Dettagli

ESERCIZI SULLO STUDIO DI FUNZIONI

ESERCIZI SULLO STUDIO DI FUNZIONI ESERCIZI SULLO STUDIO DI FUNZIONI 0 novembre 206 Esercizi Esercizio n. Si consideri la funzione f(x) = 7 x 2 + 3 Dominio: R Intersezioni con gli assi: Intersezioni con l asse x: { y = 0 y = 7 x 2 + 3.

Dettagli

ESPONENZIALI SENZA LOGARITMI Esercizi risolti - Classi quarte

ESPONENZIALI SENZA LOGARITMI Esercizi risolti - Classi quarte ESPONENZIALI SENZA LOGARITMI Esercizi risolti - Classi quarte La presente dispensa riporta la risoluzione di alcuni esercizi, tratti dal testo di Lamberti, vol.1 nuova edizione, inerenti: equazioni esponenziali

Dettagli

Le funzioni reali di una variabile reale

Le funzioni reali di una variabile reale Le funzioni reali di una variabile reale Prof. Giovanni Ianne DEFINIZIONE DI FUNZIONE REALE DI UNA VARIABILE REALE Dati due insiemi non vuoti A, B R, una funzione f da A in B è una relazione fra A e B

Dettagli

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE ESERCIZI SVOLTI SUL CALCOLO INTEGRALE * Tratti dagli appunti delle lezioni del corso di Matematica Generale Dipartimento di Economia - Università degli Studi di Foggia Prof. Luca Grilli Dott. Michele Bisceglia

Dettagli

MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO

MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO Equazioni fratte, di secondo grado o superiore Le equazioni di secondo grado Un equazione è di secondo grado se si può scrivere nella

Dettagli

Funzioni elementari: funzioni potenza

Funzioni elementari: funzioni potenza Funzioni elementari: funzioni potenza Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Funzioni elementari: funzioni potenza 1 / 36 Funzioni lineari Come abbiamo già visto,

Dettagli

Espressioni algebriche: espressioni razionali

Espressioni algebriche: espressioni razionali Espressioni algebriche: espressioni razionali definizione: Il rapporto fra due polinomi si dice espressione razionale. Le espressioni razionali in una sola variabile si scrivono nella forma generale esempio:

Dettagli

Equazioni frazionarie e letterali

Equazioni frazionarie e letterali Equazioni frazionarie e letterali 17 17.1 Equazioni di grado superiore al primo riducibili al primo grado Nel capitolo 15 abbiamo affrontato le equazioni di primo grado. Adesso consideriamo le equazioni

Dettagli

Consideriamo un numero a e un numero naturale n positivo. Per dare una definizione corretta di radicale con indice n, o radice n-esima di a

Consideriamo un numero a e un numero naturale n positivo. Per dare una definizione corretta di radicale con indice n, o radice n-esima di a RADICALI E PROPRIETÀ DEI RADICALI I radicali in Matematica sono numeri definiti mediante radici con indice intero. I radicali possono essere espressi sotto forma di potenze con esponente fratto mediante

Dettagli

MATEMATICA PROPEDEUTICA PER LO STUDIO DELLE FUNZIONI GSCATULLO

MATEMATICA PROPEDEUTICA PER LO STUDIO DELLE FUNZIONI GSCATULLO MATEMATICA PROPEDEUTICA PER LO STUDIO DELLE FUNZIONI GSCATULLO 1 Propedeutica alle Funzioni Premessa Questo documento vuole essere una preparazione per lo studio delle funzioni, comprendendo tutte quelle

Dettagli

Segno di espressioni quoziente di due espressioni elementari Vediamo di ragionare su un esempio pratico. Consideriamo un'espressione del tipo

Segno di espressioni quoziente di due espressioni elementari Vediamo di ragionare su un esempio pratico. Consideriamo un'espressione del tipo Segno di espressioni quoziente di due espressioni elementari Vediamo di ragionare su un esempio pratico. Consideriamo un'espressione del tipo x < 0.Vogliamo trovare l'insieme dei valori che posso assegnare

Dettagli

Svolgimento. f y (x, y) = 8 y 2 x. 1 x 2 y = 0. y 2 x = 0. (si poteva anche ricavare la x dalla seconda equazione e sostituire nella prima)

Svolgimento. f y (x, y) = 8 y 2 x. 1 x 2 y = 0. y 2 x = 0. (si poteva anche ricavare la x dalla seconda equazione e sostituire nella prima) Università degli Studi della Basilicata Corsi di Laurea in Chimica / Scienze Geologiche Matematica II A. A. 2013-2014 (dott.ssa Vita Leonessa) Esercizi svolti: Ricerca di massimi e minimi di funzioni a

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

Esercizi sulle Disequazioni

Esercizi sulle Disequazioni Esercizi sulle Disequazioni Esercizio Trovare le soluzioni delle seguenti disequazioni:.).).).) ).) ) ).).7) 8.8).) Esercizio Trovare le soluzioni delle seguenti disequazioni tratte dal secondo parziale

Dettagli

CLASSE QUARTA RECUPERO PRIMO QUADRIMESTRE ANN

CLASSE QUARTA RECUPERO PRIMO QUADRIMESTRE ANN CLASSE QUARTA RECUPERO PRIMO QUADRIMESTRE ANN0 011-01 FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA Si dice campo di esistenza (C.E.) di una funzione y= f(x), l'insieme di tutti i valori reali

Dettagli

I Compitino DI MATEMATICA Corso di Laurea in Farmacia, Facoltà di Farmacia, Università di Pisa 20 Novembre 2008

I Compitino DI MATEMATICA Corso di Laurea in Farmacia, Facoltà di Farmacia, Università di Pisa 20 Novembre 2008 1 I Compitino DI MATEMATICA Corso di Laurea in Farmacia, Facoltà di Farmacia, Università di Pisa 2 Novembre 28 Soluzioni Esercizio 1. (6 punti in totale) Il testo è molto lungo, e l esercizio ìn massima

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

U. C. Utilizzare le tecniche e procedure di calcolo aritmetico e algebrico, rappresentandole anche sotto forma grafica

U. C. Utilizzare le tecniche e procedure di calcolo aritmetico e algebrico, rappresentandole anche sotto forma grafica U. C. Utilizzare le tecniche e procedure di calcolo aritmetico e algebrico, rappresentandole anche sotto forma grafica U. d. A. Disequazioni algebriche isultato atteso Il soggetto deve essere in grado

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

Prontuario degli argomenti di Algebra

Prontuario degli argomenti di Algebra Prontuario degli argomenti di Algebra NUMERI RELATIVI Un numero relativo è un numero preceduto da un segno + o - indicante la posizione rispetto ad un punto di riferimento a cui si associa il valore 0.

Dettagli

EQUAZIONI CON VALORE ASSOLUTO DISEQUAZIONI CON VALORE ASSOLUTO

EQUAZIONI CON VALORE ASSOLUTO DISEQUAZIONI CON VALORE ASSOLUTO EQUAZIONI CON VALORE AOLUTO DIEQUAZIONI CON VALORE AOLUTO Prima di tutto: che cosa è il valore assoluto di un numero? Il valore assoluto è quella legge che ad un numero (positivo o negativo) associa sempre

Dettagli

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti Limiti e continuità Teorema di unicità del ite Teorema di permanenza del segno Teoremi del confronto Algebra dei iti 2 2006 Politecnico di Torino 1 Se f(x) =` ` è unico Per assurdo, siano ` 6= `0 con f(x)

Dettagli

Verifica di matematica, classe II liceo scientifico sistemi, problemi con sistemi, radicali, equiestensione. risolvere con il metodo di Cramer

Verifica di matematica, classe II liceo scientifico sistemi, problemi con sistemi, radicali, equiestensione. risolvere con il metodo di Cramer Verifica di matematica, classe II liceo scientifico sistemi, problemi con sistemi, radicali, equiestensione 1. 5 x y x 3y 1 risolvere con il metodo di Cramer. x 1 3 y y x 3 risolvere con il metodo di riduzione

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

Soluzioni. 1. Calcolare la parte reale e immaginaria del numero complesso. z = i i. 3 (2 + i) = i i = i.

Soluzioni. 1. Calcolare la parte reale e immaginaria del numero complesso. z = i i. 3 (2 + i) = i i = i. 20 Roberto Tauraso - Analisi 2 Soluzioni 1. Calcolare la parte reale e immaginaria del numero complesso R. z = i + 3 2 i. z = i + 3 2 i 2 i = 6 5 + ( 1 + 3 5 3 (2 + i) = i + 2 4 + 1 ) i = 6 5 + 8 5 i.

Dettagli

Svolgimento degli esercizi del Capitolo 1

Svolgimento degli esercizi del Capitolo 1 Analisi Matematica a edizione Svolgimento degli esercizi del Capitolo a) Si ha perciò si distinguono due casi: I) se x < 7,siha x 7 se x 7 x 7 7 x se x < 7, x 7 7 x x x 5 x 5, e poiché 5 > 7 la disequazione

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

Equazione irrazionale

Equazione irrazionale Equazione irrazionale In matematica, un'equazione irrazionale in una incognita è un'equazione algebrica in cui l'incognita compare all'interno del radicando di uno o più radicali. Ad esempio: Non sono

Dettagli

Definizione 1.6 (di grado di una equazione) Si dice grado di una equazione intera ridotta in forma normale il massimo esponente dell incognita.

Definizione 1.6 (di grado di una equazione) Si dice grado di una equazione intera ridotta in forma normale il massimo esponente dell incognita. 1 Le equazioni Consideriamo espressioni algebriche contenenti una sola incognita, che indicheremo con x, le quali verranno indicate con i simboli f(x), g(x), h(x),.... Il valore assunto dall espressione

Dettagli

Liceo Scientifico Statale. Leonardo Da Vinci

Liceo Scientifico Statale. Leonardo Da Vinci Liceo Scientifico Statale Leonardo Da Vinci Via Possidonea, 8-89100 Reggio Calabria - Tel: 0965-29911 / 312063 www.liceovinci.rc.it Anno Scolastico 2005-2006 Disequazioni Esponenziali e Logaritmiche Prof.

Dettagli

Esercizi sul dominio di funzioni e limiti

Esercizi sul dominio di funzioni e limiti Esercizi sul dominio di funzioni e iti Esercizio 1. Determinare il dominio D, studiare il segno e calcolare il ite ai suoi estremi delle seguenti funzioni: (a) y = e ; (b) y = 4 2 + 9; (c) y = 16 4 ; 2

Dettagli

Anno 5 Regole di derivazione

Anno 5 Regole di derivazione Anno 5 Regole di derivazione 1 Introduzione In questa lezione mostreremo quali sono le regole da seguire per effettuare la derivata di una generica funzione. Seguendo queste regole e conoscendo le derivate

Dettagli

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione Copyright c 2009 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione

Dettagli

EQUAZIONI DI PRIMO GRADO

EQUAZIONI DI PRIMO GRADO Cognome... Nome... Equazioni di primo grado EQUAZIONI DI PRIMO GRADO Un'equazione di primo grado e un'uguaglianza tra due espressioni algebriche di primo grado, vera solo per alcuni valori che si attribuiscono

Dettagli

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica Tutorial - Studio di una funzione reale di variabile reale f : x R y = f (x) R Una funzione può essere: - 1 - algebrica ( razionale o irrazionale, intera o fratta) Classificare la trascendentale ( esponenziale,

Dettagli

Equazioni di primo grado

Equazioni di primo grado Equazioni di primo grado Si dicono equazioni le uguaglianze tra due espressioni algebriche che sono verificate solo per particolari valori di alcune lettere, dette incognite. In altre parole, un'uguaglianza

Dettagli

Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI

Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI Anno scolastico: 05-0 Classe: B, E, F, G, I, L,M Docente: Battuello, Bosco, Fecchio, Ferrero, Gerace, Menaldo Disciplina Matematica Ripassare

Dettagli

L1 L2 L3 L4. Esercizio. Infatti, osserviamo che p non può essere un multiplo di 3 perché è primo. Pertanto, abbiamo solo due casi

L1 L2 L3 L4. Esercizio. Infatti, osserviamo che p non può essere un multiplo di 3 perché è primo. Pertanto, abbiamo solo due casi Sia p 5 un numero primo. Allora, p è sempre divisibile per 4. Scriviamo p (p ) (p + ). Ora, p 5 è primo e, quindi, dispari. Dunque, p e p + sono entrambi pari. Facciamo vedere anche che uno tra p e p +

Dettagli

Funzioni... senza limiti

Funzioni... senza limiti Funzioni... senza limiti Versione del 18 aprile 2007 Propongo, in questa nota, una serie di esempi di grafici di funzioni tracciati per via elementare, senza l uso del calcolo differenziale. Una trattazione

Dettagli

Funzioni Pari e Dispari

Funzioni Pari e Dispari Una funzione f : R R si dice Funzioni Pari e Dispari PARI: se f( ) = f() R In questo caso il grafico della funzione è simmetrico rispetto all asse DISPARI: se f( ) = f() R In questo caso il grafico della

Dettagli

Anno 1. Frazioni algebriche: definizione e operazioni fondamentali

Anno 1. Frazioni algebriche: definizione e operazioni fondamentali Anno Frazioni algebriche: definizione e operazioni fondamentali Introduzione In questa lezione introdurremo il concetto di frazione algebrica. Al termine di questa lezione sarai in grado di: definire il

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

Le eguaglianze algebriche: Identità ed Equazioni

Le eguaglianze algebriche: Identità ed Equazioni Le eguaglianze algebriche: Identità ed Equazioni Le eguaglianze algebriche possono essere di due tipi 1 - Identità - Equazioni L eguaglianza è verificata da qualsiasi valore attribuito alle lettere L eguaglianza

Dettagli

ISTITUTO PROFESSIONALE PER I SERVIZI ALBERGHIERI E DELLA RISTORAZIONE B.BUONTALENTI,V. DE BRUNI, FIRENZE ANNO SCOLASTICO 2015/2016.

ISTITUTO PROFESSIONALE PER I SERVIZI ALBERGHIERI E DELLA RISTORAZIONE B.BUONTALENTI,V. DE BRUNI, FIRENZE ANNO SCOLASTICO 2015/2016. B.BUONTALENTI,V. DE BRUNI, 6-50133 FIRENZE Classe 1 A Richiami di matematica: formazione degli insiemi numerici i numeri naturali, interi, razionali, irrazionali i numeri reali proprietà delle quattro

Dettagli

LICEO SCIENTIFICO STATALE Enrico Fermi Anno Scolastico 2008/09. Scomposizioni in fattori dei polinomi. Frazioni algebriche

LICEO SCIENTIFICO STATALE Enrico Fermi Anno Scolastico 2008/09. Scomposizioni in fattori dei polinomi. Frazioni algebriche LICEO SCIENTIFICO STATALE Enrico Fermi Anno Scolastico 2008/09 Classe II E - corso Tecnologico Scomposizioni in fattori dei polinomi Scomposizione di un polinomio in fattori Concetto di scomposizione Raccoglimento

Dettagli

FUNZIONI CONTINUE - ESERCIZI SVOLTI

FUNZIONI CONTINUE - ESERCIZI SVOLTI FUNZIONI CONTINUE - ESERCIZI SVOLTI 1) Verificare che x è continua in x 0 per ogni x 0 0 ) Verificare che 1 x 1 x 0 è continua in x 0 per ogni x 0 0 3) Disegnare il grafico e studiare i punti di discontinuità

Dettagli

LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b

LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA LOGARITMI L uguaglianza: a x = b nella quale a e b rappresentano due numeri reali noti ed x un incognita, è un equazione

Dettagli

Analisi Matematica I Primo Appello ( ) - Fila 1

Analisi Matematica I Primo Appello ( ) - Fila 1 Analisi Matematica I Primo Appello (4-11-003) - Fila 1 1. Determinare la retta tangente alla funzione f() = (1 + ) 1+ in = 0. R. f(0) = 1, mentre la derivata è f () = ( e (1+) log(1+)) ( ) = e (1+) log(1+)

Dettagli

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di DEFINIZIONE Espressione algebrica costituita dal prodotto tra una parte numerica (coefficiente) e una o più variabili e/o costanti (parte letterale). Variabili e costanti possono comparire elevate a potenza

Dettagli

Esercizio. Sia a R non nullo e siano m, n numeri interi non nulli con m n. Allora a m /a n è uguale a. [1] 1/a n m [2] 1/a m n [3] 1/a n m [4] a n m

Esercizio. Sia a R non nullo e siano m, n numeri interi non nulli con m n. Allora a m /a n è uguale a. [1] 1/a n m [2] 1/a m n [3] 1/a n m [4] a n m Sia a R non nullo e siano m, n numeri interi non nulli con m n. Allora a m /a n è uguale a [1] 1/a n m [2] 1/a m n [3] 1/a n m [4] a n m Vale la [1] perché per le proprietà delle potenze risulta a m a

Dettagli

Esercizi di Matematica per le Scienze Studio di funzione

Esercizi di Matematica per le Scienze Studio di funzione Esercizi di Matematica per le Scienze Studio di funzione A.M. Bigatti e G. Tamone Esercizi Studio di funzione Esercizio 1. Disegnare il grafico di una funzione continua f che soddisfi tutte le seguenti

Dettagli

Breve formulario di matematica

Breve formulario di matematica Luciano Battaia a 2 = a ; lim sin = 1, se 0; sin(α + β) = sin α cos β + cos α sin β; f() = e 2 f () = 2e 2 ; sin d = cos + k; 1,2 = b± ; a m a n = 2a a n+m ; log a 2 = ; = a 2 + b + c; 2 + 2 = r 2 ; e

Dettagli

STUDIO DEL GRAFICO DI UNA FUNZIONE

STUDIO DEL GRAFICO DI UNA FUNZIONE STUDIO DEL GRAFICO DI UNA FUNZIONE PROF.SSA ROSSELLA PISCOPO 2 di 35 Indice 1 SCHEMA PER LO STUDIO DEL GRAFICO DI FUNZIONE... 4 2 ESEMPI... 11 2.1 2.2 2.3 2.4 2.5 2.6 FUNZIONE ESPONENZIALE... 11 FUNZIONE

Dettagli

Problemi di massimo e minimo

Problemi di massimo e minimo Problemi di massimo e minimo Supponiamo di avere una funzione continua in Per il teorema di Weierstrass esistono il massimo assoluto M e il minimo assoluto m I problemi di massimo e minimo sono problemi

Dettagli

PROBLEMI DI SECONDO GRADO: ESEMPI

PROBLEMI DI SECONDO GRADO: ESEMPI PROBLEMI DI SECONDO GRADO: ESEMPI Problema 1 Sommando al triplo di un numero intero il quadrato del suo consecutivo si ottiene il numero 9. Qual è il numero? Il campo di accettabilità delle soluzioni è,

Dettagli

Mutue posizioni della parabola con gli assi cartesiani

Mutue posizioni della parabola con gli assi cartesiani Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse

Dettagli

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 1. Esercizi 3 1. Studiare la seguente funzione FINO alla derivata prima, con tracciamento di grafico ed indicazione

Dettagli