Forme indeterminate e limiti notevoli

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Forme indeterminate e limiti notevoli"

Transcript

1 Forme indeterminate e iti notevoli Limiti e continuità Forme indeterminate e iti notevoli Forme indeterminate Teorema di sostituzione Limiti notevoli Altre forme indeterminate Politecnico di Torino 1

2 Forme indeterminate e iti notevoli Forme indeterminate e iti notevoli Espressione funzioni tendono a Forme indeterminate quando entrambe le con segno discorde; una tale forma indeterminata viene indicata con il simbolo f(x)+g(x) Politecnico di Torino 2

3 Forme indeterminate e iti notevoli Espressione tende a Forme indeterminate f(x) g(x) quando una funzione e l altra tende a 0; una tale forma indeterminata viene indicata con il simbolo 0 5 Espressione f(x) g(x) Forme indeterminate quando entrambe le funzioni tendono a oppure a 0; tali forme indeterminate vengono indicate rispettivamente con i simboli oppure Politecnico di Torino 3

4 Forme indeterminate e iti notevoli Forme indeterminate Ogni comportamento è possibile: ite infinito, ite finito diverso da 0 oppure uguale a 0, non esistenza del ite 7 Esempio 1 Consideriamo le funzioni g(x) =x e f 1 (x) =x + x 2, f 2 (x) =x +1, f 3 (x) =x + 1 x, f 4(x) =x +sinx Politecnico di Torino 4

5 Forme indeterminate e iti notevoli Esempio 1 Tutte le funzioni tendono a Si ha [f 1(x) g(x)] = x + + per x + x + x2 =+ [f 2(x) g(x)] = x + [f 3(x) g(x)] = x + 1=1 x + x + 1 x =0 9 Esempio 1 Inoltre [f 4(x) g(x)] = x + sin x x + non esiste, in quanto la funzione periodica sin x è Politecnico di Torino 5

6 Forme indeterminate e iti notevoli Esempio 2 Consideriamo le funzioni g(x) =x 2 e f 1 (x) =x 3, f 2 (x) =x 2, f 3 (x) =x, f 4 (x) =x 2 sin 1 x 11 Esempio 2 Tutte le funzioni tendono a Si ha 0 per f 1 (x) g(x) = x =0 x 0 f 2 (x) g(x) = 1=1 f 3 (x) g(x) = 1 x = Politecnico di Torino 6

7 Forme indeterminate e iti notevoli Esempio 2 Inoltre f 4 (x) g(x) = sin 1 x non esiste 13 Esempio 3 Consideriamo il generico polinomio P (x) =a n x n + + a 1 x + a 0 (a n 6=0) Per x ± indeterminata del tipo si può avere una forma Politecnico di Torino 7

8 Forme indeterminate e iti notevoli Esempio 3 Tale forma di indeterminazione si risolve raccogliendo il monomio di grado massimo x n : P (x) =x n ³ a n + a n 1 x + + a 1 x n 1 + a 0 x n 15 Esempio 3 L espressione in parentesi tende ad per x ±, pertanto a n P (x) = x ± a nx n = x ± e il segno del ite si determina facilmente Politecnico di Torino 8

9 Forme indeterminate e iti notevoli Esempio 3 Calcoliamo il Si ha x ( 5x3 +2x 2 +7) x ( 5x3 +2x 2 +7)= x ( 5x3 ) =+ 17 Esempio 4 Consideriamo la generica funzione razionale già ridotta ai minimi termini R(x) = P (x) Q(x) = a nx n + + a 1 x + a 0 b m x m + + b 1 x + b 0 (a n,b m 6=0,m>0) Per x ±, indeterminata del tipo si può avere una forma Politecnico di Torino 9

10 Forme indeterminate e iti notevoli Esempio 4 Trattando numeratore e denominatore come nell esempio precedente, si ottiene x ± P (x) Q(x) = x ± a n x n b m x m se n>m = a n b m x ± xn m = a n b m se n = m 0 se n<m 19 Esempio 4 Ad esempio, x + 2x 4 2x 2 +1 x 2 x 3 = x + 2x 4 x 3 = x 2x 6 +2x 2 7 8x 6 x 4 +3x = x 2x 6 8x 6 = 1 4 x 2x 3 x +3 x 4 +7 = x 2x 3 x 4 = Politecnico di Torino 10

11 Forme indeterminate e iti notevoli Calcoliamo il ite Risulta 1 cos x x 2 1 cos x x 2 Esempio 5 = (1 cos x)(1 + cos x) x 2 (1 + cos x) = 1 cos 2 x x cos x 21 Esempio 5 = sin 2 x x cosx Politecnico di Torino 11

12 Forme indeterminate e iti notevoli Esempio 5 = µ 2 sin x x 1 1+cosx 23 Esempio 5 =1 1 2 = Politecnico di Torino 12

13 Forme indeterminate e iti notevoli Tabella x + xα =+, x + xα =0, + x α =0 α > 0 x α =+ α < 0 + x ± a n x n + + a 1 x + a 0 b m x m + + b 1 x + b 0 = a n b m x ± xn m 25 Tabella x + ax =+, x ax =0 α > 1 x + ax =0, x ax =+ a<1 x + log a x =+, + log a x = log a x =, log a x =+ x + + a>1 a< Politecnico di Torino 13

14 Forme indeterminate e iti notevoli sin x, x ± non esistono cos x, x ± tan x x ± Tabella tan x =, x ( π 2 +kπ ) ± k Z 27 Tabella x ±1 arcsin x = ±π 2 =arcsin(±1) arccos x =0=arccos1 x +1 arccos x = π =arccos( 1) x 1 x ± arctan x = ±π Politecnico di Torino 14

15 Forme indeterminate e iti notevoli Forme indeterminate e iti notevoli Teorema di sostituzione Supponiamo che esista (finito o infinito) f(x) =` x c Politecnico di Torino 15

16 Forme indeterminate e iti notevoli Teorema di sostituzione g ` Se ` R, g è continua in ` ` R, I(c) c f(x) 6= ` y ` ` =+ ` =, y ` Sia una funzione definita in un intorno di (escluso al più il punto ) e tale che Se esiste un intorno di in cui per ogni x 6= c ed esiste (finito o infinito) Se oppure esiste (finito o infinito) ` 31 Teorema di sostituzione g(f(x)) = g(y) x c y ` Politecnico di Torino 16

17 Forme indeterminate e iti notevoli Osservazione Nel primo caso si ha g(y) =g(`) y ` dunque la tesi può essere scritta come g(f(x)) = g( f(x)) x c x c 33 f x 0 y 0 = f(x 0 ) Sia continua in e sia Corollario Sia g una funzione definita in un intorno di y 0 e continua in y 0 la funzione composta g f è continua in x Politecnico di Torino 17

18 Forme indeterminate e iti notevoli Dimostrazione Abbiamo (g f)(x) =g( f(x)) x x 0 x x 0 = g(f(x 0 )) =(g f)(x 0 ) 35 Esempio 1 La funzione h(x) =cosx 3 è continua su tutto R Infatti, è la composizione delle due funzioni continue f(x) =x 3 e g(y) =cosy Politecnico di Torino 18

19 Forme indeterminate e iti notevoli Esempio 2 Calcoliamo 1 cos x 2 x 4 Poniamo f(x) =x 2 e g(y) = 1 cos y y se se y 6= 0 y =0 37 Esempio 2 Calcoliamo 1 cos x 2 x 4 Si ha f(x) =0, è continua nell origine. Pertanto, mentre la funzione g 1 cos x 2 x 4 = y 0 1 cos y y 2 = Politecnico di Torino 19

20 Forme indeterminate e iti notevoli Calcoliamo Poniamo Abbiamo Dunque arctan x 2 ± µ 1 arctan x 2 ± x 2 f(x) = 1 x 2 f(x) =± ± x 2 e e Esempio 3 g(y) =arctany y ± g(y) =± π 2 µ 1 = x 2 g(y) = ±π y ± 2 39 Esempio 4 Si voglia calcolare x + log sin 1 x Ponendo f(x) =sin 1 x, si ha ` = f(x) =0 x + si osservi che f(x) > 0, per ogni x> 1 π Politecnico di Torino 20

21 Forme indeterminate e iti notevoli Esempio 4 Si voglia calcolare x + log sin 1 x Posto g(y) =logy si ha y 0 + g(y) = 41 Esempio 4 Si voglia calcolare x + log sin 1 x Si ha x + sin 1 x =0 e dunque otteniamo e log y = y 0 + x + log sin 1 x = y 0 + g(y) = Politecnico di Torino 21

22 Forme indeterminate e iti notevoli Osservazione Il Teorema di sostituzione può essere facilmente esteso al caso in cui la funzione f sia sostituita da una qualunque successione a : n 7 a n che ammetta il ite a n = ` n Sotto le stesse ipotesi sulla funzione fatte nell enunciato del Teorema, si ha allora g g(a n)=g(y) n y ` 43 Criterio di non esistenza del ite Se esistono due successioni tali che b : n 7 b n a n = b n = ` n n g(a n) 6= g(b n) n n a : n 7 a n e e g non può avere ite quando l argomento tende a `: non esiste g(y) y ` Politecnico di Torino 22

23 Forme indeterminate e iti notevoli Esempio La funzione x + y =sinx non ha ite per Infatti, se consideriamo le successioni a n =2nπ b n = π e 2 +2nπ, n N abbiamo sin a n = 0=0 n n n sin b n = n 1=1 e 45 Forme indeterminate e iti notevoli 2006 Politecnico di Torino 23

24 Forme indeterminate e iti notevoli Limiti notevoli Ricordiamo il ite fondamentale n µ 1+ 1 n n =e 47 Limiti notevoli In luogo della successione consideriamo ora la funzione di variabile reale x h(x) = µ 1+ 1 x che è definita quando 1+ 1 x > 0, cioè dom h =(, 1) (0, + ) Politecnico di Torino 24

25 Forme indeterminate e iti notevoli Proprietà Vale il seguente risultato x ± µ 1+ 1 x x =e 49 Esempio 1 Verifichiamo che ³ 1+ a = e x ± x x a, a R Per a =0 il risultato è immediato Politecnico di Torino 25

26 Forme indeterminate e iti notevoli Esempio 1 a 6= 0. y = x a ³ 1+ a = x ± x x y ± Sia Poniamo e otteniamo ay = y ± µ 1+ 1 y µ 1+ 1 y a y =e a 51 Esempio 2 Verifichiamo che (1 + x)1/x =e Poniamo y = 1 x e otteniamo (1 + x)1/x = y ± µ 1+ 1 y y =e Politecnico di Torino 26

27 Forme indeterminate e iti notevoli Esempio 3 Verifichiamo che log a (1 + x) x = 1 log a, a >0 Si ha log a (1 + x) x = log a (1 + x) 1/x =log a (1 + x) 1/x =log a e = 1 log a 53 Esempio 3 log a (1 + x) x = 1 log a, a >0 In particolare, per a =e otteniamo log(1 + x) x = Politecnico di Torino 27

28 Forme indeterminate e iti notevoli Esempio 4 Verifichiamo che a x 1 x =loga, a >0 Osserviamo che y = a x 1 a x =1+y x =log a (1 + y) Inoltre y 0 se x 0 55 Esempio 4 Si ha a x 1 x = y 0 = y 0 y log a (1 + y) 1 log a (1 + y) =loga y Politecnico di Torino 28

29 Forme indeterminate e iti notevoli Esempio 5 a x 1 x =loga, a >0 In particolare, per a =e otteniamo e x 1 x =1 57 Esempio 5 Verifichiamo che (1 + x) α 1 x Poniamo 1+x =e y y 0 per x 0 = α, α R e osserviamo che Politecnico di Torino 29

30 Forme indeterminate e iti notevoli Esempio 5 Si ha (1 + x) α 1 x = y 0 e αy 1 y (e α ) y 1 = y 0 y =loge α = α. = y 0 e αy 1 e y 1 y e y 1 y 0 y e y 1 59 sin x x =1 1 cos x x 2 = 1 2 ³ 1+ a =e x ± x x a (a R) (1 + x)1/x =e Tabella iti notevoli Politecnico di Torino 30

31 Forme indeterminate e iti notevoli Tabella iti notevoli in particolare a x 1 x in particolare log a (1 + x) x (1 + x) α 1 x = 1 log a log(1 + x) x =loga (a >0) e x 1 x = α =1 (a>0) =1 (α R) 61 Forme indeterminate e iti notevoli 2006 Politecnico di Torino 31

32 Forme indeterminate e iti notevoli Altre forme indeterminate Consideriamo l espressione f(x) g(x) f Supponiamo che e siamo definite in I(c) \{c} con f(x) > 0 e ammettano ite x c. per tendente a Si ha g x c f(x)g(x) =exp (g(x)logf(x)) x c ³ g(x)logf(x) =exp x c 63 Altre forme indeterminate: primo caso ³ g(x)logf(x) =exp x c x c f(x)g(x) g f 1, log f 0 Se tende e tende a (e dunque tende a ): g(x) = x c log f(x) =0 x c e f(x) =1 x c da cui si presenta una forma indeterminata del tipo Politecnico di Torino 32

33 Forme indeterminate e iti notevoli La funzione h(x) = µ 1+ 1 x x Esempio per tipo x ± 1 µ 1+ 1 x =e x ± x è una forma indeterminata del 65 Altre forme indeterminate: secondo caso ³ g(x)logf(x) =exp x c x c f(x)g(x) g 0 f 0 log f Se tende a ed tende a (e dunque tende a ): g(x) =0 x c e f(x) =0 x c da cui x c log f(x) = 0 0 si presenta una forma indeterminata del tipo Politecnico di Torino 33

34 Forme indeterminate e iti notevoli Esempio La funzione per x 0 + è una forma indeterminata di tipo 0 0 Dimostreremo che h(x) =x x =e x log x x log x =0 + + h(x) =1 e dunque 67 g Altre forme indeterminate: terzo caso ³ g(x)logf(x) =exp x c x c f(x)g(x) 0 f + log f + Se tende a ed tende a (e dunque tende a ): g(x) =0 x c e log f(x) =+ x c f(x) = x c da cui si presenta una forma indeterminata del tipo Politecnico di Torino 34

35 Forme indeterminate e iti notevoli La funzione per tipo h(x) =x 1/x =e log x x x + 0 Usando la sostituzione y = 1 x log 1 = log y, si ottiene y è una forma indeterminata del e l identità Esempio x + log x x = y 0 + y log y = Politecnico di Torino 35

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti Limiti e continuità Teorema di unicità del ite Teorema di permanenza del segno Teoremi del confronto Algebra dei iti 2 2006 Politecnico di Torino 1 Se f(x) =` ` è unico Per assurdo, siano ` 6= `0 con f(x)

Dettagli

Calcolo integrale. Regole di integrazione

Calcolo integrale. Regole di integrazione Calcolo integrale Linearità dell integrale Integrazione per parti Integrazione per sostituzione Integrazione di funzioni razionali 2 2006 Politecnico di Torino Proprietà Siano e funzioni integrabili su

Dettagli

LIMITI - ESERCIZI SVOLTI

LIMITI - ESERCIZI SVOLTI LIMITI - ESERCIZI SVOLTI ) Verificare mediante la definizione di ite che a) 3 5) = b) = + ) c) 3n n + n+ = + d) 3+ = 3. ) Calcolare utilizzando i teoremi sull algebra dei iti a) 3 + ) b) + c) 0 + d) ±

Dettagli

Corso di Analisi Matematica Limiti di funzioni

Corso di Analisi Matematica Limiti di funzioni Corso di Analisi Matematica Limiti di funzioni Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 39 1 Definizione di ite 2 Il calcolo dei

Dettagli

13 LIMITI DI FUNZIONI

13 LIMITI DI FUNZIONI 3 LIMITI DI FUNZIONI Estendiamo la nozione di ite a funzioni reali di variabile reale. Definizione caratterizzazione per successioni) Si ha fx) = L x 0, L R) se e solo se per ogni successione a n x 0 con

Dettagli

Analisi matematica I. Confronto locale di funzioni. Simboli di Landau. Infinitesimi ed infiniti Politecnico di Torino 1

Analisi matematica I. Confronto locale di funzioni. Simboli di Landau. Infinitesimi ed infiniti Politecnico di Torino 1 Analisi matematica I Confronto locale di funzioni Infinitesimi ed infiniti 2 2006 Politecnico di Torino 1 Confronto locale di funzioni Definizioni dei simboli di Landau Proprietà dei simboli di Landau

Dettagli

Proprietà globali delle funzioni continue

Proprietà globali delle funzioni continue Limiti e continuità Teorema di esistenza degli zeri Teorema dei valori intermedi Teorema di Weierstrass Teoremi sulla continuità della funzione inversa 2 2006 Politecnico di Torino 1 Data una funzione

Dettagli

41 POLINOMI DI TAYLOR

41 POLINOMI DI TAYLOR 4 POLINOMI DI TAYLOR DERIVATE DI ORDINI SUCCESSIVI Allo stesso modo della derivata seconda si definiscono per induzione le derivate di ordine k: la funzione derivata 0-ima di f si definisce ponendo f (0

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

CORSO DI LAUREA IN FISICA

CORSO DI LAUREA IN FISICA CORSO DI LAUREA IN FISICA ANALISI MATEMATICA I BREVI RICHIAMI DELLA TEORIA DEI LIMITI. Confronto di infinitesimi. Sia A sottoinsieme di R, sia 0 punto di accumulazione di A nella topologia di R quindi

Dettagli

CORSO DI LAUREA IN MATEMATICA

CORSO DI LAUREA IN MATEMATICA CORSO DI LAUREA IN MATEMATICA ESERCITAZIONI DI ANALISI MATEMATICA I BREVI RICHIAMI DELLA TEORIA DEI LIMITI. Confronto di infinitesimi. Sia A sottoinsieme di R, sia 0 punto di accumulazione di A nella topologia

Dettagli

Sviluppi di Taylor e applicazioni

Sviluppi di Taylor e applicazioni Sviluppi di Taylor e applicazioni Somma di sviluppi Prodotto di sviluppi Quoziente di sviluppi Sviluppo di una funzione composta Calcolo di ordini di infinitesimo e di parti principali Comportamento locale

Dettagli

Quando non espressamente detto, intendiamo che: f : R R x 0 R è punto di accumulazione per dom(f).

Quando non espressamente detto, intendiamo che: f : R R x 0 R è punto di accumulazione per dom(f). Teoremi sui iti Quando non espressamente detto, intendiamo che: f : R R 0 R è punto di accumulazione per dom(f). Teorema di unicità del ite. Supponiamo che f ammetta ite l (finito o infinito) per 0. Allora

Dettagli

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,

Dettagli

Confronto locale di funzioni

Confronto locale di funzioni Confronto locale di funzioni Equivalenza di funzioni in un punto Sia A R ed f, g due funzioni definite in A a valori in R. Sia x 0 R un punto di accumulazione per A. Definizione. Si dice che f è equivalente

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

Analisi matematica I. Sviluppi di Taylor e applicazioni. Sviluppi di Taylor. Operazioni sugli sviluppi di Taylor e applicazioni

Analisi matematica I. Sviluppi di Taylor e applicazioni. Sviluppi di Taylor. Operazioni sugli sviluppi di Taylor e applicazioni Analisi matematica I e applicazioni Operazioni sugli sviluppi di Taylor e applicazioni 2 2006 Politecnico di Torino 1 e applicazioni Formule di Taylor con resto di Peano: caso e n =0 n =1 Formule di Taylor

Dettagli

Limiti di funzioni. Parte 2 calcolo. prof. Paolo Sarti Liceo Scientifico Statale A. Volta Milano, 10/2016

Limiti di funzioni. Parte 2 calcolo. prof. Paolo Sarti Liceo Scientifico Statale A. Volta Milano, 10/2016 Limiti di funzioni Parte calcolo prof. Paolo Sarti Liceo Scientifico Statale A. Volta Milano, /6 L insieme R Il calcolo dei iti delle funzioni reali di variabile reale avviene nell insieme esteso dei numeri

Dettagli

Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x).

Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x). Esercizi svolti. Discutendo graficamente la disequazione > 3 +, verificare che l insieme delle soluzioni è un intervallo e trovarne gli estremi.. Descrivere in forma elementare l insieme { R : + > }. 3.

Dettagli

17 LIMITI E COMPOSIZIONE

17 LIMITI E COMPOSIZIONE 17 LIMITI E COMPOSIZIONE L operazione di ite si comporta bene per composizione con funzioni continue. Teorema. Sia gx) = y 0 e sia f continua in y 0. Allora esiste fgx)) = fy 0 ). Questo teorema ci dice

Dettagli

Quando non espressamente detto, intendiamo che: f : R R x 0 R è punto di accumulazione per dom(f).

Quando non espressamente detto, intendiamo che: f : R R x 0 R è punto di accumulazione per dom(f). Teoremi sui iti Quando non espressamente detto, intendiamo che: f : R R 0 R è punto di accumulazione per dom(f). Teorema di unicità del ite. Supponiamo che f ammetta ite l (finito o infinito) per 0. Allora

Dettagli

vuol dire che preso M > 0 sufficientemente grande, esiste δ = δ(m) > 0 tale per cui x 1 > M lim

vuol dire che preso M > 0 sufficientemente grande, esiste δ = δ(m) > 0 tale per cui x 1 > M lim AMA Ing.Edile - Prof. Colombo Esercitazioni: Francesco Di Plinio - francesco.diplinio@libero.it Limiti - Soluzioni. Esercizio 5.2. ii) Dire che x 5 x + x = +, vuol dire che preso M > 0 sufficientemente

Dettagli

Metodi Matematici per l Economia anno 2017/2018 Gruppo B

Metodi Matematici per l Economia anno 2017/2018 Gruppo B Metodi Matematici per l Economia anno 2017/2018 Gruppo B Docente: Giacomo Dimarco Dipartimento di Matematica e Informatica Università di Ferrara https://sites.google.com/a/unife.it/giacomo-dimarco-home-page/

Dettagli

Matematica e Statistica per Scienze Ambientali

Matematica e Statistica per Scienze Ambientali per Scienze Ambientali Derivate - Appunti 1 1 Dipartimento di Matematica Sapienza, Università di Roma Roma, Novembre 2013 Retta secante un grafico e rapporto incrementale Sia f una funzione e x 0 un punto

Dettagli

1 Successioni di funzioni

1 Successioni di funzioni Successioni di Esercizio.. Studiare la convergenza puntuale ed uniforme della seguente successione di (.) f n (x) = n x Osserviamo che fissato x R f n(x) = + n x x R. x ( n + x ) = pertanto la successione

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria Formule di Taylor Ottobre 2012

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria Formule di Taylor Ottobre 2012 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it Formule di Taylor Ottobre 2012 Indice 1 Formule di Taylor 1 1.1 Il polinomio di Taylor...............................

Dettagli

Corsi di Laurea in Matematica e in Fisica. Prova scritta di Analisi Matematica I. Lecce, 12.IX.2016

Corsi di Laurea in Matematica e in Fisica. Prova scritta di Analisi Matematica I. Lecce, 12.IX.2016 Lecce, 12IX2016 1 Tracciare il grafico della funzione definita dalla seguente e- { 1 + x } f(x) = x exp 1 x sin(1/x)[e x + 2x 2 log cos x] x z 2 i z = z 2 e rappresentare le soluzioni sul piano complesso

Dettagli

Alcune nozioni di calcolo differenziale

Alcune nozioni di calcolo differenziale Alcune nozioni di calcolo differenziale G. Mastroeni, M. Pappalardo 1 Limiti per funzioni di piu variabili Supporremo noti i principali concetti algebrici e topologici relativi alla struttura dello spazio

Dettagli

Analisi Matematica 1 (Modulo) Prove Parziali A.A. 1999/2008

Analisi Matematica 1 (Modulo) Prove Parziali A.A. 1999/2008 Analisi 1 Polo di Savona Analisi Matematica 1 (Modulo) Prove Parziali A.A. 1999/2008 1- PrA1.TEX [] Analisi 1 Polo di Savona Prima prova Parziale 21/10/1998 Prima prova Parziale 21/10/1998 Si consideri

Dettagli

Corso di Analisi Matematica

Corso di Analisi Matematica Corso di Laurea in Ingegneria Edile Corso di TEOREMI DEL CALCOLO DIFFERENZIALE Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Teorema di Estremi locali Richiamiamo la

Dettagli

Continuità di funzioni

Continuità di funzioni Continuità di funzioni Annalisa Cesaroni, Paola Mannucci e Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica 2 novembre 2015 Annalisa Cesaroni, Paola Mannucci e Alvise Sommariva

Dettagli

Esercizi sulle Funzioni

Esercizi sulle Funzioni AM0 - A.A. 03/4 ALFONSO SORRENTINO Esercizi sulle Funzioni Esercizio svolto. Trovare i domini di definizione delle seguenti funzioni: a) f) sin + cos ; b) g) log ) ; c) h) sin + e sin. Soluzione. a) La

Dettagli

Simboli di Landau. Equivalenza. Esempi (limiti notevoli).

Simboli di Landau. Equivalenza. Esempi (limiti notevoli). Simboli di Landau Conducono ad un algebra snella e significativa per il calcolo di iti Procurano un linguaggio tecnico per confrontare il comportamento di due funzioni nell intorno bucato di c (comportamento

Dettagli

Limiti e continuità. Limiti di funzioni

Limiti e continuità. Limiti di funzioni Limiti e continuità Limite all ininito di una unzione Limite al inito di una unzione Continuità di una unzione Limite ininito al inito di una unzione Limiti laterali di una unzione Punti di discontinuità

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

SVILUPPI DI TAYLOR Esercizi risolti

SVILUPPI DI TAYLOR Esercizi risolti Esercizio 1 SVILUPPI DI TAYLOR Esercizi risolti Utilizzando gli sviluppi fondamentali, calcolare gli sviluppi di McLaurin con resto di Peano delle funzioni seguenti fino all ordine n indicato: 1. fx log1

Dettagli

Argomento 6 Derivate

Argomento 6 Derivate Argomento 6 Derivate Derivata in un punto Definizione 6. Data una funzione f definita su un intervallo I e 0 incrementale di f in 0 di incremento h = 0 = il rapporto I, si chiama rapporto per = 0 + h =

Dettagli

Calcolo integrale: esercizi svolti

Calcolo integrale: esercizi svolti Calcolo integrale: esercizi svolti Integrali semplici................................ Integrazione per parti............................. Integrazione per sostituzione......................... 4 4 Integrazione

Dettagli

Teoremi di Fermat, Rolle, Lagrange, Cauchy, de l Hôpital

Teoremi di Fermat, Rolle, Lagrange, Cauchy, de l Hôpital Teoremi di Fermat, Rolle, Lagrange, Cauchy, de l Hôpital Copyright c 2007 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Teoremi

Dettagli

8. Il teorema dei due carabinieri

8. Il teorema dei due carabinieri 8. Il teorema dei due carabinieri Teorema del confronto (o dei due carabinieri) Consideriamo due funzioni f( ), g( ) per le quali risulti, in un punto di accumulazione per i loro domini : f ( ) g( ) Se

Dettagli

Definizione (Derivata come limite del rapporto incrementale) Se esiste finito (cioè, non + o ) il limite del rapporto incrementale

Definizione (Derivata come limite del rapporto incrementale) Se esiste finito (cioè, non + o ) il limite del rapporto incrementale Funzione derivabile. La derivata. Dati: f I R funzione; I R intervallo aperto ; x 0 I. Definizione (Derivata come ite del rapporto incrementale) Se esiste finito (cioè, non + o ) il ite del rapporto incrementale

Dettagli

25 IL RAPPORTO INCREMENTALE - DERIVATE

25 IL RAPPORTO INCREMENTALE - DERIVATE 25 IL RAPPORTO INCREMENTALE - DERIVATE Definizione Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come P f (x, y = f(x

Dettagli

19 LIMITI FONDAMENTALI - II

19 LIMITI FONDAMENTALI - II 19 LIMITI FONDAMENTALI - II 3. Il ite che permette il calcolo di forme indeterminate in cui sono presenti funzioni logaritmiche è: log1 + = 1. La dimostrazione di questo ite si ha subito dal ite Esempio.

Dettagli

ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI

ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI Tiziana Raparelli 5/5/9 CONOSCENZE PRELIMINARI Vogliamo calcolare f ( x, ax + bx + c ) dx. Se a =, allora basta porre bx + c

Dettagli

LIMITI - CONFRONTO LOCALE Test di autovalutazione

LIMITI - CONFRONTO LOCALE Test di autovalutazione LIMITI - CONFRONTO LOCALE Test di autovalutazione 1. Per 0 le funzioni 1 cos e sin (a) sono infinitesime dello stesso ordine (b) 1 cos è infinitesima di ordine inferiore (c) 1 cos è infinitesima di ordine

Dettagli

QUINTA LEZIONE (11/11/2009) Argomenti trattati: calcolo di limiti, continuitá di una funzione.

QUINTA LEZIONE (11/11/2009) Argomenti trattati: calcolo di limiti, continuitá di una funzione. QUINTA LEZIONE //9) Argomenti trattati: calcolo di iti, continuitá di una funzione. Esercizi svolti. Calcolo di iti Nello svolgere i seguenti iti daremo per assodato la conoscenza di alcuni iti fondamentali:

Dettagli

R. Capone Analisi Matematica Limiti di una funzione reale di variabile reale ESERCIZI SUI LIMITI DI FUNZIONE ( )

R. Capone Analisi Matematica Limiti di una funzione reale di variabile reale ESERCIZI SUI LIMITI DI FUNZIONE ( ) Esercizio proposto N 1 Verificare che ESERCIZI SUI LIMITI DI FUNZIONE Si ricordi la definizione di ite finito in un punto: Pertanto, applicando la definizione al caso concreto, si ha: o, ciò che è lo stesso:

Dettagli

Gli intervalli di R. (a, b R, a b)

Gli intervalli di R. (a, b R, a b) Deinizione (Funzione continua (A.Cauchy, 180)) Siano D R una unzione, D R, x 0 D. Si dice che è continua nel punto x 0 D, se per ogni ε > 0 esiste un δ > 0 per il quale è soddisatta questa condizione:

Dettagli

Funzioni di più variabli: dominio, limiti, continuità

Funzioni di più variabli: dominio, limiti, continuità Funzioni di più variabli: dominio, limiti, continuità Riccarda Rossi Università di Brescia Analisi Matematica B Riccarda Rossi (Università di Brescia) Funzioni di più variabli Analisi Matematica B 1 /

Dettagli

LIMITI E CONTINUITÀ 1 / ESERCIZI PROPOSTI

LIMITI E CONTINUITÀ 1 / ESERCIZI PROPOSTI ANALISI MATEMATICA I - A.A. 03/04 LIMITI E CONTINUITÀ / ESERCIZI PROPOSTI L asterisco contrassegna gli esercizi più difficili. Definizioni di ite e di continuità. Sia k>0un parametro reale fissato. Verificare

Dettagli

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 14 gennaio 2017 Fila 1.

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 14 gennaio 2017 Fila 1. Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA Prova scritta del gennaio 207 Fila. Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 6) Determinare

Dettagli

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI Risolvere le seguenti disequazioni: ( 1 ) x < x + 1 1) 4x + 4 x ) x + 1 > x 4x x 10 ) x 4 x 5 4x + > ; 4) ; 5) 0; ) x 1 x + 1 x

Dettagli

Funzioni e loro proprietà. Immagini e controimmagini. Funzioni composte e inverse. Funzioni elementari Quiz

Funzioni e loro proprietà. Immagini e controimmagini. Funzioni composte e inverse. Funzioni elementari Quiz Funzioni e loro proprietà. Immagini e controimmagini. Funzioni composte e inverse. Funzioni elementari Quiz Rispondere ai seguenti quesiti. Una sola risposta e corretta. 1. Le due funzioni f(x) = ln(x

Dettagli

CORSO DI LAUREA IN MATEMATICA ESERCIZI SUI LIMITI 2

CORSO DI LAUREA IN MATEMATICA ESERCIZI SUI LIMITI 2 CORSO DI LAUREA IN MATEMATICA ESERCITAZIONI DI ANALISI MATEMATICA I ESERCIZI SUI LIMITI CALCOLARE IL VALORE DEI SEGUENTI LIMITI sine 4 log e e sin e 5 tan sin 5 7 tan 9 sin + e e + 4 6 8 + 0 n + log +

Dettagli

INFINITESIMI ed INFINITI a cura di Angelica Malaspina Università degli Studi della Basilicata

INFINITESIMI ed INFINITI a cura di Angelica Malaspina Università degli Studi della Basilicata INFINITESIMI ed INFINITI a cura di Angelica Malaspina Università degli Studi della Basilicata In queste pagine utilizzeremo il simbolo R = [, + ]. Se x 0 R, con la scrittura x x 0 intenderemo che x x 0

Dettagli

Studio Qualitativo di Funzione

Studio Qualitativo di Funzione Studio Qualitativo di Funzione Reperire un certo numero di informazioni per descrivere a livello qualitativo l andamento del grafico di una funzione f 1. campo di esistenza (cioè, l insieme di definizione)

Dettagli

1 Limiti e continuità per funzioni di una variabile

1 Limiti e continuità per funzioni di una variabile 1 Limiti e continuità per funzioni di una variabile Considerazioni introduttive Consideriamo la funzione f() = sin il cui dominio naturale è R\ {0}. Problema: non è possibile calcolare il valore di f per

Dettagli

rapporto tra l'incremento della funzione e l' incremento corrispondente della

rapporto tra l'incremento della funzione e l' incremento corrispondente della DERIVATA Sia y f() una funzione reale definita in un intorno di. Si consideri un incremento (positivo o negativo) di : h; la funzione passerà allora dal valore f( ) a quello di f( +h), subendo così un

Dettagli

21 IL RAPPORTO INCREMENTALE - DERIVATE

21 IL RAPPORTO INCREMENTALE - DERIVATE 21 IL RAPPORTO INCREMENTALE - DERIVATE Definizione Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come P f (x, y = f(x

Dettagli

Limite. Se D non è limitato si può fare il limite di f(x) per x che tende

Limite. Se D non è limitato si può fare il limite di f(x) per x che tende Appunti sul corso di Complementi di Matematica,mod.Analisi, prof. B.Bacchelli - a.a. 200/20. 05 - Limiti continuità: Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3., 3.2. - Esercizi 3., 3.2.

Dettagli

ANALISI MATEMATICA. Prova scritta del 20/12/ FILA 1

ANALISI MATEMATICA. Prova scritta del 20/12/ FILA 1 ANALISI MATEMATICA CORSO C - CdL INFORMATICA Prova scritta del 0//004 - FILA ESERCIZIO Studiare la funzione f(x) log x log x determinando in particolare a) campo di esistenza ed eventuali asintoti; b)

Dettagli

Funzioni reali di variabile reale

Funzioni reali di variabile reale Funzioni reali di variabile reale Equazioni e disequazioni. In questa parte ricordiamo per completezza le prime nozioni e i primi principi sulle equazioni e disequazioni: sono le stesse nozioni e principi

Dettagli

Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli x R che verificano le condizioni:

Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli x R che verificano le condizioni: Studi di funzione 5) Studiare la funzione definita da f() = arcsin ( ) + 3 2 +. Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli R che verificano le condizioni: () : +,

Dettagli

Limiti di funzioni di due variabili

Limiti di funzioni di due variabili Limiti di funzioni di due variabili Definizione 1 Sia f : A R 2 R e x 0 = (x 0, y 0 ) punto di accumulazione di A. Diciamo che se e solo se Diciamo che se e solo se f(x) = f(x, y) = L x x 0 (x,y) (x 0,y

Dettagli

TAVOLA DEGLI INTEGRALI INDEFINITI

TAVOLA DEGLI INTEGRALI INDEFINITI Integrazione di funzioni elementari c c ln c arc tan c arc tan c a a a e e c TAVOLA DEGLI INTEGRALI INDEFINITI Integrazione di funzioni composte f( ) f ( ) f '( ) C ' f ln f ( ) c f( ) f '( ) arctan( f

Dettagli

(File scaricato da lim. x 1. x + ***

(File scaricato da  lim. x 1. x + *** Esercizio 35 File scaricato da http://www.etrabyte.info) Calcolare: 3 ) 3 + Risulta: 3 ) 3 = + La forma indeterminata può essere rimossa determinando un fattore razionalizzante. In generale, se il fattore

Dettagli

Funzioni e grafici. prof. Andres Manzini

Funzioni e grafici. prof. Andres Manzini Università degli studi di Modena e Reggio Emilia Dipartimento di Scienze e Metodi dell Ingegneria Corso MOOC Iscriversi a Ingegneria Reggio Emilia Introduzione Definizione Si dice funzione (o applicazione)

Dettagli

Massimo limite e minimo limite di una funzione

Massimo limite e minimo limite di una funzione Massimo limite e minimo limite di una funzione Sia f : A R una funzione, e sia p DA). Per ogni r > 0, l insieme ) E f p r) = { fx) x A I r p) \ {p} } è non vuoto; inoltre E f p r ) E f p r ) se 0 < r r.

Dettagli

ORDINAMENTO SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1

ORDINAMENTO SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1 www.matefilia.it ORDINAMENTO 2003 - SESSIONE SUPPLETIVA QUESTIONARIO QUESITO Tra i rettangoli aventi la stessa area di 6 m 2 trovare quello di perimetro minimo. Indicate con x ed y le misure della base

Dettagli

Ingegneria civile - ambientale - edile

Ingegneria civile - ambientale - edile Ingegneria civile - ambientale - edile Analisi - Prove scritte dal 7 Prova scritta del 9 giugno 7 Esercizio Determinare i numeri complessi z che risolvono l equazione Esercizio (i) Posto a n = n i z z

Dettagli

Analisi Matematica 1+2

Analisi Matematica 1+2 Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-700 Savona Tel. +39 09 264555 - Fax +39 09 264558 Ingegneria Gestionale Analisi Matematica +2 A.A 998/99 - Prove parziali

Dettagli

Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni

Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni Esercizi proposti 1. Calcolare la derivata prima f () per le seguenti funzioni: a) f() = c) f() = ( 1 + 1 b) f() = 1 arctan ) d) f() = cos ( ( + ) 5) e) f() = 1 + sin 1 f) f() = arcsin 1. Determinare i

Dettagli

1. Scrivere il termine generale a n delle seguenti successioni e calcolare lim n a n:

1. Scrivere il termine generale a n delle seguenti successioni e calcolare lim n a n: Serie numeriche.6 Esercizi. Scrivere il termine generale a n delle seguenti successioni e calcolare a n: a),, 4, 4 5,... b), 9, 4 7, 5 8,... c) 0,,,, 4,.... Studiare il comportamento delle seguenti successioni

Dettagli

DERIVATA DI UNA FUNZIONE REALE. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR.

DERIVATA DI UNA FUNZIONE REALE. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR. DERIVATA DI UNA FUNZIONE REALE 1. Definizioni. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR. DEFINIZIONE 1. Sia x 0 un elemento di I. Per ogni x (I \ {x 0 }) consideriamo

Dettagli

19. Lezione. f (x) =,

19. Lezione. f (x) =, IST. DI MATEMATICA I [A-E] mercoledì 30 novembre 2016 19. Lezione 19.1. Formula di Taylor e punti stazionari. Sia f (x 0 ) = 0 come decidere se x 0 è punto di minimo o di massimo? Con la formula di Taylor

Dettagli

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 76-93

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 76-93 Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 76-93 5. Funzioni continue Soluzione dell Esercizio 76. Osserviamo che possiamo scrivere p() = n (a n + u()) e q() = m (b m + v()) con lim

Dettagli

Istituzioni di Matematiche, Integrali fratti. corso di laurea in Scienze geologiche. Mauro Costantini

Istituzioni di Matematiche, Integrali fratti. corso di laurea in Scienze geologiche. Mauro Costantini Istituzioni di Matematiche, Integrali fratti corso di laurea in Scienze geologiche. Mauro Costantini tipo: Il nostro obiettivo è studiare gli integrali (indefiniti e definiti delle funzioni razionali,

Dettagli

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni Soluzioni dello scritto di Analisi Matematica II - /7/9 C.L. in Matematica e Matematica per le Applicazioni Proff. K. Payne, C. Tarsi, M. Calanchi Esercizio. a La funzione f è limitata e essendo lim fx

Dettagli

ESERCIZIARIO SULL'APPLICAZIONE DELLE DERIVATE

ESERCIZIARIO SULL'APPLICAZIONE DELLE DERIVATE ESERCIZIARIO SULL'APPLICAZIONE DELLE DERIVATE Determinare l incremento della funzione f (x) = x 2 relativo al punto x 0 e all incremento x x 0, nei seguenti casi:. x 0 =, x = 2 2. x 0 =, x =. 3. x 0 =,

Dettagli

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo C.6 Funzioni continue Pag. 114 Dimostrazione del Corollario 4.25 Corollario 4.25 Sia f continua in un intervallo I. Supponiamo che f ammetta, per x tendente a ciascuno degli estremi dell intervallo, iti

Dettagli

Appunti di ANALISI MATEMATICA II Corso di Laurea Triennale in Matematica

Appunti di ANALISI MATEMATICA II Corso di Laurea Triennale in Matematica Appunti di ANALISI MATEMATICA II Corso di Laurea Triennale in Matematica Umberto Massari Anno accademico 3-4 SUCCESSIONI E SERIE DI FUNZIONI. Successioni di funzioni: convergenza puntuale ed uniforme Sia

Dettagli

1 Il Teorema della funzione implicita o del Dini

1 Il Teorema della funzione implicita o del Dini 1 Il Teorema della funzione implicita o del Dini Ricordiamo che dato un punto x R n, un aperto A R n che contiene x si dice intorno (aperto) di x. Teorema 1.1. (I Teorema del Dini) Sia f : A (aperto) R

Dettagli

tele limite è unico. Ciò significa che se non può accadere che una funzione abbia limiti diversi per x. Se per assurdo si avesse che lim f ( x)

tele limite è unico. Ciò significa che se non può accadere che una funzione abbia limiti diversi per x. Se per assurdo si avesse che lim f ( x) Calcolo dei iti (C. DIMAURO) Per il calcolo dei iti ci serviamo di alcuni teoremi. Tali teoremi visti nel caso in cui, valgono anche quando Teorema dell unicità del ite: se una funzione ammette ite per

Dettagli

Polinomi. 2 febbraio Docente: Francesca Benanti. L Anello dei Polinomi. Divisibilità in K[x] Scomposizione di... Prodotti Notevoli.

Polinomi. 2 febbraio Docente: Francesca Benanti. L Anello dei Polinomi. Divisibilità in K[x] Scomposizione di... Prodotti Notevoli. Polinomi Docente: Francesca Benanti 2 febbraio 2008 Page 1 of 25 1. L Anello dei Polinomi Lo studio dei polinomi in una indeterminata a coefficienti in un campo è posto immediatamente dopo lo studio degli

Dettagli

I POLINOMI DI TAYLOR. c Paola Gervasio - Analisi Matematica 1 - A.A. 17/18 Sviluppi di Taylor cap7.pdf 1

I POLINOMI DI TAYLOR. c Paola Gervasio - Analisi Matematica 1 - A.A. 17/18 Sviluppi di Taylor cap7.pdf 1 I POLINOMI DI TAYLOR c Paola Gervasio - Analisi Matematica 1 - A.A. 17/18 Sviluppi di Taylor cap7.pdf 1 Calcolo di forme indeterminate del tipo 0/0 Avevamo già visto (cap4a.pdf, pag. 1) che quando si deve

Dettagli

ANALISI MATEMATICA I-A. Prova scritta del 1/9/2009 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE

ANALISI MATEMATICA I-A. Prova scritta del 1/9/2009 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE ANALISI MATEMATICA I-A CORSO DI LAUREA IN FISICA Prova scritta del /9/009 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE ESERCIZIO. Punti 8 Risolvere la seguente equazione nel campo complesso w 6 w 64 = 64 3

Dettagli

Integrali inde niti. F 2 (x) = x5 3x 2

Integrali inde niti. F 2 (x) = x5 3x 2 Integrali inde niti Abbiamo sinora studiato come ottenere la funzione derivata di una data funzione. Vogliamo ora chiederci, data una funzione f, come ottenerne una funzione, che derivata dia f. Esempio

Dettagli

Polinomi. Docente: Francesca Benanti. 16 Febbraio 2007

Polinomi. Docente: Francesca Benanti. 16 Febbraio 2007 Polinomi Docente: Francesca Benanti 16 Febbraio 2007 1 L Anello dei Polinomi Lo studio dei polinomi in una indeterminata a coefficienti in un campo è posto immediatamente dopo lo studio degli interi poichè

Dettagli

I POLINOMI DI TAYLOR. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Sviluppi di Taylor cap7.pdf 1

I POLINOMI DI TAYLOR. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Sviluppi di Taylor cap7.pdf 1 I POLINOMI DI TAYLOR c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Sviluppi di Taylor cap7.pdf 1 Il simbolo o piccolo Siano f (x) e g(x) funzioni infinitesime per x x 0 e consideriamo f (x) il lim

Dettagli

Argomento 6: Derivate Esercizi. I Parte - Derivate

Argomento 6: Derivate Esercizi. I Parte - Derivate 6: Derivate Esercizi I Parte - Derivate E. 6.1 Calcolare le derivate delle seguenti funzioni: 1) log 5 3 + cos ) + 3 + 4 + 3 3) 5 tan 4) ( + 3e ) sin 5) arctan( + 1) 6) log 7) 10) + + 3 8) 3 3 1 + 16 11)

Dettagli

Soluzioni degli esercizi sulle Formule di Taylor

Soluzioni degli esercizi sulle Formule di Taylor Soluzioni degli esercizi sulle Formule di Taylor Formule di MacLaurin più usate (h, n numeri interi non negativi; a numero reale): e t =+t + t! + t3 tn +... + 3! n! + o(tn ) ln( + t) =t t + t3 3 t4 4 +...

Dettagli

DIFFERENZIAZIONE. Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim

DIFFERENZIAZIONE. Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim DIFFERENZIAZIONE 1 Regola della catena Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim = f (x 0 ). x x 0 x x 0 Questa

Dettagli

Esercizi di Analisi Matematica I

Esercizi di Analisi Matematica I Esercizi di Analisi Matematica I (corso tenuto dal Prof Alessandro Fonda) Università di Trieste, CdL Fisica e Matematica, aa 2012/2013 1 Principio di induzione 1 Dimostrare che per ogni numero naturale

Dettagli

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [; ESERCIZIO - Data la funzione f (x) + x2 2x x 2 5x + 6, si chiede di: a) calcolare il dominio di f ; (2 punti) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire se f ha asintoti

Dettagli

Soluzioni degli esercizi sulle FUNZIONI DI DUE VARIABILI

Soluzioni degli esercizi sulle FUNZIONI DI DUE VARIABILI Soluzioni degli esercizi sulle FUNZIONI DI DUE VARIABILI 1. Insiemididefinizione: (a) x + èdefinita se il denominatore è diverso da zero, cioè perx 6= : graficamente x significa rimuovere dal piano la

Dettagli

Università degli Studi di Palermo Facoltà di Economia. CdS Sviluppo Economico e Cooperazione Internazionale. Appunti del corso di Matematica

Università degli Studi di Palermo Facoltà di Economia. CdS Sviluppo Economico e Cooperazione Internazionale. Appunti del corso di Matematica Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 05 - Limiti Anno Accademico 2013/2014 D. Provenzano M. Tumminello,

Dettagli

CORSO DI ANALISI MATEMATICA 2 SOLUZIONI ESERCIZI PROPOSTI 18/03/2013

CORSO DI ANALISI MATEMATICA 2 SOLUZIONI ESERCIZI PROPOSTI 18/03/2013 CORSO DI ANALISI MATEMATICA SOLUZIONI ESERCIZI PROPOSTI 8/03/03 D.BARTOLUCCI, D.GUIDO. La continuità uniforme I ESERCIZIO: Dimostrare che la funzione f(x) = x 3, x A = (, ] non è uniformemente continua

Dettagli

LIMITI. 1. Definizione di limite.

LIMITI. 1. Definizione di limite. LIMITI 1. Definizione di limite. Sia A un sottoinsieme di IR; se il numero reale x 0 è di accumulazione per A in ogni intorno di x 0 si trovano elementi di A distinti da x 0. Allora ha senso chiedersi

Dettagli

y (b) f(x, y) = y log x sin x (c) f(x, y) = tan y (d) f(x, y) = e x y (f) f(x, y) = cos(x 2 + y 2 )

y (b) f(x, y) = y log x sin x (c) f(x, y) = tan y (d) f(x, y) = e x y (f) f(x, y) = cos(x 2 + y 2 ) FUNZIONI DI PIÙ VARIABILI. Siano date le seguenti funzioni: (a) f(x, y) = 3x + y (c) h(x, y) = x y (b) g(x, y) = xy (d) k(x, y) = x + y Determinare e disegnare nel piano cartesiano il dominio delle funzioni

Dettagli