SUCCESSIONI IN R esercizi. R. Argiolas. lim = n

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "SUCCESSIONI IN R esercizi. R. Argiolas. lim = n"

Transcript

1 SUCCESSIONI IN R srcizi R. Argiols L?

2 Qust piccol rccolt di srcizi sull succssioi l cmpo di rli è rivolt tutti gli studti dl corso di lisi mtmtic I, m è prcisr fi d or ch possdr svolgr gli srcizi di qust disps o è codizio é cssri é sufficit pr il suprmto dll sm stsso. Qust disps o sostituisc il liro di tsto dottto, sostituisc l srcitzioi svolt dl doct. Qust disps è solo di supporto tutti coloro ch voglio pprofodir l loro prprzio ll sm co ultriori srcizi oltr qulli dl liro di tsto suggrito dl doct. I qust disps soo stti rccolti lcui dgli srcizi svolti lzio ssgti ll prov scritt, soo quidi srcizi ch possoo trovrsi i u qulsisi tsto di lisi mtmtic dl primo o dl corso di studi. Lo scopo dll disps è di forir u guid pr l soluzio dgli srcizi. Risptto ll vrsio prcdt (Succssioi l cmpo rl, o ccdmico 00/00) soo stti ggiuti ch lcui grfici ch vidzio l dmto dll succssio soo stti ggiuti smpi di succssioi d risolvr sfruttdo l stim sitotich. Rigrzio ticiptmt tutti coloro ch vorro sglrmi vtuli rrori prsti ll disps drmi utili suggrimti pr migliorr il mio lvoro. R.A. N.B. Il it di u succssio si clcol SEMPRE pr. Mi soo ccorto ch i divrsi srcizi prsti ll disps ho omsso rromt il sgo dvti l simolo di ifiito, m tutti i iti vo itsi com clcolti pr.

3 Alcui Richimi Torici Oprzioi sui iti di succssioi Sio, du succssioi covrgti rispttivmt, R, llor vlgoo l sguti oprzioi: A. B. - C. D. s 0 Vlgoo ioltr l sguti proprità pr succssioi divrgti:

4 Limiti di succssioi: Dovdo clcolr il it di u succssio ch si prst com poliomio ll vriil è fcil vrificr ch l dmto dll succssio dipd dl trmi co spot mggior.. Clcolr ( ) soluzio ( ) [ ]. Clcolr ( ) soluzio ( ). Clcolr ( 7 8 ) soluzio 7 8 ( 7 8 ) Form idtrmit Ossrvzio Dir ch u dto it prst u form idtrmit o sigific dir ch il it o sist m sigific ch sso o è immditmt clcolil utilizzdo l oprzioi tipich di iti.

5 L form idtrmit: 0 ± Qudo si vuol dtrmir il it dl rpporto tr du succssioi ogu costituit dll somm di potz di, è util, tlvolt, dividr umrtor domitor pr l potz mggior. Si ricordi ioltr ch: α 0 s α > 0 s α 0 s α < 0 Qudo si vuol clcolr il it di u succssio è smpr mglio vrificr prim s prst u form idtrmit. Esrcizi. Clcolr soluzio Vrifichimo prim l prsz di u form idtrmit, pssimo poi l clcolo dl it mttdo i vidz umrtor domitor. 0 0 Ricordimo ch il it di u costt è l costt stss.

6 Il sgut grfico vidzi l dmto dll succssio pr vlori di d Clcolr soluzio Il procdimto è logo ll srcizio prcdt. Si h: Il sgut grfico idic l dmto dll succssio pr vlori di d Clcolr

7 7 soluzio Si h ch: Il sgut grfico idic l dmto dll succssio pr vlori di d Clcolr soluzio Si otti: 8. Clcolr soluzio Si h ch:

8 ( ). Clcolr ( )( ) soluzio Si otti: ( )( ) Il grfico dll succssio pr grdi vlori di Clcolr soluzio Si otti: 8

9 0. Clcolr soluzio Si otti: Il sgut grfico vidzi l dmto dll succssio pr grdi vlori di Clcolr soluzio

10 0 Grfico dll succssio ssgt: Clcolr soluzio 0. Clcolr soluzio. Clcolr soluzio

11 Grfico dll succssio: Ossrvzio U procdimto pr risolvr iti ch si prsto sotto form idtrmit, cosist l fr pssr l umrtor l irrziolità dl domitor vicvrs, co procdimti loghi qulli ch si uso pr rziolizzr l sprssioi lgrich. Ricordimo ch pr rziolizzr l qutità: st moltiplicr umrtor domitor pr l stss qutità cmit di sgo:,. Si procd i modo logo s si vuol rziolizzr il umrtor:

12 ,. Esrcizi. Clcolr soluzio 7. Clcolr soluzio 0 Grfico dll succssio

13 Clcolr ( 7 ) soluzio ( 7 )( 7 ) 7 ( 7 ) ( 7 ) Grfico dll succssio ssgt: Clcolr soluzio

14 0. Clcolr soluzio

15 Torm di uicità dl it: S il it di u succssio sist, qusto è uico. Si cosidri l succssio, scod dl vlor ssuto d ( d smpio s pri o dispri) l succssio ssum rispttivmt i vlori, quidi il it di tl succssio, o ssdo uico, o sist. Utilizzdo qusto procdimto si può dr stilir s u it sist o mo. Esrcizi Dtrmir qul dll sguti succssioi ho it:. soluzio S il it di u succssio sist qusto dv ssr uico. Studimo quidi il comportmto dll succssio pr diffrti vlori di. pr pri pr dispri il it, o ssdo uico, o sist Grfico dll succssio:

16 soluzio pr pri il it, o ssdo uico, o sist pr dispri Il grfico dll succssio è il sgut: soluzio

17 pr pri pr dispri il it, o ssdo uico, o sist Grfico dll succssio: soluzio pr pri pr dispri il it, o ssdo uico, o sist Il grfico dll succssio è il sgut: 7

18 soluzio pr dispri o sist o ssdo uico, it, il pr pri. 8 7 soluzio pr dispri sist ssdo uico, it, il pr pri

19 Alcui iti otvoli Il umro di Npro x x Ossrvzio Il it otvol, dtto di Npro, così com tutti i iti otvoli, può ssr pplicto qudo l succssio di cui doimo clcolr il it soddisf l codizioi dl it di Npro. Suppoimo si ssgto il sgut srcizio: Esmpio Clcolr: Qusto it, s ricordi il it otvol di Npro, o h l struttur dl it di Npro, iftti l succssio ch si trov domitor (ll itro dll prtsi tod)è diffrt dll succssio ch si trov d spot. No possimo quidi pplicr dirttmt il it di Npro, possimo prò oprr di piccoli trucchi ch ci prmttoo di ricodurr il it ssgto l it otvol di Npro. Pr potr pplicr il it otvol str ch l spot foss, o l succssio, m sì l succssio, possimo llor scrivr, sz modificr il tsto, i qusto modo:

20 0 Clcoldo sprtmt il it dll s il it dll spot si otti: it otvol dsidrto! qusto è proprio il D quto dtto sopr sgu ch: Esmpio Clcolr 0 Svolgimto Covi iizilmt oprr l divisio poliomil tr umrtor domitor 0 0 d cui sgu ch procddo com illustrto ll srcizio prcdt si otti:

21 d cui si ricv: ifi: 8 0 mtr 0 0 il risultto dl it ssgto è: 8 0. Esmpio Clcolr 8 Svolgimto

22 Covi iizilmt oprr l divisio poliomil tr umrtor domitor 8 d cui sgu ch 8 procddo com illustrto ll srcizio prcdt si otti: d cui si ricv: ifi:

23 mtr il risultto dl it ssgto è: 8. Esrcizi Clcolr i sguti iti di succssioi: 7. soluzio si otti: Il grfico dll succssio è il sgut:

24 soluzio. soluzio Si h: 0. soluzio

25 . soluzio 0 0 Grfico dll succssio: Esrcizi Clcolr i sguti iti di succssioi:. soluzio

26 pr dispri pr pri pssdo l it si h ch: it o sist. il pr dispri pr pri. soluzio si h ch: pr dispri pr pri pssdo l it si h ch: it o sist il pr dispri pr pri -.

27 7 soluzio pr dispri pr pri pssdo l it si h ch: pr dispri pr pri - - quidi Si ricordi ch: < > - q s q s 0 q s q s o sist q Il fttoril S è u itro positivo, si dfiisc fttoril si idic co! il prodotto di primi umri itri positivi. I formul k k!:

28 Ioltr, si ssum pr covzio: 0! smpio:!!!! 0 Esrcizi Assgt l succssio clcolr il it dll succssio :!. soluzio Dto il trmi si otti sostitudo co ( )! ( )! ( ) ( )!! ( ).! soluzio ( ) ( )!! 0 7. ( )! soluzio ( ) ( )! ( )! ( ) 0 8

29 8. ( )! soluzio! ( ) ( )! 0. ( )! soluzio! ( )! 0. ( )! soluzio ( ) ( )! ( )!.!! soluzio

30 ( )(! ) ( )!! ( )! ( )( ) Ossrvzio Pr risolvr i sguti iti è util ricordr ch s è u succssio trmii positivi s sist fiito il llor risult: log ( ) log Esrcizi Clcolr i sguti iti di succssioi:. log soluzio: log log log Il sgut grfico vidzi l dmto dll succssio pr grdi vlori di

31 . log soluzio: log log log log. log7 soluzio: log 7 log 7 log 7 log 7. [log ( ) log ( )] soluzio: [log ( ) log ( ) ] [log ] log 0 Grfico dll succssio:

32 Critrio: s è itto 0, llor 0 Esrcizi Clcolr i sguti iti, utilizzdo il critrio sopr ucito: si. soluzio: Poichè si si 0 è itt, iftti si 0, llor si h ch : cos 7. soluzio:

33 Poichè cos cos 0 è itt, iftti cos 0, llor si h ch : cos 8. soluzio: Poichè cos è itt, iftti cos 0, llor si h ch : cos 0 Stim sitotich Spsso clcolr il it di u succssio può ssr prticolrmt difficoltoso. Allor, tlvolt, si crc di smplificr l succssio utilizzdo l rlzio di sitotico. Ricordimo ch dir ch è sitotic scrivrmo s ~.

34 E opportuo ch lo studt coosc l grrchi dgli ifiiti : Ogi ifiito spozil è di ordi suprior ogi ifiito potz, ogi ifiito potz è di ordi suprior ogi ifiito logritmo. Dtto i ltri trmii: L spozil v più vlocmt ll ifiito dll potz, l potz v più vlocmt ll ifiito dl logritmo. Clcolr i sguti iti, utilizzdo l stim sitotich.. soluzio: Il it prcdt prst l form idtrmit ~ 0 l stim umrtor sgu dl ftto ch risptto, qusto prché : è u ifiito di ordi suprior ~ iftti 0 Il grfico dll succssio è il sgut: log log

35 soluzio: 0 quidi ~ log log log log. log log soluzio: 0 log quidi log ~ log log log log. log log 7 soluzio:

36 0 ~ log log 7 log log 7 Grfico dll succssio: soluzio: log ~ log

37 L risoluzio dll srcizio prcdt si s sul ftto ch log ~ iftti ricordimo ch ) log ( ) ~ qudo 0 pr ) log ( ) ~ log qudo pr. 7 log soluzio 7 log ~ 7 quidi : 7 0!. log soluzio 7

38 ! log ~! quidi :! Ossrvzioi Risolvr i iti di succssio utilizzdo l stim sitotich (qudo è possiil!) prmtt o solo di smplificr l succssio stss quidi il clcolo dl suo it, m spsso prmtt di vitr l utilizzo di tcich di risoluzio troppo lort. Vdimo lcui smpi. A pgi dll disps imo clcolto il sgut it: mttdo i vidz umrtor domitor l co grdo mssimo. Lo stsso srcizio potv ssr risolto più smplicmt utilizzdo l stim sitotich, iftti, si h suito ch: ~ quidi ATTENZIONE! Lo studt dv str ttto o commttr l rror sgut! Cosidrimo l srcizio svolto pgi. Clcolr ( ) S si risolvss qust srcizio utilizzdo l stim sitotich si vr ch: 8

39 ~ 0 il risultto dl it quidi sr zro. Il risultto, i qusto cso, è corrtto m il procdimto è cocttulmt scorrtto prché o si posso sostituir trmii sitotici i u somm i cui l prti pricipli si lidoo! L srcizio v risolto rziolizzdo. Si cosidri or l srcizio: Clcolr ( ) Utilizzdo l stim sitotich si trov ch: ~ 0 Risptto ll smpio prcdt, o solo il procdimto è cocttulmt scorrtto, m il risultto è sglito. Lo studt vrifichi, rziolizzdo, ch il risultto dl it è. Si cosidri ivc l srcizio Clcolr ( ) Utilizzdo l stim sitotich si h: ( ) ~ pssdo l it si h ch l succssio divrg. I qusto cso il procdimto è corrtto prch l prti pricipli o si lidoo. Ioltr o è stto cssrio rziolizzr pr clcolr il it (lo studt provi i ogi cso rziolizzr pr vrificr ch il risultto è lo stsso!). Esrcizi: Lo studt riprcorr i vri srcizi prsti ll disps li risolv, qudo è possiil, utilizzdo l stim sitotich vrificdo l sttzz dl risultto.

40 Esrcizi rissutivi. Clcolr ( sugg.: iizilmt oprr l divisio tr umrtor domitor, poi procdr com ll smpio pgi 0, sol. [ ]) 7. Clcolr ( sugg.: iizilmt oprr l divisio tr umrtor domitor, poi procdr com ll smpio pgi 0, sol. ) 8. Clcolr ( sugg.:procdr com ll srcizio, sol. il it o sist). Clcolr ( sugg.:procdr com ll srcizio, sol. il it o sist) 0. Clcolr ( sugg.:procdr com ll srcizio, sol. ) 0

41 . Clcolr ( 7 ) ( sugg.:procdr com ll srcizio 7, sol. [ 0 ]). Clcolr spdo ch ( )! ( sugg.:procdr com ll srcizio, sol. [ 0 ]). Clcolr, utilizzdo l stim sitotich, log 7 ( sugg.:procdr com ll srcizio o 0, sol. [ 0 ]). Clcolr, utilizzdo l stim sitotich, log log ( sugg.:procdr com ll srcizio o 0, sol. [ ] ). Risolvr gli srcizi 0, utilizzdo, qudo è possiil l stim sitotich.

I LIMITI DI FUNZIONI - CALCOLO

I LIMITI DI FUNZIONI - CALCOLO Autor: Erico Mfucci - // I LIMITI DI FUNZIONI - CALCOLO Dopo vr studito l tori di iti, dobbimo dsso vdr com si clcolo. Storicmt il clcolo di iti vi smplificto d u procsso ch prd il om di ritmtizzzio dll

Dettagli

Successioni numeriche

Successioni numeriche 08//05 uccssioi umrich uccssioi umrich Dfiizio U succssio è u fuzio ch d ogi umro turl ssoci u umro rl 0 : 0 : Es. 08//05 uccssioi umrich Dfiizio Il it dll succssio ch ch covrg d ) si idic è il umro rl

Dettagli

se ne costruisca un altra s 1 L operazione che fa passare dalla prima successione alla seconda è detta serie e si indica con il

se ne costruisca un altra s 1 L operazione che fa passare dalla prima successione alla seconda è detta serie e si indica con il 07 SERIE NUMERICHE Dt l succssio,,...,,... s costruisc u ltr s, s,..., s,... tl ch: s... s... s... L oprzio ch f pssr dll prim succssio ll scod è dtt sri si idic co il simbolo...... k. k Gli k si dicoo

Dettagli

dell'intervallo in cui si hanno discontinuità di prima o terza specie. Supponiamo, per semplicità (ma b ed ivi continua b h lim c h b ] e si pone

dell'intervallo in cui si hanno discontinuità di prima o terza specie. Supponiamo, per semplicità (ma b ed ivi continua b h lim c h b ] e si pone INTEGRALI IMPROPRI L tori dll'itgrzio di u fuzio f cotiu i u itrvllo ciuso itto [ ] si può stdr sostitudo l'ipotsi di cotiuità i [ ] dll fuzio f co qull dll ittzz I tl cso si ffrot il prolm dll'itgrzio

Dettagli

x ; sin x log 1 x ; 4 0 0,0.

x ; sin x log 1 x ; 4 0 0,0. .. Pr quli vlori dl prmtro l sri S (i uzio dl prmtro ). q ch covrg s solo s q. q Ricordimo ch pr q è q q q q q h soluzio pr tli vlori l sri covrg S E' u sri gomtric di rgio covrg? Pr tli vlori sprimi l

Dettagli

ESERCIZI SULLE SUCCESSIONI. a n := 2n + 3 3n 7. n n cos 2 n + 2. (3) Dimostrare, attraverso la definizione, che la successione

ESERCIZI SULLE SUCCESSIONI. a n := 2n + 3 3n 7. n n cos 2 n + 2. (3) Dimostrare, attraverso la definizione, che la successione ESERCIZI SULLE SUCCESSIONI VALENTINA CASARINO Esrcizi pr il corso di Aalisi Matmatica, Iggria Gstioal, dll Iovazio dl Prodotto, Mccaica Mccatroica, Uivrsità dgli studi di Padova) ) Vrificar, attravrso

Dettagli

Università di Camerino Corso di Laurea Fisica Indirizzo Tecnologie per l Innovazione Appunti di Calcolo Prof. Angelo Angeletti

Università di Camerino Corso di Laurea Fisica Indirizzo Tecnologie per l Innovazione Appunti di Calcolo Prof. Angelo Angeletti Uivrsità di Camrio Corso di Laura Fisica Idirizzo Tcologi pr l Iovazio Apputi di Calcolo Prof. Aglo Agltti Formula di Taylor Si ricordrà ch l quazio dlla tagt ad ua curva di quazio y f() i u puto è data

Dettagli

( a) 1 a + Es. Data la funzione:

( a) 1 a + Es. Data la funzione: Es. Dt l uzio: ' ' ( Esrcizi Complmtri. A( ( b. Dtrmir pr quli vlori di b l uzio mmtt u puto di mssimo d u puto di miimo pr quli vlori l uzio o mmtt tli puti.. Dtrmir i vlori di b i modo ch l uzio prsti

Dettagli

ESERCIZI SULLE SUCCESSIONI NUMERICHE-SOLUZIONI

ESERCIZI SULLE SUCCESSIONI NUMERICHE-SOLUZIONI ESERCIZI SULLE SUCCESSIONI NUMERICHE-SOLUZIONI Esrcizio ( (i + + + Razioalizziamo: ( + + + ( + + + + ( + + + + [ ( ( ] ( + ( + + + + + + + [ ( + [( + ] ( ] + ( + ( + + + + ( + [( + ] ( + + + ( + ( + Dividiamo

Dettagli

Rap a p p o p r o to o I n I c n r c em e e m n e t n al a e Def. rapporto incrementale nel punto x incremento h Nota:

Rap a p p o p r o to o I n I c n r c em e e m n e t n al a e Def. rapporto incrementale nel punto x incremento h Nota: Rpporto Icrmtl α Δ Δy y m tα y. Il rpporto icrmtl dll uzio l puto rltivo d u icrmto è il coicit olr dll sct l rico dll uzio i puti di sciss d Not: Nll smpio rico è riportto > m, i rl, può ssr c tivo. rivt

Dettagli

FUNZIONI REALI TRASCENDENTI FRT. 1. Potenza a esponente reale

FUNZIONI REALI TRASCENDENTI FRT. 1. Potenza a esponente reale FRT FUNZIONI REALI TRASCENDENTI Potz spot rl Sppimo ch l fuzio rdic qudrt di è l'ivrs dll rstrizio dll fuzio ll'itrvllo [ 0 + [ mt l fuzio rdic cubic di è l'ivrs dll fuzio I modo o possimo iir l fuzio

Dettagli

( ) ε > 0, δ 0. +, con 1. ) si può centrare in c prendendo δ = min { δ1, , δ > 0. I c. c R un punto di I e f una funzione definita in \{ }

( ) ε > 0, δ 0. +, con 1. ) si può centrare in c prendendo δ = min { δ1, , δ > 0. I c. c R un punto di I e f una funzione definita in \{ } Alcu cosidrazioi sulla dfiizio di limit Alcu cosidrazioi sui limiti di fuzioi Itori di u puto U itoro (complto) di u puto è u qualsiasi itrvallo aprto cui il puto apparti Esmpi: (,3) è u itoro di [,3)

Dettagli

SERIE NUMERICHE esercizi. R. Argiolas

SERIE NUMERICHE esercizi. R. Argiolas esercizi R. Argiols L? Quest piccol rccolt di esercizi sulle serie umeriche è rivolt gli studeti del corso di lisi mtemtic I. E bee precisre fi d or che possedere e svolgere gli esercizi di quest dispes

Dettagli

Limiti di successioni - svolgimenti

Limiti di successioni - svolgimenti Limiti di succssioi - svolgimti Scrivrmo a b quado a b =. Calcoliamo qusto it, raccoglido il fattor al umrator al domiator. Si ha 2 + 2 4 = + 2 2 3! 4 3!. Iazitutto, ricordiamo ch Ioltr, si ha utilizzado

Dettagli

1 Studio di funzioni, sviluppi di Taylor e serie

1 Studio di funzioni, sviluppi di Taylor e serie Studio di fuzioi, sviluppi di Taylor sri. Esrcizi. Sia fx = x +. Dtrmiar l isim di dfiizio. Studiar il sgo. Calcolar i iti agli strmi dll isim di dfiizio. Dir s ci soo asitoti. Dtrmiar l isim di cotiuità

Dettagli

Esercizi Svolti di Idrologia. Problemi di bilancio idrologico

Esercizi Svolti di Idrologia. Problemi di bilancio idrologico Esrcizi Svolti di drologi roblmi di bilcio idrologico roblm 1 All szio di ciusur di u bcio idrogrfico di 0 km di suprfici è stt rgistrt u portt mdi u di 0.m s -1. L prcipitzio totl u rgguglit sull r dl

Dettagli

Analisi Matematica I Soluzioni del tutorato 4

Analisi Matematica I Soluzioni del tutorato 4 Corso di laura i Fisica - Ao Accadmico 07/08 Aalisi Matmatica I Soluzioi dl tutorato 4 A cura di David Macra Esrcizio ( i) Domiio di dfiizio: La fuzio o è dfiita s è tal ch l argomto sotto radic sia gativo,

Dettagli

Studio di funzione. Pertanto nello studio di tali funzioni si esamino:

Studio di funzione. Pertanto nello studio di tali funzioni si esamino: Prof. Emnul ANDRISANI Studio di funzion Funzioni rzionli intr n n o... n n Crttristich: sono funzioni continu drivbili in tutto il cmpo rl D R quindi non sistono sintoti vrticli D R quindi non sistono

Dettagli

1 - Estremo superiore ed estremo inferiore di insiemi Soluzioni 1. arctan(n), n N

1 - Estremo superiore ed estremo inferiore di insiemi Soluzioni 1. arctan(n), n N - Estrmo suprior d strmo ifrior di isimi Soluzioi Dato l isim A = { 7 arcta, N calcolar strmo suprior d strmo ifrior, spcificado s siao rispttivamt massimo miimo. Studiamo sparatamt pr pari d dispari.

Dettagli

Es. Data la funzione:

Es. Data la funzione: Es. D l uzio: Esrcizi Complmri. A b. Drmir pr quli vlori di b l uzio mm u puo di mssimo d u puo di miimo pr quli vlori l uzio o mm li pui.. Drmir i vlori di b i modo ch l uzio prsi u mssimo rlivo co ordi

Dettagli

Serie Numeriche e Convergenza Puntuale di Serie di Funzioni

Serie Numeriche e Convergenza Puntuale di Serie di Funzioni Sri umrich sri di fuzioi Sri Numrich Covrgza Putual di Sri di Fuzioi Suto- Il lavoro coti la risoluzio di alcui srcizi sullo studio dl carattr di sri umrich sulla covrgza putual di sri di fuzioi. Gli srcizi

Dettagli

Gerarchia degli infiniti e asintotici per successioni numeriche 1

Gerarchia degli infiniti e asintotici per successioni numeriche 1 Gerrchi degli ifiiti e sitotici per successioi umeriche Sio { } e { } due successioi ifiite Vogo stilire u gerrchi di tli successioi el seso di cofrotre, se possiile, le velocità co le quli le successioi

Dettagli

ln( t + ) dt, calcolare i punti critici di F(x) e

ln( t + ) dt, calcolare i punti critici di F(x) e Prova scritta di Aalisi Matmatica I (VO) or 6/0/0 ) Dfiizio di fuzio cotiua i u puto classificazio di puti di discotiuità Utilizzado la dfiizio dir pr quali valori di k è cotiua i =0 la sgut fuzio l 0

Dettagli

[MnO - 4 ]=0,1 M [Mn 2+ ]=0,1M [H + ] = 0,001 M. Ag 3 PO 4 soluzione satura

[MnO - 4 ]=0,1 M [Mn 2+ ]=0,1M [H + ] = 0,001 M. Ag 3 PO 4 soluzione satura II FALTÀ DI INGEGNERIA dl i Iggri ivil pr l Ambitl il Trritorio (x DM 70/00) IMIA (1 FU) rov d sm scritt dl sttmbr 011 E1) All tmprtur di 80 i u rcipit vuoto si itroduc u qutità sufficit di mooidrogofosfto

Dettagli

Serie. 1. Studiare il carattere delle seguenti serie: e n n + e n. n 3 n2 n e n 2 sin 1 n n log n. e 1 n. ( 2 + sin n 4. n + 1. sin(sin 1 n ) 10) 11)

Serie. 1. Studiare il carattere delle seguenti serie: e n n + e n. n 3 n2 n e n 2 sin 1 n n log n. e 1 n. ( 2 + sin n 4. n + 1. sin(sin 1 n ) 10) 11) Sri. Studiar il carattr dll sguti sri: ) ) 3) 4) 5) 6) 7) 8) 9) 0) ) ) 3) =4 + ( ) 3 si log ( + si 4 + log λ, λ > 0 si(si )! ( si λ, λ R cos(π) . Stabilir pr quali valori dl paramtro ral λ covrg la sri

Dettagli

2.1 Il motore elettrico: considerazioni iniziali. Un motore è una macchina elettrica in cui la potenza di

2.1 Il motore elettrico: considerazioni iniziali. Un motore è una macchina elettrica in cui la potenza di Cpitolo Il motor lttrico. Il motor lttrico: cosidrzioi iizili U motor è u mcchi lttric i cui l potz di igrsso si di tipo lttrico qull di uscit si di tipo mccico [6]. I motori lttrici i corrt cotiu ho u

Dettagli

Compito sugli integrali definiti e impropri (1)

Compito sugli integrali definiti e impropri (1) Compito sugli intgrli dfiniti impropri () Esrcizio Clcolr i sgunti intgrli dfiniti: () () d d ; Esrcizio Stilir s i sgunti intgrli impropri convrgono d, in cso ffrmtivo, scrivr qul vlor: () () d ; d Esrcizio

Dettagli

Esercizi per il corso Matematica clea

Esercizi per il corso Matematica clea Esrcizi pr il corso Matmatica cla Dail Ritlli ao accadmico 008/009 Lzio : Succssioi Sri gomtrica Esrcizi svolti. Provar ch: + ) /. Provar ch: + ) + ) 0. Provar ch: + 4. Provar ch 5. Provar ch + ) + ) 4

Dettagli

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo.

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. 6. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. Funzion sponnzil f ( ) fissto f : ( + ) è l bs dll funzion sponnzil d è fisst è l sponnt dll funzion

Dettagli

ma non sono uguali fra loro

ma non sono uguali fra loro Defiizioe U fuzioe f defiit i D (doiio) si dice cotiu i u puto c D se esiste i tle puto (è cioè possiile clcolre f (c)); se esiste, fiito, il ite dell fuzioe per che tede c e se il vlore del ite coicide

Dettagli

Lezione 3. Omomorfismi di gruppi

Lezione 3. Omomorfismi di gruppi Lzio 3 Prrquisiti: Applicazioi tra isimi. Rlazioi di quivalza. Lzio. Omomorismi di gruppi I qusta lzio itroduciamo uo strumto util a corotar l struttur di gruppi distiti. Diizio 3. Siao (, (, gruppi. U'applicazio

Dettagli

ELETTRONICA DELLO STATO SOLIDO Prova scritta del 7 luglio 2009

ELETTRONICA DELLO STATO SOLIDO Prova scritta del 7 luglio 2009 EETTRONIC DEO STTO SOIDO Prov scritt dl 7 luglio 9 CONOME Nom Mtricol Posto. dll il. Es. I u rticolo cubico, ) trovt gli idici di Millr di du migli di ii ch ccio tr loro u golo di 6. ) Trovt l golo tr

Dettagli

S kx. e che è dispari in quanto

S kx. e che è dispari in quanto imulzion MIUR Esm di tto 09 - mtmtic Prolm f x 0, 0 i h immditmnt: 0 x 0 x f ' x 0 x lim f lim 0 lim f lim x x x x f 0 Il grfico riport l ndmnto; pplicndo ll curv l trslzion di vttor 0;, ovvro: x' x y

Dettagli

LE SUCCESSIONI. ovvero: 1, 2, 1.5, 1., 1.6, 1.625,... I valori ottenuti si avvicinano alla sezione aurea: =

LE SUCCESSIONI. ovvero: 1, 2, 1.5, 1., 1.6, 1.625,... I valori ottenuti si avvicinano alla sezione aurea: = LE SUCCESSIONI Si cosideri l seguete sequez di umeri:,,, 3, 5, 8, 3,, 34, 55, 89, 44, 33, detti di Fibocci. Ess rppreset il umero di coppie di coigli preseti ei primi mesi i u llevmeto! Si cosideri l sequez

Dettagli

Matematica. Indice lezione. (Esercitazioni) dott. Francesco Giannino dott. Valeria Monetti. Funzione esponenziale

Matematica. Indice lezione. (Esercitazioni) dott. Francesco Giannino dott. Valeria Monetti. Funzione esponenziale Mtmtic (Esrcitzioni) Equzioni Disquzioni sponnzili - ritmich dott. Frncsco Ginnino dott. Vlri Montti Indic lzion Funzion sponnzil Equzioni disquzioni sponnzili Funzion ritmo Equzioni disquzioni ritmich

Dettagli

e k Queste sono funzioni oscillanti, periodiche di periodo N/k.

e k Queste sono funzioni oscillanti, periodiche di periodo N/k. Vr.. ot pr Aalisi di Fourir di Squz co l ausilio dl Matlab Cosidriamo ua squza ifiita priodica di priodo, x[t] tal pr cui x[t+t]x[t]. Pr rapprstar tal squza si possoo utilizzar fuzioi complss dl tipo jπ

Dettagli

ESERCITAZIONE DIECI: INTEGRALI DEFINITI E FORMULA DI TAYLOR

ESERCITAZIONE DIECI: INTEGRALI DEFINITI E FORMULA DI TAYLOR ESERCITAZIONE DIECI: INTEGRALI DEFINITI E FORMULA DI TAYLOR Tizin Rprlli 5/5/8 RICHIAMI DI TEORIA Proposizion.. Si f C ([, b]) g C ([, b]), llor f(x)g(x)dx = [F (x)g(x)] b F (x)g (x)dx. dov F (x) è un

Dettagli

LICEO SCIENTIFICO SESSIONE STRAORDINARIA PROBLEMA 2

LICEO SCIENTIFICO SESSIONE STRAORDINARIA PROBLEMA 2 www.mtfili.it LICEO SCIENTIFICO SESSIONE STRAORDINARIA 27 - PROBLEMA 2 L funzioni g, g 2, g, g 4 sono dfinit nl modo sgunt: g (x) = 2 x2 2 g 2 (x) = x g (x) = 2 π cos (π 2 x) ) g 4 (x) = ln( x ) Vrific

Dettagli

LE SUCCESSIONI. ovvero: 1, 2, 1.5, 1., 1.6, 1.625,... I valori ottenuti si avvicinano alla sezione aurea: =

LE SUCCESSIONI. ovvero: 1, 2, 1.5, 1., 1.6, 1.625,... I valori ottenuti si avvicinano alla sezione aurea: = Si cosideri l seguete sequez di umeri:,,, 3, 5, 8, 3,, 34, 55, 89, 44, 33, detti di Fibocci. Ess rppreset il umero di coppie di coigli preseti ei primi mesi i u llevmeto! Si cosideri l sequez otteut dividedo

Dettagli

c) Calcolare la probabilità P{N 120 = 36, N 180 = 48} = b) Calcolare la probabilità condizionata P{M 120 = 6 N 120 = 36} =

c) Calcolare la probabilità P{N 120 = 36, N 180 = 48} = b) Calcolare la probabilità condizionata P{M 120 = 6 N 120 = 36} = Laura Trial i Matmatica, Uivrsità La Sapiza Corso di Probabilità 2, A.A. 26/27 Prova scritta dl 26 Giugo 27 Soluzioi dgli srcizi proposti Esrcizio. Gli arrivi di mssaggi -mail ad u dato idirizzo di posta

Dettagli

(x, y) R, x, y A. def

(x, y) R, x, y A. def 1 F0 RELAZIONI DI EQUIVALENZA 1. Proprità ll rlzioi i u isim Si him rlzio i u isim A, o vuoto, ogi R A. S (x, y) R, iimo h «x è ll rlzio R o y». Normlmt, ll'sprssio (x, y) R si prfris l'sprssio xry, ismt

Dettagli

Note di Matematica Generale

Note di Matematica Generale This is pg i Printr: Opqu this Not di Mtmtic Gnrl Robrto Mont Dcmbr 13, 2005 ii ABSTRACT Ths nots r still work in progrss nd r intndd to b for intrnl us. Pls, don t cit or quot. Contnts This is pg iii

Dettagli

03 FUNZIONI ELEMENTARI

03 FUNZIONI ELEMENTARI 03 FUNZIONI ELEMENTARI I qusto paragrafo dfiiamo l più usuali fuzioi di ua variabil, a partir dall quali, co l oprazioi algbrich la composizio di fuzioi, si ottrrao la maggior part dgli smpi ch icotrrmo.

Dettagli

APPUNTI DI FISICA. Gli errori

APPUNTI DI FISICA. Gli errori APPUNTI DI FISICA Gli rrori Abbiamo misurato la larghzza dllo stsso baco più prso d ogua più volt. Dall' sprimto ffttuato abbiamo costatato ch l misur ottut soo diffrti, ciò ci fa comprdr ch o riuscirmo

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Tema di MATEMATICA a. s

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Tema di MATEMATICA a. s WWWMATEMATICAMENTEIT Corso di ordimto - Sssio ordiri - s 9- ROBLEMA ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Tm di MATEMATICA s 9- Si ABCD u qudrto di lto, u puto di AB γ l circofrz di

Dettagli

Rap a p p o p r o to o I n I c n r c em e e m n e t n al a e Def. rapporto incrementale nel punto x incremento h Nota:

Rap a p p o p r o to o I n I c n r c em e e m n e t n al a e Def. rapporto incrementale nel punto x incremento h Nota: Rpporto Incrmntl α Δ Δy y m tnα y. Il rpporto incrmntl dll unzion nl punto rltivo d un incrmnto è il coicint nolr dll scnt l rico dll unzion ni punti di sciss d Not: Nll smpio rico è riportto > m, in nrl,

Dettagli

1. L'INSIEME DEI NUMERI REALI

1. L'INSIEME DEI NUMERI REALI . L'INSIEME DEI NUMERI REALI. I pricipli isiemi di umeri Ripredimo i pricipli isiemi umerici N, l'isieme dei umeri turli 0; ; ; ; ;... L'ide ituitiv di umero turle è ssocit l prolem di cotre e ordire gli

Dettagli

Esercizi Circuiti Resistivi

Esercizi Circuiti Resistivi srcizi Circuiti sistivi srcizio n isolvr il circuito in figur: v v v v 4 4 5 4 0 0Ω 5Ω 5Ω 4 5Ω Ω 5 v 5 5 4 () isolvr un circuito signific in gnrl dtrminr tnsioni corrnti in tutti i lti dl circuito. Trsformimo

Dettagli

Esonero di Materia Condensata del 28 Gennaio 2009

Esonero di Materia Condensata del 28 Gennaio 2009 Esoro di Mtri Codst dl 8 Gio 9 Risolvr du srcizi sclt fr i tr proposti. Proff. Polo Clvi Mrio Cpizzi º Esrcizio U ct lir è ftt di N toi di ss M 6 u.., ltrti N toi di ss M 8 u.. Lugo l ct si propgo soltto

Dettagli

DEFINIZIONE SUCCESSIONE NUMERICA Una successione numerica è una funzione che ha per dominio l insieme dei numeri naturali { 0;1;2;3;...

DEFINIZIONE SUCCESSIONE NUMERICA Una successione numerica è una funzione che ha per dominio l insieme dei numeri naturali { 0;1;2;3;... SUCCESSIONI DEFINIZIONE SUCCESSIONE NUMERICA U successioe ueric è u fuzioe che h per doiio l isiee dei ueri turli { 0;;;; } N o u suo sottoisiee e coe codoiio R, o u suo sottoisiee I vlori che ssue tle

Dettagli

Corso di Automi e Linguaggi Formali Parte 3

Corso di Automi e Linguaggi Formali Parte 3 Esmpio Sdo il pumping lmm sist tl ch ogni prol di tin un sottostring non vuot ch puo ssr pompt o tglit rpprsntrl com Invc non in dv ssr in posso Corso di Automi Linguggi Formli Gnnio-Mrzo 2002 p.3/22 Corso

Dettagli

LE DERIVATE. derivata di un monomio (1) D a x = a x = na x ESEMPI. derivata di un monomio con n = 1. (2) D a x. ESEMPI, D x =

LE DERIVATE. derivata di un monomio (1) D a x = a x = na x ESEMPI. derivata di un monomio con n = 1. (2) D a x. ESEMPI, D x = LE DERIVATE. GENERALITÀ Dfiizio.) La drivata è u oprator ch ad ua fuzio f associa u altra fuzio ch obbdisc all sguti rgol: () D a a a 0 0 0 D 6 D 0 D drivata di u moomio () D a a 0 0 drivata di u moomio

Dettagli

α = α λ e Essendo ( ) , sostituendo nella (81) si ottiene: (83) 3 (86) Possiamo adesso scrivere la soluzione generale della (81): ~ 2

α = α λ e Essendo ( ) , sostituendo nella (81) si ottiene: (83) 3 (86) Possiamo adesso scrivere la soluzione generale della (81): ~ 2 Appunti dll lzion dl Prof Stfno D Mrchi dl //6 cur dl Prof Frnndo D Anglo Soluzion di un srcizio ssgnto nll scors lzion (srcizio h) (8) L soluzion gnrl dll quzion ssocit è dt d: (8) ( ) o Ossrvto ch il

Dettagli

La formula di Taylor

La formula di Taylor La rmula di Taylr R.Argilas!! K I qusta dispsa prstiam il calcl di iti utilizzad gli sviluppi di Taylr Mac Lauri. N riprcrrrm la tria rlativa all apprssimazi di ua uzi i quat qusta è artata i maira sddisact

Dettagli

LE DERIVATE. derivata di un monomio (1) D a x = a x = na x ESEMPI. derivata di un monomio con n = 1. (2) D a x. ESEMPI, D x =

LE DERIVATE. derivata di un monomio (1) D a x = a x = na x ESEMPI. derivata di un monomio con n = 1. (2) D a x. ESEMPI, D x = LE DERIVATE. GENERALITÀ Dfiizio.) La drivata è u oprator ch ad ua fuzio f associa u altra fuzio ch obbdisc all sguti rgol: () D a a a 0 0 0 D 6 D 0 D drivata di u moomio () D a a 0 0 drivata di u moomio

Dettagli

Integrali in senso generalizzato

Integrali in senso generalizzato Itegrli i seso geerlizzto Pol Rubbioi Itegrzioe di fuzioi o itte Deizioe.. Dt f : [; b[! R cotiu ed ilitt i prossimit di b, ovvero tle che!b f () = + oppure!b f () =, ess si dice itegrbile i seso geerlizzto

Dettagli

SCUOLE ITALIANE ALL ESTERO ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 2003 Calendario australe SECONDA PROVA SCRITTA Tema di Matematica

SCUOLE ITALIANE ALL ESTERO ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 2003 Calendario australe SECONDA PROVA SCRITTA Tema di Matematica Sssio ordiri Esro - Soluzio cur di Nicol D Ros SCUOLE ITALIANE ALL ESTERO ESAMI DI STATO DI LICEO SCIENTIFICO Sssio Ordiri Cldrio usrl SECONDA PROVA SCRITTA Tm di Mmic Il cdido risolv uo di du prolmi 4

Dettagli

Limite Inferiore per l Ordinamento. Algoritmi e Strutture Dati (Mod. A) Limite Inferiore per l Ordinamento. Limite Inferiore per l Ordinamento

Limite Inferiore per l Ordinamento. Algoritmi e Strutture Dati (Mod. A) Limite Inferiore per l Ordinamento. Limite Inferiore per l Ordinamento Limit Ifrior pr l Ordiamto Ma quato può ssr fficit, i pricipio, u algoritmo di ordiamto? Algoritmi Struttur Dati (Mod. A) Limit Ifrior pr l Ordiamto Qusta è ua dll domad più ambizios itrssati ma ach ua

Dettagli

Calcolo dei Logaritmi

Calcolo dei Logaritmi Vrcii Vrio - Clcolo di Logritmi Clcolo di Logritmi VrioVrcii@iwidit Lo scopo di qust pgi è qullo di dscrivr lcui mtodi pr il clcolo di ritmi I più itrssti, ll ppdic i fodo qust pgi, possoo trovr otii curiosità

Dettagli

punto di accumulazione per X. Valgono le seguenti

punto di accumulazione per X. Valgono le seguenti 4 I LIMITI Si f : X R R u fuzioe rele di vribile rele. Si puto di ccumulzioe per X. Vlgoo le segueti DEFINIZIONI ( ε ( ε ε ( ε ε. ( ε { } lim f( = l R : > I I ' X I : f( l I I ' X

Dettagli

Nome Cognome classe 5D 16 Dicembre VERIFICA di MATEMATICA PROBLEMA

Nome Cognome classe 5D 16 Dicembre VERIFICA di MATEMATICA PROBLEMA Nom Cognom cls D 6 Dicmr 8 VERIFICA di MATEMATICA PROBLEMA Considr l unzion, studin l ndmnto trccin il grico proil punti: Di l dinizion di unzion inittiv Sull dl grico proil ch hi trccito, l unzion è inittiv?

Dettagli

. La n a indica il valore assoluto della radice.

. La n a indica il valore assoluto della radice. RADICALI Defiizioe: U umero irrziole è u umero decimle illimitto o periodico. Esempio:, 0, π Per clcolre il vlore pprossimto di u espressioe coteete rdici coviee mipolre l espressioe per ridurre l mssimo

Dettagli

tx P ty P 1 + t(z P 1)

tx P ty P 1 + t(z P 1) Esrcizi dll dcim sttimn - Soluzioni Indichimo con S R 3 l sfr unitri nll mtric Euclid di R 3, oro S {x, y, z R 3 x + y + z 1}. Indichimo con N S il polo nord il polo sud di S, rispttimnt, oro N,, 1 S,,

Dettagli

INTEGRALI. 1. Integrali indefiniti

INTEGRALI. 1. Integrali indefiniti INTEGRALI. Intgrli indiniti Si un unzion ontinu in [, ]. Un unzion F dinit ontinu in [, ], drivil in ], [, disi primitiv di in [, ] s F, ], [. Tormi. S F è un primitiv di in [, ] llor nh G F, on R, è un

Dettagli

(labeling) si ottiene così l insieme a n ordinato (codominio della funzione f ) : Primo termine. Termine Generale

(labeling) si ottiene così l insieme a n ordinato (codominio della funzione f ) : Primo termine. Termine Generale Successioi umeriche / Def. Si chim successioe umeric ogi fuzioe f d N i R defiit i u isieme del tipo I= { N 0 }, co 0 umero turle e che ssoci d u itero di I u umero rele f(). I geerle però porremo f: N

Dettagli

ANALISI DI FOURIER. Segnali Tempo Discreti:

ANALISI DI FOURIER. Segnali Tempo Discreti: AALISI DI FOURIER Sgali Tmpo Discrti: - Trasformata Discrta di Fourir -Squza priodica - Taratura dgli assi frquziali - TDF di ua squza fiita - Campioamto i Frquza - Algoritmi fft: srcitazioi Matlab -Zro

Dettagli

ENUNCIATI DI ESAMI DI ANALISI MATEMATICA 1

ENUNCIATI DI ESAMI DI ANALISI MATEMATICA 1 ENUNCIATI DI ESAMI DI ANALISI MATEMATICA ENUNCIATI DI ESAMI DI ANALISI MATEMATICA Euciar dimostrar il torma di Lagrag Dir s è f ( ) applicabil alla fuzio ( ) ll itrvallo [,] motivado la risposta Euciar

Dettagli

Capitolo 3 (II) - Sistemi tempo-discreti

Capitolo 3 (II) - Sistemi tempo-discreti Apputi di Elborio umric di sgli Cpitolo 3 (II) - Sistmi tmpo-discrti Sistm sigolo polo... Squ di du cmpioi... Squ simmtric di tr cmpioi...8 Filtri umrici fs rigorosmt lir... Esmpi... Implmtio...7 Esmpio:

Dettagli

V Struttura del ricevitore. Il segnale ricevuto, nel generico intervallo di simbolo, assume la forma:

V Struttura del ricevitore. Il segnale ricevuto, nel generico intervallo di simbolo, assume la forma: Cpitolo V LA RIVELAZIOE O COEREE Molto frqutmt è difficil disporr l ricvitor di u rifrimto cort co l portt ssocit l sgl modulto; pr qusto motivo si soo sviluppti dgli schmi di rivlzio ch prscidoo dll cooscz

Dettagli

Appendice 1. Matrici. A1.1 Definizioni e concetti preliminari

Appendice 1. Matrici. A1.1 Definizioni e concetti preliminari Appdic 1. Matrici I qusta Appdic richiamrmo brvmt alcui coctti fodamtali riguardati l matrici, ch sarao impigati durat il Corso. Essi riguardao sostazialmt la diagoalizzazio la dcomposizio a valori sigolari

Dettagli

Svolgimento di alcuni esercizi

Svolgimento di alcuni esercizi Svolgimnto di alcuni srcizi Si ha ch dal momnto ch / tnd a pr ch tnd a (la frazion formata da un numro, in qusto caso il numro, fratto una quantità ch tnd a ±, in qusto caso, tnd smpr a ) S facciamo tndr

Dettagli

L IPERBOLE. x a. y b

L IPERBOLE. x a. y b L IPERBOLE ± ARGOMENTI TRATTATI L quzio coic dll iprol Qustioi silri 3 Qustioi rltiv ll rtt tgti Curv dduciili dll iprol 5 L fuzio omogrfic 6 Discussio sistmi grdo co prmtro 7 Proprità ottic dll iprol

Dettagli

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010 Corso di ordinmnto - Sssion suppltiv -.s. 9- PROBLEMA ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE SUPPLETIA Tm di: MATEMATICA. s. 9- Dt un circonrnz di cntro O rggio unitrio, si prndno

Dettagli

Progressioni geometriche

Progressioni geometriche Progressioi geometriche Comicimo co due esempi: Esempio Cosiderimo l successioe di umeri:, 6,, 4, 48, 96 L successioe è tle che si pss d u termie l successivo moltiplicdo il precedete per. Si dice che

Dettagli

Algebra» Appunti» Logaritmi

Algebra» Appunti» Logaritmi MATEMATICA & FISICA E DINTORNI Psqule Spiezi Algebr» Apputi» Logriti TEOREMA Sio e b ueri reli co R + {} e b R +. Esiste, ed è uico, u uero k R: k b Il uero k è detto rito di b i bse e viee idicto co l

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE Tema di: MATEMATICA E INFORMATICA

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE Tema di: MATEMATICA E INFORMATICA ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE Tem di: MATEMATICA E INFORMATICA Il cdidto dopo ver dto u iustificzioe dell formul d iterzioe per prti: f d f f d dic cos c è di slito el riometo

Dettagli

Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di GE220

Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di GE220 Uiversità degli Studi Rom Tre - Corso di Lure i Mtemtic Tutorto di GE220 A.A. 2010-2011 - Docete: Prof. Edordo Seresi Tutori: Filippo Mri Boci, Amri Iezzi e Mri Chir Timpoe Soluzioi Tutorto 4 (7 Aprile

Dettagli

IMPORTANTE: E' FONDAMENTALE RISPETTARE ORARI, SPAZI E SPOGLIATOI DA

IMPORTANTE: E' FONDAMENTALE RISPETTARE ORARI, SPAZI E SPOGLIATOI DA IMPORTT: ' FODMTL RISPTTR ORRI, SPZI SPOGLITOI D UTILIZZR!! TUTTO QUSTO PR VITR DGLI CCVLLMTI CH O PRMTTRBBRO LL LTR SQUDR U ORML TTIVIT', S SI VRIFICSSRO DGLI RRORI SRO I DIRIGTI DLL SQUDR I RROR DOVRSI

Dettagli

Totti, 37 anni da leggenda. Un monumento vivente. Scritto da Redazione Venerdì 27 Settembre 2013 08:39 - VALERIA META

Totti, 37 anni da leggenda. Un monumento vivente. Scritto da Redazione Venerdì 27 Settembre 2013 08:39 - VALERIA META 37 nni d lggnd Un monumnto vivnt Scritto d Rdzion VALERIA META Scrivrlo sull fccit Sn Pitro potv ffttivmnt smbrr irrivrnt pr qunto l omonimo inquino dl Vticno si si mostrto prson ll mno Così gli uguri

Dettagli

Chimica fisica superiore. Modulo 1. Recupero di matematica. Sergio Brutti

Chimica fisica superiore. Modulo 1. Recupero di matematica. Sergio Brutti Chimi fisi suprior Modulo Rupro di mtmti Srgio Brutti Numri omplssi U umro omplsso è u sprssio mtmti ostituit d 3 lmti ( umri rli, l uità immgiri i: i i dfiiio R Im Dti du umri omplssi: Algr di s i id

Dettagli

Il corpo nero e la crisi della fisica classica

Il corpo nero e la crisi della fisica classica Il corpo ro l crisi dll fisic clssic Emissio d ssorbimto dll rdizio lttromgtic di corpi Ogi corpo c si trov d u tmprtur mggior dllo zro ssoluto mtt u rdizio dtt rdizio trmic. Qust rdizio, d u puto di vist

Dettagli

Successioni in R. n>a n+1

Successioni in R. n>a n+1 Successioi i R U successioe è u fuzioe f : N R. Si preferisce deotre f() co e quidi u successioe co ( ). Il codomiio di u successioe ( ) è l'isieme dei vlori che ssume l successioe, cioè { } successioe

Dettagli

( )( ) ( ) ( ) k. Appunti di Skuola.it. Analisi matematica. Calcolo combinatorio. (0 k n) diff. Per un elemento o per l ordine

( )( ) ( ) ( ) k. Appunti di Skuola.it. Analisi matematica. Calcolo combinatorio. (0 k n) diff. Per un elemento o per l ordine Aisi ttic Apputi di Suo.it Ccoo cobitorio Disposizioi spici D (-)(-)...(-) ( ) di. Pr u to o pr ordi co riptizio D r N di. Pr du. Dist. Ch occupo o stsso posto Prutzioi spici P D ti riptuti... (...) P

Dettagli

&1 Generalità Def. 1.1 Se V e V sono due spazi vettoriali su K, dicesi applicazione lineare di V in V' ogni applicazione. f : V V

&1 Generalità Def. 1.1 Se V e V sono due spazi vettoriali su K, dicesi applicazione lineare di V in V' ogni applicazione. f : V V CAP 4 - APPLICAZIONI LINEARI & Grlità D S V V soo d spi ttorili s K dicsi pplicio lir di V i V ogi pplicio : V V ch riic l sgti codiioi: V : h K V : h h Si dic i tl cso ch è comptibil co l oprioi di somm

Dettagli

Corso di Automi e Linguaggi Formali Parte 4 Linguaggi liberi dal contesto

Corso di Automi e Linguaggi Formali Parte 4 Linguaggi liberi dal contesto Grmmtich Rgol pr spcificr frsi corrtt in itlino Un frs un soggtto sguito d un vrbo sguito d un complmnto oggtto Un soggtto un nom o un rticolo sguito d un nom Uso dll rgol: pr gnrr frsi corrtt Esmpio:

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Lure i Scieze e Tecologie Agrrie Corso Itegrto: Mtemtic e Sttistic Modulo: Mtemtic (6 CFU) (4 CFU Lezioi CFU Esercitzioi) Corso di Lure i Tutel e Gestioe del territorio e del Pesggio Agro-Forestle

Dettagli

Integrale indefinito

Integrale indefinito 04//05 Intgrl indinito unzion intgrl Dinizion Si un unzion intgrbil scondo Rimnn nll intrvllo [,b] [,b], si dinisc unzion intgrl di, l intgrl dinito: t 04//05 Torm ondmntl dl clcolo intgrl Si continu in

Dettagli

Quesito 8. x + 2x 1 (ln (8 + 2 x ) ln(4 + 2 x )) è uguale a: A 2 B 1 4. Quesito 9.

Quesito 8. x + 2x 1 (ln (8 + 2 x ) ln(4 + 2 x )) è uguale a: A 2 B 1 4. Quesito 9. Qusito 8. orso di ln 8 + ) ln + )) Analisi Matmatica I inggnria, lttr: KAA-MAZ docnt:. allgari Prova simulata n. A.A. 8- Ottobr 8. Introduzion Qui di sguito ho riportato tsti, svolgimnti dlla simulazion

Dettagli

Calcolo a fatica di componenti meccanici. Terza parte

Calcolo a fatica di componenti meccanici. Terza parte Clcolo ftic di coponnti ccnici Trz prt Il cofficint di sicurzz nll progttzion ftic Un qulsisi punto ll intrno dll r sotts dl sgnto ch è rpprsntto d un coppi di vlori può giungr l liit trit un incrnto di

Dettagli

Informatica II. Capitolo 5. Alberi. E' una generalizzazione della struttura sequenza

Informatica II. Capitolo 5. Alberi. E' una generalizzazione della struttura sequenza Alri Informtic II Cpitolo 5 Alri E' un gnrlizzzion dll struttur squnz Si rilss il rquisito di linrità: ogni lmnto (nodo) h un solo prdcssor m può vr più succssori. Il numro di succssori (figli) può ssr

Dettagli

La pendenza m può essere ricavata derivando l equazione della semiellisse situata nel semipiano y 0 : a a

La pendenza m può essere ricavata derivando l equazione della semiellisse situata nel semipiano y 0 : a a Esm di Stto 7 sssion strordinri Prolm Utilizzndo l formul di sdoppimnto, l tngnt ll lliss nl punto ; x y x x y y x y Imponndo il pssggio pr (; ) si ottin: x ch, sostituito nll quzion dll lliss, prmtt di

Dettagli

COMUNE DI GOLFO ARANCI PROVINCIA DI OLBIA - TEMPIO

COMUNE DI GOLFO ARANCI PROVINCIA DI OLBIA - TEMPIO OGGETTO: ELENCHI DI OPERATORI ECONOMICI DA INVITARE ALLE PROCEDURE PER L AFFIDAMENTO DI FORNITURE IN ECONOMIA (x art. 25, c., D.Lgs. 6/2006 s.m.i.) DI IMPORTO INFERIORE A 20.000,00. VERBALE DEL SORTEGGIO

Dettagli

CORRENTI NEL TRANSITOR BIPOLARE A GIUNZIONE (BJT)

CORRENTI NEL TRANSITOR BIPOLARE A GIUNZIONE (BJT) O AO POA A GUZO (J) osidrimo qui di sguito il cso di u trsistor di tio l qul l coctrzioi di drogti ll tr rgioi soddisfio l sguti disugugliz (l giustificzio vrrà dt iù vti): >> >>. Assumimo com vrsi ositivi

Dettagli

Polinomi, disuguaglianze e induzione.

Polinomi, disuguaglianze e induzione. Allemeti Disid Mtemtic Geio 03 Poliomi, disuguglize e iduzioe. Qul è l mssim re di u rettgolo vete perimetro ugule 576? [Suggerimeto: utilizzre le medie e le loro disuguglize.] Svolgimeto. Predimo i cosiderzioe

Dettagli

dove il Sia p( x ) un polinomio di grado n. Si dimostri che la sua derivata n esima è coefficiente a è il coefficiente di

dove il Sia p( x ) un polinomio di grado n. Si dimostri che la sua derivata n esima è coefficiente a è il coefficiente di Quesiti ord 010 Pgi 1 di 5 Si p( ) u poliomio di grdo. Si dimostri che l su derivt esim è coefficiete è il coefficiete di ( p ) ( ) =! dove il 1 Si p( ) = + 1 +... + 0 Applicdo l regol di derivzioe delle

Dettagli

Dove la suddivisione dell intervallo [a,b] è individuata dai punti

Dove la suddivisione dell intervallo [a,b] è individuata dai punti 04//205 Clcolo itegrle per fuzioi di u vriile Clcolo itegrle Itegrle defiito Si f:[,] R, limitt ξ ξ 2 ξ 3 ξ 4 ξ 5 0 = 2 3 4 5 = Costruimo l somm di Cuchy-Riem S f f Dove l suddivisioe dell itervllo [,]

Dettagli

Successioni. (0, a 0 ), (1, a 1 ), (2, a 2 ),...

Successioni. (0, a 0 ), (1, a 1 ), (2, a 2 ),... Successioi U successioe di umeri reli e u legge che ssoci ogi umero turle = 0, 1, 2, u umero rele, i breve: e u fuzioe N R, Puo essere rppresett co l isieme delle coppie ordite (0, 0 ), (1, 1 ), (2, 2

Dettagli

CALCOLO DI LIMITI PER LE FUNZIONI CONTINUE. Saper calcolare semplici limiti, in particolare delle funzioni razionali intere e fratte.

CALCOLO DI LIMITI PER LE FUNZIONI CONTINUE. Saper calcolare semplici limiti, in particolare delle funzioni razionali intere e fratte. CALCOLO DI LIMITI PER LE FUNZIONI CONTINUE OBIETTIVI MINIMI: Sper idividure le fuzioi cotiue Sper pplicre i teorei sui iti Sper idividure le fore ideterite Sper clcolre seplici iti, i prticolre delle fuzioi

Dettagli