INTRODUZIONE. L obiettivo centrale della tesi consiste nell analizzare, attraverso una opportuna tecnica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "INTRODUZIONE. L obiettivo centrale della tesi consiste nell analizzare, attraverso una opportuna tecnica"

Transcript

1 INTRODUZIONE L obiettio centrale della tesi consiste nell analizzare attraerso una oortuna tecnica statistica denominata ANALISI DELLE COMPONENTI PRINCIPALI due distinti set di dati relatii allo stato di salute della oolazione italiana negli anni 994 e nel biennio In articolare ci si one il roblema di ridurre lo sazio originario R (doe indica il numero di ariabili) in uno sazio di dimensioni ridotte (R R o R 3 ) con una erdita limitata di informazioni e in modo tale da oter costruire delle macro-ariabili le quali siano in qualce misura esressione della totalità delle ariabili considerate. Le rileazioni cui si fa riferimento fanno arte del sistema di indagini Multiscoo sulle famiglie italiane condotte dall Istituto Nazionale di Statistica e forniscono informazioni su una batteria di atologie indicatrici dello stato di salute ( nel caso del inece nell indagine del 999/). Attraerso la tecnica delle comonenti rinciali si sono raggiunti gli obiettii roosti: l analisi comaratia delle due distinte indagini riferite a due diersi istanti temorali. Tuttaia a eidenziato ce rima di oter rocedere al confronto tra i due insiemi di dati si è resa necessaria una attenta alutazione al fine di rendere omogenee e confrontabili le due indagini. L analisi multiariata è stata condotta con l ausilio del software statistico SAS SYSTEM FOR WINDOWS V. 8. relatiamente alle rocedure inerenti la metodologia statistica cui si era interessati. I dati relatii alle due indagini sono stati reeriti direttamente dal sito dell Istituto

2 Nazionale di Statistica (ISTAT) nell ambito degli indicatori socio sanitari regionali. Il laoro solto si comone di tre caitoli ed in articolare nel rimo caitolo engono delineate le caratteristice teorice della metodologia multiariata utilizzata; nel secondo engono descritti dettagliatamente i dati e la rocedura seguita al fine di oter effettuare una analisi comaratia delle due distinte indagini. Il terzo caitolo inece è interamente dedicato ai risultati cui si è giunti alicando la tecnica delle comonenti rinciali. Infine nelle conclusioni si sono riresi i risultati comaratii cui si era giunti e si sono eidenziate le tendenze eolutie riscontrate tra i due diersi istanti temorali.

3 CAPITOLO L ANALISI DELLE COMPONENTI PRINCIPALI. Introduzione: obiettii ed ambiti alicatii Nella fase di raccolta sistematica dei dati di una ricerca scientifica è ossibile ce il ricercatore in mancanza di una recisa teoria da seguire ce indici er esemio la quantità di dati da rileare si troi costretto a doer raccogliere il maggior numero di informazioni ossibili con la conseguenza di troarsi di fronte ad un eleato numero di ariabili da rileare. La difficoltà rinciale in tale situazione è quella di non riuscire a cogliere la struttura esistente nei dati e le loro caratteristice salienti. Si one allora il roblema se sia ossibile raresentare le osserazioni anzicé nello sazio originario R (doe indica il numero di ariabili) in uno sazio di dimensioni ridotte (R R o R 3 ) con una erdita limitata di informazioni e in modo ce le relazioni tra le ariabili non siano comletamente straolte. Una metodologia statistica er la riduzione delle dimensioni è l analisi delle comonenti rinciali (ACP). Tale tecnica è frequentemente utilizzata in una asta gamma di roblematice: - è utile er esemio quando un certo asetto non è direttamente quantificabile ma si disone di una serie di indicatori del medesimo asetto. Un tiico esemio è costituito dalla misurazione della intelligenza degli indiidui in cui ci si aale dei unteggi ottenuti in una serie di test; - un secondo caso riguarda la alutazione delle caacità dei romotori finanziari di una 3

4 società in un certo arco di temo: le ariabili considerate ossono essere il numero di clienti contattati il numero di clienti ce anno sottoscritto un fondo di inestimento l ammontare delle olizze sottoscritte. Suonendo tali ariabili correlate fortemente tra loro è ossibile sintetizzare tutte le informazioni di artenza roiettando i unti corrisondenti alle unità su una retta ottenendo in tal modo quindi una misura unidimensionale delle erformance dei singoli romotori finanziari; - un altro esemio otrebbe essere quello relatio alla alutazione della qualità della ita nei comuni di una regione sulla base di un insieme di indicatori economici ambientali di dotazioni di serizi. Se i sono forti correlazioni almeno nell ambito di grui di tali indicatori è ossibile indiiduare un numero ridotto di dimensioni della qualità della ita e raresentare i comuni nel iano cartesiano o in R 3 identificando le località doe comlessiamente si ie meglio.. Definizione e determinazione delle comonenti rinciali Il unto di artenza er l alicazione della analisi delle comonenti rinciali (ACP) è la matrice X dei dati grezzi di dimensione n (con n > ) doe n indica il numero di unità statistice e il numero di ariabili tutte quantitatie. E necessario ce il rango della matrice dei dati X sia ieno cioè sia rango (X). Ciò equiale ad affermare la indiendenza lineare delle ariabili oero ce tutte le ariabili siano informatie. E oortuno recisare ce quando le ariabili originarie sono esresse in dierse unità di misura e/o resentano ordini di grandezza molto differenti esse non risultano direttamente confrontabili e ertanto l ACP artendo dalla matrice di coarianza tra le ariabili si rilea inaroriata. Tale difficoltà uò essere suerata considerando le ariabili esresse in termini di scostamenti standardizzati e cioè considerando la matrice Z di dimensione 4

5 n dei dati standardizzati ce equiale ad assumere come unto di artenza dell ACP la matrice di correlazione tra le ariabili inece della matrice di coarianza. Nelle alicazioni concrete questo secondo aroccio è di gran lunga il iù frequente risetto al caso in cui è ossibile oerare direttamente sulla matrice X. Vi è da sottolineare tuttaia ce l imiego di X oure di Z è una scelta a riori ce condiziona i risultati della intera analisi e ce non è ossibile assare da un tio di analisi all altra mediante semlici cambiamenti di scala. L ACP consente dunque di sostituire alle ariabili (tra loro correlate) un nuoo insieme di ariabili ciamate comonenti rinciali (CP) ce godono delle seguenti rorietà:. sono tra loro incorrelate (ortogonali);. sono elencate in ordine decrescente della loro arianza. La rorietà. imone l assenza di un legame lineare tra le nuoe ariabili ottenute mediante una trasformazione lineare di Z se le ariabili sono esresse in termini di scostamenti standardizzati dalle loro medie oure di X ~ se le ariabili sono esresse in termini di scostamenti assoluti dalle loro medie. La seconda rorietà inece intende dare imortanza decrescente alle nuoe ariabili oero si uole ce le CP riroducano in roorzione rogressiamente iù iccola la arianza comlessia delle ariabili iniziali. L aroccio ce si seguirà nella analisi è quello generalmente adottato e cioè si utilizzerà la matrice Z dei dati standardizzati. La rima CP ( ) è definita come combinazione lineare delle ariabili di artenza aente massima arianza; la seconda CP ( ) è la combinazione lineare delle ariabili con La matrice X ~ di dimensione n iene detta matrice degli scostamenti dalla media oure matrice dei dati centrata ed è caratterizzata dal fatto ce le medie di ciascuna delle colonne sono uguali a zero. 5

6 arianza immediatamente inferiore soggetta al incolo di ortogonalità con la rima CP. Se le ariabili sono fortemente correlate un numero k di CP (con k < ) tiene conto di una eleata quota della arianza totale er cui ci si uò limitare a considerare solo tali comonenti trascurando le restanti k il ce consente in definitia una maggiore comrensibilità del data set. La determinazione della rima CP riciede dunque l indiiduazione del ettore - dimensionale dei coefficienti della combinazione lineare delle ariabili esresse in termini di scostamenti standardizzati dalle loro medie: Z ( ) ( n ( ) ( ) ( ) i n ( ) doe i( ) indica il alore assunto dalla rima CP sulla i- esima unità statistica ed il ettore dei coefficienti di dimensione contiene una sorta di esi delle singole ariabili. Prima di rocedere nella esemlificazione del calcolo della rima CP è utile mostrare a cosa è uguale la media e la arianza della CP suddetta. Media della rima CP: doe u [ ] a dimensione ( n) n i n n n n ( ) u ( ) u Z i il ettore è -dimensionale con gli elementi 6

7 tutti nulli e Z è la matrice dei dati standardizzati. Varianza della rima CP: σ n n ( ) i( ) ( ) ( ) i Z Z R n n doe R è la matrice di dimensione ( ) di correlazione sulle ariabili originarie ce coincide ance con la matrice di arianze e coarianze tra i dati standardizzati. Per definizione la rima CP è la combinazione lineare di massima arianza e quindi il ettore dee essere tale ce sia massima la quantità R sotto il incolo di R normalizzazione. Si recisa ce la condizione di normalizzazione del ettore dei coefficienti è necessaria in quanto le soluzioni del suddetto roblema di massimo sono infinite e roorzionali oicé la combinazione lineare contiene un fattore di scala arbitrario. Il roblema di massimo riciede l uso della funzione di Lagrange: ( ) R ( ) f. Calcolate le deriate arziali della Lagrangiana risetto a e ( è il moltilicatore di Lagrange) e oste uguali a attraerso semlici oerazioni matematice si ottiene il seguente sistema di equazioni con incognite: ( R ) () doe I indica la matrice identità di dimensione e è un ettore -dimensionale i cui 7

8 elementi sono tutti uguali a. Il sistema ammette soluzioni non tutte nulle se la matrice ( R I ) dunque se il suo determinante è uguale a e cioè se: risulta inertibile e R. Tale uguaglianza definisce l equazione caratteristica della matrice R ce è un olinomio di ordine con soluzioni ciamate autoalori o radici caratteristice. Essendo la matrice R semidefinita ositia gli autoalori sono tutti non negatii. Poicé l obiettio è la massimizzazione della arianza della rima CP si sceglie come il massimo di tali autoalori in quanto sussiste la seguente relazione tra il moltilicatore di Lagrange e la quantità ce si desidera massimizzare: σ (). R ( ) La relazione () deria dalla seguente considerazione. Premoltilicando il sistema () er il ettore si ottiene: ( R I) da cui solgendo i rodotti si ricaa: R. Stante il incolo di normalizzazione si giunge a : 8

9 . R Il rimo autoalore coincide dunque con la arianza della rima CP. In definitia si definisce rima comonente rinciale di ariabili esresse in termini di scostamenti standardizzati dalla loro media la combinazione lineare: ( ) Z in cui è l autoettore di norma unitaria associato all autoalore iù grande della matrice di correlazione R. E ossibile determinare la seconda CP: ( ) ( n ) Z ( ) ( ) ( ) i n ( ) Affincé essa sia ortogonale alla rima CP il ettore dei coefficienti dee soddisfare il seguente incolo: oltre al incolo di normalizzazione: 9

10 . Oerando in maniera analoga al caso recedente si ottiene: ( R ) er cui si sceglie il secondo autoalore in ordine decrescente della matrice R e lo si indica con ; l autoettore associato è. Si uò roare ce le CP estraibili sono ari al numero delle ariabili ; aumentando l ordine di estrazione delle comonenti stesse la loro arianza decresce e ciò significa ce erdono imortanza (informazione) al crescere dell ordine di estrazione. Il rocedimento er ricaare la -esima CP ( ) è analogo al caso recedente bisogna solo restare attenzione al numero di incoli da considerare. Oltre alla solita normalizzazione anno imosti ( -) incoli di ortogonalità e cioè: con k ( ). k L -esimo autoalore della matrice R è e coincide con la arianza della -esima CP doo ce gli autoalori di R sono stati osti in ordine decrescente: il relatio autoettore è. > > >

11 .3 Caratteristice delle CP: matrice di arianze e coarianze matrice dei unteggi matrice di correlazione con le ariabili osserate Per le successie analisi risulta utile introdurre alcune matrici. Considerando la funzione di Lagrange utilizzata er determinare la rima CP ( ) R ( ) assando alla deriata arziale risetto a si ottiene: f e R da cui R. La relazione aena troata uò essere estesa a tutte le ariabili; in tal caso si costruisce il seguente sistema: R R R R dal quale in termini matriciali si ottiene:

12 [ ] [ ] [ ] P * R (3). Ponendo [ ] V matrice e P Λ di dimensione si ricaa una esressione er R in termini di Λ : V RV (4). Si osseri ce Λ è una matrice ce a sulla diagonale rinciale le arianze delle CP e in cui tutti gli elementi extradiagonali sono nulli in quanto le coarianze tra le CP sono ari a er costruzione. Essa raresenta la matrice di arianze e coarianze delle CP. Dalla (4) ostmoltilicando er V si ricaa: VV V RV e quindi tenendo conto ce VV V V si a: VV R.

Laurea Triennale in Matematica, Università Sapienza Corso di Probabilità 2 A.A. 2010/2011 Prova scritta 10 giugno 2011 Soluzione degli esercizi

Laurea Triennale in Matematica, Università Sapienza Corso di Probabilità 2 A.A. 2010/2011 Prova scritta 10 giugno 2011 Soluzione degli esercizi Laurea Triennale in Matematica, Uniersità Saienza Corso di Probabilità A.A. 00/0 Proa scritta 0 giugno 0 Soluzione degli esercizi Esercizio. Un modello di cellulare iene enduto con una batteria istallata

Dettagli

Capitolo 2. Funzioni

Capitolo 2. Funzioni Caitolo 2 Funzioni 2.1. De nizioni Un concetto di fondamentale imortanza è quello di funzione. roosito la seguente de nizione: Vale a questo De nizione 10 Dati due insiemi (non vuoti) X e Y, si chiama

Dettagli

Il flusso ottico. Alberto Borghese Laboratory of Motion Analysis, Virtual Reality (MAVR) Il flusso ottico

Il flusso ottico. Alberto Borghese Laboratory of Motion Analysis, Virtual Reality (MAVR) Il flusso ottico l flusso ottico Alberto Borghese Laborator of Motion Analsis, Virtual Realit (MAVR) testb N.A. Borghese Uniersità di Milano 9/03/003 htt:\\homes.dsi.unimi.it\ borghese /30 l flusso ottico Origina dalla

Dettagli

in forma matriciale: X = A X + B, cioè Se il det A = ad - bc è diverso da zero, la trasformazione è invertibile e quindi biunivoca; in tal caso la

in forma matriciale: X = A X + B, cioè Se il det A = ad - bc è diverso da zero, la trasformazione è invertibile e quindi biunivoca; in tal caso la TRASFORMAZIONI LINEARI SUL PIANO Sono trasformazioni lineari tutte le trasformazioni del tio: a b c d q in forma matriciale: X A X B, cioè a c b d q Dove a A c b d è la matrice della trasformazione. Se

Dettagli

Esercizi svolti di termodinamica applicata

Esercizi svolti di termodinamica applicata 0 ; 0 ; 0 Esercizi solti di termodinamica alicata Ex) A g di aria engono forniti 00 J di calore una olta a ressione costante ed una olta a olume costante semre a artire dallo stesso stato iniziale. Calcolare

Dettagli

Metodi per la riduzione della dimensionalità Strumenti quantitativi per la gestione

Metodi per la riduzione della dimensionalità Strumenti quantitativi per la gestione Metodi er la riduzione della dimensionalità Strumenti quantitativi er la gestione Emanuele Taufer Introduzione Combinazioni lineari Regressione lineare sulle variabili trasformate Dettaglio teorico Metodi

Dettagli

Programma di Matematica Anno Scolastico 2014/2015 Classe 2M

Programma di Matematica Anno Scolastico 2014/2015 Classe 2M Programma di Matematica Anno Scolastico 04/05 Classe M Modulo : Richiami calcolo letterale Il rodotto notevole di una somma er una di erenza (a+b)(a (a + b) : Cubo di un binomio (a + b) : b): Quadrato

Dettagli

a 11 s 1 + a 12 s a 1n s n = b 1 a 21 s 1 + a 22 s a 2n s n = b 2..

a 11 s 1 + a 12 s a 1n s n = b 1 a 21 s 1 + a 22 s a 2n s n = b 2.. Matematica II 020304 Ogni sistema di m equazioni lineari in n incognite x 1 x 2 x n si uo raresentare nella forma a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1

Dettagli

TRASFORMAZIONI LINEARI SUL PIANO

TRASFORMAZIONI LINEARI SUL PIANO TRASFORMAZIONI LINEARI SUL PIANO Sono trasformazioni lineari tutte le trasformazioni del tio: a b c d in forma matriciale: X A X B, cioè a c b d Dove a A c b d è la matrice della trasformazione. Se il

Dettagli

Capitolo 3 - Parte IV Complementi sui circuiti combinatori

Capitolo 3 - Parte IV Complementi sui circuiti combinatori Aunti di Elettronica Digitale Caitolo 3 - arte IV Comlementi sui circuiti combinatori Introduzione... Sommatori...2 Introduzione...2 Half-adder...3 Full-adder...4 Sommatore binario arallelo...7 roagazione

Dettagli

ESERCIZIO 1: Vincolo di bilancio lineare

ESERCIZIO 1: Vincolo di bilancio lineare Microeconomia rof. Barigozzi ESERCIZIO 1: Vincolo di bilancio lineare Si immagini un individuo che ha a disosizione un budget di 500 euro e deve decidere come allocare tale budget tra un bene, che ha un

Dettagli

Introduzione a rischio e rendimento

Introduzione a rischio e rendimento CAPITOLO 8 Introduzione a rischio e rendimento Semlici PROBLEMI 1. Il risultato atteso è 100 e il rendimento atteso è zero. La varianza è 20 000 (ercentuale al quadrato) e lo scarto quadratico medio è

Dettagli

Procedura per la Risoluzione di Integrali Razionali Fratti

Procedura per la Risoluzione di Integrali Razionali Fratti Procedura er la Risoluzione di Integrali Razionali Fratti Matteo Tugnoli Marc, 0 Di seguito illustriamo una breve rocedura da alicare nel caso di integrazione di frazioni comoste da olinomi di differenti

Dettagli

Cinematica grafica C.R P 2

Cinematica grafica C.R P 2 inematica grafica ome già evidenziato in recedenza, in alternativa alla formulazione analitica e limitatamente ai roblemi iani, è ossibile dare del roblema cinematico una formulazione grafica, che in qualche

Dettagli

docente: Germana Scepi

docente: Germana Scepi INSEGNAMENTO DI :PIANO DEGLI ESPERIMENTI CORSO DI LAUREA: CLAS docente: Germana Scei Eserimenti in Scienza e Industria I metodi serimentali sono amiamente utilizzati sia nella ricerca scientifica che nel

Dettagli

Generalizzazione dell equazione logistica (UN) Autore: Antonello Urso - 07/07/07

Generalizzazione dell equazione logistica (UN) Autore: Antonello Urso - 07/07/07 Generalizzazione dell equazione logistica (UN) Autore: Antonello Urso - 07/07/07 Pianetagalileo - (ultimo aggiornamento: 23/07/07) Introduzione: L equazione logistica uò descrivere lo sviluo di una oolazione

Dettagli

Esempio Le preferenze di un consumatore sono descritte dalla funzione di utilità U = x 1 x 2. Il suo reddito è pari a 400 con p 1 = 4 e p 2 = 10.

Esempio Le preferenze di un consumatore sono descritte dalla funzione di utilità U = x 1 x 2. Il suo reddito è pari a 400 con p 1 = 4 e p 2 = 10. 4. Effetto reddito ed effetto sostituzione Esemio Le referenze di un consumatore sono descritte dalla funzione di utilità U. Il suo reddito è ari a 400 con 4 e 0. a) Determinare la scelta ottima e come

Dettagli

Cubiche e affinità nelpiano

Cubiche e affinità nelpiano Cubiche e affinità neliano Francesco Daddi Marzo 2009 Vogliamo dimostrare che, assegnata una qualsiasi coia di funzioni cubiche, esiste un affinità che trasforma l una nell altra. E ossibile collegare

Dettagli

Analisi delle componenti principali

Analisi delle componenti principali Analisi delle componenti principali Serve a rappresentare un fenomeno k-dimensionale tramite un numero inferiore o uguale a k di variabili incorrelate, ottenute trasformando le variabili osservate Consiste

Dettagli

Statistica: principi e metodi. Numeri indici

Statistica: principi e metodi. Numeri indici Statistica: rincii e metodi Caitolo 8 Numeri indici Ca. 8-1 I confronti I confronti consentono di comarare due grandezze a e b. Il raorto si interreta come il numero di unità di grandezza al numeratore

Dettagli

Parte II. I Principio della TERMODINAMICA a.a

Parte II. I Principio della TERMODINAMICA a.a Parte II I Princiio della TERMODINAMICA a.a. 04-5 Equazioni di bilancio Mentre un sistema aerto consente flussi di massa e di energia attraerso le sezioni di ingresso e di uscita e flussi di energia attraerso

Dettagli

ALIMENTAZIONE PIU CONVENIENTE (CON MINORI PERDITE) DI UN CARICO CON UN SOLO TRASFORMATORE O CON DUE TRASFORMATORI IN PARALLELO

ALIMENTAZIONE PIU CONVENIENTE (CON MINORI PERDITE) DI UN CARICO CON UN SOLO TRASFORMATORE O CON DUE TRASFORMATORI IN PARALLELO ALIMETAZIOE IU COVEIETE (CO MIORI ERDITE) DI U CARICO CO U SOLO TRASFORMATORE O CO DUE TRASFORMATORI I ARALLELO La condizione iù conveniente è quella er la quale sono minori le erdite totali (nel ferro

Dettagli

La probabilità. f n. evidentemente è 0 ( E)

La probabilità. f n. evidentemente è 0 ( E) La robabilità Definizione - Eserimento aleatorio Ogni fenomeno del mondo reale al quale associare una situazione di incertezza. Es: Lancio di un dado, estrazioni numeri della tombola, ecc. Definizione

Dettagli

Classe 2Obi Competenze di Matematica 5 Ottobre 2016

Classe 2Obi Competenze di Matematica 5 Ottobre 2016 Classe 2Obi Cometenze di Matematica 5 Ottobre 2016 1. Si considerino gli insiemi I = {x 1,x 2,x 3,x 4,x 5,x 6,x 7 } e F = {,,,, } e sia la relazione R : I! F definita come segue: R = {(x 1, ), (x 2, ),

Dettagli

TFA A048. Matematica applicata. Incontro del 28 aprile 2014, ore 15-17

TFA A048. Matematica applicata. Incontro del 28 aprile 2014, ore 15-17 TFA A048. Matematica alicata Incontro del 8 arile 04, ore 5-7 Aunti di didattica della matematica alicata all economia e alla finanza. Alicazioni dell analisi (funzioni in iù variabili) a roblemi di Economia

Dettagli

GLI ARRAY 17/05/2013. Per definire un array è necessario fornire: Nome Come per le altre variabili. Tipo. int v [5];

GLI ARRAY 17/05/2013. Per definire un array è necessario fornire: Nome Come per le altre variabili. Tipo. int v [5]; GLI ARRAY Gli array Gli array sono strutture dati statiche, di tio sequenziale, che consentono la memorizzazione e la gestione di uno o iù dati omogenei (dello stesso tio) raggiungibili er mezzo di un

Dettagli

Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a. 2008/2009 TN1 - Introduzione alla teoria dei numeri Appello A 8 giugno 2009.

Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a. 2008/2009 TN1 - Introduzione alla teoria dei numeri Appello A 8 giugno 2009. Università degli Studi Roma Tre Corso di Laurea in Matematica, a.a. 2008/2009 TN1 - Introduzione alla teoria dei numeri Aello A 8 giugno 2009 Cognome Nome Numero di matricola Avvertenza: Svolgere ogni

Dettagli

Modulo 1: ALTIMETRIA LE PROIEZIONI QUOTATE RAPPRESENTAZIONE DEL PUNTO RAPPRESENTAZIONE DELLA RETTA. Corso di TOPOGRAFIA

Modulo 1: ALTIMETRIA LE PROIEZIONI QUOTATE RAPPRESENTAZIONE DEL PUNTO RAPPRESENTAZIONE DELLA RETTA. Corso di TOPOGRAFIA LE RAPPRESENTAZIONI NATURALI E CONVENZIONALI I.T.G. Forcellini Corso di TOPOGRAFIA Prof. Sommacal Fabio Modulo 1: ALTIMETRIA Coyright 2009 Zanichelli editore S..A., Bologna [6629] RAPPRESENTAZIONI 3D Possiamo

Dettagli

ESERCITAZIONE 4: MONOPOLIO E CONCORRENZA PERFETTA

ESERCITAZIONE 4: MONOPOLIO E CONCORRENZA PERFETTA ESERCITAZIONE 4: MONOPOLIO E CONCORRENZA PERFETTA Esercizio : Scelta ottimale di un monoolista e imoste Si consideri un monoolista con la seguente funzione di costo totale: C ( ) = 400 + + 0 0 La domanda

Dettagli

ma come si puo misurare una grandezza fisica della quale si postula l esistenza, ma di cui non si conosce nulla? chiaramente misurarla direttamente

ma come si puo misurare una grandezza fisica della quale si postula l esistenza, ma di cui non si conosce nulla? chiaramente misurarla direttamente Princiio zero della termodinamica gli stati di equilibrio termico godono della articolare rorieta che i sistemi all equilibrio termico tra loro condividono una stessa grandezza fisica, detta temeratura

Dettagli

Metodologie Quantitative. Analisi Fattoriale

Metodologie Quantitative. Analisi Fattoriale Metodologie Quantitatie Analisi Fattoriale Concetti introduttii e passi chiae M Q Marco Perugini Milano-Bicocca Matrici: moltiplicazione 3 3 3 4 Solo se il numero di colonne della prima matrice è uguale

Dettagli

TRASFORMAZIONI GEOMETRICHE ( 1 ) Risolvendo il sistema lineare ( 1 ) rispetto alle incognite x, y si ottiene: = e

TRASFORMAZIONI GEOMETRICHE ( 1 ) Risolvendo il sistema lineare ( 1 ) rispetto alle incognite x, y si ottiene: = e Generalità sulle affinità TRASFORMAZIONI GEOMETRICHE Chiamasi affinità o trasformazione lineare una corrisondenza biunivoca tra due iani o tra unti dello stesso iano che trasforma rette in rette conservando

Dettagli

LA LORDIZZAZIONE DEI REDDITI NETTI IRPEF: STRUMENTI PER LA MICROSIMULAZIONE SUL 2005

LA LORDIZZAZIONE DEI REDDITI NETTI IRPEF: STRUMENTI PER LA MICROSIMULAZIONE SUL 2005 WORKING PAPER No 478 Marzo6 LA LORIZZAZIONE EI REITI NETTI IRPEF: STRUMENTI PER LA MICROSIMULAZIONE SUL 5 Simone Pellegrino iartimento di scienze economiche e finanziarie G. Prato Università di Torino

Dettagli

B = {n N : n primo} (3) allora l intersezione di B e P è l insieme dei numeri naturali che sono sia primi che pari, quindi

B = {n N : n primo} (3) allora l intersezione di B e P è l insieme dei numeri naturali che sono sia primi che pari, quindi Lezione n.1 - Insiemi e numeri La matematica è innanzi tutto un linguaggio. Questo linguaggio è basato innanzi tutto sulla teoria degli insiemi. Un insieme è una collezione di oggetti, e uò essere secificato

Dettagli

RICHIAMI di CALCOLO delle PROBABILITA

RICHIAMI di CALCOLO delle PROBABILITA Facoltà di Ingegneria - Università di Bologna Anno Accademico: 00/ TECNICA ED ECONOMIA DEI TRASPORTI Docente: Marino Lui RICHIAMI di CALCOLO delle PROBABILITA PROBABILITA Ci sono fenomeni che non si osso

Dettagli

Original Article: IPOTESI SULLA SEMPLIFICAZIONE DEI SISTEMI SOVRADETERMINATI DI EQUAZIONI DIFFERENZIALI

Original Article: IPOTESI SULLA SEMPLIFICAZIONE DEI SISTEMI SOVRADETERMINATI DI EQUAZIONI DIFFERENZIALI Peer Reiewed, Oen Access, Free Online Journal Published monthly : ISSN: 308-83X Issue 10(19); October 014 Original Article: IPOTESI SULLA SEMPLIFICAZIONE DEI SISTEMI SOVRADETERMINATI DI EQUAZIONI DIFFERENZIALI

Dettagli

Matematica II

Matematica II Matematica II 6..09 Norma.. Norma di un ettore. Sia fissato nel piano un sistema di riferimento cartesiano ortogonale monometrico con origine in un punto O. Possiamo interpretare un ettore = [ i ] = di

Dettagli

L Offerta dell impresa e dell industria

L Offerta dell impresa e dell industria L Offerta dell imresa e dell industria Studiamo l offerta dell imresa nel mercato di concorrenza erfetta Un mercato caratterizzato da concorrenza erfetta se: 1-I I rezzi sono fissi: l imresa non è in grado

Dettagli

Note sulla Definizione Assiomatica della Probabilita

Note sulla Definizione Assiomatica della Probabilita Note sulla Definizione Assiomatica della Probabilita 1 I diagrammi di Wenn forniscono un metodo grafico er visualizzare i concetti fondamentali del calcolo delle robabilità. In questa raresentazione una

Dettagli

Analisi delle corrispondenze

Analisi delle corrispondenze Capitolo 11 Analisi delle corrispondenze L obiettivo dell analisi delle corrispondenze, i cui primi sviluppi risalgono alla metà degli anni 60 in Francia ad opera di JP Benzécri e la sua equipe, è quello

Dettagli

Statistica per l Impresa

Statistica per l Impresa Statistica per l Impresa a.a. 2017/2018 Tecniche di Analisi Multidimensionale L analisi delle componenti principali 14 maggio 2018 Introduzione L Obiettivo dell ACP L Analisi delle Componenti Principali

Dettagli

Università Politecnica delle Marche Facoltà di Ingegneria Ing. Informatica e Automatica Ing. delle Telecomunicazioni Teledidattica

Università Politecnica delle Marche Facoltà di Ingegneria Ing. Informatica e Automatica Ing. delle Telecomunicazioni Teledidattica Università Politecnica delle Marche Facoltà di Ingegneria Ing. Informatica e Automatica Ing. delle Telecomunicazioni Teledidattica ANALISI NUMERICA TEMA C (Prof. A. M. Perdon) Ancona, 7 luglio 6 PARTE

Dettagli

Probabilità e tempi medi di assorbimento

Probabilità e tempi medi di assorbimento Probabilità e temi medi di assorbimento 6.1 Probabilità di assorbimento Consideriamo una catena con un numero finito di stati che indichiamo con S = {1, 2,... r}. Sia C una classe chiusa di S. Se la catena

Dettagli

TEORIA DELLA PROBABILITÁ

TEORIA DELLA PROBABILITÁ TEORIA DELLA PROBABILITÁ Cenni storici i rimi arocci alla teoria della robabilità sono della metà del XVII secolo (Pascal, Fermat, Bernoulli) gli ambiti di alicazione sono i giochi d azzardo e roblemi

Dettagli

Università Politecnica delle Marche Facoltà di Ingegneria Ing. Informatica e Automatica Ing. delle Telecomunicazioni Teledidattica

Università Politecnica delle Marche Facoltà di Ingegneria Ing. Informatica e Automatica Ing. delle Telecomunicazioni Teledidattica Università Politecnica delle Marche Facoltà di ngegneria ng. nformatica e Automatica ng. delle Telecomunicazioni Teledidattica ANALS NUMERCA TEMA D (Prof. A. M. Perdon) Ancona, 7 luglio 6 PARTE - SOLUZONE

Dettagli

TECNOLOGIA E PRODUZIONE

TECNOLOGIA E PRODUZIONE TECNOOGIA E PRODUZIONE Fattori: avoro () : ore di lavoro imiegate Caitale () : fattori di roduzione che durano nel temo Tecnologia: Possibilità di combinazione dei fattori e er rodurre TECNOOGIA FATTORI

Dettagli

UNIVERSITA DI CAGLIARI FACOLTA DI INGEGNERIA ESERCITAZIONI DI IDROLOGIA NUOVO ORDINAMENTO Anno Accademico 2017/18

UNIVERSITA DI CAGLIARI FACOLTA DI INGEGNERIA ESERCITAZIONI DI IDROLOGIA NUOVO ORDINAMENTO Anno Accademico 2017/18 ESERCITAZIONE Nr.6 Argomenti Calcolo delle ortate al colmo di iena con i metodi: 1) Sirchia-Fassò, 2) Lazzari, 3) lognormale aggiornata, 4) TCEV delle ortate. Prerequisiti Lezioni teoriche (Ca. 7 del rogramma

Dettagli

VETTORI. & Definizioni e terminologia & Componenti cartesiane di un vettore nel piano e nello spazio

VETTORI. & Definizioni e terminologia & Componenti cartesiane di un vettore nel piano e nello spazio VETTORI & Definizioni e terminologia & Comonenti cartesiane di un ettore nel iano e nello sazio & Le oerazioni algebriche con i ettori & Prodotto scalare tra due ettori & Prodotto ettoriale tra due ettori

Dettagli

2 Le fluttuazioni economiche: domanda e offerta aggregata

2 Le fluttuazioni economiche: domanda e offerta aggregata 2 Le fluttuazioni economiche: domanda e offerta aggregata 2.1 Crescita economica e fluttuazioni È tradizione suddividere la Macroeconomia in due cami di studio distinti: la crescita e le fluttuazioni.

Dettagli

Comportamento asintotico delle Catene di Markov

Comportamento asintotico delle Catene di Markov Comortamento asintotico delle Catene di Markov In queste note analizzeremo il comortamento asintotico della catene di Markov a temo discreto omogenee, con sazio degli stati di dimensione finita. I risultati

Dettagli

Problema 8.2. Classificazione proiettiva di una conica di rango 1 Considera la conica di equazione:

Problema 8.2. Classificazione proiettiva di una conica di rango 1 Considera la conica di equazione: 8 Classificazione delle coniche Esercizi svolti Classificazione roiettiva delle coniche Nel iano roiettivo comlesso, sia fissato un sistema di coordinate omogenee [X,X,X ]. I cambi di riferimento ermessi

Dettagli

Indicatori della dinamica dei prezzi al consumo per alcune tipologie di famiglie Anni

Indicatori della dinamica dei prezzi al consumo per alcune tipologie di famiglie Anni 20 Febbraio 2007 Premessa Indicatori della dinamica dei rezzi al consumo er alcune tiologie di famiglie Anni 2001-2006 Ufficio della comunicazione Tel. + 39 06 4673.2243-2244 Informazioni e chiarimenti

Dettagli

Corso di Progetto di Strutture. POTENZA, a.a Serbatoi e tubi

Corso di Progetto di Strutture. POTENZA, a.a Serbatoi e tubi Corso di Progetto di Strutture POTENZA, a.a. 01 013 Serbatoi e tubi Dott. Marco VONA Scuola di Ingegneria, Università di Basilicata marco.vona@unibas.it htt://www.unibas.it/utenti/vona/ CONSIDEAZIONI INTODUTTIVE

Dettagli

Confronto tra le proporzioni in due popolazioni indipendenti (alcune note)

Confronto tra le proporzioni in due popolazioni indipendenti (alcune note) Confronto tra le roorzioni in due oolazioni indiendenti (alcune note) Finora abbiamo visto come verificare iotesi su un articolare arametro (indicatore di una caratteristica qualità) di una oolazione sulla

Dettagli

Regolarizzazione (Shrinkage) Strumenti quantitativi per la gestione

Regolarizzazione (Shrinkage) Strumenti quantitativi per la gestione Regolarizzazione (Shrinkage) Strumenti quantitativi er la gestione Emanuele Taufer Metodi di regolarizzazione o shrinkage Regressione ridge Standardizzare i redittori Dati Credit.csv Ridge er i dati Credit.csv

Dettagli

DINAMICA DEI FLUIDI. Diretta generalizzazione della meccanica del punto materiale. Procedimento estremamente complicato.

DINAMICA DEI FLUIDI. Diretta generalizzazione della meccanica del punto materiale. Procedimento estremamente complicato. DINMIC DEI FLUIDI PPROCCIO LGRNGINO Descrie il moto di un fluido ensandolo scomosto in elementi infinitesimali di olume (le articelle fluide) di cui si cerca di esrimere osizione e elocità in funzione

Dettagli

Problema Determina l equazione omogenea del completamento proiettivo della conica a ne di equazione: 2x 2 3y 2 +5x 2y +3=0.

Problema Determina l equazione omogenea del completamento proiettivo della conica a ne di equazione: 2x 2 3y 2 +5x 2y +3=0. 8 Esercizi svolti Coniche a ni Nel iano a ne (reale o comlesso) sia fissato un sitema di riferimento con coordinate (, ). Si consideri il comletamento roiettivo con coordinate omogenee [X,X,X ] tali che

Dettagli

Esercizi proposti - Gruppo 7

Esercizi proposti - Gruppo 7 Argomenti di Matematica er l Ingegneria - Volume I - Esercizi roosti Esercizi roosti - Gruo 7 1) Verificare che ognuina delle seguenti coie di numeri razionali ( ) r + 1, r + 1, r Q {0} r ha la rorietà

Dettagli

ALGEBRA PER INFORMATICI ELENCO DEGLI ARGOMENTI TRATTATI DURANTE LE LEZIONI

ALGEBRA PER INFORMATICI ELENCO DEGLI ARGOMENTI TRATTATI DURANTE LE LEZIONI ALGEBRA PER INFORMATICI 2015-16 ELENCO DEGLI ARGOMENTI TRATTATI DURANTE LE LEZIONI 1. LUNEDÌ 28 SETTEMBRE 2015 Chiacchiere. 2. MERCOLEDÌ 30 SETTEMBRE 2015 Aritmetica modulare. Il caso Z 10. Definizione

Dettagli

1. Sistemi di equazioni lineari. 1.1 Considerazioni preliminari

1. Sistemi di equazioni lineari. 1.1 Considerazioni preliminari 1. Sistemi di equazioni lineari 1.1 Considerazioni preliminari I sistemi lineari sono sistemi di equazioni di primo grado in più incognite. Molti problemi di matematica e fisica portano alla soluzione

Dettagli

Tre tipi di Sistema Un richiamo

Tre tipi di Sistema Un richiamo Corso di Studi di Fisica Corso di Chimica Luigi Cerruti www.minerva.unito.it Programma: a che unto siamo? Lezioni 25-26 2010 re tii di Sistema Un richiamo Un aio di riferimenti matematici Sistema isolato:

Dettagli

CAPITOLO 1. Spazi metrici. 1. Definizioni ed esempi

CAPITOLO 1. Spazi metrici. 1. Definizioni ed esempi CAPITOLO 1 Sazi metrici 1. Definizioni ed esemi Definizione 1.1. Sia X un insieme qualsiasi. Una distanza su X è un alicazione d : X X R tale che i) d(x, y) 0 er ogni x, y in X, e d(x, y) = 0 se e solo

Dettagli

Idraulica e Idrologia: Lezione 14 Agenda del giorno

Idraulica e Idrologia: Lezione 14 Agenda del giorno Idraulica e Idrologia: Lezione 4 genda del giorno Misure di ressione: manometri e barometri Caillarità Cinematica dei fluidi: tubo di flusso Equazione di continuità Conserazione dell energia: Teorema di

Dettagli

Corso di Impianti Dispense a cura di Simone Lugli Realizzate a favore degli allievi dell Istituto C. Ferrini di Verbania. 1. Il teorema di Bernoulli 2

Corso di Impianti Dispense a cura di Simone Lugli Realizzate a favore degli allievi dell Istituto C. Ferrini di Verbania. 1. Il teorema di Bernoulli 2 Indice 1. Il teorema di Bernoulli. Strumenti er misure su tubazioni: generalità e metodi di utilizzo 3.1. Il Tubo di Pitot 3.. Il venturimetro 4.3 Il boccaglio 5.4 Il diaframma 6.5. ltri strumenti er la

Dettagli

Isometrie. (f (g h))(x) = f(g(h(x))) = ((f g) h)(x).

Isometrie. (f (g h))(x) = f(g(h(x))) = ((f g) h)(x). Isometrie.. Generalità. Una trasformazione di IR n è un alicazione biiettiva f : IR n IR n. Le trasformazioni si ossono comorre tra loro: se f e g sono due alicazioni biiettive da IR n ad IR n, allora

Dettagli

Sezioni d urto. Prof. Sergio Petrera Università degli Studi dell Aquila. 11 giugno La regola d oro di Fermi e la sezione d urto di Born

Sezioni d urto. Prof. Sergio Petrera Università degli Studi dell Aquila. 11 giugno La regola d oro di Fermi e la sezione d urto di Born Sezioni d urto Prof. Sergio Petrera Università degli Studi dell Aquila giugno 008 La regola d oro di Fermi e la sezione d urto di Born La regola d oro di Fermi si ricava in Meccanica Quantistica Non Relativistica

Dettagli

I NUMERI INDICI. Numeri indici indici (misurano il livello di variabilità, concentrazione, dipendenza o interdipendenza, ecc.)

I NUMERI INDICI. Numeri indici indici (misurano il livello di variabilità, concentrazione, dipendenza o interdipendenza, ecc.) NUMER NDC Numeri indici indici (misurano il livello di variabilità, concentrazione, diendenza o interdiendenza, ecc.) si utilizzano er confrontare grandezze nel temo e nello sazio e sono dati dal raorto

Dettagli

Meccanica dei Fluidi con Fondamenti di Ingegneria Chimica Prova in Itinere Soluzioni 23 Novembre 2012

Meccanica dei Fluidi con Fondamenti di Ingegneria Chimica Prova in Itinere Soluzioni 23 Novembre 2012 Meccanica dei Fluidi con Fondamenti di Ingegneria himica Proa in Itinere Soluzioni 3 Noembre 0 Esercizio Tubazione scabra in ghisa Si consideri la tubazione in ghisa (indice di scabrezza ε=0.0 mm) disegnata

Dettagli

ESERCITAZIONE 5: POLITICHE ECONOMICHE IN MERCATI CONCORRENZIALI, MONOPOLIO NATURALE E TEORIA DEI GIOCHI

ESERCITAZIONE 5: POLITICHE ECONOMICHE IN MERCATI CONCORRENZIALI, MONOPOLIO NATURALE E TEORIA DEI GIOCHI MICROECONOMIA CEA A.A. 00-004 EERCITAZIONE 5: POITICHE ECONOMICHE IN MERCATI CONCORRENZIAI, MONOPOIO NATURAE E TEORIA DEI GIOCHI Esercizio 1: Politiche economiche in mercati concorrenziali Consideriamo

Dettagli

Soluzione numerica dei transitori termici: le differenze finite

Soluzione numerica dei transitori termici: le differenze finite Matteo Righetto (matr. 94) Piero Loatriello (matr.383) Soluzione numerica dei transitori termici: le differenze finite Immaginiamo di voler fornire calore a una lastra iana di un determinato sessore e

Dettagli

la parola binaria che è è la parola di dati e p venuta fuori, in trasmissione, a seguito dell esecuzione delle 4 prove di parità;

la parola binaria che è è la parola di dati e p venuta fuori, in trasmissione, a seguito dell esecuzione delle 4 prove di parità; Aunti di Elettronica Digitale Circuiti er il codice Hamming Circuito er la decodifica Hamming Vogliamo realizzare un circuito cominatorio che rilevi e corregga l errore singolo su arole di codice Hamming.

Dettagli

Analisi in Componenti Principali (ACP)

Analisi in Componenti Principali (ACP) Analisi in Componenti Principali (ACP) Metodi di analisi fattoriale Obiettivo: individuazione di variabili di sintesi = dimensioni = variabili latenti = variabili non osservate Approccio: Ordinamenti tra

Dettagli

Sessione live #2 Settimana dal 24 al 30 marzo. Statistica Descrittiva (II): Analisi congiunta, Regressione lineare Quantili.

Sessione live #2 Settimana dal 24 al 30 marzo. Statistica Descrittiva (II): Analisi congiunta, Regressione lineare Quantili. Sessione lie # Settimana dal 4 al 30 marzo Statistica Descrittia (II): Analisi congiunta, Regressione lineare Quantili Lezioni CD: 3 4-5 Analisi congiunta Da un camione di 40 studenti sono stati rileati

Dettagli

Traccia dello svolgimento di alcuni esercizi del compito del 15/04/08

Traccia dello svolgimento di alcuni esercizi del compito del 15/04/08 Traccia dello svolgimento di alcuni esercizi del comito del //8 Esercizio.. L esercizio richiede di risolvere in generale il seguente sistema lineare @ A = b a. Il sistema ^A = b ammette soluzioni se Rg(

Dettagli

Sistemi di particelle identiche

Sistemi di particelle identiche Sistemi di articelle identiche 1. Princiio di indistinguibilità Due articelle si dicono identiche se hanno le stesse caratteristiche fisiche, quali massa, sin, carica elettrica, momento magnetico. Col

Dettagli

Corso di Scienza delle Costruzioni C Prof. Silvio Valente RISOLUZIONE TEMA D ESAME A cura di Simona Patetta

Corso di Scienza delle Costruzioni C Prof. Silvio Valente RISOLUZIONE TEMA D ESAME A cura di Simona Patetta Corso di Scienza delle Costruzioni C Prof. Silvio Valente RISOLUZIONE TEMA D ESAME 0-02-2008 A cura di Simona Patetta Si riorta lo stralcio di tema d esame relativo al rimo esercizio: Si rocede con lo

Dettagli

CP110 Probabilità: Esame 2 settembre 2013 Testo e soluzione

CP110 Probabilità: Esame 2 settembre 2013 Testo e soluzione Diartimento di Matematica, Roma Tre Pietro Cauto 212-13, II semestre 2 settembre, 213 CP11 Probabilità: Esame 2 settembre 213 Testo e soluzione 1. (6 ts) Abbiamo due mazzi di carte francesi, il mazzo A

Dettagli

SCELTA DEL CONSUMATORE

SCELTA DEL CONSUMATORE SCELT DEL CONSUMTORE Preferenze Cosa vorrebbe l individuo Vincolo di ilancio Cosa uò fare l individuo La decisione Cosa l individuo effettivamente fa N: ssioma di Razionalità Individuale PREFERENZE Iotesi:

Dettagli

Peso atomico (meglio massa atomica)

Peso atomico (meglio massa atomica) Nome file d:\scuola\corsi\corso fisica\termodinamica\leggi dei gas.doc Creato il 26/3/2 7.5 Dimensione file: 4864 byte Andrea Zucchini Elaborato il 22//22 alle ore 5.52, salvato il 22//2 7.52 stamato il

Dettagli

Per quanto detto prima il fenomeno di svuotamento termina quando la pressione di ristagno è pari a:

Per quanto detto prima il fenomeno di svuotamento termina quando la pressione di ristagno è pari a: Esercizi Si consideri il serbatoio schematicamente raresentato in Fig., in cui è contenuto un gas avente inizialmente (cioè al temo t=0) temeratura T o =0F e ressione oi =0si. Il serbatoio è collegato

Dettagli

Richiami di algebra delle matrici a valori reali

Richiami di algebra delle matrici a valori reali Richiami di algebra delle matrici a valori reali Vettore v n = v 1 v 2. v n Vettore trasposto v n = (v 1, v 2,..., v n ) v n = (v 1, v 2,..., v n ) A. Pollice - Statistica Multivariata Vettore nullo o

Dettagli

ossia può anche essere localizzato univocamente sul piano complesso con la sua forma polare.

ossia può anche essere localizzato univocamente sul piano complesso con la sua forma polare. ALGEBRA COMPLESSA Nel corso dei secoli gli insiemi dei numeri sono andati man mano allargandosi per rispondere all esigenza di dare soluzione a equazioni e problemi sempre nuovi I numeri complessi sono

Dettagli

Lezione VII - 11/03/2003 ora 14:30-16:30 - Entropia, trasformazione isoentropica, pompe di calore - Originale di Unetti Matteo

Lezione VII - 11/03/2003 ora 14:30-16:30 - Entropia, trasformazione isoentropica, pompe di calore - Originale di Unetti Matteo Lezione VII - /03/003 ora 4:30-6:30 - Entroia, trasformazione isoentroica, ome di calore - Originale di Unetti Matteo Entroia Si uò introdurre una nuoa funzione di stato, l Entroia, definita così come

Dettagli

25 - Funzioni di più Variabili Introduzione

25 - Funzioni di più Variabili Introduzione Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 25 - Funzioni di più Variabili Introduzione Anno Accademico 2013/2014 M. Tumminello

Dettagli

Elementi di calcolo vettoriale

Elementi di calcolo vettoriale Mathit Elementi di calcolo ettoriale Nozione di ettore Grandezze ettoriali e grandezze scalari Segmenti orientati e ettori Definizioni Operazioni con i ettori Somma e differenza di ettori Moltiplicazione

Dettagli

Domanda di lavoro ed equilibrio del mercato del lavoro in concorrenza perfetta

Domanda di lavoro ed equilibrio del mercato del lavoro in concorrenza perfetta Domanda di lavoro ed equilibrio del mercato del lavoro in concorrenza erfetta Giusee Vittucci Marzetti 17 febbraio 2017 a domanda di lavoro in concorrenza erfetta a domanda di lavoro è una domanda di tio

Dettagli

SISTEMI A CODA MARKOVIANI TEMPO-DISCRETI

SISTEMI A CODA MARKOVIANI TEMPO-DISCRETI SISTEMI A CODA MARKOVIANI TEMPO-DISCRETI La sequenza di variabili aleatorie xi, i.. n, forma una catena di Markov temodiscreta se er ogni n e er tutti i valori assunti dalle variabili aleatorie si ha P(xn

Dettagli

PLASTICITA IN RIFERIMENTO AI TERRENI

PLASTICITA IN RIFERIMENTO AI TERRENI PLASTICITA IN RIFERIMENTO AI TERRENI Es. rovino soggetto a rova di comressione monoassiale σ a σ a σ R R σ Y Y σ a O ε a OY: deformazioni reversibili, comortamento elastico (comortamento lineare er deformazioni

Dettagli

Fisica II. 5 Esercitazioni

Fisica II. 5 Esercitazioni Esercizi solti Esercizio 5.1 Una articella, di carica q e (e-1.6 10-19 C è la carica dell elettrone) e massa m6.68 10-7 Kg, è in moto in un camo magnetico di intensità B1 T con elocità ari a 1/15 della

Dettagli

ESERCITAZIONE N. 1 Equilibrio di mercato ed elasticità

ESERCITAZIONE N. 1 Equilibrio di mercato ed elasticità MICROCONOMIA CLA A.A. 003-004 ocente: Giacomo Calzolari RCITAZION N. quilibrio di mercato ed elasticità RCIZIO : quilibrio di mercato e sostamenti delle curve La quantità domandata di un certo bene è descritta

Dettagli

n L insieme dei numeri reali n La retta reale n Calcolo approssimato

n L insieme dei numeri reali n La retta reale n Calcolo approssimato n L insieme dei numeri reali n La retta reale n Calcolo arossimato n L insieme dei numeri reali 1 Amliamento degli insiemi numerici Nelle recedenti unità, doo aver introdotto l insieme N dei numeri naturali,

Dettagli

ESERCIZI SULLA DINAMICA DI CORPI RIGIDI.

ESERCIZI SULLA DINAMICA DI CORPI RIGIDI. ESERCIZI SULL DINMIC DI CRPI RIIDI. Risoluzione mediante equazioni di Lagrange, equilibrio relativo (forze aarenti), stazionarietà del otenziale U; stabilità dell equilibrio e analisi delle iccole oscillazioni.

Dettagli

INTRODUZIONE. Motivazione. Terminologia. Paolo Fiorini Dipartimento di Informatica Università degli Studi di Verona

INTRODUZIONE. Motivazione. Terminologia. Paolo Fiorini Dipartimento di Informatica Università degli Studi di Verona INRODUZIONE Paolo Fiorini Diartimento di Informatica Università degli Studi di Verona Motivaione Dobbiamo sviluare dei metodi er raresentare la osiione del coro:. La sua localiaione. Orientaione 3. La

Dettagli

Modelli dei Sistemi di Produzione Modelli e Algoritmi della Logistica 2010-11

Modelli dei Sistemi di Produzione Modelli e Algoritmi della Logistica 2010-11 Modelli dei Sistemi di Produzione Modelli e lgoritmi della Logistica 00- Scheduling: Macchina Singola CRLO MNNINO Saienza Università di Roma Diartimento di Informatica e Sistemistica Il roblema /-/ w C

Dettagli

INTRODUZIONE INTRODUZIONE

INTRODUZIONE INTRODUZIONE INTRODUZIONE INTRODUZIONE Numerose strutture del anorama urbano che ci circonda (edifici civili e industriali, onti, oere di sostegno, ecc.) sono fondate su ali. Il ricorso a fondazioni rofonde si rende

Dettagli

Enunciato di Kelvin-Plank

Enunciato di Kelvin-Plank ezione VI - 3/03/003 ora 8:30-0:30 - Enunciato di Kelin-Plank, laoro nelle trasformazioni di gas erfetti, Entalia - Originale di Cara Mauro e Dondi Silia Enunciato di Kelin-Plank Non è ossibile effettuare

Dettagli

CAPITOLO 12 MONOPOLIO. Monopolio = forma di mercato in cui un unico venditore offre un prodotto per il quale non esistono stretti sostituti.

CAPITOLO 12 MONOPOLIO. Monopolio = forma di mercato in cui un unico venditore offre un prodotto per il quale non esistono stretti sostituti. Caitolo Monoolio agina CAPITOLO MONOPOLIO Monoolio forma di mercato in cui un unico venditore offre un rodotto er il quale non esistono stretti sostituti. Non uò iù valere l iotesi di rice-taking, erché

Dettagli

SOLUZIONE = p 4 x = 1 4 x2 +

SOLUZIONE = p 4 x = 1 4 x2 + SOLUIONE (a) Per rovare che F () = + arcsin è una rimitiva di f() = sull intervallo (, ) è su ciente rovare che F () =f(), er ogni (, ) F () = + + / / = + + = = + + = + = f() (b) Sicuramente G() è una

Dettagli

Altri Modelli di Information Retrieval

Altri Modelli di Information Retrieval Altri Modelli di Information Retrieval Fuzzy IR Modello Booleano Esteso Roberto Basili Basi di Dati Distribuite a.a. 2004-2005 1 Modelli Insemistici Il modello booleano e semlice ed elegante ma imone un

Dettagli