Legge di Moore (dal 1965 ) 1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Legge di Moore (dal 1965 ) 1"

Transcript

1 Testo di riferimento: appunti Le memorie dinamiche 01.c Classificazione Organizzazione Legge di Moore (dal 1965 ) 1 x2 ogni 18 mesi Scala logaritmica x1000 ogni 15 anni

2 Legge di Moore per la cella DRAM? Processor - DRAM Memory Gap µproc: 60%/yr. (2X/1.5yr) Performance Moore s Law CPU Processor-Memory Performance Gap: (grows 50% / year) Less Law? DRAM Year DRAM: 9%/yr. (2X/10 yrs) Come aumentare le prestazioni? 3 1. Aumentando il numero di bit per accesso (es.: con un bus dati da 64 bit si trasferiscono 8 byte per volta) svantaggi: aumentano le dimensioni, aumenta la corrente 2. Aumentando il grado di parallelismo interno delle operazioni (es. memory interleaving: con più banchi di memoria è possibile avviare un accesso ad un altro banco, prima che sia completato l accesso precedente) 3. Evitando di eseguire alcune delle operazioni (ad es. la selezione di una riga già selezionata)

3 Classificazione delle DRAM Interfaccia asincrona (DRAM standard ): il processore deve attendere, in uno stato idle, il completamento dell operazione in memoria. 4 Interfaccia sincrona (SDRAM): le operazioni sono in sincronia con clock del bus; con l'uso di opportuni latch si aumenta il parallelismo con la CPU (bus oltre i 66MHz). Interfaccia basata su protocollo (RDRAM): indirizzi e dati vengono trasmessi in parallelo con modalità pipelined sul medesimo bus. Interfaccia asincrona (DRAM) 5 In un interfaccia asincrona il processore attende il tempo necessario per il completamento di ciascuna operazione (invio di RAS dopo che l indirizzo di riga è stabile; invio di CAS dopo che l indirizzo di colonna è stabile; successivo trasferimento del dato). L attivazione di RAS trasferisce, in appositi latch dati, il contenuto di tutti i bit della riga selezionata. Se un ciclo di clock inizia prima che sia trascorso il tempo richiesto per l operazione, occorre attendere l inizio del successivo ciclo di clock per poter iniziare l operazione successiva. Tenendo presente questo vincolo, i tempi per il trasferimento di un dato sono indicati in termini di numero di cicli di clock.

4 Accesso per righe in una DRAM righe, 512 colonne, dati da 8 bit. indirizzo di riga indirizzo di colonna chip DRAM da 2 MB (16 Mbit) la selezione di una riga rende accessibili 512 byte Logica negata (si presta al wired-or O.C.).) 7 Y = A 1 B 1 A 2 B 2 A 3 B 3 (De Morgan) Y = A 1 B 1 + A 2 B 2 + A 3 B 3

5 Ciclo di lettura in una DRAM 1. Memorizza indirizzo di riga; legge la riga e la memorizza nei latch dati 2. Memorizza indirizzo di colonna 3. Refresh della riga (ricopia nella riga i bit dai latch dati) Clock Indirizzo RAS CAS Dout 4. Dato valido T 1 T 2 T 3 T 4 riga colonna t c t a T 5 T 6 T 7 5. Trasferimento del dato letto; fine del ciclo. dato riga 8 il ciclo di lettura t c (indicato anche con t RC ) è di 6 periodi di clock; il tempo di accesso t a (indicato anche con t RAC ) èdi 4periodi (tc>ta); con clock a 66 MHz (T c =15ns) si avrebbe: t c = 90 ns, t a = 60 ns; la velocità di una DRAM è spesso definita dal tempo di accesso t a. Ciclo di refresh in una DRAM 9 Clock T 1 T 2 T 3 T 4 T 5 T 6 Indirizzo riga 1. Memorizza indirizzo di riga; legge la riga e la memorizza nei latch dati 2. Refresh della riga (ricopia nella riga i bit dai latch dati) RAS

6 Ciclo di scrittura in una DRAM 10 Clock T 1 T 2 T 3 T 4 T 5 T 6 Indirizzo riga colonna riga 1. Memorizza indirizzo di riga; legge la riga e la RAS memorizza nei latch dati 2. Invio del dato Din dato 3. Write Enable WE 2. Memorizza indirizzo di colonna e modifica, nei CAS latch dati, il bit da scrivere 4. RAS alto: ricopia, dai latch dati, la riga modificata 5. CAS alto: termina il ciclo di scrittura Fast Page Mode (FPM) DRAM 11 È un esempio della strategia 3): sfrutta il fatto che accessi consecutivi spesso interessano colonne successive della stessa riga. RAS\ rimane attivo per un intero ciclo di riga (= pagina ): basta fornire l indirizzo di riga una sola volta all inizio dell accesso. Ogni ciclo di CAS\ include: impostazione dell indirizzo di colonna, attivazione di CAS\, attesa del dato in uscita, latch del dato, refresh, disattivazione di CAS\ (necessaria per segnalare il termine del ciclo). Timing: indica il numero di cicli di clock necessari per il primo accesso a un dato della riga, seguito da quelli per gli accessi ai dati successivi nella medesima riga. Valori tipici per FPM: o con celle da 70 ns o 60 ns (bus a 66 MHz).

7 Fast Page Mode: temporizzazioni t RCD = RAS to CAS delay = 3 T c t PC = page (CAS) cycle = 3 T c t PC t PC 12 timing: T c t RCD t CAC t RAC clock il primo dato della riga è disponibile con un ritardo (t RAC ) di 5 T c dopo RAS\ i dati successivi sono disponibili ogni 3 T c FPM: temporizzazioni in dettaglio 13

8 Extended Data Output (EDO) DRAM Vengono aggiunti dei latch dati che mantengono il dato appena letto, consentendo di anticipare la disattivazione di CAS\ e l invio dell indirizzo della colonna successiva. Si può così ridurre il periodo t PC del segnale CAS\ dopo il primo accesso: il segnale CAS\ rimane disattivato per il minimo intervallo di tempo. 14 Timing: o con celle da ns (bus a 66 MHz) EDO DRAM: temporizzazioni 15 t CAC = column access time t PC = page (CAS) cycle

9 EDO DRAM: temporizzazione in dettaglio 16 SIMM (Single In-line Memory Module) DRAM 4M x32-72 pin SIMM (Micron), chip 4Mx4 17 DRAM 8Mx32, chip 4Mx4 su entrambe le facce

10 SIMM - 2 4Mx32 DRAM - 72 pin SIMM (Micron) 18 Evoluzione dei moduli SIMM 30 pin, DB da 8 bit (primi anni 90) per fornire 16 bit alla volta (286, 386 SX) occorrevano 2 moduli giustapposti per fornire 32 bit alla volta (386 DX) occorrevano 4 moduli giustapposti pin, DB da 32 bit (metà anni 90) con l avvento del Pentium e del bus PCI per fornire 64 bit alla volta (Pentium) occorrevano 2 moduli giustapposti

11 Evoluzione dei moduli SIMM DIMM DIMM (Dual In-line Memory Module): una schedina su cui sono collocati i chip di memoria, caratterizzata da un bus dati da 64 bit; i moduli DIMM hanno ormai sostituito i moduli SIMM (Single In-Line Memory Module), nei quali il bus dati è da 32 bit; nei moduli SIMM (72 pin), i contatti sulle 2 facce della scheda sono uniti e formano un contatto unico; nei DIMM (168 pin), i contatti opposti sono elettricamente isolati e formano 2 contatti separati; le attuali DDR3 usano DIMM da 240 pin e DB da 128 bit ECC (Error Correction Codes): un chip in più contenente bit aggiuntivi per consentire la correzione di errori sui dati memorizzati. 20 Interfaccia sincrona (SDRAM) Dopo l accesso al primo dato di una riga, anziché attendere l invio degli indirizzi di colonna successivi, questi vengono generati internamente alla DRAM con semplici incrementi (burst counter). Le operazioni interne della DRAM sono strettamente regolate dal clock, che è l unico segnale di temporizzazione da fornire per i dati della riga successivi al primo. Più comandi possono essere accodati (pipelining): si ottengono così prestazioni migliori e si possono usare bus a frequenze più elevate. 21 Il tempo per l accesso al primo dato (SDRAM latency) è maggiore di quello per i dati successivi della stessa riga (CAS latency). SDRAM latency e CAS latency sono ancora espresse in numero di cicli di clock: (SDRAM Latency = 5, CAS Latency = 1). La CAS latency è determinata dal column access time t CAC. Le specifiche JEDEC prevedono valori di CAS latency pari a 1, 2, o 3.

12 JEDEC Synchronous DRAM (SDRAM) JEDEC = Joint Electron Devices Engineering Council (1958) Dal 1993 definisce i tipi base di DRAM sincrona. 22 Caratteristiche: interfaccia sincrona; architettura a banco multiplo: consente di avviare un accesso ad un altro banco, prima che sia completato l accesso precedente (su un banco diverso); burst mode. Una volta selezionata la riga, CS\, RAS\, CAS\, WE\ codificano il comando da eseguire (sincronizzato dal clock). Un registro programmabile di modo stabilisce: il tipo (sequential o interleaved) e le modalità di burst; la lunghezza del burst (1 bit, 2 bit, 4 bit, ); la CAS latency (1, 2 o 3). SDRAM: diagramma a blocchi 23

13 SDRAM: esempio di architettura interna 24 SDRAM 4Mb (512 KB) divisa internamente in 2 banchi 512x256x16 ind. di riga: 10 bit (A9 seleziona banco, A8..A0 512 righe) ind. di colonna: 8 bit (A7..A0 256 col) SDRAM: lettura SDRAM 25

14 SDRAM: comando READ 26 SDRAM: CAS latency 27

15 CAS latency: : determinazione All inizio di un ciclo di lettura burst viene impostato l indirizzo di riga e, nel successivo fronte di salita del clock, vengono attivati i segnali RAS\ e CS\. Ciò avvia il recupero dell intera riga selezionata. Trascorso un tempo pari a t RCD (RAS\ to CAS\ delay), nel successivo fronte di salita del clock può essere attivato CAS\. 28 Trascorso un ulteriore tempo pari a t CAC (column access time), il primo dato è leggibile sulle linee d uscita. Perché tutto funzioni deve essere: CASLatency * t CLK t CAC SDRAM: evoluzione SDR (Single Data Rate) SDRAM PC100 Specifiche Intel per sistemi con bus a 100 MHz Timing DDR (Double Data Rate) SDRAM L output ha luogo su entrambi i fronti del clock Frequenze di clock fino a 200 MHz DDR-2 SDRAM Aumenta la dimensione della minima unità di lettura/scrittura; questo vincolo permette ottimizzazioni, con clock fino a 400 MHz. DDR-3 SDRAM Ulteriore raddoppio della minima unità di lettura/scrittura, e quindi della frequenza di clock ( MHz) Enhanced SDRAM (ESDRAM) SDRAM con una porzione di cache statica on-chip (fino a 200 MHz) 29

16 Caratteristiche delle DDR SDRAM 30 Timing per SDRAM DDR-n misurati in periodi di system clock 4 valori tcl CAS latency tempo tra comando READ e dato disponibile in uscita trcd RAS to CAS delay tempo tra comando ACTIVE e comando READ/WRITE trp Row Precharge tempo tra comando PRECHARGE e comando ACTIVE tras Row Active time tempo tra un comando ACTIVE e un comando PRECHARGE 31 es: DDR3 OCZ HPC1333 standard PC (3/2008) Clock MHz timing

17 32 33

18 Interfaccia basata sul protocollo Indirizzi (row e col) e dati vengono trasmessi in parallelo con modalità pipelined sul medesimo bus (mentre nelle SDRAM gli indirizzi seguono percorsi diversi da quelli dei dati). 34 RDRAM (Rambus DRAM), DRDRAM (Direct Rambus DRAM) Soluzione proprietaria (Rambus Inc.) Adotta un approccio diverso rispetto a DDR e DDR2: anziché usare bus dati con molte linee, usa un bus da 16 bit con una elettronica progettata in modo da assicurare alte frequenze operative I dati sono trasferiti su entrambi i fronti del clock (come DDR) Data rate fino a 1.6 GB/s (standard PC800) e 2.1 GB/s (standard PC1066) Principali produttori di DRAM 3Q (ROK) (ROK) (J) (USA) (Taiwan) (Taiwan) (Taiwan) (Taiwan) (Taiwan) I primi 4 produttori detengono più dell 80% del mercato! Il mercato delle memorie DRAM è molto dinamico

19 Principali produttori di DRAM Q Nel 2007 è iniziato un sensibile calo delle entrate dovuto a sovrapproduzione Nel 2009 Qimonda (D) (ex Infineon) è fallita ed ha cessato la produzione, in parte rilevata dalla rivale Micron. Principali produttori di semiconduttori Rank 2009 Rank 2008 Company Country of origin Revenue (million $ USD) 2009/2008 changes Market share Intel Corporation USA % 14.2% 2 2 Samsung Electronics South Korea % 7.6% 3 3 Toshiba Japan % 4.7% 4 4 Texas Instruments USA % 4.2% 5 5 STMicroelectronics France Italy % 3.7% 6 8 Qualcomm USA % 2.9% 7 9 Hynix South Korea % 2.6% 8 6 Renesas Technology Japan % 2.5% 9 12 AMD USA % 2.2% 10 7 Sony Japan % 2.1% NEC Japan % 1.9% Infineon Germany % 1.9% Broadcom USA % 1.9% Micron Technology USA % 1.8% MediaTek Taiwan % 1.6% Elpida Memory Japan % 1.5% Freescale USA % 1.5% Panasonic Japan % 1.5% NXP Netherlands % 1.4% Sharp Japan % 1.3% Top % 62.8% All Other companies % 37.2% TOTAL % 100.0%

20 Sviluppo tecnologico 38 Sviluppo tecnologico nelle DRAM TECNOLOGIA (anno) (μm) (nm) (wafer) 200mm 300mm (chip) 4Mb 16Mb 64Mb 256M 1G 2G 4G 39 DENSITÀ DEI CHIP DRAM 64 Mb $2-3 $0.25/Mbyte 128 Mb $ Mb $4-7 ( μm) 512 Mb in produzione, μm 1 Gb in produzione, 0.11 μm - 90 nm 4 Gb 30/1/09: SAMSUNG annuncia DDR3 DRAM chip da 4Gb (50nm)

21 Capacità dei chip di DRAM 10 6 Kb 1G M 256M M K 1M 4M K 16K Legge di Moore (x 4 ogni 3 anni) Capacità e Velocità dei chip di DRAM Capacity Speed (latency) DRAM: 4x in 3 years 2x in 10 years Disk: 4x in 3 years 2x in 10 years 41 DRAM Year Size Cycle Time 1000:1! 2:1! Kb 250 ns Kb 220 ns Mb 190 ns Mb 165 ns Mb 145 ns Mb 120 ns

22 Sviluppi futuri memorie non volatili Potranno sostituire le attuali NAND Flash, ma anche le DRAM: PRAM (PCRAM) (Phase Change RAM): sfruttano le proprietà di una lega calcogenura (Ge 2 Sb 2 Te 5 ), in grado di cambiare fase (cristallina o amorfa) in modo controllato elettricamente; FRAM (FeRAM) (Ferroelettric RAM): usano uno strato di materiale ferroelettrico il cui stato è controllabile da un campo elettrico; MRAM (Magnetoresistive RAM): usano uno strato di materiale ferromagnetico il cui stato è controllabile da un campo magnetico; NRAM (Nano-RAM): sfruttano la proprietà dei nanotubi di carbonio di cambiare posizione meccanica (toccarsi o non toccarsi) in modo controllato elettricamente. 42 Magnetoresistive RAM (MRAM) 43 Ancora allo stato sperimentale Per memorizzare i dati utilizzano la polarità di minuscoli elementi magnetici, anziché la presenza o l assenza di cariche elettriche (come avviene nelle DRAM) Non volatili: i dati non scompaiono quando manca l alimentazione Nel giugno 2003 IBM e Infineon hanno presentato un chip MRAM da 128Kbit, costruito con tecnologia da 0.18 µm Con memoria MRAM non volatile un calcolatore potrebbe essere avviato istantaneamente all accensione, con il sistema operativo già presente in memoria Le memorie dei primi calcolatori ( ) erano costituite da nuclei di ferrite (non volatili): forse le RAM future saranno basate sullo stesso principio fisico, pur con dimensioni decisamente più ridotte

23 MRAM (IBM) 01.c Fine Le memorie dinamiche

Legge di Moore (transistor/chip) dal 1970

Legge di Moore (transistor/chip) dal 1970 Testo di riferimento: appunti Le memorie dinamiche 01.c Classificazione Organizzazione Legge di Moore (transistor/chip) dal 1970 1 Scala logaritmica x2 ogni 18 mesi x1000 ogni 15 anni Legge di Moore (memorie

Dettagli

DIAGRAMMI TEMPORALI relativi all'esecuzione di una istruzione e agli accessi alla memoria:

DIAGRAMMI TEMPORALI relativi all'esecuzione di una istruzione e agli accessi alla memoria: DIAGRAMMI TEMPORALI relativi all'esecuzione di una istruzione e agli accessi alla memoria: 1 Memoria centrale: è costituita da una sequenza ordinata di registri; ciascun registro è individuato da un indirizzo;

Dettagli

DIAGRAMMI TEMPORALI relativi all'esecuzione di una istruzione e agli accessi alla memoria:

DIAGRAMMI TEMPORALI relativi all'esecuzione di una istruzione e agli accessi alla memoria: DIAGRAMMI TEMPORALI relativi all'esecuzione di una istruzione e agli accessi alla memoria: Calcolatori Elettronici 2002/2003 - Diagr. temp. e Mem. dinamiche 1 Memoria centrale: è costituita da una sequenza

Dettagli

Il Sottosistema di Memoria

Il Sottosistema di Memoria Il Sottosistema di Memoria Classificazione delle memorie Funzionalità Memoria di sola lettura (ROM) Memoria di lettura/scrittura Tecnologia Memoria a semiconduttori Memoria magnetica Memoria ottica Modalità

Dettagli

Il Sottosistema di Memoria

Il Sottosistema di Memoria Il Sottosistema di Memoria Classificazione delle memorie Funzionalità Memoria di sola lettura (ROM) Memoria di lettura/scrittura Tecnologia Memoria a semiconduttori Memoria magnetica Memoria ottica Modalità

Dettagli

Il Sottosistema di Memoria

Il Sottosistema di Memoria Il Sottosistema di Memoria Classificazione delle memorie Funzionalità Memoria di sola lettura (ROM) Memoria di lettura/scrittura Tecnologia Memoria a semiconduttori Memoria magnetica Memoria ottica Modalità

Dettagli

La memoria centrale di un calcolatore

La memoria centrale di un calcolatore Calcolatori Elettronici I A.A. 2018-2019 La memoria centrale di un calcolatore Prof. Roberto Canonico Dipartimento di Ingegneria Elettrica e delle Tecnologie dell Informazione 1 Definizione di memoria

Dettagli

Il Sottosistema di Memoria

Il Sottosistema di Memoria Il Sottosistema di Memoria Calcolatori Elettronici 1 Memoria RAM RAM: Random Access Memory Tempi di accesso indipendenti dalla posizione Statica o Dinamica Valutata in termini di Dimensione (di solito

Dettagli

Università degli Studi di Cassino e del Lazio Meridionale

Università degli Studi di Cassino e del Lazio Meridionale di Cassino e del Lazio Meridionale Corso di Tecnologie per le Memorie Anno Accademico Francesco Tortorella Gerarchia di memoria: vista complessiva Gerarchia di memoria: tecnologie Accesso casuale (random):

Dettagli

Memorie a semiconduttore

Memorie a semiconduttore Memoria centrale a semiconduttore (Cap. 5 Stallings) Architettura degli elaboratori -1 Pagina 209 Memorie a semiconduttore RAM Accesso casuale Read/Write Volatile Memorizzazione temporanea Statica o dinamica

Dettagli

Architettura Single Channel

Architettura Single Channel LA RAM 1 Architettura Single Channel CPU ChipSet NothBridge RAM FSB 64 Bits Memory Bus 64 Bits Il Memory Bus ed il Front Side Bus possono (ma non necessariamente devono) avere la stessa velocità. 2 Architettura

Dettagli

Capitolo 5 Le infrastrutture HardWare. La memoria centrale

Capitolo 5 Le infrastrutture HardWare. La memoria centrale Capitolo 5 Le infrastrutture HardWare La memoria centrale La memoria La memoria Supporto alla CPU: : deve fornire alla CPU dati e istruzioni il più rapidamente possibile Archivio: : deve consentire di

Dettagli

Tempo. Performance. 60%/anno (2X/1.5anni) Gap Processore-Memoria: (+50% / anno) DRAM 9%/anno (2X/10 anni) Il Performance Gap processore/memoria

Tempo. Performance. 60%/anno (2X/1.5anni) Gap Processore-Memoria: (+50% / anno) DRAM 9%/anno (2X/10 anni) Il Performance Gap processore/memoria Il Performance Gap processore/memoria Performance 1000 100 10 1 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 Tempo µproc CPU 60%/anno (2X/1.5anni) Gap Processore-:

Dettagli

Livello logico digitale bus e memorie

Livello logico digitale bus e memorie Livello logico digitale bus e memorie Principali tipi di memoria Memoria RAM Memorie ROM RAM (Random Access Memory) SRAM (Static RAM) Basata su FF (4 o 6 transistor MOS) Veloce, costosa, bassa densità

Dettagli

La memoria - tecnologie

La memoria - tecnologie Architettura degli Elaboratori e delle Reti Lezione 26 La memoria - tecnologie Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi di Milano L 26 1/24 Indirizzi

Dettagli

La memoria - tecnologie

La memoria - tecnologie Architettura degli Elaboratori e delle Reti Lezione 26 La memoria - tecnologie Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi di Milano L 26 1/25 Struttura

Dettagli

Struttura di un elaboratore

Struttura di un elaboratore Testo di rif.to: [Congiu] -.1,.2 (pg. 80 9) Struttura di un elaboratore 01.b Blocchi funzionali La memoria centrale Suddivisione in blocchi funzionali 1 I blocchi funzionali di un elaboratore Organizzazione

Dettagli

Università degli Studi di Cassino

Università degli Studi di Cassino Corso di Gerarchia di Memoria Memorie RAM Anno Accademico 2007/2008 Francesco Tortorella 1977: DRAM più veloce del processore ( prof. Patterson) Apple ][ (1977) CPU: 1000 ns DRAM: 400 ns Steve Jobs Steve

Dettagli

Il Sottosistema di Memoria

Il Sottosistema di Memoria Il Sottosistema di Memoria Maurizio Palesi Maurizio Palesi 1 Memoria RAM RAM: Random Access Memory Tempi di accesso indipendenti dalla posizione Statica o Dinamica Valutata in termini di Dimensione (di

Dettagli

Circuiti di Indirizzamento della Memoria

Circuiti di Indirizzamento della Memoria Circuiti di Indirizzamento della Memoria Maurizio Palesi Maurizio Palesi 1 Memoria RAM RAM: Random Access Memory Tempi di accesso indipendenti dalla posizione Statica o Dinamica Valutata in termini di

Dettagli

La memoria - tecnologie

La memoria - tecnologie Architettura degli Elaboratori e delle Reti Lezione 26 La memoria - tecnologie Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi di Milano L 25 1/21 Sommario!

Dettagli

Università degli Studi di Cassino

Università degli Studi di Cassino Corso di Gerarchia di Memoria Anno Accademico Francesco Tortorella 1977: DRAM più veloce del processore ( prof. Patterson) Il Performance Gap processore/memoria Performance 1000 100 10 1 1980 1981 1982

Dettagli

La memoria - tecnologie

La memoria - tecnologie Architettura degli Elaboratori e delle Reti Lezione 26 La memoria - tecnologie Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi di Milano L 26 1/24 Indirizzi

Dettagli

Università degli Studi di Cassino

Università degli Studi di Cassino Corso di Gerarchia di Memoria Memorie RAM Anno Accademico 2006/2007 Francesco Tortorella 1977: DRAM più veloce del processore ( prof. Patterson) Apple ][ (1977) CPU: 1000 ns DRAM: 400 ns Steve Jobs Steve

Dettagli

Clock. Corso di Architettura degli Elaboratori. Architetture degli Elaboratori. Circuiti combinatori e sequenziali.

Clock. Corso di Architettura degli Elaboratori. Architetture degli Elaboratori. Circuiti combinatori e sequenziali. Corso di Architettura degli Elaboratori Il livello logico digitale: Memoria Clock: un circuito che emette una serie di impulsi con una specifica larghezza e intermittenza Tempo di ciclo di clock: intervallo

Dettagli

La memoria: tecnologie di memorizzazione

La memoria: tecnologie di memorizzazione Architettura degli Elaboratori e delle Reti La memoria: tecnologie di memorizzazione Proff. A. Borghese, F. Pedersini Dipartimento di Informatica Università degli Studi di Milano 1 Organizzazione della

Dettagli

I.I.S. Benvenuto Cellini. Corso di formazione tecnica. Memoria Primaria. Prof. Alessandro Pinto. v.2009

I.I.S. Benvenuto Cellini. Corso di formazione tecnica. Memoria Primaria. Prof. Alessandro Pinto. v.2009 I.I.S. Benvenuto Cellini Corso di formazione tecnica Memoria Primaria Prof. Alessandro Pinto v.9 Memoria: contiene i dati da elaborare, i risultati dell elaborazione, il programma Memoria centrale (o primaria):

Dettagli

Clock. Corso di Architettura degli Elaboratori. Architetture degli Elaboratori. Latch di tipo SR sincronizzato. Latch di tipo SR

Clock. Corso di Architettura degli Elaboratori. Architetture degli Elaboratori. Latch di tipo SR sincronizzato. Latch di tipo SR Corso di Architettura degli Elaboratori Il livello logico digitale: Memoria Dipartimento di Informatica Università degli Studi di Torino C.so Svizzera, 185 I-10149 Torino baldoni@di.unito.it http://www.di.unito.it/

Dettagli

La memoria: tecnologie di memorizzazione

La memoria: tecnologie di memorizzazione Architettura degli Elaboratori e delle Reti La memoria: tecnologie di memorizzazione Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi di Milano 1 Organizzazione

Dettagli

CALCOLATORI ELETTRONICI. I dispositivi di memoria

CALCOLATORI ELETTRONICI. I dispositivi di memoria CALCOLATORI ELETTRONICI I dispositivi di memoria I dispositivi di memoria Linguaggi ad alto livello/ Applicazioni SW Informatica Sistema operativo Assembler ISA Architettura di un calcolatore Memoria I/O

Dettagli

Studio a scatola nera

Studio a scatola nera Il Sistema Computer Studio a scatola nera SCOPO INGRESSI USCITE Elaborare informazioni. Eseguire istruzioni Dati da elaborare. Istruzioni Dati elaborati Dati Istruzioni Dati elaborati COMPUTER Dati in

Dettagli

Clock. Corso di Architettura degli Elaboratori. Latch di tipo SR. Circuiti combinatori e sequenziali. Il livello logico digitale: Memoria

Clock. Corso di Architettura degli Elaboratori. Latch di tipo SR. Circuiti combinatori e sequenziali. Il livello logico digitale: Memoria Corso di Architettura degli Elaboratori Il livello logico digitale: Memoria Matteo Baldoni Dipartimento di Informatica Università degli Studi di Torino C.so Svizzera, 85 I-49 Torino baldoni@di.unito.it

Dettagli

Criteri di caratterizzazione di una memoria

Criteri di caratterizzazione di una memoria La memoria Supporto alla CPU: deve fornire alla CPU dati e istruzioni il più rapidamente possibile; Archivio: deve consentire di archiviare dati e programmi garantendone la conservazione e la reperibilità

Dettagli

MEMORIE AD ACCESSO CASUALE

MEMORIE AD ACCESSO CASUALE MEMORIE Le memorie sono circuiti in grado di contenere un elevato numero di informazioni binarie in maniera organizzata e fornirle in uscita mediante una operazione detta LETTURA della memoria. A seconda

Dettagli

Costruire memorie ancora più grandi

Costruire memorie ancora più grandi Costruire memorie ancora più grandi Assemblando blocchi di memoria potremmo ottenere memorie ancora più grandi, e così via. Vogliamo ottenere memorie di GBytes! Questo «scala»? Problemi: Numero enorme

Dettagli

Architettura dei calcolatori

Architettura dei calcolatori Cos'è un calcolatore? Architettura dei calcolatori Esecutore automatico di algoritmi Macchina universale Elementi di Informatica Docente: Giorgio Fumera Corso di Laurea in Edilizia Facoltà di Architettura

Dettagli

Elementi di informatica

Elementi di informatica Elementi di informatica Memorie Memoria centrale Risiedono i prigrammi e i dati durante la loro elaborazione è una memoria molto veloce Di capacità limitate Molto costosa Memoria di massa Conserva le informazioni

Dettagli

Dal sistema operativo all' hardware

Dal sistema operativo all' hardware Dal sistema operativo all' hardware Di cosa parleremo? Il computer (processore e memoria principale) Cosa avviene all'avvio del computer? Scheda madre Alimentatore Memorie Secondarie (floppy disk, hard

Dettagli

Architettura dei computer

Architettura dei computer Architettura dei computer In un computer possiamo distinguere quattro unità funzionali: il processore la memoria principale la memoria secondaria i dispositivi di input/output 1 Fornisce la capacità di

Dettagli

Architettura. Argomenti. Modello di Von Neumann. Corso di Laurea in Ingegneria Biomedica aa 2003/2004. Ing. Antonio Coronato. Modello di Von Neumann

Architettura. Argomenti. Modello di Von Neumann. Corso di Laurea in Ingegneria Biomedica aa 2003/2004. Ing. Antonio Coronato. Modello di Von Neumann Architettura Corso di Laurea in Ingegneria Biomedica aa 2003/2004 Ing. Antonio Coronato 1 Argomenti Modello di Von Neumann, Bus, Memoria centrale e dispositivi Data Path delle architetture di Von Neumann

Dettagli

Pipeline. Esempio pipeline lineare a 5 stadi. Tempificazione S1 S2 S3 S4 S5. Istruzioni. Istruzione 4. Istruzione 3. Istruzione 2. tempo.

Pipeline. Esempio pipeline lineare a 5 stadi. Tempificazione S1 S2 S3 S4 S5. Istruzioni. Istruzione 4. Istruzione 3. Istruzione 2. tempo. Pipeline Esempio pipeline lineare a 5 stadi Istruzioni S1 S2 S3 S4 S5 Tempificazione Istruzione 4 S1 S2 S3 S4 S5 Istruzione 3 S1 S2 S3 S4 S5 Istruzione 2 S1 S2 S3 S4 S5 Istruzione 1 S1 S2 S3 S4 S5 tempo

Dettagli

Lezione 16 Introduzione al sottosistema di memoria

Lezione 16 Introduzione al sottosistema di memoria Lezione 16 Introduzione al sottosistema di memoria http://www.dii.unisi.it/~giorgi/didattica/arcal1 All figures from Computer Organization and Design: The Hardware/Software Approach, Second Edition, by

Dettagli

Informatica. Lo schema di riferimento. Scheda madre 16/11/2007. Introduzione ai sistemi informatici 1

Informatica. Lo schema di riferimento. Scheda madre 16/11/2007. Introduzione ai sistemi informatici 1 Informatica Pietro Storniolo storniolo@csai.unipa.it http://www.pa.icar.cnr.it/storniolo/info200708 Lo schema di riferimento Scheda madre (motherboard) RAM CPU Bus dati Bus indirizzi Bus di controllo Interfaccia

Dettagli

aumenta il tempo di accesso; aumenta la capacità di memorizzazione; ma diminuisce il costo per bit.

aumenta il tempo di accesso; aumenta la capacità di memorizzazione; ma diminuisce il costo per bit. Capitolo 6 Le infrastrutture HardWare La memoria di massa La memoria di massa (magnetica) Una gerarchia di memoria 1. registri contenuti nella CPU (qualche KB) 2. cache (da circa 32KB a circa 1024KB) 3.

Dettagli

Lezione 22 La Memoria Interna (1)

Lezione 22 La Memoria Interna (1) Lezione 22 La Memoria Interna (1) Vittorio Scarano Architettura Corso di Laurea in Informatica Università degli Studi di Salerno Organizzazione della lezione Dove siamo e dove stiamo andando La gerarchia

Dettagli

La memoria: tecnologie di memorizzazione

La memoria: tecnologie di memorizzazione Architettura degli Elaboratori e delle Reti La memoria: tecnologie di memorizzazione Proff. A. Borghese, F. Pedersini Dipartimento di Informatica Uniersità degli Studi di Milano 1 Organizzazione della

Dettagli

Il quadro di insieme. Tecnologie per la memoria e gerarchie di memoria. Un ripasso: latch D e flip-flop D. Un ripasso: clock

Il quadro di insieme. Tecnologie per la memoria e gerarchie di memoria. Un ripasso: latch D e flip-flop D. Un ripasso: clock Il quadro di insieme I cinque componenti di un calcolatore Tecnologie per la memoria e gerarchie di memoria Processore Unità di controllo Memoria Dispositivi di input Architetture dei Calcolatori (lettere

Dettagli

Memorie elettroniche. 1. Parametri delle memorie

Memorie elettroniche. 1. Parametri delle memorie 62 Fig. 1. Struttura di memoria. Memorie elettroniche Le memorie elettroniche sono dispositivi che immagazzinano informazioni sotto forma di codici binari. I dati memorizzati possono essere scritti (write)

Dettagli

Corso di Calcolatori Elettronici I. Memorie. Prof. Roberto Canonico

Corso di Calcolatori Elettronici I. Memorie. Prof. Roberto Canonico Corso di Calcolatori Elettronici I Memorie Prof. Roberto Canonico Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Elettrica e delle Tecnologie dell Informazione Corso di Laurea

Dettagli

Corso integrato di Sistemi di Elaborazione. Modulo I. Prof. Crescenzio Gallo.

Corso integrato di Sistemi di Elaborazione. Modulo I. Prof. Crescenzio Gallo. Corso integrato di Sistemi di Elaborazione Modulo I Prof. Crescenzio Gallo crescenzio.gallo@unifg.it La memoria principale 2 Organizzazione della memoria La memoria principale è organizzata come un insieme

Dettagli

Esame di INFORMATICA ARCHITETTURA DI VON NEUMANN. Lezione 4 ARCHITETTURA DI VON NEUMANN

Esame di INFORMATICA ARCHITETTURA DI VON NEUMANN. Lezione 4 ARCHITETTURA DI VON NEUMANN Università degli Studi di L Aquila Facoltà di Biotecnologie Esame di INFORMATICA A.A. 2008/09 Lezione 4 ARCHITETTURA DI VON NEUMANN Anni 40 i dati e i programmi che descrivono come elaborare i dati possono

Dettagli

Architettura del calcolatore (Seconda parte)

Architettura del calcolatore (Seconda parte) Architettura del calcolatore (Seconda parte) Ingegneria Meccanica e dei Materiali Università degli Studi di Brescia Prof. Massimiliano Giacomin LINGUAGGIO E ORGANIZZAZIONE DEL CALCOLATORE Linguaggio assembly

Dettagli

Informatica di Base - 6 c.f.u.

Informatica di Base - 6 c.f.u. Università degli Studi di Palermo Dipartimento di Ingegneria Informatica Informatica di Base - 6 c.f.u. Anno Accademico 2007/2008 Docente: ing. Salvatore Sorce Architettura dei calcolatori II parte Memorie

Dettagli

La memoria cache. Lab di Calcolatori

La memoria cache. Lab di Calcolatori La memoria cache 1 Gap delle prestazioni DRAM - CPU 1000 CPU- DRAM Gap CPU Proc 60%/yr. (2X/1.5yr) 100 10 ProcessorMemory Performance Gap: (grows 50% / year) D R A M DRAM9%/yr.(2X/10 yrs) 1 1980 1981 1982

Dettagli

PDF tratto dal PPT Architettura del Calcolatore

PDF tratto dal PPT Architettura del Calcolatore PDF tratto dal PPT Architettura del Calcolatore Prof. Cavalieri - Facoltà di Ingegneria Università di Catania 1 Architettura Studiata Bus di controllo DMA Bus di indirizzi Clock RAM ROM CPU Interrupt Bus

Dettagli

MEMORIE. Una panoramica sulle tipologie e sulle caratteristiche dei dispositivi di memoria

MEMORIE. Una panoramica sulle tipologie e sulle caratteristiche dei dispositivi di memoria MEMORIE Una panoramica sulle tipologie e sulle caratteristiche dei dispositivi di memoria Tipologie RAM Statiche Dinamiche ROM A maschera PROM EPROM EEPROM o EAROM Struttura Base Serie di CELLE di memoria

Dettagli

Circuiti Integrati Architettura degli Elaboratori 1 A.A

Circuiti Integrati Architettura degli Elaboratori 1 A.A 1 Circuiti Integrati Architettura degli Elaboratori 1 A.A. 2002-03 03 Roberto Bisiani, 2000, 2001, 2002, Fabio Marchese 2003 25 marzo 2003 2 Circuiti integrati Costruzione di circuiti (logici e non) su

Dettagli

Esame di INFORMATICA Lezione 4

Esame di INFORMATICA Lezione 4 Università di L Aquila Facoltà di Biotecnologie Esame di INFORMATICA Lezione 4 MACCHINA DI VON NEUMANN Il sottosistema di memorizzazione (memoria) contiene dati + istruzioni, inseriti inizialmente tramite

Dettagli

Calcolatori Elettronici

Calcolatori Elettronici Calcolatori Elettronici Gerarchia di memorie: memorie cache Massimiliano Giacomin 1 Semplice classificazione delle memorie Memorie a sola lettura (ROM, PROM, EPROM, EEPROM-Flash) Memorie volatili (RAM)

Dettagli

- HARDWARE MONITOR - BOOT DEVICE PRIORITY

- HARDWARE MONITOR - BOOT DEVICE PRIORITY BIOS,ossia BASIC Input Output System, è il software memorizzato nella memoria non volatile della scheda madre.esso gestisce il caricamento del sistema, i voltaggi della CPU, i timing delle memorie e dei

Dettagli

Lezione 16 Introduzione al sottosistema di memoria

Lezione 16 Introduzione al sottosistema di memoria Lezione 16 Introduzione al sottosistema di memoria http://www.dii.unisi.it/~giorgi/didattica/arcal1 All figures from Computer Organization and Design: The Hardware/Software Approach, Second Edition, by

Dettagli

La memoria principale

La memoria principale La memoria principale DRAM (Dynamic RAM) il contenuto viene memorizzato per pochissimo tempo per cui deve essere aggiornato centinaia di volte al secondo (FPM, EDO, SDRAM, RDRAM) SRAM (Static RAM) veloce

Dettagli

La struttura delle memorie

La struttura delle memorie La struttura delle memorie Prof. Alberto Borghese Dipartimento di Informatica alberto.borghese@unimi.it Università degli Studi di Milano Riferimento Patterson v.5: 2.11 5.2, 5.5, 5.12, B8, B9. 1/33 Sommario

Dettagli

Fondamenti di Informatica Architettura del Calcolatore Alessandra Volpato

Fondamenti di Informatica Architettura del Calcolatore Alessandra Volpato Fondamenti di Informatica Architettura del Calcolatore Alessandra Volpato E-mail: ale.volpato@ieee.org Sistema Informativo: Insieme di componenti in relazione tra loro che raccoglie, estrae, elabora, memorizza

Dettagli

Calcolatori Elettronici

Calcolatori Elettronici Calcolatori Elettronici Cenni sulle memorie Francesco Lo Presti Rielaborate da Salvatore Tucci Clocking q Il segnale di Clock definisce quando i segnali possono essere letti e quando possono essere scritti

Dettagli

La struttura delle memorie

La struttura delle memorie La struttura delle memorie Prof. Alberto Borghese Dipartimento di Scienze dell Informazione alberto.borghese@unimi.it Università degli Studi di Milano Riferimento Patterson v.5: 2.11 5.2, 5.5, 5.12, B8,

Dettagli

Influenza dell' I/O sulle prestazioni (globali) di un sistema

Influenza dell' I/O sulle prestazioni (globali) di un sistema Influenza dell' I/O sulle prestazioni (globali) di un sistema Tempo totale per l'esecuzione di un programma = tempo di CPU + tempo di I/O Supponiamo di avere un programma che viene eseguito in 100 secondi

Dettagli

La tecnologia delle memorie

La tecnologia delle memorie La tecnologia delle memorie Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@dsi.unimi.it Università degli Studi di Milano Riferimento Patterson: B8; B9. 1/38 Sommario Gestione

Dettagli

Memorie Corso di Calcolatori Elettronici A 2007/2008 Sito Web:http://prometeo.ing.unibs.it/quarella Prof. G. Quarella

Memorie Corso di Calcolatori Elettronici A 2007/2008 Sito Web:http://prometeo.ing.unibs.it/quarella Prof. G. Quarella Memorie Corso di Calcolatori Elettronici A 2007/2008 Sito Web:http://prometeo.ing.unibs.it/quarella Prof. G. Quarella prof@quarella.net Tipi di memorie Possono essere classificate in base a varie caratteristiche:

Dettagli

Processore. Memoria I/O. Control (Parte di controllo) Datapath (Parte operativa)

Processore. Memoria I/O. Control (Parte di controllo) Datapath (Parte operativa) Processore Memoria Control (Parte di controllo) Datapath (Parte operativa) I/O Memoria La dimensione del Register File è piccola registri usati per memorizzare singole variabili di tipo semplice purtroppo

Dettagli

Dal sistema operativo all' hardware

Dal sistema operativo all' hardware Dal sistema operativo all' hardware Di cosa parleremo? Il computer (processore e memoria principale) Cosa avviene all'avvio del computer? Scheda madre Alimentatore Memorie Secondarie (floppy disk, hard

Dettagli

Struttura dei Sistemi di Calcolo

Struttura dei Sistemi di Calcolo Struttura dei Sistemi di Calcolo Operazioni dei sistemi di calcolo Struttura dell I/O Struttura della memoria Gerarchia delle memorie Protezione hardware Invocazione del Sistema Operativo 1 Architettura

Dettagli

Le Memorie. Classe III Telecomunicazioni Sistemi e Reti. Prof. Tullio Parcesepe

Le Memorie. Classe III Telecomunicazioni Sistemi e Reti. Prof. Tullio Parcesepe Le Memorie Classe III Telecomunicazioni Sistemi e Reti Prof. Tullio Parcesepe In questa lezione impareremo: La memorizzazione delle informazioni Tipi differenti di memorie Gli indirizzi delle celle di

Dettagli

Elettronica per l informatica. Cosa c è nell unità A. Unità A: Bus di comunicazione. A.1 Architetture di interconnessione A.2 Esempi commerciali

Elettronica per l informatica. Cosa c è nell unità A. Unità A: Bus di comunicazione. A.1 Architetture di interconnessione A.2 Esempi commerciali Elettronica per l informatica 1 Cosa c è nell unità A Unità A: Bus di comunicazione A.1 Architetture di interconnessione A.2 Esempi commerciali 2 Contenuto dell unità A Architetture di interconnessione

Dettagli

La CPU e la Memoria. Sistemi e Tecnologie Informatiche 1. Struttura del computer. Sistemi e Tecnologie Informatiche 2

La CPU e la Memoria. Sistemi e Tecnologie Informatiche 1. Struttura del computer. Sistemi e Tecnologie Informatiche 2 La CPU e la Memoria Sistemi e Tecnologie Informatiche 1 Struttura del computer Sistemi e Tecnologie Informatiche 2 1 I registri La memoria contiene sia i dati che le istruzioni Il contenuto dei registri

Dettagli

Architettura hardware

Architettura hardware Architettura hardware la parte che si può prendere a calci Architettura dell elaboratore Sistema composto da un numero elevato di componenti, in cui ogni componente svolge una sua funzione elaborazione

Dettagli

Architettura dei calcolatori

Architettura dei calcolatori Università degli Studi di Palermo Dipartimento di Ingegneria Informatica Elaborazione di Immagini e Suoni / Riconoscimento e Visioni Artificiali 12 c.f.u. Anno Accademico 2008/2009 Docente: ing. Salvatore

Dettagli

Architetture dei Calcolatori (Lettere

Architetture dei Calcolatori (Lettere Architetture dei Calcolatori (Lettere J-K) Tecnologie per la Memoria e Gerarchie di Memoria Ing.. Davide D AmicoD Clocking Il segnale di Clock definisce quando i segnali possono essere letti e quando possono

Dettagli

Sintesi Calcolatori Elettronici

Sintesi Calcolatori Elettronici Sintesi Calcolatori Elettronici Unità di misura Byte 1 2 KiloByte 1024 2 MegaByte 1048576 2 GigaByte 1073741824 2 TeraByte 1099511627776 2 1 Byte = 8 bit Complemento a 1 I numeri positivi vengono rappresentati

Dettagli

Mari, Buonanno, Sciuto Informatica e cultura dell informazione McGraw-Hill

Mari, Buonanno, Sciuto Informatica e cultura dell informazione McGraw-Hill Mari, Buonanno, Sciuto Informatica e cultura dell informazione McGraw-Hill // Copyright 7 The McGraw-Hill Companies srl Copyright 7 The McGraw-Hill Companies srl Supporto alla CPU: deve fornire alla CPU

Dettagli

Memorie. Definizione di memoria

Memorie. Definizione di memoria Corso di Calcolatori Elettronici I A.A. 2010-2011 Memorie Lezione 24 Prof. Roberto Canonico Università degli Studi di Napoli Federico II Facoltà di Ingegneria Corso di Laurea in Ingegneria Informatica

Dettagli

Circuiti digitali. Parte III. Logica Digitale e Memorie. Funzioni logiche (booleane) Tavola della verità

Circuiti digitali. Parte III. Logica Digitale e Memorie. Funzioni logiche (booleane) Tavola della verità Circuiti digitali Parte III Logica Digitale e Memorie INGRESSI i 1 i n CIRCUITO DIGITALE Circuiti elettronici i cui ingressi e le cui uscite assumono solo due livelli Al circuito sono associate le funzioni

Dettagli

Parte III. Logica Digitale e Memorie

Parte III. Logica Digitale e Memorie Parte III Logica Digitale e Memorie III.1 Circuiti digitali INGRESSI i 1 i n CIRCUITO DIGITALE o 1 o m USCITE Circuiti elettronici i cui ingressi e le cui uscite assumono solo due livelli Al circuito sono

Dettagli

Memoria Interna. Memoria Principale. Memoria Secondaria

Memoria Interna. Memoria Principale. Memoria Secondaria ESERCITAZIONE 13 Sommario Memorie 1. Memoria Ogni sistema di elaborazione contiene dispositivi per la memorizzazione di dati ed istruzioni. L insieme di tali dispositivi, e degli algoritmi per la loro

Dettagli

Memorie a Stato Solido

Memorie a Stato Solido Memorie a Stato Solido Calcolatori Elettronici a.a. 2006-2007 Omero Tuzzi Memorie a stato solido, 1 Introduzione Ogni sistema di elaborazione contiene dispositivi per la memorizzazione di dati ed istruzioni.

Dettagli

Introduzione alle gerarchie di memoria

Introduzione alle gerarchie di memoria Introduzione alle gerarchie di memoria 1 Un ripasso Circuito sequenziale Segnale di clock Circuito sincrono Temporizzazione sensibile ai fronti Latch tipo S-R Latch tipo D Flip-flop tipo D Register file

Dettagli

Elementi di informatica

Elementi di informatica Sia dato una memoria della capacità di 1 GB, avente tempo di accesso di 50ms e velocità di trasferimento di 20 MB/sec. Si vuole ricopiare l intero contenuto su un altra memoria identica, montata sullo

Dettagli

Clocking. Architetture dei Calcolatori (Lettere. di Memoria. Elemento. scritti. Tecnologie per la Memoria e Gerarchie di Memoria

Clocking. Architetture dei Calcolatori (Lettere. di Memoria. Elemento. scritti. Tecnologie per la Memoria e Gerarchie di Memoria Clocking Architetture dei Calcolatori (Lettere A-I) Tecnologie per la Memoria e Gerarchie di Memoria Ing.. Francesco Lo Presti Il segnale di Clock definisce quando i segnali possono essere letti e quando

Dettagli

La tecnologia delle memorie

La tecnologia delle memorie La tecnologia delle memorie Prof. Alberto Borghese Dipartimento di Scienze dell Informazione borghese@dsi.unimi.it Università degli Studi di Milano 1/37 Sommario Gestione delle memorie cache. SRAM. DRAM.

Dettagli

Corso di Fondamenti di Informatica Elementi di Architettura

Corso di Fondamenti di Informatica Elementi di Architettura di Cassino e del Lazio Meridionale Corso di Informatica Elementi di Architettura Anno Accademico 2016/2017 Francesco Tortorella Modello di von Neumann Bus di sistema CPU Memoria Centrale Interfaccia Periferica

Dettagli

Calcolatori Elettronici Parte IV: Logica Digitale e Memorie

Calcolatori Elettronici Parte IV: Logica Digitale e Memorie Anno Accademico 2001/2002 Circuiti Digitali Calcolatori Elettronici Parte IV: Logica Digitale e Memorie Prof. Riccardo Torlone Università di Roma Tre INGRESSI i 1 CIRCUITO o 1 i n DIGITALE! Circuiti elettronici

Dettagli

VERIFICA DI SISTEMI. 5 Domanda [1 punto] Calcolare la velocità di trasferimento dei seguenti hard disk:

VERIFICA DI SISTEMI. 5 Domanda [1 punto] Calcolare la velocità di trasferimento dei seguenti hard disk: VERIFICA DI SISTEMI 1 Domanda [2 punti] Illustra la funzione della CPU e degli eventuali elementi che la costituiscono, specificando quali sono i parametri che ne caratterizzano il funzionamento. Spiega

Dettagli

L architettura del calcolatore (Seconda parte)

L architettura del calcolatore (Seconda parte) L architettura del calcolatore (Seconda parte) Percorso di Preparazione agli Studi di Ingegneria Università degli Studi di Brescia Docente: Massimiliano Giacomin ORGANIZZAZIONE DEL CALCOLATORE: RICHIAMI

Dettagli

La gerarchia di Memoria

La gerarchia di Memoria La gerarchia di Memoria Gap delle prestazioni DRAM - CPU 1000 CPU 100 10 DRAM 1 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 Località ed Organizzazione

Dettagli

Strutture dei sistemi di calcolo

Strutture dei sistemi di calcolo Strutture dei sistemi di calcolo Funzionamento di un sistema di calcolo Struttura di I/O Struttura della memoria Gerarchia delle memorie Architetture di protezione Architettura di un sistema di calcolo

Dettagli