LEZIONE 30. Se x = 1 si dice che x è un versore. Se poi y = (y 1,..., y n ) R n poniamo. Ricordiamo che vale la cosiddetta disuguaglianza triangolare

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LEZIONE 30. Se x = 1 si dice che x è un versore. Se poi y = (y 1,..., y n ) R n poniamo. Ricordiamo che vale la cosiddetta disuguaglianza triangolare"

Transcript

1 LEZIONE Insiemi aperti e chiusi in R n. Nel corso di Analisi sono state introdotte alcune nozioni di topologia di R, come la nozione di aperto, di chiuso, di punto d accumulazione. Lo scopo di questo primo paragrafo è quello di generalizzare tali nozioni allo spazio R n. Nel seguito porremo 0 R n = (0,..., 0) R n. Siano x = (x 1,..., x n ) R n. Ricordiamo che, per definizione, x = n x 2 i. Se x = 1 si dice che x è un versore. Se poi y = (y 1,..., y n ) R n poniamo i=1 x ± y = (x 1 ± y 1,..., x n ± y n ). Ricordiamo che vale la cosiddetta disuguaglianza triangolare x + y x + y. La prima generalizzazione necessaria è quella di intorno. Definizione Se δ > 0, definiamo intorno sferico di raggio δ di x in R n l insieme B(x, δ) = { x = (x 1,..., x n ) R n x x < δ }. Un intorno di x è un qualsiasi insieme contenente un intorno sferico di x. Osservazione Se n = 1, l intorno sferico B(x, δ) di raggio δ di x coincide con l insieme ]x δ, x + δ[= { x R x δ < x < x + δ }. A questo punto siamo in grado di dare le definizioni di insieme aperto e di insieme chiuso in R n. Definizione Sia U R n. Allora x R n si dice: (P1) interno ad U se esiste δ > 0 tale che B(x, δ) U; (P2) isolato se esiste δ > 0 tale che B(x, δ) U = { x }; (P3) esterno ad U se è interno al suo complementare; (P4) di frontiera per U se non è né interno, né esterno ad U. 1 Typeset by AMS-TEX

2 INSIEMI APERTI E CHIUSI IN R n L insieme dei punti interni di un insieme U verrà indicato con U. L insieme dei punti di frontiera un insieme U verrà indicato con U. Un insieme U R n si dice aperto se U = U. Un insieme U R n si dice chiuso se R n \U è aperto in R n.. Si noti che x U se e solo se, per ogni δ > 0 risulta B(x, δ) U e B(x, δ) (R n \U) Esempio Evidentemente, a partire dalla definizione, segue che B(x, δ) è un insieme aperto, qualsiasi siano x e δ > 0. Infatti ogni punto x B(x, δ) è interno a B(x, δ), poiché δ x = x x < δ, dunque B(x, δ δ x ) B(x, δ). Perciò l insieme è chiuso. Infine risulta Consideriamo gli insiemi R n \B(x, δ) = { x = (x 1,..., x n ) R n x x δ } B(x, δ) = { x = (x 1,..., x n ) R n x x = δ } U 1 = { (x, y) R 2 y > 0 }, U 2 = { (x, y) R 2 x 0 }. Allora U 1 è aperto. Infatti se (x, y) U 1 risulta B((x, y), y) U 1. È facile verificare che U 1 = { (x, y) R 2 y = 0 }. Invece U 2 è chiuso: infatti basta verificare che R 2 \U 2 = { (x, y) R 2 x < 0 } è aperto (la verifica è simile a quella fatta per verificare che U 1 è aperto). Inoltre U 2 = { (x, y) R 2 x = 0 }. L insieme U = U 1 U 2 non è né chiuso, né aperto. Infatti (1, 1) U \ U perché B((1, 1), 1) U. Invece (0, 0) U, ma (0, 0) (R 2 \U). Si noti che U = { (x, y) R 2 xy = 0, x, y 0 } U 1 U 2. In generale non è difficile dimostrare che se ϕ: R R è una funzione continua, allora gli insiemi sono aperti. U >ϕ(x) = { (x, y) R 2 y > ϕ(x) }, U <ϕ(x) = { (x, y) R 2 y < ϕ(x) }, U >ϕ(y) = { (x, y) R 2 x > ϕ(y) }, U <ϕ(y) = { (x, y) R 2 x < ϕ(y) }

3 LEZIONE 30 3 L insieme R n è aperto per definizione, dunque = R n \ R n è chiuso. D altra parte è anche aperto, perché =, quindi R n = R n \ è anche chiuso. Abbiamo quindi verificato che R n e sono insiemi sia aperti che chiusi. È facile verificare (esercizio) che sono gli unici sottoinsiemi di R n che hanno questa proprietà. Sia { U i } i I una famiglia di aperti di R n. Se x i I U i, allora esiste i I tale che x U i : poiché U i è aperto esiste δ > 0 tale che B(x, δ) U i i I U i. Abbiamo quindi verificato che ogni punto di i I U i è interno, ovvero, in altre parole, che l unione di un insieme qualsiasi di aperti di R n è un insieme aperto. Si verifichi che, in base alla definizione data sopra, la parte interna di un insieme U R n è un insieme aperto. Invece, per definizione, la sua frontiera U coincide con il complementare di U (R n \U), quindi è un insieme chiuso. Enunciamo ora una classica caratterizzazione degli insiemi chiusi di R n. A tale scopo diciamo prima cosa si intende per punto d accumulazione in R n. Definizione Sia U R n. Un punto x R n si dice punto d accumulazione di U se per ogni δ > 0 l insieme U B(x, δ) contiene punti diversi da x. L insieme di tutti i punti d accumulazione di un insieme U si dice insieme derivato di U e si indica con U. Sia U R n. La chiusura di U, indicata con U, è l insieme U U. Chiaramente l insieme dei punti isolati di U è U \ U. Inoltre U = U \ U = U (R n \U ). Infatti se x U \ U, allora o x U \ U, dunque x U (infatti x non può essere interno a R n \U), oppure x U \ U: in questo secondo caso x non è interno a U (perché x U) ed è punto d accumulazione di U, quindi non può essere esterno a U. Concludiamo che x U. Viceversa, se x U \ U, segue che x R n \U: d altra parte x non è esterno ad U, quindi è punto d accumulazione di U, cioè x U. Esempio Sappiamo che B(x, δ) è un insieme aperto e che B(x, δ) = { x = (x 1,..., x n ) R n x x = δ } : dunque B(x, δ) = { x = (x 1,..., x n ) R n x x δ }. Riprendiamo in considerazione gli insiemi U, U 1, U 2 dell Esempio Allora U 1 = U 1 = { (x, y) R 2 y 0 }, U 2 = U 2 = U 2. Inoltre U = U = { (x, y) R 2 x, y 0 } = U 1 U 2.

4 INSIEMI APERTI E CHIUSI IN R n Si verifichi che se ϕ: R R è una funzione continua, allora U >ϕ(x) = U ϕ(x) = { (x, y) R 2 y ϕ(x) }, U <ϕ(x) = U ϕ(x) = { (x, y) R 2 y ϕ(x) }, U >ϕ(y) = U ϕ(y) = { (x, y) R 2 x ϕ(y) }, U <ϕ(y) = U ϕ(y) = { (x, y) R 2 x ϕ(y) }. Proposizione U R n è chiuso se e solo se coincide con la sua chiusura. Dimostrazione. In sostanza si deve dimostrare che U è chiuso in R n se e solo se contiene tutti i suoi punti d accumulazione. Ricordiamo che U è chiuso se e solo se R n \U è aperto. Supponiamo che U sia chiuso e dimostriamo che contiene tutti i suoi punti d accumulazione. Basta dimostrare che se x U, allora x non può essere punto d accumulazione di U. Infatti x R n \U, che è aperto, dunque esiste δ > 0 tale che B(x, δ) R n \U, quindi U B(x, δ) =, cioè x non è punto d accumulazione di U. Viceversa supponiamo che U non sia chiuso e verifichiamo che esiste x R n \U che è punto d accumulazione di U. Chiaramente R n \U non è aperto, quindi esiste x R n \U tale che B(x, δ) R n \U, per ogni δ > 0. In particolare, B(x, δ) (R n \(R n \U)), per ogni δ > 0. Poiché, per ipotesi, x U, abbiamo dimostrato che x U è punto d accumulazione di U Altre proprietà topologiche degli insiemi in R n. Definizione Un insieme U R n si dice limitato se esistono x R n e δ > 0 tale che U B(x, δ). Un insieme U R n si dice compatto se è chiuso e limitato. Esempio L insieme B(x, δ) = { x = (x 1,..., x n ) R n x x δ } è compatto. Gli insiemi U, U 1, U 2 introdotti nell Esempio non sono compatti: infatti non sono limitati. Similmente non è compatto nessuno degli insiemi U ϕ(x), etc.. Definizione Un insieme U R n si dice connesso per archi se, per ogni coppia di punti x e y, esiste una funzione continua f: [0, 1] U tale che f(0) = x e f(1) = y. Si noti che, pensando al caso di sottoinsiemi di R 2 ed R 3, dire che un insieme è connesso per archi significa che per ogni coppia di punti dell insieme esiste un arco di curva contenuto nell insieme avente per estremi i punti dati.

5 LEZIONE 30 5 Esempio Gli insiemi introdotti negli Esempi precedenti sono tutti connessi per archi. Un caso molto particolare ma, ciononostante, molto importante di insiemi connessi per archi sono gli insiemi convessi, cioè insiemi U tali che per ogni coppia di punti x, y U l insieme x y = { (1 t)x + ty t [0, 1] } è tutto contenuto in U. È chiaro che ogni insieme convesso è automaticamente connesso per archi. Per esempio gli aperti U, U 1 e U 2 dell Esempio sono, in realtà, convessi, non solo connessi per archi. Ll insieme U >ϕ(x) definito nello stesso esempio, è convesso se e solo se ϕ è una funzione convessa. Invece l insieme U <ϕ(x) definito nello stesso esempio, è convesso se e solo se ϕ è una funzione concava. Un esempio di insiemi connessi per archi che, in generale, non sono convessi è dato dagli insiemi stellati rispetto ad un loro punto, cioè insiemi U per cui esiste almeno un x U tale che, per ogni y U si abbia x y U. Infatti se z U è un altro punto la funzione { (1 2t)y + 2tx se t [0, 1/2], f(t) = (2 2t)x + (2t 1)z se t [1/2, 1], è continua e f(0) = y mentre f(1) = z. Per esempio { (x, y) R 2 xy = 0 } è stellato rispetto a (0, 0) ma non convesso. Viceversa si noti che ogni insieme convesso è, per definizione, stellato rispetto ad ogni suo punto.

Topologia, continuità, limiti in R n

Topologia, continuità, limiti in R n Topologia, continuità, limiti in R n Ultimo aggiornamento: 18 febbraio 2017 1. Preliminari Prima di iniziare lo studio delle funzioni di più variabili, in generale funzioni di k variabili e a valori in

Dettagli

LEZIONE 11. s V : V V V (v 1, v 2 ) v 1 + v 2 = s V (v 1, v 2 ), p V : k V V. per cui valgono:

LEZIONE 11. s V : V V V (v 1, v 2 ) v 1 + v 2 = s V (v 1, v 2 ), p V : k V V. per cui valgono: LEZIONE 11 11.1. Spazi vettoriali ed esempi. La nozione di spazio vettoriale generalizza quanto visto nelle lezioni precedenti: l insieme k m,n delle matrici m n a coefficienti in k = R, C, l insieme V

Dettagli

1 Il Teorema della funzione implicita o del Dini

1 Il Teorema della funzione implicita o del Dini 1 Il Teorema della funzione implicita o del Dini Ricordiamo che dato un punto x R n, un aperto A R n che contiene x si dice intorno (aperto) di x. Teorema 1.1. (I Teorema del Dini) Sia f : A (aperto) R

Dettagli

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 1 a.a Soluzioni

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 1 a.a Soluzioni Corso di Laurea in Matematica Geometria 2 Foglio di esercizi n. 1 a.a. 2015-16 Soluzioni Gli esercizi sono presi dal libro di Manetti. Per svolgere questi esercizi, studiare con cura i paragrafi 3.1, 3.2,

Dettagli

Denizione di funzione continua e funzioni continue ed invertibili sui compatti

Denizione di funzione continua e funzioni continue ed invertibili sui compatti Università di Roma Tor Vergata Corso di Laurea in Scienze e Tecnologie per i Media Denizione di funzione continua e funzioni continue ed invertibili sui compatti Massimo A. Picardello CAPITOLO 1 Funzioni

Dettagli

Osservazione 1.1 Si verifica facilmente che esiste un unica relazione d ordine totale su Q che lo renda un campo ordinato.

Osservazione 1.1 Si verifica facilmente che esiste un unica relazione d ordine totale su Q che lo renda un campo ordinato. 1 Numeri reali Definizione 1.1 Un campo ordinato è un campo K munito di una relazione d ordine totale, compatibile con le operazioni di somma e prodotto nel senso seguente: 1. a, b, c K, a b = a + c b

Dettagli

LEZIONE 13. v =α 1 v α i 1 v i 1 + α i v i = =α 1 v α i 1 v i 1 + α i (λ 1 v λ i 1 v i 1 ) =

LEZIONE 13. v =α 1 v α i 1 v i 1 + α i v i = =α 1 v α i 1 v i 1 + α i (λ 1 v λ i 1 v i 1 ) = LEZIONE 13 13.1. Il metodo degli scarti. Sia dato uno spazio vettoriale V su k = R, C e siano v 1,..., v n V. Quanto visto nella lezione precedente ci suggerisce il seguente algoritmo per stabilire se

Dettagli

LEZIONE 12. Y = f(x) = f( x j,1 f(e j ) = x j,1 A j = AX = µ A (X),

LEZIONE 12. Y = f(x) = f( x j,1 f(e j ) = x j,1 A j = AX = µ A (X), LEZIONE 1 1.1. Matrice di un applicazione lineare. Verifichiamo ora che ogni applicazione lineare f: R n R m è della forma µ A per un unica A R m,n. Definizione 1.1.1. Per ogni j 1,..., n indichiamo con

Dettagli

8. Completamento di uno spazio di misura.

8. Completamento di uno spazio di misura. 8. Completamento di uno spazio di misura. 8.1. Spazi di misura. Spazi di misura completi. Definizione 8.1.1. (Spazio misurabile). Si chiama spazio misurabile ogni coppia ordinata (Ω, A), dove Ω è un insieme

Dettagli

Complementi di Analisi Matematica Ia. Carlo Bardaro

Complementi di Analisi Matematica Ia. Carlo Bardaro Complementi di Analisi Matematica Ia Carlo Bardaro Capitolo 1 Elementi di topologia della retta reale 1.1 Intorni, punti di accumulazione e insiemi chiusi Sia x 0 IR un fissato punto di IR. Chiameremo

Dettagli

LEZIONE 15. Esempio L applicazione f: R 3 R 2. è lineare. Infatti si ha che se α R, (x, y, z) R 3 risulta

LEZIONE 15. Esempio L applicazione f: R 3 R 2. è lineare. Infatti si ha che se α R, (x, y, z) R 3 risulta LEZIONE 15 15.1. Applicazioni lineari ed esempi. Definizione 15.1.1. Siano V e W spazi vettoriali su k = R, C. Un applicazione f: V W si dice k lineare se: (AL1) per ogni v 1, v 2 V si ha f(v 1 + v 2 )

Dettagli

Corso di Laurea in Matematica Geometria 2. Esercizi di preparazione allo scritto a.a Topologia

Corso di Laurea in Matematica Geometria 2. Esercizi di preparazione allo scritto a.a Topologia Corso di Laurea in Matematica Geometria 2 Esercizi di preparazione allo scritto a.a. 2015-16 Esercizio 1. Dimostrare che Topologia 1. d(x, y) = max 1 i n x i y i definisce una distanza su R n. 2. d(x,

Dettagli

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 2 a.a Soluzioni

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 2 a.a Soluzioni Corso di Laurea in Matematica Geometria 2 Foglio di esercizi n. 2 a.a. 2015-16 Soluzioni Gli esercizi sono presi dal libro di Manetti. Per svolgere questi esercizi, studiare con cura i paragrafi 3.5, 3.6,

Dettagli

1-Forme Differenziali

1-Forme Differenziali 1-Forme Differenziali 30 novembre 2011 1 Definizioni di base Siano n N e A R n un insieme aperto. Con (R n ) denotiamo il duale topologico di R n, cioè l insieme (R n ) = {p : R n R : R-lineari e continue}.

Dettagli

Rudimenti di topologia sugli spazi normati

Rudimenti di topologia sugli spazi normati Rudimenti di topologia sugli spazi normati 0 settembre 0 In queste dispense introdurremo il concetto di topologia sugli spazi normati, con particolare interesse per gli spazi vettorialir n. Questa introduzione

Dettagli

Cenni di Topologia Generale

Cenni di Topologia Generale Alfonso Villani Cenni di Topologia Generale per il corso di Complementi di Analisi Matematica per gli studenti di Fisica (a.a. 2006-07) Università degli studi di Catania Dipartimento di Matematica e Informatica

Dettagli

Note sulle funzioni convesse/concave

Note sulle funzioni convesse/concave Note sulle funzioni convesse/concave 4th December 2008 1 Definizioni e proprietà delle funzioni convesse/concave. Definizione 1.1 Un insieme A IR n è detto convesso se per ogni x 1 e x 2 punti di A, il

Dettagli

LEZIONE 12. v = α 1 v α n v n =

LEZIONE 12. v = α 1 v α n v n = LEZIONE 12 12.1. Combinazioni lineari. Definizione 12.1.1. Sia V uno spazio vettoriale su k = R, C e v 1,..., v n V vettori fissati. Un vettore v V si dice combinazione lineare di v 1,..., v n se esistono

Dettagli

3. Successioni di insiemi.

3. Successioni di insiemi. 3. Successioni di insiemi. Per evitare incongruenze supponiamo, in questo capitolo, che tutti gli insiemi considerati siano sottoinsiemi di un dato insieme S (l insieme ambiente ). Quando occorrerà considerare

Dettagli

non solo otteniamo il valore cercato per la validità della (1.4), ma anche che tale valore non dipende da

non solo otteniamo il valore cercato per la validità della (1.4), ma anche che tale valore non dipende da NOTE INTEGRATIVE PER IL CORSO DI ANALISI MATEMATICA 2 ANNO ACCADEMICO 2012/13 NOTE SULLA CONTINUITÀ UNIFORME D.BARTOLUCCI, D.GUIDO Sia f(x) = x 3, x [ 1, 1]. Si ha 1. La continuità uniforme x 3 y 3 = x

Dettagli

LEZIONE 3. a + b + 2c + e = 1 b + d + g = 0 3b + f + 3g = 2. a b c d e f g

LEZIONE 3. a + b + 2c + e = 1 b + d + g = 0 3b + f + 3g = 2. a b c d e f g LEZIONE 3 3.. Matrici fortemente ridotte per righe. Nella precedente lezione abbiamo introdotto la nozione di soluzione di un sistema di equazioni lineari. In questa lezione ci poniamo il problema di descrivere

Dettagli

LEZIONE 16 A = Verifichiamo se qualcuna fra le entrate a di A è suo autovalore. determinare per quale entrata a di A risulta rk(a ai 2 ) 1.

LEZIONE 16 A = Verifichiamo se qualcuna fra le entrate a di A è suo autovalore. determinare per quale entrata a di A risulta rk(a ai 2 ) 1. LEZIONE 16 16.1. Autovalori, autovettori ed autospazi di matrici. Introduciamo la seguente definizione. Definizione 16.1.1. Siano k = R, C e A k n,n. Un numero λ k si dice autovalore di A su k) se rka

Dettagli

LEZIONE i i 3

LEZIONE i i 3 LEZIONE 5 51 Determinanti In questo lezione affronteremo da un punto di vista prettamente operativo la nozione di determinante, descrivendone le proprietà ed i metodi di calcolo, senza entrare nei dettagli

Dettagli

(2) se A A, allora A c A; (3) se {A n } A, allora +

(2) se A A, allora A c A; (3) se {A n } A, allora + 1. Spazi di misura In questo paragrafo accenneremo alla nozione di spazio di misura. Definizione 1. Sia X un insieme non vuoto. Una famiglia A di sottoinsiemi di X è una σ-algebra se : (1) A; (2) se A

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott.

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Franco Obersnel Lezione : struttura di IR n, prodotto scalare, distanza e topologia.

Dettagli

Forme differenziali lineari e loro integrazione

Forme differenziali lineari e loro integrazione Forme differenziali lineari e loro integrazione Integrazione di una forma differenziale in due variabili Siano L(, ) e ( ) consideriamo l espressione M, due funzioni definite e continue in un insieme connesso

Dettagli

Ricordiamo che l operatore divergenza agisce su un campo vettoriale F ed è definito come segue: div F (x) = x i. i=1. x 2 + y 2

Ricordiamo che l operatore divergenza agisce su un campo vettoriale F ed è definito come segue: div F (x) = x i. i=1. x 2 + y 2 Capitolo 4 Campi vettoriali Ultimo aggiornamento: 3 maggio 2017 Ricordiamo che l operatore divergenza agisce su un campo vettoriale F ed è definito come segue: div F x = n F i x. x i i=1 Esercizio 4.1

Dettagli

1. Funzioni implicite

1. Funzioni implicite 1. Funzioni implicite 1.1 Il caso scalare Sia X R 2 e sia f : X R. Una funzione y : (a, b) R si dice definita implicitamente dall equazione f(x, y) = 0 in (a, b) quando: 1. (x, y(x)) X x (a, b); 2. f(x,

Dettagli

LEZIONE 1 C =

LEZIONE 1 C = LEZIONE 1 11 Matrici a coefficienti in R Definizione 111 Siano m, n Z positivi Una matrice m n a coefficienti in R è un insieme di mn numeri reali disposti su m righe ed n colonne circondata da parentesi

Dettagli

Teorema di Hahn-Banach

Teorema di Hahn-Banach Teorema di Hahn-Banach Alessandra Albanese e Sara Lamboglia 12.03.2012 1 Teorema di Hahn-Banach Teorema 1.1 (Hahn-Banach). Se M é un sottospazio di uno spazio vettoriale normato X e f é un funzionale lineare

Dettagli

CORSO DI ANALISI MATEMATICA 2 SOLUZIONI ESERCIZI PROPOSTI 18/03/2013

CORSO DI ANALISI MATEMATICA 2 SOLUZIONI ESERCIZI PROPOSTI 18/03/2013 CORSO DI ANALISI MATEMATICA SOLUZIONI ESERCIZI PROPOSTI 8/03/03 D.BARTOLUCCI, D.GUIDO. La continuità uniforme I ESERCIZIO: Dimostrare che la funzione f(x) = x 3, x A = (, ] non è uniformemente continua

Dettagli

SPAZI TOPOLOGICI. La nozione di spazio topologico è più generale di quella di spazio metrizzabile.

SPAZI TOPOLOGICI. La nozione di spazio topologico è più generale di quella di spazio metrizzabile. SPAZI TOPOLOGICI La nozione di spazio topologico è più generale di quella di spazio metrizzabile. Definizione 1 Uno spazio topologico (X, τ) è una coppia costituita da un insieme X e da una famiglia τ

Dettagli

Analisi Matematica II

Analisi Matematica II Analisi Matematica II Limiti e continuità in R N Claudio Saccon 1 1 Dipartimento di Matematica, Via F. Buonarroti 1/C,56127 PISA email: claudio.sacconchiocciolaunipi.it sito web: http://pagine.dm.unipi.it/csblog1

Dettagli

La definizione di Ultrafiltro e la regolarità per partizioni

La definizione di Ultrafiltro e la regolarità per partizioni La definizione di Ultrafiltro e la regolarità per partizioni Lorenzo Lami Definizione 1 (Filtro). Dato un insieme X, si dice filtro su X una collezione F di sottoinsiemi di X tali che: X F; / F; A F, B

Dettagli

LEZIONE 4. { x + y + z = 1 x y + 2z = 3

LEZIONE 4. { x + y + z = 1 x y + 2z = 3 LEZIONE 4 4.. Operazioni elementari di riga. Abbiamo visto, nella precedente lezione, quanto sia semplice risolvere sistemi di equazioni lineari aventi matrice incompleta fortemente ridotta per righe.

Dettagli

LEZIONE 2. ( ) a 1 x 1 + a 2 x a n x n = b, ove a j, b R sono fissati.

LEZIONE 2. ( ) a 1 x 1 + a 2 x a n x n = b, ove a j, b R sono fissati. LEZIONE 2 2 Sistemi di equazioni lineari Definizione 2 Un equazione lineare nelle n incognite x, x 2,, x n a coefficienti reali, è un equazione della forma (2 a x + a 2 x 2 + + a n x n = b, ove a j, b

Dettagli

i) la somma e il prodotto godano delle proprietà associativa, commutativa e distributiva;

i) la somma e il prodotto godano delle proprietà associativa, commutativa e distributiva; 1 Spazi vettoriali 11 Definizioni ed assiomi Definizione 11 Un campo è un insieme K dotato di una operazione somma K K K, (x, y) x + y e di una operazione prodotto K K K, (x, y) xy tali che i) la somma

Dettagli

11. Misure con segno.

11. Misure con segno. 11. Misure con segno. 11.1. Misure con segno. Sia Ω un insieme non vuoto e sia A una σ-algebra in Ω. Definizione 11.1.1. (Misura con segno). Si chiama misura con segno su A ogni funzione ϕ : A R verificante

Dettagli

Vi prego di segnalare ogni inesattezza o errore tipografico a Spazi metrici, spazi topologici, applicazioni continue ed omeomorfismi

Vi prego di segnalare ogni inesattezza o errore tipografico a Spazi metrici, spazi topologici, applicazioni continue ed omeomorfismi ESERCIZI DI GEOMETRIA 3 Vi prego di segnalare ogni inesattezza o errore tipografico a mll@unife.it Spazi metrici, spazi topologici, applicazioni continue ed omeomorfismi Esercizio 1. Sia (X, d) uno spazio

Dettagli

Alcune nozioni di calcolo differenziale

Alcune nozioni di calcolo differenziale Alcune nozioni di calcolo differenziale G. Mastroeni, M. Pappalardo 1 Limiti per funzioni di piu variabili Supporremo noti i principali concetti algebrici e topologici relativi alla struttura dello spazio

Dettagli

LEZIONE 5. AX = 0 m,1.

LEZIONE 5. AX = 0 m,1. LEZIONE 5 5 isoluzione di sistemi Supponiamo che AX = B sia un sistema di equazioni lineari Ad esso associamo la sua matrice completa (A B Per quanto visto nella precedente lezione, sappiamo di poter trasformare,

Dettagli

Esistenza ed unicità per equazioni differenziali

Esistenza ed unicità per equazioni differenziali Esistenza ed unicità per equazioni differenziali Per concludere queste lezioni sulle equazioni differenziali vogliamo dimostrare il teorema esistenza ed unicità per il problema di Cauchy. Faremo la dimostrazione

Dettagli

CLASSE LIMITE DI UNA SUCCESSIONE DI NUMERI REALI C. MADERNA, G. MOLTENI, M. VIGNATI

CLASSE LIMITE DI UNA SUCCESSIONE DI NUMERI REALI C. MADERNA, G. MOLTENI, M. VIGNATI CLASSE LIMITE DI UNA SUCCESSIONE DI NUMERI REALI C. MADERNA, G. MOLTENI, M. VIGNATI Consideriamo l insieme R = R {, + } ottenuto aggiungendo all insieme dei numeri reali i simboli e +. Introduciamo in

Dettagli

Successioni, massimo e minimo limite e compattezza in R

Successioni, massimo e minimo limite e compattezza in R Università di Roma Tor Vergata Corso di Laurea in Scienze e Tecnologie per i Media Successioni, massimo e minimo limite e compattezza in R Massimo A. Picardello BOZZA 10.11.2011 21:24 i CAPITOLO 1 Successioni

Dettagli

LEZIONE 10. S(C,ρ) Figura 10.1

LEZIONE 10. S(C,ρ) Figura 10.1 LEZIONE 10 10.1. Sfere nello spazio. In questa lezione studieremo alcuni oggetti geometrici non lineari, circonferenze e sfere nello spazio A 3. Poiché le proprietà delle circonferenze nel piano sono del

Dettagli

LEZIONE 15. (15.1.2) p(x) = a 0 x n + a 1 x n a n 1 x + a n = a h x n h.

LEZIONE 15. (15.1.2) p(x) = a 0 x n + a 1 x n a n 1 x + a n = a h x n h. LEZIONE 15 15.1. Polinomi a coefficienti complessi e loro e loro radici. In questo paragrafo descriveremo alcune proprietà dei polinomi a coefficienti complessi e delle loro radici. Già nel precedente

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 17 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 17/10/2008 1 / 9 Definizione. Dati due numeri reali a e b,

Dettagli

Alcuni equivalenti dell Assioma della Scelta

Alcuni equivalenti dell Assioma della Scelta Alcuni equivalenti dell Assioma della Scelta Giugno 2010 Gabriele Gullà Sommario Dimostreremo l equivalenza fra l assioma della scelta ed altri enunciati della matematica piú o meno noti. Enunciati: 1)

Dettagli

Capitolo 1. Gli strumenti. 1.1 Relazioni

Capitolo 1. Gli strumenti. 1.1 Relazioni Capitolo 1 Gli strumenti Consideriamo un insieme X. In geometria siamo abituati a considerare insiemi i cui elementi sono punti ad esempio, la retta reale, il piano cartesiano. Più in generale i matematici

Dettagli

LEZIONE 9. Figura 9.1.1

LEZIONE 9. Figura 9.1.1 LEZIONE 9 9.1. Equazioni cartesiane di piani. Abbiamo visto come rappresentare parametricamente un piano. Un altro interessante metodo di rappresentazione di un piano nello spazio è tramite la sua equazione

Dettagli

Completezza e compattezza

Completezza e compattezza 1 Completezza e compattezza Spazi metrici completi Data una successione x : N X, j x j, una sua sottosuccessione è la composizione x ν, ove ν : N N è strettamente crescente. Data una successione (x j )

Dettagli

LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero

LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero LEZINE 8 8.1. Prodotto scalare. Dati i vettori geometrici v = v x ı + v y j + v z k e w = wx ı + j + k di R 3 definiamo prodotto scalare di v e w il numero v, w = ( v x v y v z ) w x = v x + v y + v z.

Dettagli

Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia

Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia Insiemi, Numeri, Terminologia Prof. Simone Sbaraglia Corso Rapido di Logica Matematica La logica formale definisce le regole cui deve obbedire qualsiasi teoria deduttiva. Una proposizione e` una affermazione

Dettagli

Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile

Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 41 1 Derivata

Dettagli

Il Teorema di Kakutani

Il Teorema di Kakutani Il Teorema di Kakutani Abbiamo visto, precedentemente, il seguente risultato: 1 Sia X uno spazio di Banach. Se X è separabile, la palla è debolmente compatta. B X = {x X x 1} Il Teorema di Kakutani è un

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE ROBERTO GIAMBÒ 1. DEFINIZIONI E PRIME PROPRIETÀ In queste note saranno presentate alcune proprietà principali delle funzioni convesse di una variabile

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli

SPAZI METRICI COMPLETI

SPAZI METRICI COMPLETI Capitolo 1 SPAZI METRICI COMPLETI Sia dato uno spazio metrico (X, d). Definizione 1.1 Una successione {x n } si dice successione di Cauchy se ε > 0 n 0 n, m n 0 = d(x n x m ) < ε (1.1) Esercizio 1.1 Dimostrare

Dettagli

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 03 - I Numeri Reali Anno Accademico 2015/2016 M. Tumminello,

Dettagli

COMPLETAMENTO DI SPAZI METRICI

COMPLETAMENTO DI SPAZI METRICI COMPLETAMENTO DI SPAZI METRICI 1. Successioni di Cauchy e spazi metrici completi Definizione 1.1. Una successione x n n N a valori in uno spazio metrico X, d si dice di Cauchy se, per ogni ε > 0 esiste

Dettagli

Una semplice dimostrazione del teorema fondamentale dell algebra

Una semplice dimostrazione del teorema fondamentale dell algebra Università degli Studi di Cagliari Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Matematica Una semplice dimostrazione del teorema fondamentale dell algebra Relatore Prof. Andrea

Dettagli

Micol Amar ANALISI MATEMATICA I / Insiemi aperti e insiemi chiusi. D'ora in avanti, se non sar a diversamente specificato, cosidereremo s

Micol Amar ANALISI MATEMATICA I / Insiemi aperti e insiemi chiusi. D'ora in avanti, se non sar a diversamente specificato, cosidereremo s ELEMENTI DI TOPOLOGIA 1. La distanza. Esempi. Definizione 1.1. Sia X un sottoinsieme non vuoto di IR N (N 1) e sia d : X X! [0; +1) una funzione soddisfacente le seguenti propriet a: i) 8x; y 2 X; d(x;

Dettagli

Teorema delle Funzioni Implicite

Teorema delle Funzioni Implicite Teorema delle Funzioni Implicite Sia F una funzione di due variabili definita in un opportuno dominio D di R 2. Consideriamo l equazione F (x, y) = 0, questa avrà come soluzioni coppie di valori (x, y)

Dettagli

Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile

Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Docente: Anna Valeria Germinario Università di Bari A.V.Germinario (Università di Bari) Analisi Matematica

Dettagli

8. Topologia degli spazi metrici, II

8. Topologia degli spazi metrici, II 8. Topologia degli spazi metrici, II Compattezza Cominciamo con un esempio Sia E un sottoinsieme di R 2. Esisterà in E un punto x 0 che abbia massima distanza dall origine? Ovviamente E dovrà essere limitato,

Dettagli

Capitolo 1. Spazi quoziente. 1.1 Spazi quoziente

Capitolo 1. Spazi quoziente. 1.1 Spazi quoziente Capitolo 1 Spazi quoziente 1.1 Spazi quoziente Siano (S, A ) uno spazio topologico, Σ una relazione di equivalenza definita in S e p la proiezione canonica di S su S/Σ. Posto S = S/Σ definiamo topologia

Dettagli

Principio di induzione: esempi ed esercizi

Principio di induzione: esempi ed esercizi Principio di induzione: esempi ed esercizi Principio di induzione: Se una proprietà P n dipendente da una variabile intera n vale per n e se, per ogni n N vale P n P n + allora P vale su tutto N Variante

Dettagli

Funzioni implicite - Esercizi svolti

Funzioni implicite - Esercizi svolti Funzioni implicite - Esercizi svolti Esercizio. È data la funzione di due variabili F (x, y) = y(e y + x) log x. Verificare che esiste un intorno I in R del punto di ascissa x 0 = sul quale è definita

Dettagli

Estremi liberi. (H x, x) x 2 (1) F (x) =

Estremi liberi. (H x, x) x 2 (1) F (x) = Estremi liberi Allo scopo di ottenere delle condizioni sufficienti affinchè un punto stazionario sia un estremante, premettiamo alcuni risultati riguardanti le proprietà delle forme quadratiche. Sia H

Dettagli

Note del corso di Calcolabilità e Linguaggi Formali - Lezione 10

Note del corso di Calcolabilità e Linguaggi Formali - Lezione 10 Note del corso di Calcolabilità e Linguaggi Formali - Lezione 10 Alberto Carraro DAIS, Università Ca Foscari Venezia http://www.dsi.unive.it/~acarraro 1 Teoremi fondamentali della Recursion Theory Theorem

Dettagli

Insiemi numerici. Definizioni

Insiemi numerici. Definizioni 1 Insiemi numerici Gli insiemi numerici sono insiemi i cui elementi sono numeri, cioè appartengono all'insieme N dei naturali, degli interi Z, dei razionali Q, dei reali R o dei complessi C ( es.: A =

Dettagli

Università degli Studi di Palermo Facoltà di Economia. CdS Sviluppo Economico e Cooperazione Internazionale. Appunti del corso di Matematica

Università degli Studi di Palermo Facoltà di Economia. CdS Sviluppo Economico e Cooperazione Internazionale. Appunti del corso di Matematica Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 02 - I Numeri Reali Anno Accademico 2013/2014 D. Provenzano, M.

Dettagli

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 5 a.a Soluzioni

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 5 a.a Soluzioni Corso di Laurea in Matematica Geometria 2 Foglio di esercizi n. 5 a.a. 2015-16 Soluzioni Gli esercizi sono presi dal libro di Manetti. Per svolgere questi esercizi, studiare con cura i paragrafi 10.1,

Dettagli

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo C.6 Funzioni continue Pag. 114 Dimostrazione del Corollario 4.25 Corollario 4.25 Sia f continua in un intervallo I. Supponiamo che f ammetta, per x tendente a ciascuno degli estremi dell intervallo, iti

Dettagli

LEZIONE 31. B i : R n R. R m,n, x = (x 1,..., x n ). Allora sappiamo che è definita. j=1. a i,j x j.

LEZIONE 31. B i : R n R. R m,n, x = (x 1,..., x n ). Allora sappiamo che è definita. j=1. a i,j x j. LEZIONE 31 31.1. Domini di funzioni di più variabili. Sia ora U R n e consideriamo una funzione f: U R m. Una tale funzione associa a x = (x 1,..., x n ) U un elemento f(x 1,..., x n ) R m : tale elemento

Dettagli

Esercizi sulle equazioni differenziali a cura di Sisto Baldo, Elisabetta Ossanna e Sandro Innocenti

Esercizi sulle equazioni differenziali a cura di Sisto Baldo, Elisabetta Ossanna e Sandro Innocenti Esercizi sulle equazioni differenziali a cura di Sisto Baldo, Elisabetta Ossanna e Sandro Innocenti 1. Verifica che y(t) = 1 t + e t è una soluzione dell equazione y (t) = y(t) + t.. Scrivi un equazione

Dettagli

ALGEBRE DI BOOLE. (d) x, y X x y oppure y x.

ALGEBRE DI BOOLE. (d) x, y X x y oppure y x. ALGEBRE DI BOOLE Un insieme parzialmente ordinato è una coppia ordinata (X, ) dove X è un insieme non vuoto e " " è una relazione binaria definita su X tale che (a) x X x x (riflessività) (b) x, y, X se

Dettagli

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero Il teorema degli zeri è fondamentale per determinare se una funzione continua in un intervallo chiuso [ a ; b ] si annulla in almeno un punto interno

Dettagli

Esercizi di Analisi Matematica I

Esercizi di Analisi Matematica I Esercizi di Analisi Matematica I (corso tenuto dal Prof Alessandro Fonda) Università di Trieste, CdL Fisica e Matematica, aa 2012/2013 1 Principio di induzione 1 Dimostrare che per ogni numero naturale

Dettagli

LEZIONE 13. Figura 13.1

LEZIONE 13. Figura 13.1 LEZIONE 3 Ritorniamo al nostro rettangolo R di vertici A = (, ), B = (, ), C = (, 3), D = (, 3) a partire dal segmento OU unitario di estremi l origine O ed il punto U = (, ). y D C R A B O Figura 3. Tra

Dettagli

G. Pareschi RELAZIONI D ORDINE

G. Pareschi RELAZIONI D ORDINE G. Pareschi RELAZIONI D ORDINE 1 Definizione 1.1. Sia X un insieme. Una relazione su X è detta una relazione d ordine o un ordinamento di X se è riflessiva, antisimmetrica e transitiva. Un insieme X, munito

Dettagli

LEZIONE 9. k, tenendo conto delle formule che permettono di calcolare il prodotto scalare ed il prodotto vettoriale, otteniamo

LEZIONE 9. k, tenendo conto delle formule che permettono di calcolare il prodotto scalare ed il prodotto vettoriale, otteniamo LEZIONE 9 9.1. Prodotto misto. Siano dati i tre vettori geometrici u, v, w V 3 (O) definiamo prodotto misto di u, v e w il numero u, v w. Fissiamo un sistema di riferimento O ı j k in S 3. Se u = u x ı

Dettagli

Insiemi di numeri reali

Insiemi di numeri reali Capitolo 1 1.1 Elementi di teoria degli insiemi Se S è una totalità di oggetti x, si dice che S è uno spazio avente gli elementi x. Se si considerano alcuni elementi di S si dice che essi costituiscono

Dettagli

Gli insiemi N, Z e Q. I numeri naturali

Gli insiemi N, Z e Q. I numeri naturali Università Roma Tre L. Chierchia 1 Gli insiemi N, Z e Q Il sistema dei numeri reali (R, +,, ) può essere definito tramite sedici assiomi: quindici assiomi algebrici (si veda ad esempio 2.3 in [Giusti,

Dettagli

LEZIONE Equazioni matriciali. Negli Esempi e si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = R m,n, B = (b i,h ) 1 i m

LEZIONE Equazioni matriciali. Negli Esempi e si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = R m,n, B = (b i,h ) 1 i m LEZIONE 4 41 Equazioni matriciali Negli Esempi 336 e 337 si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = B 2,, AX p = B p aventi la stessa matrice incompleta A Tale tipo di problema si presenta

Dettagli

Spazi affini e combinazioni affini.

Spazi affini e combinazioni affini. Spazi affini e combinazioni affini. Morfismi affini. Giorgio Ottaviani Abstract Introduciamo il concetto di combinazione affine in uno spazio affine, e in base a questo, ne caratterizziamo i sottospazi.

Dettagli

Note del corso di Calcolabilità e Linguaggi Formali - Lezione 8

Note del corso di Calcolabilità e Linguaggi Formali - Lezione 8 Note del corso di Calcolabilità e Linguaggi Formali - Lezione 8 Alberto Carraro DAIS, Università Ca Foscari Venezia http://www.dsi.unive.it/~acarraro 1 Insiemi e predicati ricorsivi e ricorsivamente enumerabili

Dettagli

Il teorema di Lusin (versione )

Il teorema di Lusin (versione ) G.Gorni 7/8 Il teorema di Lusin versione 8-6-). Distanza da un insieme Deinizione. Dato uno spazio metrico X, d), un sottinsieme non vuoto A X e un punto x X deiniamo distanza ra x e A il numero distx,

Dettagli

(b) le operazioni, sono distributive: (c) le operazioni, hanno un elemento neutro: cioè esistono O e I P(X) tali che A P(X) : A O = A, A I = A.

(b) le operazioni, sono distributive: (c) le operazioni, hanno un elemento neutro: cioè esistono O e I P(X) tali che A P(X) : A O = A, A I = A. Elementi di Algebra e Logica 2008. 7. Algebre di Boole. 1. Sia X un insieme e sia P(X) l insieme delle parti di X. Indichiamo con, e rispettivamente le operazioni di intersezione, unione e complementare

Dettagli

Gli intervalli di R. (a, b R, a b)

Gli intervalli di R. (a, b R, a b) Deinizione (Funzione continua (A.Cauchy, 180)) Siano D R una unzione, D R, x 0 D. Si dice che è continua nel punto x 0 D, se per ogni ε > 0 esiste un δ > 0 per il quale è soddisatta questa condizione:

Dettagli

LEZIONE 8. Figura 8.1.1

LEZIONE 8. Figura 8.1.1 LEZIONE 8 8.1. Equazioni parametriche di rette. In questo paragrafo iniziamo ad applicare quanto spiegato sui vettori geometrici per dare una descrizione delle rette nel piano e nello spazio. Sia r S 3

Dettagli

Quaderni di Analisi Matematica Marcello Colozzo. Sommario

Quaderni di Analisi Matematica Marcello Colozzo. Sommario Matematica Open Source http://www.extrabyte.info Quaderni di Analisi Matematica 2016 Marcello Colozzo Sommario In Analisi Matematica - nello studio dei iti di una funzione reale di una variabile reale

Dettagli

Complemento 1 Gli insiemi N, Z e Q

Complemento 1 Gli insiemi N, Z e Q AM110 Mat, Univ. Roma Tre (AA 2010/11 L. Chierchia) 30/9/10 1 Complemento 1 Gli insiemi N, Z e Q Il sistema dei numeri reali (R, +,, ) può essere definito tramite sedici assiomi: quindici assiomi algebrici

Dettagli

401 PREDICATI RICORSIVI PRIMITIVI

401 PREDICATI RICORSIVI PRIMITIVI 401 PREDICATI RICORSIVI PRIMITIVI Corso di Informatica Teorica - modulo 2 Prof. Settimo Termini 1 Breve richiamo Un predicato su un insieme S è una funzione totale P su S tale che a S si ha: P(a) = VERO

Dettagli

Algebra Lineare e Geometria. Il teorema fondamentale dell algebra. 1 Non c è un ordine totale sull insieme dei complessi

Algebra Lineare e Geometria. Il teorema fondamentale dell algebra. 1 Non c è un ordine totale sull insieme dei complessi Università di Bergamo Anno accademico 2008 2009 Primo anno di Ingegneria Algebra Lineare e Geometria Il teorema fondamentale dell algebra 1 Non c è un ordine totale sull insieme dei complessi Vogliamo

Dettagli

Massimi e minimi : TEOREMI. Condizione necessaria del I ordine. Conseguenza del Teorema di Lagrange.

Massimi e minimi : TEOREMI. Condizione necessaria del I ordine. Conseguenza del Teorema di Lagrange. Massimi e minimi : TEOREMI Condizione necessaria del I ordine Teorema di Weierstrass Teorema di Rolle Teorema di Lagrange Conseguenza del Teorema di Lagrange. Data f: A R, f derivabile in x 0 A. Def.:

Dettagli

Massimo e minimo limite di successioni

Massimo e minimo limite di successioni Massimo e minimo limite di successioni 1 Premesse Definizione 1.1. Definiamo R esteso l insieme R = R { } {+ }. In R si estende l ordinamento tra numeri reali ponendo < a < +, a R. In base a tale definizione,

Dettagli

Forme differenziali lineari

Forme differenziali lineari Forme differenziali lineari Sia Ω R 3 un insieme aperto e siano A, B, C: Ω R funzioni continue in Ω. Si definisce forma differenziale ω in Ω l espressione ω = A x, y, z dx + B x, y, z dy + C x, y, z dz

Dettagli

Spazi Vettoriali ed Applicazioni Lineari

Spazi Vettoriali ed Applicazioni Lineari Spazi Vettoriali ed Applicazioni Lineari 1. Sottospazi Definizione. Sia V uno spazio vettoriale sul corpo C. Un sottoinsieme non vuoto W di V è un sottospazio vettoriale di V se è chiuso rispetto alla

Dettagli