a b }. L insieme Q è pertanto l insieme delle frazioni.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "a b }. L insieme Q è pertanto l insieme delle frazioni."

Transcript

1 I1. Insimisti I1.1 Insimi Il ontto i insim è un ontto primitivo, prtnto non n vin t un finizion rigoros. Si può ir, intuitivmnt, h un insim è un ollzion i oggtti pr ui vlgono lun proprità: Un lmnto i un insim ppr un volt sol ll intrno ll insim. Un lmnto può pprtnr o non pprtnr ll insim. Gli lmnti i un insim non sono orinti. Pr ogni insim sist un proprità h prmtt i ir s un lmnto pprtin o no ll insim. L proprità prnti non srvono r un finizion rigoros i insim. Inftti l ultim proprità, in rltà, prou ontrizioni, nh s non si pprofonirà qusto punto. Gli insimi sono initi on lttr miusol,,, ; gli lmnti sono initi on lttr minusol,,, Pr inir h un lmnto pprtin ll insim si sriv. Il simolo si lgg pprtin. Pr inir h un lmnto non pprtin ll insim si sriv. Il simolo si lgg non pprtin. Prim i simoli v un lmnto, opo v un insim. E prtnto rror sintttio srivr, prhé, lttr minusol, non è un insim m un lmnto. E rror sintttio srivr nh, in qunto è un insim non si può trovr prim l simolo. L insim h non h lmnti è tto insim vuoto vin inito on il simolo. L insim vin rpprsntto on l sgunt notzion, tt rpprsntzion mint l proprità rttristi: { x x soisf un prtiolr proprità }. L rr vrtil si lgg tl h. E possiil rpprsntr gli insimi, in mnir intuitiv, pr lnzion, ossi lnnon gli lmnti tr prntsi grff. E possiil rpprsntr gli insimi, in un simil mnir intuitiv, on i igrmmi i Vnn, srivnon gli lmnti ll intrno i un urv hius. luni insimi spsso utilizzti sono gli insimi numrii. E tto insim i numri nturli l insim N={ 0, 1, 2, 3, }. E tto insim i numri rltivi l insim Z={,-3,-2,-1, 0, 1, 2, 3, }. E tto insim i numri rzionli l insim Q = {, Z }. L insim Q è prtnto l insim ll frzioni. L finizion sussiv, qull i insim i numri rli, non è un finizion rigoros, l finizion rigoros vrrà t più vnti. Si i insim i numri rli, si ini on R, l insim i numri orrisponnti i punti i un rtt. Esmpio I1.1 ={x x<4, x N} è un insim n finito; è inftti possiil trminr sttmnt s un lmnto pprtin oppur s non vi pprtin. Gli lmnti i sono i numri 0, 1, 2, 3. L insim, pr lnzion, si rpprsnt in qusto moo: ={ 0, 1, 2, 3 }. L insim, mint i igrmmi i Vnn, vin rpprsntto in qusto moo: Figur I1.1 Digrmm i Vnn. Nll smpio prnt l insim è to mint proprità rttristi, poi è stto sritto lo stsso insim pr lnzion è stto rpprsntto grfimnt on i igrmmi i Vnn. Nll smpio sussivo, l ontrrio, vin to un insim pr lnzion lo si sriv poi mint l proprità rttristi. Un insim è tto finito, in mnir intuitiv, s h un numro finito i lmnti. L finizion forml i insim finito vrrà t nl pitolo I2. S un insim è finito è tt rinlità ll insim il numro i suoi lmnti. L rinlità ll insim è init on. è un numro intro. Nl so ll smpio I1.1 =4, prhé l insim h 4 lmnti. L rinlità ll insim è zro; si sriv =0. L rinlità ll insim N è init on il simolo ℵ 0; tl simolo si lgg lph-zro. L tori ll rinlità gli insimi infiniti sul gli sopi i qusto pitolo. Esmpio I1.2 ={ 0, 1, 4, 9, 16 } è un insim rpprsntto pr lnzion. Si noti h gli lmnti pprtnnti ll insim sono tutti qurti i numri intri, in prtiolr sono i qurti i numri intri minori o uguli 4. L insim, pr proprità rttristi, può ssr rpprsntto on = { x 2 x 4, x N }. E possiil rpprsntr lo stsso insim on l proprità rttristi nh in mnir iffrnt, pr smpio: = { x 2 x <5, x N }. Non sist priò un unio moo i rpprsntr lo stsso insim mint proprità rttristi. Tori I1-1

2 I1.2 Sottoinsimi Du insimi sono tti uguli s hnno sttmnt gli stssi lmnti, si sriv =. Dti u insimi si sriv s ogni lmnto i è nh lmnto i, si i h è un sottoinsim i. Il simolo si lgg inluso o ontnuto. si lgg unqu è ontnuto in. Tlvolt si utilizz il simolo ; ini h l insim è ontnuto in m può nh ssr ugul. nlogmnt i simoli vngono ltti inlu o ontin. Il simolo si lgg non inluso. Tutti i simoli prnti srvono rpprsntr rlzion tr insimi; è prtnto rror sintttio srivr oppur, prhé, rpprsntti om lttr minusol, non sono insimi m lmnti. E inv orrtto srivr {}, in qunto {} è un insim rpprsntto pr lnzion h ontin solo un lmnto. Esmpio I1.3 Si P l insim P={ 2x x N }. P è l insim i numri intri pri. E ovvio h P N h N P. Pr ogni insim vlgono l sgunti proprità:, ossi ogni insim è sottoinsim i sé stsso,, ossi l insim vuoto è sottoinsim i ogni insim. Gli insimi sono tti sottoinsimi impropri i. Tutti gli ltri sottoinsimi i sono tti sottoinsimi propri i. Si noti h non è vro h, mntr è vro h. S sono vr l sgunti u proprità:,, llor i u insimi sono uguli, ossi hnno gli stssi lmnti. L insim h h om lmnti tutti i sottoinsimi i un to insim è tto insim ll prti i si ini on P(). Si noti h, iffrnz i qunto visto finor, gli lmnti ll insim ll prti sono insimi! Esmpio I1.4 Si ={,, }. Si lnno i sguito tutti i sottoinsimi i. è un solo sottoinsim i rinlità zro, è l insim vuoto. i sono tr sottoinsimi i rinlità uno, sono {}, {}, {}. i sono tr sottoinsimi i rinlità u, sono {, }, {, }, {, }. è un unio sottoinsim i rinlità tr, è stsso. L insim ll prti i è unqu l insim sgunt, formto 8 lmnti. P()={, {}, {}, {}, {, }, {, }, {, }, {,, } }. Si noti h nll smpio prnt =3 P() =8=2 3. iò può ssr gnrlizzto si può ffrmr h s h n lmnti, llor l insim ll prti i n h 2 n. Spno h =5 si può unqu ir h P() =2 5 =32. Spno h P() =64 si può ir h =6, poihé 2 6 =64. Non è possiil h l insim ll prti i i sttmnt 10 lmnti, in qunto 10 non è potnz i 2. I1.3 Oprzioni tr insimi L oprzioni tr numri ssgnno ogni oppi i numri un numro. smpio l oprzion + ssgn ll oppi i numri 3 5 il numro 8. È possiil finir oprzioni tr insimi, ossi oprzioni h ssgnno un oppi i insimi un trzo insim. INTERSEZIONE L oprzion i intrszion è init l simolo. L insim è ostituito tutti soli gli lmnti h pprtngono si h. Formlmnt si può srivr ={ x x x }. Esmpio I1.5 Dti gli insimi ={,,, } ={,, } lolr l insim intrszion rpprsntrlo grfimnt on i igrmmi i Vnn. ={,,, } {,, }={, }. Figur I1.2 Intrszion i 2 insimi. Si noti h l intrszion è l prt in omun i u insimi, è qull olort nll figur I1.2. Tori I1-2

3 UNIONE L oprzion intrszion è init l simolo. L insim è ostituito tutti gli lmnti h pprtngono oppur. Formlmnt si può srivr ={ x x oppur x }. Esmpio I1.6 Dti gli insimi ={,,, } ={,, } lolr l insim union rpprsntrlo grfimnt on i igrmmi i Vnn. ={,,, } {,, }={,,,, }. Figur I1.3 Union i 2 insimi. Si noti h l union è formt tutti u gli insimi, si ll prti in omun h qull h non sono in omun, è stt unqu olort tutt l r i u insimi. DIFFERENZ L oprzion iffrnz è init l simolo \. L insim \ è ostituito tutti gli lmnti h pprtngono m non pprtngono. Formlmnt si può srivr \={ x x x }. Esmpio I1.7 Dti gli insimi ={,,, } ={,, } lolr l insim iffrnz \ rpprsntrlo grfimnt on i igrmmi i Vnn. \={,,, }\{,, }={, }. Figur I1.4 Diffrnz i 2 insimi. Si noti h l iffrnz è l prt i h non ontin lmnti i, è l prt olort nll figur I1.4. OMPLEMENTRE iffrnz ll oprzioni prnti h ssgnno un oppi i insimi un trzo insim l oprzion i omplmntr ssgn ogni insim un ltro insim. E prò nssrio finir un insim, tto insim univrso, i ui l insim to è sottoinsim. Si U l insim univrso si U. L insim omplmntr i, inito on U, è l insim gli lmnti h non si trovno in m si trovno in U in ui è ontnuto. Formlmnt si può srivr U={ x x, x U }. Si noti h U=U\. S il ontsto è univomnt trminto non è nssrio srivr il simolo U nto si può srivr smplimnt. Esmpio I1.7 Dti gli insimi ={,, } U={,,,, } lolr il omplmntr U rpprsntrlo grfimnt on i igrmmi i Vnn. U={,,,, }\{,, }={, }. U Figur I1.5 omplmntr i un insim. Si noti h il omplmntr è l prt ll insim univrso strn, è l prt h è stt olort nll figur I1.5. Tori I1-3

4 PROPRIET DELLE OPERZIONI TR INSIEMI L oprzioni tr numri goono i lun proprità. N rihimimo lun: 1. PROPRIET SSOITIV ll DDIZIONE +(+)=(+)+,, N (nh Z, Q o R) 2. PROPRIET SSOITIV ll MOLTIPLIZIONE ( )=( ),, N (nh Z, Q o R) 3. PROPRIET OMMUTTIV ll DDIZIONE +=+, N (nh Z, Q o R) 4. PROPRIET SSOITIV ll MOLTIPLIZIONE =, N (nh Z, Q o R) 5. PROPRIET DISTRIUTIV ll MOLTIPLIZIONE risptto ll DDIZIONE (+)= +,, N (nh Z, Q o R) nh l oprzioni tr insimi goono ll stss proprità, goono nh i molt ltr proprità. Elnhimol: 1. PROPRIET SSOITIV ll INTERSEZIONE ( )=( ) 2. PROPRIET SSOITIV ll UNIONE ( )=( ) 3. PROPRIET OMMUTTIV ll INTERSEZIONE = 4. PROPRIET SSOITIV ll UNIONE =,, insimi qulsisi.,, insimi qulsisi., insimi qulsisi., insimi qulsisi. L proprità 1-4 sono l nlogh proprità h vlgono pr l izion l moltiplizion tr numri qulsisi. Ngli insimi numrii vl l proprità istriutiv ll moltiplizion risptto ll izion m non qull ll izion risptto ll moltiplizion. Pr l oprzioni i union intrszion inv vlgono ntrm l proprità istriutiv, si qull ll intrszion risptto ll union h qull ll union risptto ll intrszion. 5. PROPRIET DISTRIUTIV ll INTERSEZIONE risptto ll UNIONE ( )=( ) ( ),, insimi qulsisi. 6. PROPRIET DISTRIUTIV ll UNIONE risptto ll INTERSEZIONE ( )=( ) ( ),, insimi qulsisi. i sono poi ltr proprità h non vlgono pr l oprzioni i izion moltiplizion tr numri m vlgono pr union intrszion tr insimi: sono l lggi i ssorimnto, l proprità i impotnz l lggi i D Morgn. 7. LEGGI DI SSORIMENTO ( )=, insimi qulsisi. ( )=, insimi qulsisi. 8. PROPRIET DI IDEMPOTENZ = insim qulsisi. = insim qulsisi. 9. LEGGI DI DE MORGN (to U insim univrso fissto on, U) =, insimi qulsisi. 1 è l lmnto nutro ll moltiplizion; inftti 1=. 0 è l lmnto nutro ll izion; inftti +0=. llo stsso moo è l lmnto nutro ll union. 10. ELEMENTO NEUTRO DELL UNIONE = insim qulsisi. Pr l moltiplizion vl l proprità h zro, moltiplito pr ogni numro, à risultto zro. llo stsso moo, intrsto on ogni insim, à risultto. 11. INTERSEZIONE ON L INSIEME VUOTO. = insim qulsisi. Un imostrzion informl i tutt qust proprità si può ottnr utilizzno i igrmmi i Vnn. Pr smpio si imostr nl sussivo smpio on i igrmmi i Vnn l proprità istriutiv ll union risptto ll intrszion. Esmpio I1.8 Si imostr l proprità istriutiv ll union risptto ll intrszion on i igrmmi i Vnn. L proprità ffrm h: ( )=( ) ( ). Pr prim os si olor in un igrmm i Vnn il primo mmro ( ). Tori I1-4

5 Figur I1.6 ( ) on i igrmmi i Vnn. ( ) Poi si olor in un igrmm i Vnn il sono mmro ( ) ( ). Figur I1.7 ( ) ( ) on i igrmmi i Vnn. ( ) ( ) Di igrmmi i Vnn ll figur prnti risult h il primo mmro è ugul l sono mmro. I1.4 Prootto rtsino Un oppi orint, init (, ), è un insim, formto gli lmnti in qust orin. Ngli insimi l orin, om si è tto, non h importnz, quini {, }={, }. Pr l oppi orint ont l orin, quini (, ) (, ). Dti u insimi si i prootto rtsino i i, si ini on x, l insim sgunt: x={ (, ) }. Il prootto rtsino è prtnto l insim ll oppi orint h hnno nll prim posizion un lmnto i nll son posizion un lmnto i. L rinlità ll insim x è il prootto ll rinlità gli insimi, ossi x =. Esmpio I1.9 Dti gli insimi ={1, 2, 3} ={, } il prootto rtsino h rinlità 6=3 2 è l insim sgunt: x={ (1, ), (1, ), (2, ), (2, ), (3, ), (3, ) }. Esmpio I1.10 Dti gli insimi ={1, 2, 3} ={, } si rpprsnt grfimnt il prootto rtsino pr mzzo i punti sugli ssi rtsini. (1,) (2,) (3,) (1,) (2,) (3,) Figur I1.8 Rpprsntzion sugli ssi rtsini i x Tori I1-5

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone Mhin non ompltmnt spifit Sintsi Squnzil Sinron Sintsi Comportmntl i Rti Squnzili Sinron Riuzion l numro gli stti pr Mhin Non Compltmnt Spifit Comptiilità Vrsion l 5/12/02 Sono mhin in ui pr lun onfigurzioni

Dettagli

Circuiti Sequenziali Macchine Non Completamente Specificate

Circuiti Sequenziali Macchine Non Completamente Specificate CEFRIEL Consorzio pr l Formzion l Rir in Inggnri ll Informzion Politnio i Milno Ciruiti Squnzili Mhin Non Compltmnt Spifit Introuzion Comptiilità Riuzion l numro gli stti Mtoo gnrl FSM non ompltmnt spifit

Dettagli

INTEGRALI. 1. Integrali indefiniti

INTEGRALI. 1. Integrali indefiniti INTEGRALI. Intgrli indiniti Si un unzion ontinu in [, ]. Un unzion F dinit ontinu in [, ], drivil in ], [, disi primitiv di in [, ] s F, ], [. Tormi. S F è un primitiv di in [, ] llor nh G F, on R, è un

Dettagli

+ poligoni e l equivalenza di figure piane + triangoli + quadrilateri

+ poligoni e l equivalenza di figure piane + triangoli + quadrilateri + poligoni + poligoni l quivlnz i figur pin + tringoli + quriltri + poligoni l quivlnz i figur pin 1 Stilisi s l sgunti ffrmzioni sono vr o fls. SEZ. E In un poligono i lti sono onsutivi u u. L somm gli

Dettagli

Sistemi lineari COGNOME... NOME... Classe... Data...

Sistemi lineari COGNOME... NOME... Classe... Data... Cpitolo Sistmi linri Risoluzion grfi lgri rifi pr l lss prim COGNOME............................... NOME............................. Clss.................................... Dt...............................

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ LE FRAZIONI Tst Tst i utolutzion 0 0 0 0 0 0 0 0 0 0 00 n Il mio puntggio, in ntsimi, è n Risponi ogni qusito sgnno un sol ll ltrnti. n Conront l tu rispost on l soluzioni. n Color, prtno sinistr,

Dettagli

Minimizzazione degli Stati in una Rete Sequenziale Sincrona

Minimizzazione degli Stati in una Rete Sequenziale Sincrona Minimizzzion gli Stti in un Rt Squnzil Sinron Murizio Plsi Murizio Plsi 1 Sintsi i Rti Squnzili Sinron Il proimnto gnrl i sintsi si svolg ni sgunti pssi: 1. Rlizzzion l igrmm gli stti prtir ll spifih l

Dettagli

Algebra + numeri relativi +l calcolo letterale Equazioni, disequazioni, problemi

Algebra + numeri relativi +l calcolo letterale Equazioni, disequazioni, problemi Algr + numri rltivi +l lolo lttrl Equzioni, isquzioni, prolmi + numri rltivi Rpprsnt on un numro rltivo l sgunti grnzz. SEZ. O g Altituin i 00 m sul livllo l mr. Trzo pino i un prhggio sottrrno. Prit i

Dettagli

Esercizi di Algebra Lineare - Fogli 1-2 Corso di Laurea in Matematica 2 ottobre 2016

Esercizi di Algebra Lineare - Fogli 1-2 Corso di Laurea in Matematica 2 ottobre 2016 Esrizi i Algr Linr - Fogli 1-2 Corso i Lur in Mtmti 2 ottor 2016 1. Logi tori lmntr gli insimi Esrizio 1.1 Ngr un ssrzion. Espliitr l ngzion ll sgunti ssrzioni: (P ) ogni stunt i qust ul minornn, oppur

Dettagli

Informatica 3. Informatica 3. LEZIONE 25: Algoritmi sui grafi. Lezione 25 - Modulo 1. Problema. Notazioni per il percorso più breve

Informatica 3. Informatica 3. LEZIONE 25: Algoritmi sui grafi. Lezione 25 - Modulo 1. Problema. Notazioni per il percorso più breve Informti Informti LZION : lgoritmi sui grfi Lzion - Moulo Moulo : Prolm l prorso più rv Moulo : Spnning tr osto minimo Prolm l prorso più rv Politnio i Milno - Prof. Sr omi Politnio i Milno - Prof. Sr

Dettagli

Corso di Automi e Linguaggi Formali Parte 3

Corso di Automi e Linguaggi Formali Parte 3 Esmpio Sdo il pumping lmm sist tl ch ogni prol di tin un sottostring non vuot ch puo ssr pompt o tglit rpprsntrl com Invc non in dv ssr in posso Corso di Automi Linguggi Formli Gnnio-Mrzo 2002 p.3/22 Corso

Dettagli

j Verso la scuola superiore Geometria euclidea e analitica

j Verso la scuola superiore Geometria euclidea e analitica j rso l suol suprior Gomtri uli nliti Ossrv l spzzt stilisi quli ll sgunti rmzioni sono vr quli ls. B D G E B è onsutivo B. DE è onsutivo G. B è onsutivo D. B è int D. B è onsutivo D. E è onsutivo G. Il

Dettagli

e una funzione g ε S f tali che = sup g : g S f tale che h ε f < ε/2; analogamente, per

e una funzione g ε S f tali che = sup g : g S f tale che h ε f < ε/2; analogamente, per C.13 ntgrl di Rimnn Prmttimo il sgunt risultto. Lmm C.13.1 Si f un funzion limitt su = [, b]. Allor f è intgrbil s solo s pr ogni ε > 0 sistono un funzion h ε S + f un funzion g ε S f tli h h ε g ε < ε.

Dettagli

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo.

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. 6. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. Funzion sponnzil f ( ) fissto f : ( + ) è l bs dll funzion sponnzil d è fisst è l sponnt dll funzion

Dettagli

Matematica 15 settembre 2009

Matematica 15 settembre 2009 Nom: Mtriol: Mtmti 5 sttmbr 2009 Non sono mmss loltrii. Pr l domnd rispost multipl, rispondr brrndo o rhindo hirmnt un un sol lttr. Pr l ltr domnd srivr l soluzion on svolgimnto ngli spzi prdisposti..

Dettagli

Minimizzazione degli Stati in una macchina a stati finiti

Minimizzazione degli Stati in una macchina a stati finiti Rti Loih Sintsi i rti squnzili sinron Minimizzzion li Stti in un mhin stti initi Proimnto: Spiih Dirmm li stti Tll li stti Minimizzzion li stti Coii li stti Tll ll trnsizioni Slt lmnti i mmori Tll ll itzioni

Dettagli

Trasformazioni geometriche +sometrie Omotetia e similitudine Teoremi di Euclide e teorema di Talete

Trasformazioni geometriche +sometrie Omotetia e similitudine Teoremi di Euclide e teorema di Talete Trsormzioni gomtrih +somtri Omotti similituin Tormi i Euli torm i Tlt +somtri Stilisi s l sgunti rmzioni sono vr o ls. SEZ. N g h i l pplino un isomtri un igur, ss si orm. L simmtri ntrl è un prtiolr rotzion.

Dettagli

Minimizzazione degli Stati in una Rete Sequenziale Sincrona

Minimizzazione degli Stati in una Rete Sequenziale Sincrona Minimizzzion gli Stti in un Rt Squnzil Sinron Murizio Plsi Murizio Plsi 1 Sintsi i Rti Squnzili Sinron Il proimnto gnrl i sintsi si svolg ni sgunti pssi: 1. Rlizzzion l igrmm gli stti prtir ll spifih l

Dettagli

IL MOTO NELLA ZONA INSATURA

IL MOTO NELLA ZONA INSATURA L ritnzion dll umidità L suprfii d 1 4 rpprsntno l sussiv fsi di drnggio gio dll qu d un mzzo poroso. Al rsr dl drnggio l qu l si ritir ngli spzi intrstizili on suprfii urvtur ur rsnt d umntndo il rio

Dettagli

Aquadue Duplo. Guida all utilizzo. click! NEW! ON! c. Collegare il programmatore al rubinetto.

Aquadue Duplo. Guida all utilizzo. click! NEW! ON! c. Collegare il programmatore al rubinetto. Collgr il progrmmtor l ruintto. quu Duplo Pg. Gui ll utilizzo DY DY DY lik! DY Pr quu Duplo volution (o.): 80 prir il moulo i progrmmzion prmno sui u pulsnti ltrli insrir un ttri llin. ppn ollgt l ttri,

Dettagli

6) Nel 1991 Carl Lewis ha stabilito il record del mondo dei 100 m percorrendoli in 9,86 s. Qual è la velocità media in km/h?

6) Nel 1991 Carl Lewis ha stabilito il record del mondo dei 100 m percorrendoli in 9,86 s. Qual è la velocità media in km/h? 1) L unità l SI pr l tmprtur l mss sono, rispttivmnt gri grmmi klvin kilogrmmi Clsius milligrmmi Clsius kilogrmmi klvin grmmi 2) Qul mtril ffon nll olio ( = 0,94 g/m 3 )? ghiio ( = 0,92 g/m 3 ) sughro

Dettagli

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone Sintsi Squnzil Sinron Sintsi Comportmntl i Rti Squnzili Sinron Riuzion l numro gli stti pr Mhin Non Compltmnt Spiit Comptiilità Vrsion l 13/01/05 (Frrni( Antol) Mhin non ompltmnt spiit Sono mhin in ui

Dettagli

Corso di Analisi: Algebra di Base 5^ Lezione Logaritmi. Proprietà dei logaritmi Equazioni logaritmiche. Disequazioni logaritmiche. Allegato Esercizi.

Corso di Analisi: Algebra di Base 5^ Lezione Logaritmi. Proprietà dei logaritmi Equazioni logaritmiche. Disequazioni logaritmiche. Allegato Esercizi. Corso di Anlisi: Algbr di Bs ^ Lzion Logritmi. Proprità di ritmi Equzioni ritmih. Disquzioni ritmih. Allgto Esrizi. LOGARITMI : Pr ritmo intndimo un sprssion lttrl indint un vlor numrio. Dfinizion : Si

Dettagli

Aquauno Video 2 Plus

Aquauno Video 2 Plus Collgr il progrmmtor l ruintto. Aquuno Vio 2 Plus Pg. 1 Gui ll utilizzo 3 START STOP RESET CANCEL 3 4 5 6 3 4 5 6 3 4 5 6 lik! Pr Aquuno Vio 2 (o.): 8454-8428 Pr Aquuno Vio 2 Plus (o.): 8412 Aprir il moulo

Dettagli

Informatica II. Capitolo 5. Alberi. E' una generalizzazione della struttura sequenza

Informatica II. Capitolo 5. Alberi. E' una generalizzazione della struttura sequenza Alri Informtic II Cpitolo 5 Alri E' un gnrlizzzion dll struttur squnz Si rilss il rquisito di linrità: ogni lmnto (nodo) h un solo prdcssor m può vr più succssori. Il numro di succssori (figli) può ssr

Dettagli

Elettronica dei Sistemi Digitali Sintesi di porte logiche combinatorie fully CMOS

Elettronica dei Sistemi Digitali Sintesi di porte logiche combinatorie fully CMOS Elttroni di Sistmi Digitli Sintsi di port logih omintori full CMOS Vlntino Lirli Diprtimnto di Tnologi dll Informzion Univrsità di Milno, 26013 Crm -mil: lirli@dti.unimi.it http://www.dti.unimi.it/ lirli

Dettagli

Grandezze, funzioni empiriche e matematiche. 1 Stabilisci se le seguenti affermazioni sono vere o false.

Grandezze, funzioni empiriche e matematiche. 1 Stabilisci se le seguenti affermazioni sono vere o false. Grnzz unzioni Grnzz, unzioni mpirih mtmtih Grnzz irttmnt invrsmnt proporzionli Applizioni ll proporzionlità Grnzz, unzioni mpirih mtmtih Stilisi s l sunti rmzioni so vr o ls. SZ. I Un rnzz è vriil s ssum

Dettagli

Matematica. Indice lezione. (Esercitazioni) dott. Francesco Giannino dott. Valeria Monetti. Funzione esponenziale

Matematica. Indice lezione. (Esercitazioni) dott. Francesco Giannino dott. Valeria Monetti. Funzione esponenziale Mtmtic (Esrcitzioni) Equzioni Disquzioni sponnzili - ritmich dott. Frncsco Ginnino dott. Vlri Montti Indic lzion Funzion sponnzil Equzioni disquzioni sponnzili Funzion ritmo Equzioni disquzioni ritmich

Dettagli

] + [ ] [ ] def. ] e [ ], si ha subito:

] + [ ] [ ] def. ] e [ ], si ha subito: OPE OPERAZIONI BINARIE Definizione di operzione inri Dto un insieme A non vuoto, si him operzione (inri) su A ogni pplizione di A in A In generle, un'operzione su A viene indit on il simolo Se (x, y) è

Dettagli

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010 Corso di ordinmnto - Sssion suppltiv -.s. 9- PROBLEMA ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE SUPPLETIA Tm di: MATEMATICA. s. 9- Dt un circonrnz di cntro O rggio unitrio, si prndno

Dettagli

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione RELAZIONI E FUNZIONI Relzioni inrie Dti ue insiemi non vuoti e (he possono eventulmente oiniere), si ie relzione tr e un qulsisi legge he ssoi elementi elementi. L insieme A è etto insieme i prtenz. L

Dettagli

L insieme N e l insieme Z Le cifre e i numeri Le quattro operazioni e le potenze in N Le espressioni La misura e i problemi

L insieme N e l insieme Z Le cifre e i numeri Le quattro operazioni e le potenze in N Le espressioni La misura e i problemi L nsm N l nsm Z L r numr L quttro oprzon l potnz n N L sprsson L msur prolm L r numr 1 Stls s l sunt rmzon sono vr o ls. SEZ. A l m n o p q 39 è un numro spr. 112 è un numro pr. In 79, 9 è un r. 10 è un

Dettagli

ISTRUZIONI DI MONTAGGIO per controtelai SP

ISTRUZIONI DI MONTAGGIO per controtelai SP ISTRUZIONI DI MONTAGGIO pr ontrotli SP 100-125 Controtli vrsion rtonsso INCASTRO NOMENCLATURA: ontrotlio, inrio rrmnt Controtli pr port somprs i m l SET i ALLARGAMENTO pr SP 125 Montnti vrtili ntriori

Dettagli

GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE

GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE PROPRIETA GEOMETRICHE DELL ELLISSOIDE Al fin di stbilir un gomtri sull llissoid di rotzion è ncssrio non solo dfinir l quzioni dll curv idon d individur

Dettagli

2 Numeri reali. M. Simonetta Bernabei & Horst Thaler

2 Numeri reali. M. Simonetta Bernabei & Horst Thaler 2 Numeri reli M. Simonett Bernei & Horst Thler Numeri interi positivi o Nturli 0 1 2 3 4 Con i numeri Nturli è sempre possiile fre l ddizione e l moltipliczione p.es.: 5+2 = 7; 3*4 = 12; m non sempre l

Dettagli

ELABORAZIONE di DATI SPERIMENTALI

ELABORAZIONE di DATI SPERIMENTALI ELABORAZIONE DATI SPERIMENTALI Prof. Giovnn CATANIA Prof. Rit DONATI Dr. Tibrio T DI CORCIA L stribuzion norml o gusn com modlità borzion dti sprimntli qtittivmnt numro I N T R O D U Z I O N E Un Un dll

Dettagli

test Di chimica per l accesso alle Facoltà UNiVersitarie

test Di chimica per l accesso alle Facoltà UNiVersitarie tst i himia pr l asso all Faoltà UNiVrsitari il sistma priodio dgli lmnti il sistma priodio dgli lmnti 1. indiar qual di sgunti lmnti NoN è di transizion: a F zn as Cu Cr (Mdiina Chirurgia 2005) 2. indiar

Dettagli

a è detta PARTE LETTERALE

a è detta PARTE LETTERALE I MONOMI Si die MONOMIO un espressione letterle in ui le unihe operzioni presenti sino il prodotto e l divisione. Esempio è detto COEFFICIENTE del monomio e è dett PARTE LETTERALE Un monomio si die ridotto

Dettagli

Studio di funzione. Pertanto nello studio di tali funzioni si esamino:

Studio di funzione. Pertanto nello studio di tali funzioni si esamino: Prof. Emnul ANDRISANI Studio di funzion Funzioni rzionli intr n n o... n n Crttristich: sono funzioni continu drivbili in tutto il cmpo rl D R quindi non sistono sintoti vrticli D R quindi non sistono

Dettagli

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme

= l. x 0. In realtà può aversi una casistica più amplia potendo sia x che f ( x) tendere ad un elemento dell insieme LIMITI DI FUNZINI. CNCETT DI LIMITE Esula dallo scopo di qusto libro la trattazion dlla toria sui iti. Tuttavia, pnsando di far cosa gradita allo studnt, ch dv possdr qusta nozion com background, ritniamo

Dettagli

Elettra Evolution 1 OK! OK! Guida all utilizzo

Elettra Evolution 1 OK! OK! Guida all utilizzo lttr volution ui ll utilizzo Pg. ISTALLAZIO LL LTTROVALVOLA. L lttrovlvol progrmmil è prftt tnut stgn funzion nh immrs prmnntmnt in qu fino un mtro i profonità (gro i protzion IP8). Può ssr instllt ll

Dettagli

Ellisse. L ellisse è il luogo geometrico dei punti del piano tali che la somma delle distanze da due punti fissi. definizione. P semidistanza focale

Ellisse. L ellisse è il luogo geometrico dei punti del piano tali che la somma delle distanze da due punti fissi. definizione. P semidistanza focale Elliss dfinizion L lliss è il luogo gomtrio di punti dl pino tli h l somm dll distnz d du punti fissi F1 F2 dtti fuohi è ostnt, ioè: smiss mggior smiss minor P smidistnz fol F 2 smidistnz fol F 1 F 2 smiss

Dettagli

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica 1 Funzioni Indic 1 Il conctto di funzion 1 Funzion composta 4 3 Funzion invrsa 6 4 Rstrizion prolungamnto di una funzion 8 5 Soluzioni dgli srcizi

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri i Primo Gro Clsse Prim Suol..........................................................................................................................................

Dettagli

The cost of the material maintenance is averaged over the last 3 years.

The cost of the material maintenance is averaged over the last 3 years. Anlisi i osti i un Diprtimnto 11 TABLE 4 Dprition n mintnn osts (unit: ITL) Ctgory Y Prio Inrs vlu Annul vlu 1 Furnitur 5 1.1.90{31.12.95 219 311 127 43 862 225 2 Lirry 5 1.1.90{31.12.95 542 832 793 108

Dettagli

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U.

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U. APPUNTI d ESERCIZI PER CASA di GEOMETRIA pr il Corso di Laura in Chimica, Facoltà di Scinz MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rnd, 3 April 2 Sottospazi di uno spazio vttorial, sistmi di gnratori, basi

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar

Dettagli

Aritmetica Definizioni di concetti, regole e proprietà per il 1 anno della scuola media

Aritmetica Definizioni di concetti, regole e proprietà per il 1 anno della scuola media Aritmetic Definizioni di concetti, regole e proprietà per il nno dell scuol medi ) INSIEMI Concetto primitivo Un concetto primitivo è un concetto che non viene definito con precisione, m solo descritto

Dettagli

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, }

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, } Lezione 01 Aritmetic Pgin 1 di 1 I numeri nturli I numeri nturli sono: 0,1,,,4,5,6,7,8,,10,11,1, L insieme dei numeri nturli viene indicto col simbolo. } { 0,1,,, 4,5,6,7,8,,10,11,1, } L insieme dei numeri

Dettagli

Numeri razionali COGNOME... NOME... Classe... Data...

Numeri razionali COGNOME... NOME... Classe... Data... I numeri rzionli Cpitolo Numeri rzionli Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO L RLZIONI L FUNZIONI serizi in più SRIZI IN PIÙ SRIZI I FIN PITOLO TST Nell insieme ell figur, l relzione rppresentt goe ell o elle proprietà: TST L relzione «essere isenente i», efinit nell insieme egli

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Dal libro di tsto Zinkiwicz Taylor, Capitolo 14 pag. 398 Il mtodo dgli lmnti finiti fornisc una soluzion approssimata dl problma lastico; tal approssimazion driva non dall avr discrtizzato il dominio in

Dettagli

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi SUGLI INSIEMI 1.Insiemi e operzioni su di essi Il concetto di insieme è primitivo ed è sinonimo di clsse, totlità. Si A un insieme di elementi qulunque. Per indicre che è un elemento di A scriveremo A.

Dettagli

Erasmo Modica. : K K K

Erasmo Modica.  : K K K L insieme dei numeri reli L INSIEME DEI NUMERI REALI Ersmo Modic helthinsurnce@tin.it www.glois.it Per introdurre l insieme dei numeri reli si hnno disposizione diversi modi. Generlmente l iennio si preferisce

Dettagli

Monomi e polinomi. Verifica per la classe prima COGNOME... NOME... Classe... Data...

Monomi e polinomi. Verifica per la classe prima COGNOME... NOME... Classe... Data... Cpitolo Monomi e polinomi Monomi Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Geometria analitica +l piano cartesiano Le funzioni retta, parabola, iperbole Le trasformazioni sul piano cartesiano

Geometria analitica +l piano cartesiano Le funzioni retta, parabola, iperbole Le trasformazioni sul piano cartesiano Geometri nliti +l pino rtesino Le funzioni rett, prol, iperole Le trsformzioni sul pino rtesino SEZ. P +l pino rtesino Osserv le oorinte ei seguenti punti: (, 0), (, ), C(, +), D + +, E(+, 9)., Che os

Dettagli

RACCORDI PER APPLICAZIONI SPECIALI GIUNTI ECCENTRICI E CONICI

RACCORDI PER APPLICAZIONI SPECIALI GIUNTI ECCENTRICI E CONICI RACCORDI PER APPLICAZIONI SPECIALI GIUNTI ECCENTRICI E CONICI 2 L soluzion dimnsionl ottiml pr signz prtiolri Rordi on snz ihir Innsti on snz ihir Clssi sondo nssità Dimtro di usit vriil Collgmnto l fondo

Dettagli

Test di autovalutazione

Test di autovalutazione Tst i utovlutzion 0 10 20 0 0 0 60 70 80 90 100 n Il mio puntggio, in ntsimi, è n Risponi ogni qusito sgnno un sol ll ltntiv. n Confont l tu ispost on l soluzioni. n Colo, ptno sinist, tnt sll qunt sono

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

Sintesi. Sintesi Sequenziale Sincrona Sintesi comportamentale di reti sequenziali sincrone. Riduzione del numero degli stati

Sintesi. Sintesi Sequenziale Sincrona Sintesi comportamentale di reti sequenziali sincrone. Riduzione del numero degli stati Sintsi Squnzial Sinrona Sintsi omportamntal i rti squnziali sinron Riuzion l numro li stati pr Mahin Compltamnt Spiiat Inistinuiilità & Equivalnza Irraiuniilità vrsion l 5/12/02 Sintsi La sintsi si svol

Dettagli

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica 1

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica  1 LA ERVATA UNA FUNZONE Toria l problma dlla tangnt Uno di problmi classici c portano al conctto di drivata è qullo dlla dtrminazion dlla rtta tangnt a una curva in un punto. La tangnt ad una circonfrnza

Dettagli

COTA NSW SONDAGGIO CLIENTI 2016

COTA NSW SONDAGGIO CLIENTI 2016 COTA NSW SONDAGGIO CLIENTI 2016 Prlimo i om trsorrr il tuo tmpo. Complti il sonio prtipi ll strzion pr vinr un ip. Grzi pr il tmpo ito ompilr il nostro sonio su om trsorr il suo tmpo. L ssiurimo h tutt

Dettagli

Vettori - Definizione

Vettori - Definizione Vettori - Definizione z Verso Origine Modulo Direzione V y Form geometri x Form nliti Un vettore è un ente geometrio definito d: - Direzione: rett sull qule gie il vettore, he ne indi l orientmento nello

Dettagli

( ) ESERCIZI PROPOSTI. y x. cos x y. x y. c cos. xlog. x y. ctg 2. sin 1. x + 1. ctgx. c sin = + ( ) 1 = + ( ) ( )

( ) ESERCIZI PROPOSTI. y x. cos x y. x y. c cos. xlog. x y. ctg 2. sin 1. x + 1. ctgx. c sin = + ( ) 1 = + ( ) ( ) ESERCIZI PROPOSTI I) Dtrminar l intgral gnral dll sgunti quazioni diffrnziali linari dl primo ordin (fr..): ) ' ) ' ) ) ' os ' 5) ' 6) 7) tg ' ' 8) ' ( + log ) 9) ' ) ) log sin os [ log ] ' + ' sin ( +

Dettagli

Misura e incertezza METODI DI MISURA

Misura e incertezza METODI DI MISURA ppunti di Misur lttrih Misur inrtzz Mtodi di misur...1 Inrtzz di misur... Il risultto di un misur...3 rrori...3 Propgzion dgli rrori nll misur indirtt...4 smpi...6 Propgzion dll inrtzz nll misur indirtt...8

Dettagli

(x, y) R, x, y A. def

(x, y) R, x, y A. def 1 F0 RELAZIONI DI EQUIVALENZA 1. Proprità ll rlzioi i u isim Si him rlzio i u isim A, o vuoto, ogi R A. S (x, y) R, iimo h «x è ll rlzio R o y». Normlmt, ll'sprssio (x, y) R si prfris l'sprssio xry, ismt

Dettagli

FUNZIONI A DUE VARIABILI RICERCA DEI PUNTI DI MASSIMO E MINIMO

FUNZIONI A DUE VARIABILI RICERCA DEI PUNTI DI MASSIMO E MINIMO Pg. Pro. Muro D Ettorr UNZIONI A DUE VARIABILI RICERCA DEI PUNTI DI MASSIMO E MINIMO PREMESSE DERIVATE PARZIALI DI UNA UNZIONE A DUE O PIU VARIABILI Dt un unzon d n vrbl z=... n s dc drvt przl l unzon

Dettagli

CORSO ANALISI MATEMATICA 1 A.A. 2015/2016. Testo consigliato

CORSO ANALISI MATEMATICA 1 A.A. 2015/2016. Testo consigliato Università degli studi di Cgliri CORSO ANALISI MATEMATICA 1 A.A. 2015/2016 Docente: Monic Mrrs 1 Anlisi Mtemtic 1 Testo consiglito con elementi di geometri e lgebr linere. M. Brmnti, C.D. Pgni, S. Sls

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

I PRODOTTI NOTEVOLI. Nel calcolo letterale capita spesso di incontrare moltiplicazioni tra particolari polinomi.

I PRODOTTI NOTEVOLI. Nel calcolo letterale capita spesso di incontrare moltiplicazioni tra particolari polinomi. I PRODOTTI NOTEVOLI Nel lolo letterle pit spesso di inontrre moltiplizioni tr prtiolri polinomi. I reltivi sviluppi si ottengono pplindo le regole fin qui viste, m i risultti, opportunmente semplifiti,

Dettagli

CONOSCENZE. 1. La derivata di una funzione y = f (x)

CONOSCENZE. 1. La derivata di una funzione y = f (x) ESAME D STATO ESEMP D QUEST D MATEMATCA PER LA TERZA PROVA CONOSCENZE. La drivata di una funzion y f (), in un punto intrno al suo dominio, : il it, s sist d è finito, dl rapporto incrmntal pr h, f ( h)

Dettagli

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali SPAZI VETTORIALI 1. Spzi e sottospzi vettorili Definizione: Dto un insieme V non vuoto e un corpo K di sostegno si dice che V è un K-spzio vettorile o uno spzio vettorile su K se sono definite un operzione

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

Istogrammi ad intervalli

Istogrammi ad intervalli Istogrammi ad intrvalli Abbiamo visto com costruir un istogramma pr rapprsntar un insim di misur dlla stssa granda isica. S la snsibilità dllo strumnto di misura è alta, è probabil ch tra gli N valori

Dettagli

+ numeri reali Numeri decimali e periodici Estrazione di radice

+ numeri reali Numeri decimali e periodici Estrazione di radice numeri reli Numeri deimli e periodii Estrzione di rdie Numeri deimli e periodii SEZ. G Clol il vlore delle seguenti espressioni. 0 (, ), Trsformimo i numeri deimli nell orrispondente frzione genertrie

Dettagli

George Boole ( )

George Boole ( ) Mtemtic Alger di Boole Cpitolo 5 Ivn Zivko George Boole (1815-1864) Mtemtico inglese del dicinnovesimo secolo, ffrontò in modo originle prolemi di logic. Le sue teorie trovno forte ppliczione un secolo

Dettagli

II-1 Funzioni. 1 Il concetto di funzione 1. 2 Funzione composta 5. 3 Funzione inversa 7. 4 Restrizione e prolungamento di una funzione 9

II-1 Funzioni. 1 Il concetto di funzione 1. 2 Funzione composta 5. 3 Funzione inversa 7. 4 Restrizione e prolungamento di una funzione 9 1 IL CONCETTO DI FUNZIONE 1 II-1 Funzioni Indic 1 Il conctto di funzion 1 Funzion composta 5 3 Funzion invrsa 7 4 Rstrizion prolungamnto di una funzion 9 5 Soluzioni dgli srcizi 9 In qusta dispnsa affrontiamo

Dettagli

Modelli dei Sistemi di Produzione Modelli e Algoritmi della Logistica

Modelli dei Sistemi di Produzione Modelli e Algoritmi della Logistica Modlli di Sistmi di Produzion Modlli Algoritmi dll Logisti 000- Prolm dl ommsso viggitor: EURISTICHE CARLO MANNINO Spinz Univrsità di Rom Diprtimnto di Informti Sistmisti Euristih pr il TSP simmtrio Considrimo

Dettagli

Soluzioni. Capitolo 2 (, 0 3] [2.1] A B = {1, 3, 4, 6, 7, 8}, A B = {4, 7}, A\B = {1, 3, 6}, B\A = {8}.

Soluzioni. Capitolo 2 (, 0 3] [2.1] A B = {1, 3, 4, 6, 7, 8}, A B = {4, 7}, A\B = {1, 3, 6}, B\A = {8}. Soluzioni Capitolo [.] A B = {,,,, 7, 8}, A B = {, 7}, A\B = {,, }, B\A = {8}. [.] I) [, 0] V) VI) V [, 0] (, 0) V IX) [, 00) X) ( [, ],(, 00) (, 00) (, 0 + ) (, 0 ], ), (, 0 + ) [.] B\A = {} {b = n +,

Dettagli

Progettazione di sistemi distribuiti

Progettazione di sistemi distribuiti Progttazion di sistmi distribuiti Valutazion dll prstazioni: cnni Prformanc Cosa vuol dir ch un sistma è più vloc di un altro? Tmpo di risposta (tmpo di scuzion): diffrnza tra T c, l'istant in cui un task

Dettagli

Sintesi. Sintesi Sequenziale Sincrona Sintesi comportamentale di reti sequenziali sincrone. Riduzione del numero degli stati

Sintesi. Sintesi Sequenziale Sincrona Sintesi comportamentale di reti sequenziali sincrone. Riduzione del numero degli stati Sintsi Squnzial Sinrona Sintsi omportamntal i rti squnziali sinron Riuzion l numro li stati pr Mahin Compltamnt Spiiat Inistinuiilità & Equivalnza Irraiuniilità vrsion l 12/12/2004 Sintsi La sintsi si

Dettagli

Totti, 37 anni da leggenda. Un monumento vivente. Scritto da Redazione Venerdì 27 Settembre 2013 08:39 - VALERIA META

Totti, 37 anni da leggenda. Un monumento vivente. Scritto da Redazione Venerdì 27 Settembre 2013 08:39 - VALERIA META 37 nni d lggnd Un monumnto vivnt Scritto d Rdzion VALERIA META Scrivrlo sull fccit Sn Pitro potv ffttivmnt smbrr irrivrnt pr qunto l omonimo inquino dl Vticno si si mostrto prson ll mno Così gli uguri

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

Diagrammi di Influenza (Influence Diagrams: ID)

Diagrammi di Influenza (Influence Diagrams: ID) Digrmmi di Influnz (Influnc Digrms: ID) Linguggio pr l rpprsntzion grfic di prolmi dcisionli Crttristich vntggi prmttono un rpprsntzion dll struttur gnrl dl prolm, st su un pproccio visul prmttono di formlizzr

Dettagli

Costruiamo un aquilone SLED

Costruiamo un aquilone SLED Costruimo un quon SLED Sgnr sul sgmnto cod du rifrimnti 3 cm dgli spigoli (vrso l'trno) poi sul bordo ntrior dll du li 11 cm dgli spigoli (vrso l'strno); qusto punto si dvono pplicr l du mnich sul bordo

Dettagli

L ELLISSOIDE TERRESTRE

L ELLISSOIDE TERRESTRE L ELLISSOIDE TERRESTRE Fin dll scond mtà dl XVII scolo (su propost di Nwton) l suprfici più dtt ssr ssunt com suprfici di rifrimnto pr l Trr è stt individut in un ELLISSOIDE DI ROTAZIONE. E l suprfici

Dettagli

Unità D1.2 Selezione e proiezione

Unità D1.2 Selezione e proiezione (A) CONOSCENZA TEMINOLOGICA Dre un reve esrizione ei termini introotti: ienominzione Selezione Proiezione Composizione i operzioni (B) CONOSCENZA E COMPETENZA isponere lle seguenti omne proueno nhe qulhe

Dettagli

Ulteriori esercizi svolti

Ulteriori esercizi svolti Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli

Dettagli

Numeri complessi - svolgimento degli esercizi

Numeri complessi - svolgimento degli esercizi Numri complssi - svolgimnto dgli srcizi ) Qusto srcizio richid di calcolar la potnza n-sima (n 45) di un numro complsso. Scriviamo z nlla forma sponnzial z ρ iθ dov ) ( ) ρ ( + θ π 6 dato ch sin θ cos

Dettagli

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale. Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l

Dettagli

Appunti sulle disequazioni frazionarie

Appunti sulle disequazioni frazionarie ppunti sull disquazioni frazionari Sono utili l sgunti dfinizioni Una disquazion fratta o frazionaria è una disquazion nlla qual l incognita compar in qualch suo dnominator. Una disquazion razional è una

Dettagli

Calcolo delle Probabilità e Statistica. Prova scritta del III appello - 7/6/2006

Calcolo delle Probabilità e Statistica. Prova scritta del III appello - 7/6/2006 Corso di Laura in Informatica - a.a. 25/6 Calcolo dll Probabilità Statistica Prova scritta dl III appllo - 7/6/26 Il candidato risolva i problmi proposti, motivando opportunamnt l propri rispost.. Sia

Dettagli

APPUNTI DI GEOMETRIA ANALITICA

APPUNTI DI GEOMETRIA ANALITICA Prof. Luigi Ci 1 nno solstio 13-14 PPUNTI DI GEOMETRI NLITIC Rett orientt Un rett r si die orientt qundo: 1. È fissto un punto di riferimento, detto origine;. Dei due possiili versi in ui un punto si può

Dettagli

Tecniche per la ricerca delle primitive delle funzioni continue

Tecniche per la ricerca delle primitive delle funzioni continue Capitolo 4 Tcnich pr la ricrca dll primitiv dll funzioni continu Nl paragrafo.7 abbiamo dato la dfinizion di primitiva di una funzion f avnt pr dominio un intrvallo I; abbiamo visto ch s F 0 è una primitiva

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

Progetto di cinghie trapezoidali

Progetto di cinghie trapezoidali Progtto i cinghi trapzoiali L cinghi trapzoiali sono utilizzat frquntmnt pr la trasmission i potnza Vantaggi Basso costo Smplicità i installazion Capacità i assorbir vibrazioni torsionali picchi i coppia

Dettagli

la8 2B box docce con cristallo 8 mm Listino Prezzi

la8 2B box docce con cristallo 8 mm Listino Prezzi 2 box docce con cristallo 8 mm Listino Prezzi hiave di codice per Ordinare. S 0 = PRTUR X = PRTUR = PRTUR RVRSIIL Z = ROMO = IIO SPZZOLTO L8 0 1 5 = STNR = MISUR SP. LTZZ LRGZZ (prezzo speciale) = MISUR

Dettagli

MACCHINE TRACCIALINEE ED ACCESSORI

MACCHINE TRACCIALINEE ED ACCESSORI MHIN TRILIN D SSORI D M PR SGNLTI ORIZZONTL G G N H I L F F ON MISURTOR STRDL INORPORTO FIGUR QT'. 2400MTRMT000 MHIN TRILIN 2400MTRMT0002 MHIN TRILIN 2400MTRMT0003 MHIN TRILIN D 2400MTRPM0005 PISTOL MNUL

Dettagli

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y)

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y) Campi Vttoriali Form iffrnziali-sconda Part Torma (sconda condizion sufficint pr i campi consrvativi piani): Sia F (, y) un campo vttorial piano dfinito in un aprto A di R, si supponga ultriormnt = y ;

Dettagli