Teoria dei Segnali. La Convoluzione (esercizi) parte prima

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Teoria dei Segnali. La Convoluzione (esercizi) parte prima"

Transcript

1 Teoria dei Segnali La Convoluzione (esercizi) pare prima 1

2 Si ricorda che la convoluzione ra due segnali x() e y(), reali o complessi, indicaa simbolicamene come: C xy () = x() * y() è daa indifferenemene dalle due espressioni: e C xy ( ) = x() y( )d C xy ( ) = x( ) y()d Dalla prima si passa alla seconda con un semplice cambiameno di variabili. La convoluzione è un operaore lineare, come è facile dimosrare applicando la definizione, per cui se y() = u() + v() si ha: C xy () = x() * (u() + v()) = C xu() + C xv () Quesa proprieà è molo uile per semplificare il calcolo di convoluzioni di segnali decomponibili nella somma di segnali più semplici. E' anche facile dimosrare che se è noa la C xy (), la convoluzione ra x( - 0 ) e y( - 1 ) vale C xy ( ). Infai: C xy ( ) = x( - 0 ) y( + 1 )d = x() y( )d = C xy ( 0-1 ) Per calcolare una convoluzione nel dominio del empo bisogna allora eseguire le segueni operazioni in successione: 1) Inverire l'asse di rappresenazione di uno dei due segnali [Si passa cioè da x() a x( -) oppure da y() a y( -)]; 2) sul segnale il cui asse è sao inverio operare una raslazione che è negaiva quando avviene verso sinisra e posiiva quando avviene verso desra; 3) calcolare il prodoo ra il segnale raslao e l'alro non raslao; 4) calcolare l'area del prodoo. 2

3 Esercizio n.1 Calcolare la convoluzione ra i segnali : e essendo 1 più piccolo di. I due segnali sono riporai nella figura 1.1 x() = rec 1 ( - 1/2) y() = rec ( - /2) x() y() 1 Fig.1.1 Come sopra ricordao, la prima operazione da fare è quella di inverire l'asse di uno dei due segnali, ad esempio x() (Fig.1.2). x(-) y() 1 Fig.1.2 Successivamene si deve raslare x (-); è evidene che raslazioni negaive, cioè verso sinisra, fanno si che non vi siano inervalli di empo in cui i due segnali x ( -) e y() siano conemporaneamene preseni; queso implica che il loro prodoo è sempre nullo e quindi per minore di zero C xy () è sempre nulla. 3

4 La figura 1.3 mosra la siuazione esisene per raslazioni posiive e minori di 1. x(-) y() 1+ Fig.1.3 Gli esremi di inegrazione dell'inegrale di convoluzione saranno allora 0 e e perano si scriverà : C xy () = d 0 = La convoluzione cresce linearmene raggiungendo per = 1 il valore 1. Per compreso ra 1 e si può facilmene osservare come il valore della convoluzione rimanga cosane; infai, indipendenemene dal valore di, la duraa della sovrapposizione dei due segnali reangolari rimane 1 e perano il valore della convoluzione è 1. Successivamene per raslazioni comprese ra e ( + 1) si realizza la siuazione descria in fig In queso caso si scriverà: C xy () = 1 d = ( +1 - ) Per valori di ancora maggiori si realizza nuovamene la siuazione iniziale di segnali non sovrapposi e quindi la convoluzione è nulla. 4

5 y() x(-) 1+ Fig.1.4 In definiiva si ha: C xy () = 0 per 0 e per > (1 + ) C xy () = C xy () = 1 per 0 < 1 per 1 < C xy () = ( + 1 ) per < (1 + ) L andameno della convoluzione è riporao nella fig.1.5 Si può osservare, e queso vale in generale, che l'inervallo di empo in cui la convoluzione è diversa da 0 è pari alla somma degli inervalli in cui sono diversi da 0 i segnali convolui. x()*y() ΑΒ1 ΑΒ1/ Fig.1.5 Si dice che l'impulso di fig.1.5 ha una duraa in quano convenzionalmene si assume come duraa di un impulso il empo che passa ra l'isane in cui, nel empo di salia, si raggiunge un 5

6 valore che è il 50% di quello finale e quello, nel empo di discesa, in cui si raggiunge lo sesso valore. Il empo di salia e quello di discesa sono in queso caso enrambi uguali a 1. Un segnale a forma rapezoidale si oiene come convoluzione di due segnali reangolari, di cui uno dura quano il empo di salia (1) e il secondo ha una duraa uguale a quella dello sesso impulso rapezoidale (). Nel caso paricolare in cui in cui 1 sia uguale a (si indica con il valore comune), il rapezio degenera in un riangolo di base 2 e alezza ; la duraa convenzionale - come sopra definia - è ancora (fig.1.6). x()*y() ΑΒ 2 Fig.1.6 Simbolicamene queso segnale si indica come ri ( -), essendo ri () un segnale riangolare di ampiezza uniaria e cenrao nell'origine. 6

7 Esercizio n.2 Calcolare la convoluzione ra i segnali : e essendo 1 più piccolo di. I due segnali sono riporai nella figura 2.1 x() = ( /1) rec 1 ( - 1/2) y() = rec ( - /2) x() y() 1 Fig.2.1 La prima operazione da fare è sempre quella di inverire l'asse di uno dei due segnali, anche in queso caso x() (Fig.2.2). x(-) y() 1 Fig.2.2 Successivamene si deve raslare x (-); le raslazioni negaive, anche in queso caso, fanno si che non vi siano inervalli di empo in cui i due segnali x ( -) e y() siano conemporaneamene preseni; allora il loro prodoo è nullo e quindi per minore di zero C xy () è sempre nulla. La figura 2.3 mosra la siuazione esisene per raslazioni posiive e minori di 1. 7

8 x(-) y() 1+ Fig.2.3 La regione in cui enrambi i segnali non sono nulli è quella compresa ra 0 e. Gli esremi di inegrazione dell'inegrale di convoluzione saranno allora 0 e : C xy () = ( - )d Per risolvere facilmene queso inegrale si può osservare che esso non è alro se non l'area di un riangolo di base e alezza / 1; la sua area perano vale 2 /21 e queso è allora il valore della convoluzione nell'inervallo di empo in esame. La convoluzione cresce in modo parabolico raggiungendo per = 1 il valore 1/2. nche adesso per compreso ra 1 e si può facilmene osservare come il valore della convoluzione rimanga cosane; infai, indipendenemene dal valore di, la duraa della sovrapposizione dei due segnali reangolari rimane 1(fig.2.4) e perano il valore della convoluzione è 1/2. x(-) y() 1+ Fig.2.4 8

9 Successivamene per raslazioni comprese ra e ( + 1) si realizza la siuazione descria in fig In queso caso si scriverà: C xy () = 1 ( - )d 1 1 y() x(-) 1+ Fig.2.5 Si può osservare che, in queso caso, il calcolo dell'inegrale di convoluzione coincide con il calcolo dell'area del rapezio reangolo di alezza ( + 1 ), base maggiore e base minore ( )/1 (per calcolare ale valore basa ricorrere alla similiudine dei riangoli). llora l'inegrale di convoluzione vale: C xy () =( + 1 )[( )/1+1]/2 = ΑΒ[1 2 ( ) 2 ]/21 La convoluzione assume il valore 1/2 per = e vale 0 per = 1 +. Per valori di ancora maggiori si realizza nuovamene la siuazione iniziale di segnali non sovrapposi e quindi la convoluzione è nulla. In definiiva si ha: C xy () = 0 per 0 e per > (1 + ) C xy () = 2 /21 C xy () = 1/2 per 0 < 1 per 1 < Tale andameno è riporao nella fig.2.6 C xy () = ΑΒ[1 2 ( ) 2 ]/21 per < (1 + ) 9

10 x()*y() ΑΒ1/ Fig.2.6 Si può ancora osservare che l'inervallo di empo in cui la convoluzione è diversa da 0 dura la somma degli inervalli in cui sono diversi da 0 i segnali convolui. 10

11 Esercizio n.3 Calcolare la convoluzione ra i segnali : e x() = e - a ( - 0) u-1 ( - 0 ) y() = e - b ( - 1) u-1 ( - 1 ) a, b sono due quanià posiive con a>b. I due segnali sono riporai nella fig x() y() 0 1 Fig.3.1 Come al solio bisogna inverire l'asse di uno dei due segnali prima di operare le raslazioni. (fig.3.2). x( - ) y() _ 0 1 Fig

12 In queso caso è facile osservare come raslazioni negaive conducono ad una convoluzione nulla, ma queso risulao si oiene anche per raslazioni posiive e inferiori a In enrambi i casi x( ) e y() non sono mai conemporaneamene diversi da 0. Per valori di maggiori di la convoluzione non è nulla (Fig.3.3). x( - ) y() _ 0 _ e sarà daa dalla espressione: C xy () = Fig e -b ( - 1) e - a( - - 0) d 1 che dà: C xy () = e b 1 + a( 0 - ) e ( a - b) d e quindi: C xy () = e b 1 + a( 0 - ) 1 ( a - b) e (a-b)(- 0 + ) - e (a-b) 1 che può essere modificao come: C xy () = (a-b) e-b(- 0-1 ) -e -a(- 0-1 ) Nel caso in cui 0 e 1 fossero enrambi nulli si avrebbe il risulao: C xy () = (a-b) e-b - e -a Si può verificare come la presenza dei ermini di riardo 0 e 1 causa una raslazione di della convoluzione calcolaa per riardi nulli, come indicao nell'inroduzione. 12

13 La fig.3.4 rappresena il risulao della convoluzione per = 8, a =2, b =1, 0 e 1 nulli. Fig.3.4 Nel caso in cui i coefficieni a e b fossero ra loro uguali le due precedeni formule, ponendo semplicemene b = a, ci porerebbero a forme indeerminae. Con normali operazioni di limie si oiene: C xy () = (- 0-1 )e -a(- 0-1 ) e: C xy () = e -a Quese formule valgono per > e > 0 rispeivamene essendo nulla la convoluzione per valori di empo inferiori. La fig.3.5 rappresena il risulao della convoluzione nel caso a =b =1 e ancora uguale a 8. 13

14 Fig.3.5 Esercizio n.4 Calcolare la convoluzione ra i segnali : e x() = rec ( - /2) y() = [rec ( - 5/2) rec ( - 7/2)] I due segnali sono riporai nella figura 4.1 x() y() Fig.4.1 Per risolvere facilmene ale problema si può ricorrere a quano indicao nell'inroduzione circa la linearià dell'operazione convoluzione. llora: x() * y() = rec ( - /2) * [rec ( - 5/2) rec ( - 7/2)] = 14

15 = 2 {rec ( - /2) * rec ( - 5/2) + rec ( - /2) * rec ( - 7/2)} Dall'esercizio 1 possiamo ricavare l'espressione della convoluzione ra due reangoli che dà: rec ( ) * rec ( ) = ri ( ) Tenendo cono della regola di raslazione si oiene allora in conclusione: C xy () = 2 {ri ( - 3) - ri ( - 4)} La fig.4.2 illusra C xy (). x() * y() Fig

16 Esercizio n.5 Calcolare la convoluzione ra i segnali : e x() = rec ( - /2) y() = ( - ) rec ( - /2) I due segnali sono riporai nella figura 5.1 x() y() Fig.5.1 nche ora è facile osservare che per minore di zero C xy () è sempre nulla. Per 0 < si ha la siuazione descria in figura 5.2. y (-) x() + Fig

17 Si ha allora: C xy () = (- +) d = 0 = (-) = Per < 2 si ha invece la siuazione descria in figura 5.3. x() y( -) _ + e la convoluzione divena: Fig.5.3 C xy () = 2 - (- +) d = (x - + ) x dx = = (2 -)3 3 + (-) (2 -)2 2 Per valori di superiori la convoluzione orna ad essere nulla. Si può osservare che C xy () vale 3 /3. Il risulao della convoluzione è riporao nella fig.5.4 per = 2. 17

18 Esercizio n.6 Fig.5.4 Calcolare la convoluzione ra i segnali : e x() = rec ( - /2) y() = cos (2 π f ) pplicando la definizione di convoluzione si può scrivere: e quindi anche : + C xy () = rec ( - /2) cos (2 π f( - )) d - C xy () = cos (2 π f ( -))d 0 = 2 π f 2 π f( -) -2 π f cos x dx = = 2 π f sin (2 π f( -)) + sin (2 π f) Uilizzando noe formule goniomeriche si può ancora scrivere: = 2 π f sin (2 π f)cos (2 π f) +(1- cos (2 π f)) sin(2 π f) = 18

19 = 2 π f M cos(2 π f + φ) con e M = 2-2 cos(2 π f) = 2 sin (π f) φ = g-1 cos(2 π f) - 1 sin (2 π f) = g -1-2sin 2 (π f) 2sin (π f)cos (π f) = g -1 cos2 (π f) -sin 2 (π f) - 1 2sin (π f)cos (π f) f) = - g-1sin(π cos (π f) = - π f = Si può osservare come la convoluzione ra una sinusoide e un impulso reangolare sia ancora una sinusoide della sessa frequenza con ampiezza e fase modificae. Queso è vero qualunque sia la forma del segnale x(). Esercizio n.7 Calcolare la convoluzione ra i segnali : e x() = ri ( ) y() = δ ( θ) Per definizione la convoluzione è: C xy ( ) = ri () ( )d Tenendo cono delle proprieà campionarici della funzione di dirac si oiene: C xy () = ri ( - θ) L impulso di Dirac ha rascinao il segnale con cui è convoluo nel suo puno di applicazione. Se è θ nullo si può osservare come la convoluzione del segnale con l impulso di dirac coincide col segnale sesso. x() * u 0 ( ) = x() Rispeo all operaore di convoluzione l impulso di Dirac cenrao rappresena l elemeno uniario. 19

ESERCIZI di TEORIA dei SEGNALI. La Correlazione

ESERCIZI di TEORIA dei SEGNALI. La Correlazione ESERCIZI di TEORI dei SEGNLI La Correlazione Correlazione Si definisce correlazione (o correlazione incrociaa o cross-correlazione) ra i due segnali di energia, in generale complessi, x() e y() la quanià:

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte seconda

Teoria dei Segnali. La Convoluzione (esercizi) parte seconda Teoria dei Segnali La Convoluzione (esercizi) pare seconda 1 Esercizio n.8 Calcolare la convoluzione ra i due segnali : e x() = rec ( ) rec ( 2 ) y() = rec 2 ( ) Conviene inizialmene disegnare i due segnali

Dettagli

Esercizi sulla CONVOLUZIONE INTRODUZIONE. x(t)y( τ - t)dt. x(τ - t)y(t)dt

Esercizi sulla CONVOLUZIONE INTRODUZIONE. x(t)y( τ - t)dt. x(τ - t)y(t)dt INTRODUZIONE Si ricorda ch la convoluzion ra du sgnali x() y(), rali o complssi, indicaa simbolicamn com: C xy () = x() * y() è daa indiffrnmn dall du sprssioni: Esrcizi sulla CONVOLUZIONE C xy () = C

Dettagli

Esercizi di Teoria dei Segnali. La Trasformata di Fourier

Esercizi di Teoria dei Segnali. La Trasformata di Fourier Esercizi di Teoria dei Segnali La Trasformaa di Fourier 1 Esercizio 1 Calcolare la rasformaa di Fourier del segnale di fig. 1.1. x() A B - T/ T/ fig.1.1 Per calcolare la rasformaa di queso segnalesi può

Dettagli

Esercizi sulla CONVOLUZIONE

Esercizi sulla CONVOLUZIONE Esrcizi sulla CONVOLUZIONE 1 INTRODUZIONE Si ricorda ch la convoluzion ra du sgnali x(), rali o complssi, indicaa simbolicamn com: C xy () = x() * è daa indiffrnmn dall du sprssioni: C xy () = C xy ()

Dettagli

SEGNALI E SISTEMI (a.a ) Prof. M. Pavon Esercizi risolti 6 Attenzione: u(t) = 1l(t)

SEGNALI E SISTEMI (a.a ) Prof. M. Pavon Esercizi risolti 6 Attenzione: u(t) = 1l(t) SEGNALI E SISTEMI (a.a. 9-) Prof. M. Pavon Esercizi risoli 6 Aenzione: u() = l(). Si deermini il periodo fondamenale T e i coefficieni di Fourier a k del segnale a empo coninuo sen + 4 cos + cos(6 π 4

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale x(, deo ingresso, generando

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione SISTEMI LINEARI TEMPO INVARIANTI Fondameni Segnali e Trasmissione Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale (), deo ingresso, generando il segnale y(),

Dettagli

Teoria dei segnali terza edizione

Teoria dei segnali terza edizione eoria dei segnali Capiolo 4 Sisemi monodimensionali a empo coninuo SOLUZIONI DEGLI ESERCIZI Soluzione dell esercizio 4. Il segnale x () coniene le requenza = and = 7 / ( ) = 3.5 / quindi, disorsioni di

Dettagli

TRASFORMATA DI FOURIER DI DISTRIBUZIONI

TRASFORMATA DI FOURIER DI DISTRIBUZIONI TRASFORMATA DI FOURIER DI DISTRIBUZIONI Tue le proprieà vise per la rasformaa di Fourier sono applicabili alle funzioni dello spazio S. Queso permee di rasferire le sesse proprieà alle disribuzioni di

Dettagli

LA TRASFORMATA DI FOURIER: PROPRIETA ED ESEMPI. 1 Fondamenti TLC

LA TRASFORMATA DI FOURIER: PROPRIETA ED ESEMPI. 1 Fondamenti TLC LA TRASFORMATA DI FOURIER: PROPRIETA ED ESEMPI Fondameni TLC Propriea della () LINEARITA : la della combinazione lineare (somma pesaa) di due segnali e uguale alla combinazione lineare delle dei due segnali.

Dettagli

Svolgimento. Applicando la formula di Eulero. x(t) = e ( 1+j20)t 2j = 2je t ( cos 20t + j sin 20t) = 2e t (j cos 20t sin 20t) quindi

Svolgimento. Applicando la formula di Eulero. x(t) = e ( 1+j20)t 2j = 2je t ( cos 20t + j sin 20t) = 2e t (j cos 20t sin 20t) quindi SEGNALI E SISTEMI (a.a. 9-) Prof. M. Pavon Esercizi risoli. Si esprima la pare reale di x() = e ( +j) j, R nella forma Ae a cos(ω + ϕ) con A, a, ω, φ reali con A > e π < φ π. Svolgimeno. Applicando la

Dettagli

Equazioni Differenziali (5)

Equazioni Differenziali (5) Equazioni Differenziali (5) Daa un equazione differenziale lineare omogenea y n + a n 1 ()y n 1 + a 0 ()y = 0, (1) se i coefficieni a i non dipendono da, abbiamo viso che le soluzioni si possono deerminare

Dettagli

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi impulsivi. Prof. Adolfo Santini - Dinamica delle Strutture 1

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi impulsivi. Prof. Adolfo Santini - Dinamica delle Strutture 1 La risposa di un sisema lineare viscoso a un grado di liberà solleciao da carichi impulsivi Prof. Adolfo Sanini - Dinamica delle Sruure 1 Inroduzione 1/2 Un carico p() si definisce impulsivo quando agisce

Dettagli

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1 Volume FISICA Elemeni di eoria ed applicazioni Fisica ELEMENTI DI TEORIA ED APPLICAZIONI Fisica CUES Cooperaiva Universiaria Edirice Salerniana Via Pone Don Melillo Universià di Salerno Fisciano (SA)

Dettagli

Tratto dal Corso di Telecomunicazioni Vol. I Ettore Panella Giuseppe Spalierno Edizioni Cupido. lim. 1 t 1 T

Tratto dal Corso di Telecomunicazioni Vol. I Ettore Panella Giuseppe Spalierno Edizioni Cupido. lim. 1 t 1 T rao dal Corso di elecomunicazioni Vol. I ore Panella Giuseppe Spalierno dizioni Cupido 4. nergia e Poenza Dao un segnale di ampiezza s() si definisce energia oale il valore del seguene inegrale: + / /

Dettagli

1. ESEMPIO DI CINEMATICA DI UN SISTEMA A DUE CORPI RIGIDI

1. ESEMPIO DI CINEMATICA DI UN SISTEMA A DUE CORPI RIGIDI . ESEMPIO DI CINEMATICA DI UN SISTEMA A DUE CORPI RIGIDI Dao il sisema illusrao in Figura, consisene in due barre rigide connesse da un giuno di roazione orizzonale ; la prima barra è vincolaa a ruoare

Dettagli

5. L integrale improprio x 2 : (a) diverge. (b) converge a 0 = lim. (c) converge a π 4 (d) è uguale al valore del limite

5. L integrale improprio x 2 : (a) diverge. (b) converge a 0 = lim. (c) converge a π 4 (d) è uguale al valore del limite INTEGRALI IMPROPRI Tes di auovaluazione. L inegrale improprio 5 d : (a) vale 4 5 (c) vale 5 4 (d) è negaivo.. L inegrale improprio 4 + 5 d : (a) vale 4 5 (c) vale 4 5 (d) ende a.. L inegrale improprio

Dettagli

ANALISI VETTORIALE ESERCIZI SU EQUADIFF. y = y(y 1)t. = e C e t2 /2 y 1 y

ANALISI VETTORIALE ESERCIZI SU EQUADIFF. y = y(y 1)t. = e C e t2 /2 y 1 y ANALISI VETTORIALE ESERCIZI SU EQUADIFF Esercizio Calcolare l inegrale generale dell equazione differenziale = ( ) e deerminare quali soluzioni sono definie su uo R. Risposa Fuori dagli equilibri = 0 e

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI Sisema: Definizione di Sisema Da un puno di visa fisico e un disposiivo ce modifica un segnale x(), deo ingresso, generando il segnale

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Inroduzione Se il segnale d ingresso di un sisema Lineare Tempo-Invariane LTI e un esponenziale

Dettagli

EQUAZIONI GONIOMETRICHE

EQUAZIONI GONIOMETRICHE EQUAZIONI GONIOMETRICHE ) risolvere: cos + cos 0 Si raa di un caso riconducibile ad un equazione algebrica di grado nell incognia cos, per cui si può scrivere: cos ± + 8 4 cos cos 80 + k60 ± 60 + k60 6)

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI Fondameni di Segnali e Trasmissione Sisema: Definizione di Sisema Da un puno di visa fisico e un disposiivo ce modifica un segnale, deo ingresso, generando il segnale,

Dettagli

Università degli Studi di Padova Facoltà di Ingegneria Laurea in Ingegneria Gestionale, Doc. M. Motta e G. Zanzotto

Università degli Studi di Padova Facoltà di Ingegneria Laurea in Ingegneria Gestionale, Doc. M. Motta e G. Zanzotto Universià degli Sudi di Padova Facolà di Ingegneria Laurea in Ingegneria Gesionale, oc. M. Moa e G. Zanzoo Soluzioni degli esercizi di auoverifica. 3. Inegrali di superficie.. ae la superficie Vicenza

Dettagli

R. Cusani, F. Cuomo: Telecomunicazioni - Fondamenti sui segnali analogici, Marzo 2010

R. Cusani, F. Cuomo: Telecomunicazioni - Fondamenti sui segnali analogici, Marzo 2010 1 Fondameni dei segnali analogici R. Cusani, F. Cuomo: elecomunicazioni - Fondameni sui segnali analogici, Marzo 010 Segnali analogici (1/ Collegameni analogici puno-puno unidirezionali (es. radiodiusione

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA SISTEMI LTI Inroduzione Se il segnale d ingresso di un sisema Lineare Tempo-Invariane LTI e un esponenziale complesso, l

Dettagli

Corso di Fondamenti di Telecomunicazioni

Corso di Fondamenti di Telecomunicazioni Corso di Fondameni di elecomunicazioni - SEGNALI E SPERI Prof. Mario Barbera [pare ] Sruura della lezione Proprieà dei segnali Valore medio, valore efficace, poenza, energia rasformaa di Fourier e speri

Dettagli

*5$1'(==(3(5,2',&+( W GW

*5$1'(==(3(5,2',&+( W GW *51'((3(5'&+( 3UQFSDOGQ]RQ Una grandezza empodipendene D) si definisce SURGFD quando ad uguali inervalli T assume valori uguali cioè quando vale la relazione (con n inero qualsiasi): ( ) D( Q) D + (1)

Dettagli

Analisi Matematica 3/Analisi 4 - SOLUZIONI (19/01/2015)

Analisi Matematica 3/Analisi 4 - SOLUZIONI (19/01/2015) Corso di Laurea in Maemaica Docene: Claudia Anedda Analisi Maemaica 3/Analisi 4 - SOLUZIONI (19/1/215) 1) Daa la serie x b e nx [(n + 1) 2 e x n 2 ], n1 b N +, b pari: i) dimosrare che essa è una serie

Dettagli

Equazioni differenziali lineari

Equazioni differenziali lineari 0.0. 2. Equazioni differenziali lineari Da un puno di visa dinamico, i sisemi lineari sazionari sono descrii da equazioni differenziali ordinarie lineari a coefficieni cosani: a n d n y d n + a n d n y

Dettagli

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo.

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo. 1. Serie di Fourier I problemi al bordo associai ad equazioni differenziali si sanno risolvere con il meodo di separazione delle variabili solano se il dao iniziale si rappresena nella forma fx = a cosx

Dettagli

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento Geomeria analiica del piano pag 7 Adolfo Scimone Ree in posizioni paricolari rispeo al sisema di riferimeno L'equazione affine di una rea a + + c = 0 può assumere forme paricolari in relazione alla posizione

Dettagli

x(t) y(t) 45 o x x(t) -2T

x(t) y(t) 45 o x x(t) -2T Eserciazione 0 - Processi casuali Esercizio Si consideri lo schema di fig., dove =A cos(!0 + ) e e una cosane. Si consideri il paramero A come una variabile casuale uniformemene disribuia ra 0 e.calcolare

Dettagli

sedimentazione Approfondimenti matematici

sedimentazione Approfondimenti matematici sedimenazione Approfondimeni maemaici considerazioni sulla velocià L espressione p A F = R (1) che fornisce la relazione sulle forze ageni nel processo della sedimenazine, indica che all inizio il moo

Dettagli

SIMULAZIONE SECONDA PROVA SCRITTA 02 APRILE Tema di MATEMATICA e FISICA PROBLEMA 1

SIMULAZIONE SECONDA PROVA SCRITTA 02 APRILE Tema di MATEMATICA e FISICA PROBLEMA 1 www.maefilia.i SIMULAZIONE SECONDA PROVA SCRITTA 02 APRILE 209 Tema di MATEMATICA e FISICA PROBLEMA Due fili reilinei paralleli vincolai a rimanere nella loro posizione, disani m l uno dall alro e di lunghezza

Dettagli

TRASFORMAZIONE DEI SEGNALI. Lineari (tra cui il Filtraggio) Non Lineari

TRASFORMAZIONE DEI SEGNALI. Lineari (tra cui il Filtraggio) Non Lineari TRASFORMAZIONE DEI SEGNALI SENZA MEMORIA: ZMNL (Zero-Memory Non Lineariy) g x( ) y = CON MEMORIA: Lineari (ra cui il Filraggio) Non Lineari L5/1 TRASFORMAZIONI SENZA MEMORIA (ISTANTANEE) y Limiazione dura

Dettagli

f v, lim allora x, y x, y e analogamente se 0,1 Osserviamo che la derivata direzionale esiste per ogni punto x y e ogni vettore,2 0,0 cos 2 1

f v, lim allora x, y x, y e analogamente se 0,1 Osserviamo che la derivata direzionale esiste per ogni punto x y e ogni vettore,2 0,0 cos 2 1 DERIVATA DIREZIONALE La definizione di derivaa direzionale è y, lim,, f v y v f y v, v Se v, allora, y, y e analogamene se,, y, y f, y y Calcolare la derivaa direzionale della funzione dove v allora dom

Dettagli

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi periodici. Prof. Adolfo Santini - Dinamica delle Strutture 1

La risposta di un sistema lineare viscoso a un grado di libertà sollecitato da carichi periodici. Prof. Adolfo Santini - Dinamica delle Strutture 1 La risposa di un sisema lineare viscoso a un grado di liberà solleciao da carichi periodici Prof. Adolfo Sanini - Dinamica delle Sruure 1 Inroduzione 1/ Un carico p() si dice periodico quando assume indefiniamene

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondameni di Conrolli Auomaici Prova Parziale 8 Aprile 2 - A.A. 2/ Nome: Nr. Ma. Firma: a) Deerminare la rasformaa di Laplace X i (s) dei segueni segnali emporali x i (): x () = 4 + 2 e +5 cos(3 6), x

Dettagli

Sistemi Lineari e Tempo-Invarianti (SLI) Risposta impulsiva e al gradino

Sistemi Lineari e Tempo-Invarianti (SLI) Risposta impulsiva e al gradino Sisemi Lineari e Tempo-Invariani (SLI) Risposa impulsiva e al gradino by hp://www.oasiech.i Con sisema SLI si inende un sisema lineare e empo invariane, rispeo alla seguene figura: Lineare: si ha quando

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2016/2017 EQUAZIONI DIFFERENZIALI 1

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2016/2017 EQUAZIONI DIFFERENZIALI 1 Universià Carlo Caaneo Ingegneria gesionale Analisi maemaica aa 06/07 EQUAZIONI DIFFERENZIALI ESERCIZI CON SOLUZIONE Trovare l inegrale generale dell equazione ' Si raa di un equazione differenziale lineare

Dettagli

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0 Gradiene e piano angene Definizione 1 Sia f : A R 2 R, f derivabile in (x 0, y 0 ) A). Definiamo il veore gradiene di f in (x 0, y 0 ): f(x 0, y 0 ) = (f x (x 0, y 0 ), f y (x 0, y 0 )). Definiamo il piano

Dettagli

Sessione ordinaria 2019 Problema2 MATHESIS ROMA. Problema 2

Sessione ordinaria 2019 Problema2 MATHESIS ROMA. Problema 2 Problema 2 B varia secondo la legge: B = k ( 2 +a 2 ) Soluzione 3 r con r R e con a e k posiive [a]=[s] a ha le dimensioni di un empo, perché deve poersi sommare con, affinché la formula abbia senso. [k]=

Dettagli

Università degli Studi di Padova Facoltà di Ingegneria Laurea in Ingegneria Gestionale e Meccanica, Prof. P. Mannucci

Università degli Studi di Padova Facoltà di Ingegneria Laurea in Ingegneria Gestionale e Meccanica, Prof. P. Mannucci Universià degli Sudi di Padova Facolà di Ingegneria Laurea in Ingegneria Gesionale e Meccanica, Prof. P. Mannucci Soluzioni degli esercizi di auoverifica.. Inegrali di superficie.. Dae la superficie Vicenza

Dettagli

), dove K è una costante positiva della quale si richiede l unità di

), dove K è una costante positiva della quale si richiede l unità di Simulazione di prova scria di MATEMATICA-FISICA - MIUR -..019 PROBLEMA 1 - soluzione con la calcolarice grafica TI-Nspire CX della Texas Insrumens Soluzione a cura di: Formaori T Ialia - Teachers Teaching

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 EQUAZIONI DIFFERENZIALI 1

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 EQUAZIONI DIFFERENZIALI 1 Universià Carlo Caaneo Ingegneria gesionale Analisi maemaica aa 07/08 EQUAZIONI DIFFERENZIALI ESERCIZI CON SOLUZIONE Trovare l inegrale generale dell equazione ' Si raa di un equazione differenziale lineare

Dettagli

La Trasformata di Fourier: basi matematiche ed applicazioni. Parte III

La Trasformata di Fourier: basi matematiche ed applicazioni. Parte III Meodi di Calcolo per la Chimica A.A. 6-7 Marco Ruzzi a rasformaa di Fourier: basi maemaiche ed applicazioni Pare Showing a Fourier ransform o a physics suden generally produces he same reacion as showing

Dettagli

( ) ( ) Esempio di Prova di MATEMATICA E FISICA - MIUR PROBLEMA 1 (traccia di soluzione di S. De Stefani)

( ) ( ) Esempio di Prova di MATEMATICA E FISICA - MIUR PROBLEMA 1 (traccia di soluzione di S. De Stefani) Esempio di Prova di MATEMATICA E FISICA - MIUR - 8..9 PROBLEMA (raccia di soluzione di S. De Sefani) Assegnae due cosani reali a e (con >), si consideri la funzione ) così definia: )=. A seconda dei possiili

Dettagli

Vantaggio temporale. Problemi sul moto rettilineo uniforme. Risoluzione

Vantaggio temporale. Problemi sul moto rettilineo uniforme. Risoluzione Creao il 25/2/2 19.35. elaborao il 14/5/26 alle ore 18.3.26 Problemi sul moo reilineo uniforme anaggio emporale m s (m) Un moociclisa passa dall origine del sisema di riferimeno ( m) al empo s ad una velocià

Dettagli

INTRODUZIONE. { t n } è completamente specificato. 1 Definizione e classificazione dei segnali.

INTRODUZIONE. { t n } è completamente specificato. 1 Definizione e classificazione dei segnali. INRODUZIONE Definizione e classificazione dei segnali. Una grandezza fisica, alla cui variazione in funzione di deerminae variabili, quali, ad esempio, il empo, le coordinae di un puno nel piano o enrambe,

Dettagli

Terza lezione: Processi stazionari

Terza lezione: Processi stazionari Teoria dei processi casuali a empo coninuo Terza lezione: Concei inroduivi Il conceo di sazionarieà Sazionarieà in senso lao Esempi e modelli 005 Poliecnico di Torino 1 Concei inroduivi Significao di sazionarieà

Dettagli

Esercizi aggiuntivi Unità A1

Esercizi aggiuntivi Unità A1 Esercizi aggiunivi Unià A Esercizi svoli Esercizio A Concei inroduivi Daa la grandezza impulsiva periodica la cui forma d onda è rappresenaa nella figura A., calcolarne il valore medio nel periodo, il

Dettagli

Perturbazione armonica : teoria generale

Perturbazione armonica : teoria generale Perurbazione armonica : eoria generale Absrac Queso documeno rispecchia buona pare del capiolo XIII del Cohen. Si raa dapprima la ransizione ra due sai dello spero discreo di un non meglio specificao sisema,

Dettagli

FORMULE GONIOMETRICHE

FORMULE GONIOMETRICHE FORMULE GONIOMETRICHE sapendo che sen e 90 < < 80 calcolare sen, cos Ricordiamo le formule: sen cos cos sen per poer procedere dobbiamo quindi calcolare il coseno: ± sen ± ± 8 l ambiguià del segno può

Dettagli

Titolo unità. Dalla serie alla trasformata di Fourier Proprietà della trasformata di Fourier Uguaglianza di Parseval e principio di indeterminazione

Titolo unità. Dalla serie alla trasformata di Fourier Proprietà della trasformata di Fourier Uguaglianza di Parseval e principio di indeterminazione Inroduzione ai segnali deerminai iolo unià Dalla serie alla rasormaa di ourier Proprieà della rasormaa di ourier Uguaglianza di Parseval e principio di indeerminazione 005 Poliecnico di orino 1 Dalla serie

Dettagli

SOLUZIONI SCRITTO DI ANALISI MATEMATICA II - 24/06/08. C.L. in Matematica e Matematica per le Applicazioni

SOLUZIONI SCRITTO DI ANALISI MATEMATICA II - 24/06/08. C.L. in Matematica e Matematica per le Applicazioni SOLUZIONI SCRITTO DI ANALISI MATEMATICA II - 4/06/08 C.L. in Maemaica e Maemaica per le Applicazioni Prof. K. R. Payne e Do. M. Calanchi, C. Tarsi, L. Vesely Soluzione esercizio. (a) Sia f definia da f(x)

Dettagli

UNITA 4. LE DISEQUAZIONI GONIOMETRICHE.

UNITA 4. LE DISEQUAZIONI GONIOMETRICHE. UNITA. LE DISEQUAZIONI GONIOMETRICHE.. Generalià sulle disequazioni goniomeriche.. Disequazioni goniomeriche elemenari con seno, coseno, angene e coangene.. Disequazioni riconducibili a disequazioni goniomeriche

Dettagli

Fondamenti di Automatica Test di autovalutazione n.1 (test di ingresso) può anche essere rappresentato come

Fondamenti di Automatica Test di autovalutazione n.1 (test di ingresso) può anche essere rappresentato come Fondameni di Auomaica Tes di auovaluazione n. (es di ingresso). Il numero complesso [a] 2 j2 3 [b] 2 3 j2 [c] 8 3 j [d] 2 + j2 3 /6 4e jπ può anche essere rappresenao come 2. L argomeno, espresso in radiani,

Dettagli

1) Determinare la soluzione massimale del problema di Cauchy. 2) Determinare la soluzione massimale del problema di Cauchy.

1) Determinare la soluzione massimale del problema di Cauchy. 2) Determinare la soluzione massimale del problema di Cauchy. Capiolo 3 Equazioni differenziali Esercizi ) Deerminare la soluzione massimale del problema di Cauchy y ()= y() 4 3 y()= ) Deerminare la soluzione massimale del problema di Cauchy y ()= 4 + 6 y()+ 8 (

Dettagli

Fondamenti di Automatica Test di autovalutazione. può anche essere rappresentato come

Fondamenti di Automatica Test di autovalutazione. può anche essere rappresentato come Fondameni di Auomaica Tes di auovaluazione PARTE A A. Il numero complesso [a] 2 j2 3 [b] 2 3 j2 [c] 8 3 j [d] 2 + j2 3 /6 4e jπ può anche essere rappresenao come A2. L argomeno, espresso in radiani, del

Dettagli

] = b [ ] [ ] b [ ] = T 1 [ ] LT 1

] = b [ ] [ ] b [ ] = T 1 [ ] LT 1 Moo smorzao Nel precedene paragrafo abbiamo risolo il caso in cui l'accelerazione del puno maeriale è cosane. In queso paragrafo affroneremo il caso di una accelerazione dipendene dalla elocià. Consideriamo

Dettagli

Velocità istantanea. dx dt. Università degli Studi di Bari Aldo Moro Dip. DiSAAT - Ing. Francesco Santoro Corso di Fisica

Velocità istantanea. dx dt. Università degli Studi di Bari Aldo Moro Dip. DiSAAT - Ing. Francesco Santoro Corso di Fisica Velocià isananea Al diminuire dell inerallo di empo Δ, fissao il empo, la elocià ende ad un alore limie. Riducendo a zero l ampiezza dell inerallo di empo equiarrebbe a deerminare la elocià del puno maeriale

Dettagli

ed interpretare geometricamente il risultato ottenuto. Esprimere, per t 2, l integrale

ed interpretare geometricamente il risultato ottenuto. Esprimere, per t 2, l integrale Fisica Prova d esempio per l esame (MIUR, aprile 019) Problema 1 Due fili reilinei paralleli vincolai a rimanere nella loro posizione, disani 1 m l uno dall alro e di lunghezza indefinia, sono percorsi

Dettagli

Corso di laurea in Ingegneria Meccatronica CONTROLLI AUTOMATICI E CA - 03 FUNZIONE DI TRASFERIMENTO

Corso di laurea in Ingegneria Meccatronica CONTROLLI AUTOMATICI E CA - 03 FUNZIONE DI TRASFERIMENTO Auomaion Roboics and Sysem CONTROL Corso di laurea in Ingegneria Meccaronica CONTROLLI AUTOMATICI E AZIONAMENTI ELETTRICI CA - 03 FUNZIONE DI TRASFERIMENTO Universià degli Sudi di Modena e Reggio Emilia

Dettagli

ESERCIZI E ALCUNE SOLUZIONI ANALISI MATEMATICA 1 SETTIMANA 27

ESERCIZI E ALCUNE SOLUZIONI ANALISI MATEMATICA 1 SETTIMANA 27 ESERCIZI E ALCUNE SOLUZIONI ANALISI MATEMATICA SETTIMANA 27.. Convergenza di inegrali generalizzai. () Per ognuno dei segueni inegrali impropri deerminae qual è l insieme dei valori del paramero α > per

Dettagli

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali Grandezze scalari e veoriali Esempio veore sposameno: Esisono due ipi di grandezze fisiche. a)grandezze scalari specificae da un valore numerico (posiivo negaivo o nullo) e (nel caso di grandezze dimensionae)

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LTI. 1 Fondamenti Segnali e Trasmissione

RISPOSTA IN FREQUENZA DEI SISTEMI LTI. 1 Fondamenti Segnali e Trasmissione RISPOSTA IN FREQUENZA DEI SISTEMI LTI Fondameni Segnali e Trasmissione Risposa in requenza dei sisemi LTI Se il segnale d ingresso di un sisema Lineare Tempo-Invariane LTI e un esponenziale complesso l

Dettagli

Regime di capitalizzazione: una famiglia di funzioni fattore di montante che dipende da uno o più parametri.

Regime di capitalizzazione: una famiglia di funzioni fattore di montante che dipende da uno o più parametri. 5. Teoria generale Regimi finanziari Nel capiolo precedene abbiamo inrodoo alcuni parameri in grado di descrivere ualsiasi ipo di regime. Ciò ci permee di definire in generale i regimi finanziari. Regime

Dettagli

SISTEMI A TEMPO DISCRETO. x t + = f x( t ),u( t ) = Ax( t ) + Bu( t ), x( t ) = x R y(t) = η x(t),u(t) = Cx(t) + Du(t)

SISTEMI A TEMPO DISCRETO. x t + = f x( t ),u( t ) = Ax( t ) + Bu( t ), x( t ) = x R y(t) = η x(t),u(t) = Cx(t) + Du(t) Assumiamo la variabile emporale discrea; sia f lineare. Si consideri la seguene rappresenazione implicia: 1 x f x,u Ax Bu, x x R y η x,u Cx Du n 1 1 Rappresenazioni equivaleni Si consideri la rasformazione:

Dettagli

CM89sett.tex COMPLEMENTI DI MATEMATICA a.a Laurea magistrale in Ingegneria Elettrotecnica

CM89sett.tex COMPLEMENTI DI MATEMATICA a.a Laurea magistrale in Ingegneria Elettrotecnica 1 CM89se.ex COMPLEMENTI DI MATEMATICA a.a. 28-29 Laurea magisrale in Ingegneria Eleroecnica Nona seimana 24.11.28 - lunedì (2 ore) Commeno della prova parziale (vd. file CM8IcoA-B-C-D.pdf). Definizione

Dettagli

Soluzioni degli esercizi di Analisi Matematica I

Soluzioni degli esercizi di Analisi Matematica I Sapienza - Universià di Roma - Corso di Laurea in Ingegneria Eleroecnica Soluzioni degli esercizi di Analisi Maemaica I A.A. 6 7 - Docene: Luca Baaglia Lezione del Dicembre 6 Argomeno: Equazioni differenziali,

Dettagli

Interruttore ideale. + v(t) i(t) t = t 0. i(t) = 0 v(t) = 0. i(t) v(t) v(t) = 0 i(t) = 0. Per t > t 0. interruttore di chiusura

Interruttore ideale. + v(t) i(t) t = t 0. i(t) = 0 v(t) = 0. i(t) v(t) v(t) = 0 i(t) = 0. Per t > t 0. interruttore di chiusura Inerruore ideale inerruore di chiusura { i() = 0 v() = 0 inerruore di aperura { v() = 0 i() = 0 per < 0 per > 0 per < 0 per > 0 v() i() = 0 v() i() = 0 Esempio: inerruore ideale di aperura Per < 0, i()

Dettagli

Cinematica moto armonico. Appunti di Fisica. Prof. Calogero Contrino

Cinematica moto armonico. Appunti di Fisica. Prof. Calogero Contrino 2006 Cinemaica moo armonico Appuni di Fisica Prof. Calogero Conrino : definizione Il moo di un puno maeriale P è deo armonico se soddisfa le segueni condizioni: La raieoria è un segmeno. Le posizioni occupae

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Franco Obersnel. e 5x dx.

Università di Trieste Facoltà d Ingegneria. Esercitazioni per la preparazione della prova scritta di Matematica 3 Dott. Franco Obersnel. e 5x dx. Universià di Triese Facolà d Ingegneria. Eserciazioni per la preparazione della prova scria di Maemaica 3 Do. Franco Obersnel Lezione 7: inegrali generalizzai; funzioni definie da inegrali. Esercizio.

Dettagli

Il moto in una o più dimensioni

Il moto in una o più dimensioni Il moo in una o più dimensioni Rappresenazione Grafica e esempi Piccolo riepilogo Moo: posizione in funzione del empo (grafico P-). Necessia della scela di un sisema di riferimeno ( ) Velocià media v m

Dettagli

Circuiti dinamici. Circuiti del primo ordine. (versione del ) Circuiti del primo ordine

Circuiti dinamici. Circuiti del primo ordine.  (versione del ) Circuiti del primo ordine ircuii dinamici ircuii del primo ordine www.die.ing.unibo.i/pers/masri/didaica.hm (versione del 4-5- ircuii del primo ordine ircuii del primo ordine: circuii il cui sao è definio da una sola variabile

Dettagli

Università degli Studi di Firenze Corso di Laurea triennale in Fisica e Astrofisica

Università degli Studi di Firenze Corso di Laurea triennale in Fisica e Astrofisica Universià degli Sudi di Firenze Corso di Laurea riennale in Fisica e Asrofisica Analisi Maemaica I (A.A. 5/6) Proff. F. Bucci & E. Paolini Seconda prova inercorso ( Dicembre 5). Dimosrare che per ogni

Dettagli

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k.

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k. Sudio delle vibrazioni raa ogni oscillazione di una grandezza inorno ad una posizione di equilibrio. La forma piu semplice di oscillazione e il moo armonico che puo i essere descrio da un veore roane Ae

Dettagli

Esercitazioni di Elettrotecnica: circuiti in regime sinusoidale

Esercitazioni di Elettrotecnica: circuiti in regime sinusoidale Esercizi inroduivi ES Esprimere la correne i ( in ermini di fasore nei segueni re casi: a) = sin( ω ) b) = 0sin( ω π) c) = 8sin( ω + π / ) isulao: a) = ep( j) b) = 0 c) = 8 j ES aluare (in coordinae caresiane

Dettagli

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio.

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio. . Cono e cilindro.. Definiione. Diremo superficie il luogo geomerico dei puni dello spaio le cui coordinae soddisfano un equaione del ipo F che viene dea equaione caresiana della superficie. Se F è un

Dettagli

Capitolo 1 - Introduzione ai segnali

Capitolo 1 - Introduzione ai segnali Appuni di eoria dei egnali Capiolo - Inroduzione ai segnali egnali coninui... Definizioni inroduive... Esempio: segnale esponenziale...3 Esempio: coseno...3 Osservazione: poenza di un segnale periodico...5

Dettagli

Calcolo di integrali - svolgimento degli esercizi

Calcolo di integrali - svolgimento degli esercizi Calcolo di inegrali - svolgimeno degli esercizi Calcoliamo una primiiva di cos(e 5. Inegriamo due vole per pari, scegliendo e 5 d come faore differenziale e cos( come faore finio. Si ha cos(e 5 d e5 5

Dettagli

Geometria BAER A.A Foglio esercizi 1

Geometria BAER A.A Foglio esercizi 1 Geomeria BAER A.A. 16-17 Foglio esercii 1 Eserciio 1. Risolvere le segueni equaioni lineari nelle variabili indicae rovando una parameriaione dell insieme delle soluioni. a) + 5y = 3 nelle incognie, y.

Dettagli

Introduzione alla cinematica

Introduzione alla cinematica Inroduzione alla cinemaica La cinemaica si pone come obieivo lo sudio del moo, ovvero lo sudio degli sposameni di un corpo in funzione del empo A ale fine viene inrodoo un conceo asrao: il puno maeriale

Dettagli

La cicloide. Flaviano Battelli Dipartimento di Scienze Matematiche Università Politecnica delle Marche, Ancona

La cicloide. Flaviano Battelli Dipartimento di Scienze Matematiche Università Politecnica delle Marche, Ancona La cicloide Flaviano Baelli Diparimeno di Scienze Maemaiche Universià Poliecnica delle Marche, Ancona In una circonferenza γ di raggio r che poggia su una rea fissiamo un puno P e facciamo roolare senza

Dettagli

SESSIONE SUPPLETIVA PROBLEMA 2

SESSIONE SUPPLETIVA PROBLEMA 2 www.maefilia.i SESSIONE SUPPLETIVA - 26 PROBLEMA 2 Fissao k R, la funzione g k :R R è così definia: g k = e kx2. Si indica con Γ k il suo grafico, in un riferimeno caresiano Oxy. ) Descrivi, a seconda

Dettagli

Esempi di progetto di alimentatori

Esempi di progetto di alimentatori Alimenaori 1 Esempi di progeo di alimenaori Progeo di alimenaore senza circuio di correzione del faore di poenza (PFC) Valore del condensaore Correne di picco Scela diodi Correne RMS Progeo di alimenaore

Dettagli

STABILITÀ DI SISTEMI DINAMICI STABILITÀ INGRESSO-USCITA (BIBO)

STABILITÀ DI SISTEMI DINAMICI STABILITÀ INGRESSO-USCITA (BIBO) 3 Capiolo STABILITÀ DI SISTEMI DINAMICI STABILITÀ INGRESSO-USCITA (BIBO) Un generico sisema è deo sabile se, ecciao da una qualsiasi funzione di enraa ale da essere sempre limiaa, risponde con una uscia

Dettagli

Proprietà razionali per il prezzo

Proprietà razionali per il prezzo Proprieà razionali per il prezzo delle opzioni call 8/09/0 Corso di Finanza quaniaiva L aricolo di Rober Meronpubblicao nel 973, heoryofraionalopionpricing idenifica una serie di proprieà che devono valere

Dettagli

CONTROLLI AUTOMATICI Ingegneria Meccatronica

CONTROLLI AUTOMATICI Ingegneria Meccatronica CONTROLLI AUTOMATICI Ingegneria Meccaronica TRASFORMATE DI LAPLACE Prof. Cesare Fanuzzi Ing. Crisian Secchi e-mail: cesare.fanuzzi@unimore.i, crisian.secchi@unimore.i hp://www.auomazione.ingre.unimore.i

Dettagli

2. Determinare la velocità v di impatto al suolo del sasso, e commentare se è maggiore o minore di quella di lancio;

2. Determinare la velocità v di impatto al suolo del sasso, e commentare se è maggiore o minore di quella di lancio; 1 Esercizio Un uomo lancia in alo, vericalmene luno l asse z, un sasso da un alezza h 0 = m dal suolo, con una velocià di 10 m/s. Il sasso si muove di moo uniformemene accelerao, con un accelerazione di

Dettagli

Processo di Arrivi di Poisson

Processo di Arrivi di Poisson CALCOLO DELLE PROBABILITA Processo di Arrivi di Poisson Per arrivo riferimeno. si inende un qualsiasi eveno casuale che si realizza in un deerminao sisema di Un processo di arrivi è un flusso di eveni

Dettagli

UNITA 3. LE EQUAZIONI GONIOMETRICHE.

UNITA 3. LE EQUAZIONI GONIOMETRICHE. UNITA. LE EQUAZIONI GONIOMETRICHE.. Generalià sulle equazioni goniomeriche.. Equazioni goniomeriche elemenari con seno, eno, angene e coangene.. Alri ipi di equazioni goniomeriche elemenari.. Le funzioni

Dettagli

27 DERIVATE DI ORDINI SUCCESSIVI

27 DERIVATE DI ORDINI SUCCESSIVI 27 DERIVATE DI ORDINI SUCCESSIVI Definizione Sia f derivabile sull inervallo I. Se esise la derivaa della funzione x f (x) in x, allora (f ) (x) si dice la derivaa seconda di f in x, e si denoa con f (x)

Dettagli

Il modello di crescita deriva dalla logica del tasso di interesse semplice

Il modello di crescita deriva dalla logica del tasso di interesse semplice Eserciazione 7: Approfondimeni sui modelli di crescia. Crescia arimeica, geomerica, esponenziale. Calcolo del asso di crescia e del empo di raddoppio. Viviana Amai 03/06/2009 Modelli di crescia Nella prima

Dettagli

Isometrie nel piano cartesiano

Isometrie nel piano cartesiano Le isomerie nel piano sono rasformazioni che associano ad ogni puno del piano uno ed un solo puno del piano in modo ale che, se A e B sono una qualsiasi coppia di puni del piano e A e B sono i loro puni

Dettagli

UNITA 3. LE EQUAZIONI GONIOMETRICHE.

UNITA 3. LE EQUAZIONI GONIOMETRICHE. UNITA. LE EQUAZIONI GONIOMETRICHE.. Generalià sulle equazioni goniomeriche.. Equazioni goniomeriche elemenari con seno, coseno, angene e coangene.. Alri ipi di equazioni goniomeriche elemenari.. Le funzioni

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di Probabilià e Saisica 26-7 PBaldi, GTerenzi Tuorao 5, 2 aprile 27 Corso di Laurea in Maemaica Esercizio Dire se esisono delle cosani c ali che le funzioni a) f (x)

Dettagli

( x) Soluzione. Si consideri la figura sottostante, che rappresenta la questione geometrica:

( x) Soluzione. Si consideri la figura sottostante, che rappresenta la questione geometrica: Sessione sraordinaria LS_ORD 7 Soluzione Si consideri la figura soosane, ce rappresena la quesione geomerica: Il riangolo APB, essendo inscrio in una semicirconferenza è reangolo, per cui AP r sin, PB

Dettagli

e sostituendo il valore =6 si ottiene che:

e sostituendo il valore =6 si ottiene che: ESAME DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 011 CORSO DI ORDINAMENTO Quesionario Quesio 1 Poniamo = con i limii geomerici 0

Dettagli