Richiami sugli insiemi numerici

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Richiami sugli insiemi numerici"

Transcript

1 Richiami sugli insiemi numerici denota l insieme vuoto cioè l insieme privo di elementi. N = {1, 2, 3,...} denota l insieme dei numeri naturali. Z = {..., 2, 1, 0, 1, 2,...} denota l insieme dei numeri interi, in cui ci sono oltre ai numeri naturali i loro opposti, costruiti perchè tutte le equazioni del tipo x + a = b abbiano sempre soluzione. 1

2 Q = { p q p Z, q Z } l insieme dei numeri razionali, in cui hanno soluzione anche tutte le equazioni della forma xa = b. Ricordiamo che in realtà le frazioni rappresentano classi di equivalenza, cioè a b = c d ad = bc. 2

3 Assiomi che definiscono i numeri reali L insieme dei numeri reali si indica con il simbolo R. In R sono definite due operazioni: somma (si indica con +) e prodotto (si indica con e talvolta il simbolo viene omesso). Le proprietà che definiscono R sono: 1. La somma e il prodotto sono associativi, cioè a + (b + c) = (a + b) + c, a (b c) = (a b) c, a, b, c R; 2. La somma e il prodotto sono commutativi, cioè a + b = b + a, ab = ba, a, b R; 3. l elemento neutro per la somma (si indica con 0) e l elemento neutro del prodotto (si indica con 1). Per essi valgono le seguenti condizioni a + 0 = a, a 1 = a, a R; 3

4 4. Le due operazioni di somma e prodotto sono legate dalla seguente proprietà distributiva: a (b + c) = a b + a c, a, b, c R; 5. a R, a R, a R, a 0, a 1, a + ( a) = 0. a a 1 = 1. Nell insieme R dei numeri reali è poi definita una relazione d ordine che si indica con < che soddisfa alle seguenti proprietà: 6. a, b R vale una ed una sola delle seguenti condizioni: a < b, a = b, b < a; 7. (proprietà transitiva) a < b e b < c a < c. 4

5 8. Se a < b, allora c R vale: a + c < b + c. 9. Se 0 < a e 0 < b, allora 0 < a b. Talvolta si scrive a > b al posto di b < a. Il simbolo a b (o a b) significa a < b o a = b (rispettivamente: a > b o a = b). Definizione Due sottoinsiemi di R non vuoti A e B tali che A B = R, A B = ; a A, b B, si ha : a < b si dice una sezione di R. Se A, B sono una sezione di R, un elemento s R si dice un elemento separatore della sezione se per ogni a A e ogni b B vale: a s b. 10. (Assioma di Dedekind) Data una qualunque sezione A, B dell insieme dei numeri reali, esiste ed è unico l elemento separatore della sezione. 5

6 Intervalli Intervallo chiuso e limitato: [a, b] = {x R a x b}; Intervalli chiusi non limitati: [a, + ) = {x R a x}; (, b] = {x R x b}; Intervallo aperto e limitato: (a, b) = {x R a < x < b}; Intervalli aperti non limitati: (a, + ) = {x R a < x}; (, b) = {x R x < b}; Intervalli semiaperti: [a, b) = {x R a x < b}; (a, b] = {x R a < x b} 6

7 Modulo o valore assoluto di un numero reale x := { x, se x 0, x, se x < 0. Proprietà: x y = xy x, y, R x + y x + y, x, y, R. 7

8 Estremo superiore ed estremo inferiore Sia A R. Definizione Un maggiorante di A in R è un k R tale che a k, a A. Se A ammette un maggiorante, si dice limitato superiormente. Un massimo di A è un M A tale che Si scrive M = maxa. a M, a A. Lemma Se A possiede un massimo, allora questo è unico. Dim. Siano M 1 e M 2 due massimi di A. a M 1 a A; M 2 A M 2 M 1. a M 2 a A; M 1 A M 1 M 2. 8

9 Definizione Un minorante di A in R è un k R tale che l a, a A. Se A ammette un minorante, si dice limitato inferiormente. Un minimo di A è un m A tale che Si scrive m = mina. m a, a A. Lemma Se A possiede un minimo, allora questo è unico. 9

10 Esempio [0, 2) è limitato superiormente e inferiormente; ammette minimo, ma non ammette massimo. Definizione S R si dice estremo superiore per A R, A superiormente limitato, se S = min{k k maggiorante di A}. Si scrive S = sup A. Essendo un minimo, l estremo superiore è unico. Definizione s R si dice estremo inferiore per A R, A inferiormente limitato, se s = max{k k minorante di A}. Si scrive S = sup A. 10

11 Teorema Ogni A R non vuoto e superiormente limitato ammette un estremo superiore in R. Il Teorema non vale per A Q: Proposizione Il sottoinsieme {x Q x 2 < 2} è limitato superiormente, ma non ammette estremo superiore. 11

12 Lemma {x Q x 2 = 2} = Dim. Per assurdo: supponiamo x Q tale che x 2 = 2. x = p q, p Z, q Z, con p e q primi tra loro. p 2 q 2 = 2 p2 = 2q 2 ( ) p 2 pari p pari, p = 2n. ( ) 4n 2 = 2q 2 q 2 = 2n 2 q 2 pari q pari p, q divisibili per 2 : assurdo. 12

13 Il piano reale R 2 e lo spazio reale R 3 Definizione Dati due insiemi X e Y, il prodotto cartesiano di X e Y è l insieme delle coppie ordinate di elementi di X e Y : Si ha: X Y := {(x, y) x X, y Y }. (x, y) = (x, y ) x = x e y = y. Se X = Y, si scrive anche X X = X 2. 13

14 Analogamente, se X 1, X 2,..., X n sono n insiemi, il prodotto cartesiano è l insieme delle n-ple ordinate di elementi di X 1, X 2,..., X n : X 1 X 2... X n = = Π n i 1X i := {(x 1, x 2,..., x n ) x i X i, i = 1,..., n }. Si ha: (x 1, x 2,..., x n ) = (x 1, x 2,..., x n) x 1 = x 1, x 2 = x 2,..., x n = x n. Se X i = X i = 1,..., n, si scrive anche X X... X = X n. 14

15 In particolare, se X = R, R 2 = R R, R 3 = R R R, si dicono piano e spazio reale, rispettivamente. Il piano reale può essere identificato con il piano cartesiano (geometrico): Definizione Un sistema di coordinate cartesiane in un piano è il dato di due rette fissate non parallele, incidenti in un punto O, dotate di due punti unità U 1 e U 2 su di esse. O si dice origine delle coordinate e le due rette assi cartesiani ( asse x e asse y). Se gli assi sono perpendicolari si ha un sistema di coordinate cartesiane ortogonali. Se l unità di misura per i segmenti sui due assi è la stessa, e il sistema è ortogonale, allora si ha un sistema di coordinate cartesiane ortonormali. 15

16 Coordinate cartesiane di un punto nel piano Se P è un punto del piano, indichiamo con P x = punto di intersezione dell asse x con la retta passante per P e parallela all asse y e con P y = punto di intersezione dell asse y con la retta passante per P e parallela all asse x Le ascisse x, y di P x e P y si dicono coordinate cartesiane di P nel sistema di riferimento (O; x, y). 16

17 Un punto del piano determina le sue coordinate cartesiane e viceversa se (x, y) è una coppia ordinata di numeri reali, allora esiste un unico punto P di cui x e y sono l ascissa e l ordinata. Le coordinate dell origine O sono (0, 0). I punti dell asse x hanno ordinata 0 e, viceversa, i punti che hanno ordinata nulla stanno sull asse x Analogamente y = 0 asse x. x = 0 asse y. Definizione Un sistema di coordinate cartesiane nello spazio reale è il dato di tre rette fissate non complanari, incidenti in un punto O, dotate di tre punti unità U 1, U 2 e U 3 su di esse. O si dice origine delle coordinate, le tre rette assi cartesiani ( asse x, asse y e asse z), e i piani xy, individuato dagli assi x e y, yz, individuato dagli assi y e z, xz, individuato dagli assi x e z, piani coordinati. Se gli assi sono perpendicolari si ha un sistema di coordinate cartesiane ortogonali. Se l unità di misura per i segmenti sui tre assi è la stessa, e il sistema è ortogonale, allora si ha un sistema di coordinate cartesiane ortonormali. 17

18 Coordinate cartesiane di un punto nello spazio Se P è un punto dello spazio, indichiamo con P x = punto di intersezione dell asse x con il piano passante per P e parallelo alpiano yz, con P y = punto di intersezione dell asse y con il piano passante per P e parallelo alpiano xz, e con P z = punto di intersezione dell asse z con il piano passante per P e parallelo alpiano xy. Le ascisse x, y, z di P x, P y, P z si dicono coordinate cartesiane di P nel sistema di riferimento (O; x, y, z). 18

19 Equazioni degli assi: y = 0, z = 0 asse x; x = 0, z = 0 asse y; x = 0, y = 0 asse z. Equazioni dei piani coordinati: z = 0 y = 0 x = 0 piano xy; piano xz; piano yz. 19

20 Distanza euclidea tra due punti in R, R 2 e R 3 Definizione Se x, y R, la distanza euclidea tra x e y è: d(x, y) := x y. Definizione Fissiamo un riferimento cartesiano ortonormale in R 2. Se P = (x 1, y 1 ), Q = (x 2, y 2 ) R 2, la distanza euclidea tra P e Q è la lunghezza del segmento P Q, ed è data da d(p, Q) = d((x 1, y 1 ), (x 2, y 2 )) := = (x 1 x 2 ) 2 + (y 1 y 2 ) 2. 20

21 Definizione Fissiamo un riferimento cartesiano ortonormale in R 3. Se P = (x 1, y 1, z 1 ), Q = (x 2, y 2, z 2 ) R 3, la distanza euclidea tra P e Q è la lunghezza del segmento P Q, ed è data da d(p, Q) = d((x 1, y 1, z 1 ), (x 2, y 2, z 2 )) = = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 + (z 1 z 2 ) 2. Osservazione Anche nel caso di R la distanza euclidea si può esprimere d(x, y) = x y = (x y) 2. 21

22 Proprietà della distanza d(p, Q) 0 P, Q; d(p, Q) = 0 P = Q; d(p, Q) = d(q, P ); d(p, Q) d(p, R) + d(r, Q) P, Q, R. 22

23 Definizione Una palla aperta di centro P e raggio ɛ > 0 in R, R 2, R 3, è il sottoinsieme B d (P, ɛ) := { Q R, R 2, R 3 d(p, Q) < ɛ }. 23

24 Applicazioni tra insiemi Definizione Siano A e B insiemi. Un applicazione f di A in B è una legge che associa ad ogni elemento x A 1! elemento y B. Si scrive f : A B, f : x y, f(x) = y. A si dice dominio di f, B si dice codominio di f, e l insieme f(a) = {z B x A z = f(x) } B si chiama sottoinsieme immagine di A tramite f. Se f(a) consiste di un unico elemento, f si dice applicazione costante. 24

25 Esempi di applicazioni A = {studenti frequentanti IM}, B = N, f : A B, f(studente x) = numero di matricola di x. A = {esami sostenuti da Francesco Rossi}, B = N, f : A N, f(esame) = voto conseguito. Si ha f(a) [18, 30] N. A = R, B = R, Si ha f(r) = [0, + ). f : R R, f(x) = x 2. 25

26 A = R 2, B = R, f : R 2 R, f(x, y) = x + y. Si ha f(r 2 ) = R; infatti: z R, (z, 0) R 2 : f(z, 0) = z + 0 = z. A = R 2, B = R 2, f : R 2 R 2, f(x, y) = (y, x). Si ha f(r 2 ) = R 2 ; infatti: (z, w) R 2, (x, y) = (w, z) R 2 : f(w, z) = (z, w). 26

27 A = R, B = R 2, f : R R 2, f(t) = posizione altempo t di una particella nel piano. Ad esempio, f(t) = (t 2, t 3 ). Si ha f(r) = [0, + ) R R 2. 27

28 A = R 3, B = R, f : R 3 R, f(x, y, z) = x y z. Si ha f(r 3 ) = R; infatti: w R, (x, y, z) = (w, 1, 1) R 3 : f(w, 1, 1) = w 1 1 = w. 28

29 Proiezioni ortogonali sugli assi e sui piani coordinati: p 1, p 2 : R 2 R, p 1 (x, y) = x, p 2 (x, y) = y; p 1, p 2, p 3 : R 3 R 2, p 1 (x, y, z) = (x, y), p 2 (x, y, z) = (y, z), p 3 (x, y, z) = (x, z). 29

30 Grafico di una applicazione Definizione Data una applicazione f : A B, si dice grafico di f il sottoinsieme G f = {(x, y) y = f(x)} A B. Esempi A = R, B = R, f : R R, f(x) = x 2. G f = {(x, y) y = x 2 } = {(x, x 2 ) x R} R R = R 2. 30

31 A = R 2, B = R, f : R 2 R, f(x, y) = x + y. G f = {(x, y, z) z = x + y} = {(x, y, x + y) (x, y) R 2 } R 2 R = R 3. 31

32 A = R 2, B = R 2, f : R 2 R 2, f(x, y) = (y, x). G f = {(x, y, z, w) (z, w) = f(x, y) = (y, x)} = {(x, y, y, x) (x, y) R 2 } R 2 R 2 = R 4. 32

33 A = R, B = R 2, f : R R 2, f(t) = (t 2, t 3 ). G f = {(t, x, y) x = t 2, y = t 3 } = {(t, t 2, 3 ) t R} R R 2 = R 3. A = R 3, B = R, f : R 3 R, f(x, y, z) = x y z. G f = {(x, y, z, w) w = x y z} = {(x, y, z, x y z) (x, y, z) R 3 } R 3 R = R 4. 33

34 Funzioni composte Siano g : A B, f : C B D, due applicazioni tali che g(a) C. Si dice applicazione composta e si denota f g l applicazione così definita: f g : A D, f g : x f(g(x)), x A. 34

35 Esempi Siano f : R R, g : R R date da: g : x 2x + 1, f : y y 2. Esistono sia f g sia g f: f g : R R, (f g)(x) = f(g(x)) = f(2x + 1) = (2x + 1) 2 ; g f : R R, (g f)(x) = g(f(x)) = g(x 2 ) = 2x

36 Applicazioni iniettive e applicazioni inverse Definizione f : A B si dice iniettiva se x 1 x 2 f(x 1 ) f(x 2 ). Esempio f(x) = x 2 non è iniettiva: f( 1) = 1 = f(1). f(x) = 3x + 1 è iniettiva: f(x 1 ) = f(x 2 ) 3x = 3x x 1 = 3x 2 x 1 = x 2. 36

37 Definizione Sia f : A B iniettiva. Allora y B, 1! x A tale che y = f(x). L applicazione f 1 : f(a) A, f 1 : y x, y = f(x) si dice applicazione inversa di f. Si ha: y = f(x), f 1 (y) = x, { f 1 (f(x)) = x f(f 1 (y)) = y; f 1 f = id A : A A, f f 1 = id f(a) : f(a) f(a). 37

38 Grafico di una funzione inversa Sia f : A R R una funzione iniettiva, sia f 1 : f(a) R la sua inversa, e siano i rispettivi grafici. Essendo G f, G f 1 R 2 y = f(x) f 1 (y) = x, si ha (x, y) G f (y, x) G f 1; quindi il grafico G f 1 è il simmetrico di G f rispetto all bisettrice y = x. 38

39 Esempi f : R R, f(x) = 3x + 1 è iniettiva; la sua inversa è f 1 (y) = y 1 3. f : [0, + ) R, f(x) = x 2 é iniettiva; la sua inversa si denota con f 1 (y) = y. f : R R, f(x) = e x è iniettiva; la sua inversa è f 1 (y) = ln y. 39

2. I numeri reali e le funzioni di variabile reale

2. I numeri reali e le funzioni di variabile reale . I numeri reali e le funzioni di variabile reale Introduzione Il metodo comunemente usato in Matematica consiste nel precisare senza ambiguità i presupposti, da non cambiare durante l elaborazione dei

Dettagli

Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}.

Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}. Teoria degli insiemi Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: A = {a, b, c} B = {1, 2} C = {2, 4, 6, 8, 10,...}. 2. Enunciando una proprietà che è

Dettagli

RELAZIONI, FUNZIONI, INSIEMI NUMERICI. 1. Relazioni. Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano

RELAZIONI, FUNZIONI, INSIEMI NUMERICI. 1. Relazioni. Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano RELAZIONI, FUNZIONI, INSIEMI NUMERICI C. FRANCHI 1. Relazioni Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano X Y := {(x, y) x X, y Y } dove con (x, y) si intende la coppia ordinata

Dettagli

Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3)

Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3) Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3) Nicola Durante 2011-12 Abstract 1 Insiemi numerici (Lezione del 5.10.11) 1.1 Cenni di teoria degli insiemi Richiamiamo brevemente alcuni simboli usati in

Dettagli

Corso di Analisi Matematica Funzioni di una variabile

Corso di Analisi Matematica Funzioni di una variabile Corso di Analisi Matematica Funzioni di una variabile Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 24 1 Generalità 2 Funzioni reali

Dettagli

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 03 - I Numeri Reali Anno Accademico 2015/2016 M. Tumminello,

Dettagli

Corso di Analisi Matematica. L insieme dei numeri reali

Corso di Analisi Matematica. L insieme dei numeri reali a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica L insieme dei numeri reali Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli

Dettagli

Concentriamo la nostra attenzione sull insieme dei numeri razionali Q. In Q sono definite

Concentriamo la nostra attenzione sull insieme dei numeri razionali Q. In Q sono definite Lezioni del 22 e 24 settembre. Numeri razionali. 1. Operazioni, ordinamento. Indichiamo con N, Z, Q gli insiemi dei numeri naturali, interi relativi, e razionali: N = {0, 1, 2,...} Z = {0, ±1, ±2,...}

Dettagli

NUMERI REALI. x(y + z) = xy + xz. Nel seguito faremo uso delle seguenti notazioni. IR+ 0 = {x IR : 0 x} IR 0 = {x IR : 0 x}

NUMERI REALI. x(y + z) = xy + xz. Nel seguito faremo uso delle seguenti notazioni. IR+ 0 = {x IR : 0 x} IR 0 = {x IR : 0 x} NUMERI REALI In quanto segue non diremo che cosa è un numero reale ma definiremo per via assiomatica l insieme dei numeri reali. Insieme che denotiamo con IR. L insieme dei numeri reali è un campo totalmente

Dettagli

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI Assumiamo come primitivo il concetto di insieme e quello di appartenenza di un elemento a un insieme. La notazione x A indica

Dettagli

Università degli Studi di Palermo Facoltà di Economia Dip. di Scienze Statistiche e Matematiche Silvio Vianelli

Università degli Studi di Palermo Facoltà di Economia Dip. di Scienze Statistiche e Matematiche Silvio Vianelli Università degli Studi di Palermo Facoltà di Economia Dip di Scienze Statistiche e Matematiche Silvio Vianelli Appunti del corso di Matematica Generale Gli Insiemi Anno Accademico 2009/2010 V Lacagnina

Dettagli

Equazione della retta tangente al grafico di una funzione

Equazione della retta tangente al grafico di una funzione Equazione della retta tangente al grafico di una funzione Abbiamo già visto che in un sistema di assi cartesiani ortogonali, è possibile determinare l equazione di una retta r non parallela agli assi coordinati,

Dettagli

1.4 Geometria analitica

1.4 Geometria analitica 1.4 Geometria analitica IL PIANO CARTESIANO Per definire un riferimento cartesiano nel piano euclideo prendiamo: Un punto detto origine i Due rette orientate passanti per. ii Due punti e per definire le

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

3. Generalità sulle funzioni

3. Generalità sulle funzioni ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 3. Generalità sulle funzioni A. A. 2013-2014 1 DALLA RETTA REALE AL PIANO CARTESIANO L equivalenza tra numeri reali e punti di una retta permette

Dettagli

Teoria degli Insiemi

Teoria degli Insiemi Teoria degli Insiemi Docente: Francesca Benanti Ottobre 2017 1 Teoria degli Insiemi La Teoria degli Insiemi è una branca della matematica creata alla fine del diciannovesimo secolo principalmente dal matematico

Dettagli

Unità Didattica N 2 Le Funzioni Univoche Sintesi 1

Unità Didattica N 2 Le Funzioni Univoche Sintesi 1 Unità Didattica N Le Funzioni Univoche Sintesi 1 Unità Didattica N Le funzioni univoche 01) Definizione di applicazione o funzione o mappa 0) Classificazione delle funzioni numeriche 03) Insieme di definizione

Dettagli

Rette e piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Rette e piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 ette e piani nello spazio Federico Lastaria, Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it ette e piani nello spazio. 9 Gennaio

Dettagli

RELAZIONI E FUNZIONI

RELAZIONI E FUNZIONI Esprimendo la legge di Hardy -Weinberg, abbiamo utilizzato la lettera p per esprimere la probabilità, in senso frequentista, dell allele A nella popolazione. Abbiamo quindi calcolato la probabilità del

Dettagli

ELEMENTI di TEORIA degli INSIEMI

ELEMENTI di TEORIA degli INSIEMI ELEMENTI di TEORI degli INSIEMI & 1. Nozioni fondamentali. ssumeremo come primitivi il concetto di insieme e di elementi di un insieme. Nel seguito gli insiemi saranno indicati con lettere maiuscole (,,C,...)

Dettagli

Matematica 1 per Ottici e Orafi. I Numeri Reali

Matematica 1 per Ottici e Orafi. I Numeri Reali Matematica 1 per Ottici e Orafi I Numeri Reali Indichiamo con N l insieme dei numeri naturali 1, 2, 3,.... Su N sono definite due operazioni : e + che soddisfano le seguenti proprietá formali : a, b, c

Dettagli

Lezione 5 Geometria Analitica 1

Lezione 5 Geometria Analitica 1 Lezione 5 Geometria Analitica 1 Donato A Ciampa In questa lezione richiameremo alcune nozioni della geometria analitica, quali le trasformazioni del piano in se stesso e le varie equazioni relative alla

Dettagli

Anno Scolastico:

Anno Scolastico: LICEO SCIENTIFICO DI STATO "G. BATTAGLINI" TARANTO PROGRAMMA DI MATEMATICA svolto nella Classe III Sezione A. Anno Scolastico: 2012-2013. Docente: Francesco Pantano. 1. Disequazioni. Richiami sulle disequazioni

Dettagli

1.3. Logaritmi ed esponenziali

1.3. Logaritmi ed esponenziali 1.3. Logaritmi ed esponenziali 1. Rappresentazione sugli assi cartesiani 2. Relazione 3. Definizione di funzione 4. La funzione esponenziale 5. Il logaritmo 6. La funzione logaritma 1-3 1 Rappresentazione

Dettagli

Esercizi per il corso di Algebra e Geometria L.

Esercizi per il corso di Algebra e Geometria L. Esercizi per il corso di Algebra e Geometria L AA 2006/2007 1 Foglio 1 In tutti gli esercizi che seguiranno lo spazio ambiente sarà il piano cartesiano a valori nel campo dei numeri reali, dove supporremo

Dettagli

Gli insiemi N, Z e Q. I numeri naturali

Gli insiemi N, Z e Q. I numeri naturali Università Roma Tre L. Chierchia 1 Gli insiemi N, Z e Q Il sistema dei numeri reali (R, +,, ) può essere definito tramite sedici assiomi: quindici assiomi algebrici (si veda ad esempio 2.3 in [Giusti,

Dettagli

LIBRO ADOTTATO. G.M. PIACENTINI CATTANEO: MATEMATICA DISCRETA, ed. ZANICHELLI LIBRI CONSIGLIATI

LIBRO ADOTTATO. G.M. PIACENTINI CATTANEO: MATEMATICA DISCRETA, ed. ZANICHELLI LIBRI CONSIGLIATI LIBRO ADOTTATO G.M. PIACENTINI CATTANEO: MATEMATICA DISCRETA, ed. ZANICHELLI LIBRI CONSIGLIATI A. FACCHINI: ALGEBRA E MATEMATICA DISCRETA, ed. ZANICHELLI M.G. BIANCHI, A. GILLIO: INTRODUZIONE ALLA MA-

Dettagli

L insieme dei numeri reali

L insieme dei numeri reali L insieme dei numeri reali È noto che ad ogni razionale n m Q corrisponde una rappresentazione decimale periodica: n m = ± c, c 1 c 2... c k c k+1... c k+h con c N e c i {0, 1, 2,..., 9} (cifre). La corrispondenza

Dettagli

Matematica I, Funzione inversa. Funzioni elementari (II).

Matematica I, Funzione inversa. Funzioni elementari (II). Matematica I, 02.10.2012 Funzione inversa. Funzioni elementari (II). 1. Sia f : A B una funzione reale di variabile reale (A, B R); se f e biiettiva, allora la posizione f 1 (b) = unico elemento a A tale

Dettagli

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI. Giovanni Villani

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI. Giovanni Villani Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI Giovanni Villani FUNZIONI Definizione 1 Assegnati due insiemi A e B, si definisce funzione

Dettagli

Verso il concetto di funzione

Verso il concetto di funzione Verso il concetto di funzione Il termine funzione già appare in alcuni scritti del matematico Leibniz (1646-1716). Tuttavia, in un primo momento tale termine venne usato in riferimento a espressioni analitiche

Dettagli

01 - Elementi di Teoria degli Insiemi

01 - Elementi di Teoria degli Insiemi Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 01 - Elementi di Teoria degli Insiemi Anno Accademico 2013/2014

Dettagli

Appunti del corso Fondamenti di Analisi e Didattica

Appunti del corso Fondamenti di Analisi e Didattica Appunti del corso Fondamenti di Analisi e Didattica (PAS 2013-2014, Classe A049, docente prof. L. Chierchia) redatti da: A. Damiani, V. Pantanetti, R. Caruso, M. L. Conciatore, C. De Maggi, E. Becce e

Dettagli

IL LINGUAGGIO MATEMATICO

IL LINGUAGGIO MATEMATICO 1 Lezioni 1-2 Connettivi logici IL LINGUAGGIO MATEMATICO (non); (e); (oppure); = (se...allora/...implica...); (...se e solo se...) Quantificatori (per ogni);... :... (esiste...tale che...) Proposizioni

Dettagli

1 Rette e piani in R 3

1 Rette e piani in R 3 POLITECNICO DI MILANO. FACOLTÀ DI INGEGNERIA INDUSTRIALE. Analisi e Geometria 1. Sez. D - G. Docenti: Federico G. Lastaria, Mauro Saita, Nadir Zanchetta,. 1 1 Rette e piani in R 3 Una retta parametrizzata

Dettagli

Indice. 1 Cenni di logica. 2 Elementi di teoria degli insiemi. 3 Relazioni e funzioni. 4 Strutture algebriche

Indice. 1 Cenni di logica. 2 Elementi di teoria degli insiemi. 3 Relazioni e funzioni. 4 Strutture algebriche Indice 1 Cenni di logica 2 Elementi di teoria degli insiemi 3 Relazioni e funzioni 4 Strutture algebriche Silvia Pianta - Laura Montagnoli Geometria I - Prerequisiti - UCSC A.A. 2015/2016 1 / 36 1. Cenni

Dettagli

Soluzioni agli Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento)

Soluzioni agli Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Soluzioni agli Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Relazioni 1) Quali delle seguenti relazioni sono di equivalenza? x, y R {0} xry x/y Q x, y Z xry x + y è divisibile

Dettagli

Corso di Analisi Matematica I numeri reali

Corso di Analisi Matematica I numeri reali Corso di Analisi Matematica I numeri reali Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 57 1 Insiemi e logica 2 Campi ordinati 3 Estremo

Dettagli

Insiemi di numeri reali

Insiemi di numeri reali Capitolo 1 1.1 Elementi di teoria degli insiemi Se S è una totalità di oggetti x, si dice che S è uno spazio avente gli elementi x. Se si considerano alcuni elementi di S si dice che essi costituiscono

Dettagli

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA STRUTTURE ALGEBRICHE

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA STRUTTURE ALGEBRICHE M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA STRUTTURE ALGEBRICHE Operazioni in un insieme Sia A un insieme non vuoto; una funzione f : A A A si dice operazione binaria (o semplicemente

Dettagli

Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica

Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica 1) Dati i vettori a = (2, 4), b = (1, 2), c = ( 1, 1), d = (3, 6), stabilire se c e d appartengono a Span(a, b}). 2) Nello spazio vettoriale

Dettagli

Elementi di teoria degli insiemi e funzioni tra insiemi

Elementi di teoria degli insiemi e funzioni tra insiemi Elementi di teoria degli insiemi e funzioni tra insiemi 1 / 50 Il concetto di insieme 2 / 50 Si considera il concetto di insieme come primitivo, cioè non riconducibile a nozioni più elementari. Più precisamente:

Dettagli

Lo studio delle trasformazioni del piano in sé presuppone anche la conoscenza di alcune

Lo studio delle trasformazioni del piano in sé presuppone anche la conoscenza di alcune Capitolo 1 Richiami sulle funzioni 1.1 Richiami di teoria Lo studio delle trasformazioni del piano in sé presuppone anche la conoscenza di alcune nozioni sulle funzioni e sui vettori. Per tale motivo in

Dettagli

Vettori. Capitolo Vettori applicati e vettori liberi

Vettori. Capitolo Vettori applicati e vettori liberi apitolo 3 Vettori 3.1 Vettori applicati e vettori liberi In questo numero introduciamo il concetto di vettore geometrico su una retta, nel piano e nello spazio che ci consentirà di sviluppare un linguaggio

Dettagli

CORSO DI AZZERAMENTO DI MATEMATICA

CORSO DI AZZERAMENTO DI MATEMATICA CORSO DI AZZERAMENTO DI MATEMATICA 1 LE BASI FONDAMENTALI INSIEMI INSIEMI NUMERICI (naturali, interi, razionali e reali) CALCOLO LETTERALE RICHIAMI DI TRIGONOMETRIA I NUMERI COMPLESSI ELEMENTI DI GEOMETRIA

Dettagli

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione Esercizi geometria analitica nello spazio Corso di Laurea in Informatica Docente: Andrea Loi Correzione 1. Denotiamo con P 1, P 13, P 3, P 1, P, P 3, P i simmetrici di un punto P rispetto ai piani coordinati

Dettagli

VETTORI GEOMETRICI / RICHIAMI

VETTORI GEOMETRICI / RICHIAMI M.GUIDA, S.ROLANDO, 2016 1 VETTORI GEOMETRICI / RICHIAMI Chiamiamo vettore un qualsiasi segmento orientato del piano o dello spazio. Orientare un segmento significa scegliere un verso per percorrerlo,

Dettagli

Funzioni. Capitolo Concetti preliminari. Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo

Funzioni. Capitolo Concetti preliminari. Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo Capitolo Funzioni. Concetti preliminari Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo f : A B, una corrispondenza che associa ad ogni elemento A un unico

Dettagli

Dipartimento di Matematica Corso di laurea in Fisica Compito di Geometria assegnato il 1 Febbraio 2002

Dipartimento di Matematica Corso di laurea in Fisica Compito di Geometria assegnato il 1 Febbraio 2002 Compito di Geometria assegnato il 1 Febbraio 2002 Trovare l equazione della conica irriducibile tangente all asse x nel punto A(2, 0), tangente all asse y e passante per i punti B(1, 1) e C(2, 2) Scrivere

Dettagli

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA PRIMA PARTE Intervallo limitato di numeri reali Dati due numeri reali a e b, con a

Dettagli

Insiemi numerici. Definizioni

Insiemi numerici. Definizioni 1 Insiemi numerici Gli insiemi numerici sono insiemi i cui elementi sono numeri, cioè appartengono all'insieme N dei naturali, degli interi Z, dei razionali Q, dei reali R o dei complessi C ( es.: A =

Dettagli

FUNZIONI E INSIEMI DI DEFINIZIONE

FUNZIONI E INSIEMI DI DEFINIZIONE FUNZIONI E INSIEMI DI DEFINIZIONE In matematica, una funzione f da X in Y consiste in: ) un insieme X detto insieme di definizione I.d.D. (o dominio) di f 2) un insieme Y detto codominio di f 3) una legge

Dettagli

Argomenti Capitolo 1 Richiami

Argomenti Capitolo 1 Richiami Argomenti Capitolo 1 Richiami L insieme dei numeri reali R si rappresenta geometricamente con l insieme dei punti di una retta orientata su cui sia stato fissato un punto 0 e un segmento unitario. L insieme

Dettagli

i) la somma e il prodotto godano delle proprietà associativa, commutativa e distributiva;

i) la somma e il prodotto godano delle proprietà associativa, commutativa e distributiva; 1 Spazi vettoriali 11 Definizioni ed assiomi Definizione 11 Un campo è un insieme K dotato di una operazione somma K K K, (x, y) x + y e di una operazione prodotto K K K, (x, y) xy tali che i) la somma

Dettagli

1 Cenni di teoria degli insiemi

1 Cenni di teoria degli insiemi 1 Cenni di teoria degli insiemi 1.1. Siano A, B, C,... insiemi. Scriveremo a A, a / A per affermare rispettivamente che l elemento a appartiene all insieme A e che l elemento a non appartiene ad A. Diremo

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

01 - Elementi di Teoria degli Insiemi

01 - Elementi di Teoria degli Insiemi Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 01 - Elementi di Teoria degli Insiemi Anno Accademico 2013/2014 M Tumminello,

Dettagli

AL220 - Gruppi, Anelli e Campi

AL220 - Gruppi, Anelli e Campi AL220 - Gruppi, Anelli e Campi Prof. Stefania Gabelli - a.a. 2013-2014 Settimana 1 - Traccia delle Lezioni Funzioni tra insiemi Ricordiamo che una funzione o applicazione di insiemi f : A B è una corrispondenza

Dettagli

Matematica per le scienze sociali Elementi di base. Francesco Lagona

Matematica per le scienze sociali Elementi di base. Francesco Lagona Matematica per le scienze sociali Elementi di base Francesco Lagona University of Roma Tre F. Lagona (francesco.lagona@uniroma3.it) 1 / 24 Outline 1 Struttura del corso 2 Algebra booleana 3 Algebra degli

Dettagli

Nome Cognome. Classe 3D 25 Febbraio Verifica di matematica

Nome Cognome. Classe 3D 25 Febbraio Verifica di matematica Nome Cognome. Classe D Febbraio Verifica di matematica ) Data l equazione: k 6 a) Scrivi per quali valori di k rappresenta un ellisse, precisando per quali valori è una circonferenza b) Scrivi per quali

Dettagli

Diario del Corso di Analisi Matematica - a.a. 2014/15

Diario del Corso di Analisi Matematica - a.a. 2014/15 Diario del Corso di Analisi Matematica - a.a. 2014/15 1a SETTIMANA 23/09/14 (2 ore): Introduzione al corso: orario, esercitazioni, ricevimento studenti, sito web, tempi e modalità delle prove di valutazione

Dettagli

SPAZI TOPOLOGICI. La nozione di spazio topologico è più generale di quella di spazio metrizzabile.

SPAZI TOPOLOGICI. La nozione di spazio topologico è più generale di quella di spazio metrizzabile. SPAZI TOPOLOGICI La nozione di spazio topologico è più generale di quella di spazio metrizzabile. Definizione 1 Uno spazio topologico (X, τ) è una coppia costituita da un insieme X e da una famiglia τ

Dettagli

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Risoluzione grafica di un equazione

Dettagli

COSTRUZIONE ASSIOMATICA DEI NUMERI REALI

COSTRUZIONE ASSIOMATICA DEI NUMERI REALI COSTRUZIONE ASSIOMATICA DEI NUMERI REALI Si vuole arrivare alla descrizione completa dell insieme dei numeri reali R per via assiomatica partendo dall insieme dei numeri naturali N e passando attraverso

Dettagli

1 Prodotto cartesiano di due insiemi 1. 5 Soluzioni degli esercizi 6

1 Prodotto cartesiano di due insiemi 1. 5 Soluzioni degli esercizi 6 1 PRODOTTO CARTESIANO DI DUE INSIEMI 1 I-4 R 2 ed R 3 Piano e spazio cartesiani Indice 1 Prodotto cartesiano di due insiemi 1 2 Rappresentazione di R 2 sul piano cartesiano 2 3 Sottoinsiemi di R 2 e regioni

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

Prodotto scalare e ortogonalità

Prodotto scalare e ortogonalità Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano

Dettagli

Numeri reali. Capitolo Campo ordinato dei numeri reali

Numeri reali. Capitolo Campo ordinato dei numeri reali Capitolo 1 Numeri reali 1.1 Campo ordinato dei numeri reali L ambiente naturale per gli oggetti dell Analisi matematica è l insieme dei numeri reali, denotato con R. Sull insieme R sono de nite due operazioni

Dettagli

05 - Funzioni di una Variabile

05 - Funzioni di una Variabile Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 05 - Funzioni di una Variabile Anno Accademico 2015/2016

Dettagli

Programma di Matematica Anno Scolastico 2012/2013 Classe III G

Programma di Matematica Anno Scolastico 2012/2013 Classe III G Liceo Scientifico Statale G. BATTAGLINI Corso Umberto I 74100 Taranto Programma di Matematica Anno Scolastico 2012/2013 Classe III G Prof. Paolo Pantano Richiami di Algebra Equazioni e disequazioni Definizioni.

Dettagli

Nozioni introduttive e notazioni

Nozioni introduttive e notazioni Nozioni introduttive e notazioni 1.1 Insiemi La teoria degli insiemi è alla base di tutta la matematica, in quanto ne fornisce il linguaggio base e le notazioni. Definiamo un insieme come una collezione

Dettagli

Condizione di allineamento di tre punti

Condizione di allineamento di tre punti LA RETTA L equazione lineare in x e y L equazione: 0 con,,, e non contemporaneamente nulli, si dice equazione lineare nelle due variabili e. Ogni coppia ; tale che: 0 si dice soluzione dell equazione.

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

Indice degli argomenti

Indice degli argomenti Indice degli argomenti 1 Teoria degli insiemi 2 Numeri 3 Calcolo combinatorio 4 Approssimazioni, propagazione degli errori, percentuali 5 Funzioni reali 6 Funzioni lineari 7 Programmazione lineare 8 Funzioni

Dettagli

sono i prototipi degli insiemi con 0, 1, 2, 3,... elementi.

sono i prototipi degli insiemi con 0, 1, 2, 3,... elementi. Matematica I, 25.09.2012 Insiemi 1. Il linguaggio degli insiemi e stato sviluppato durante la seconda meta dell 800, nell ambito dell indagine sui fondamenti della matematica. Da allora e stato usato sempre

Dettagli

Punti nel piano cartesiano

Punti nel piano cartesiano Punti nel piano cartesiano In un piano consideriamo due rette perpendicolari che chiamiamo x e. Solitamente, disegniamo la retta x (ascisse) orizzontalmente e orientata da sinistra a destra, la retta e

Dettagli

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 1 a.a Soluzioni

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 1 a.a Soluzioni Corso di Laurea in Matematica Geometria 2 Foglio di esercizi n. 1 a.a. 2015-16 Soluzioni Gli esercizi sono presi dal libro di Manetti. Per svolgere questi esercizi, studiare con cura i paragrafi 3.1, 3.2,

Dettagli

Principali insiemi di numeri

Principali insiemi di numeri Principali insiemi di numeri N = {0,1,2,...} insieme dei numeri naturali o anche interi non negativi Z = N { 1, 2, 3,...} insieme dei numeri interi Q = { n m } : n,m Z, m 0 insieme dei numeri razionali

Dettagli

Esercitazione di Analisi Matematica II

Esercitazione di Analisi Matematica II Esercitazione di Analisi Matematica II Barbara Balossi 06/04/2017 Esercizi di ripasso Esercizio 1 Sia data l applicazione lineare f : R 3 R 3 definita come f(x, y, z) = ( 2x + y z, x 2y + z, x y). a) Calcolare

Dettagli

Appunti del Corso Analisi 1

Appunti del Corso Analisi 1 Appunti del Corso Analisi 1 Anno Accademico 2011-2012 Roberto Monti Versione del 5 Ottobre 2011 1 Contents Chapter 1. Cardinalità 5 1. Insiemi e funzioni. Introduzione informale 5 2. Cardinalità 7 3.

Dettagli

1. Richiami. v = x 2 + y 2.

1. Richiami. v = x 2 + y 2. Gli elementi del prodotto cartesiano 1 Richiami R 2 = x, y R} sono detti vettori Ogni vettore v è una coppia ordinata ed i numeri reali x e y sono detti le componenti di v In particolare si denota con

Dettagli

a) Parallela a y = x + 2 b) Perpendicolare a y = x +2. Soluzioni

a) Parallela a y = x + 2 b) Perpendicolare a y = x +2. Soluzioni Svolgimento Esercizi Esercizi: 1) Una particella arriva nel punto (-2,2) dopo che le sue coordinate hanno subito gli incrementi x=-5, y=1. Da dove è partita? 2) Disegnare il grafico di C = 5/9 (F -32)

Dettagli

Alcuni elementi di Analisi Matematica I

Alcuni elementi di Analisi Matematica I Alcuni elementi di Analisi Matematica I Prof. Carlo Alberini 20 novembre 206 Indice Indice Elenco delle figure Il sistema dei numeri reali 2. Proprietà fondamentali del sistema dei numeri reali.................

Dettagli

1 Relazioni. Definizione Una relazione R su un insieme A si dice relazione d ordine se gode delle proprietà 1), 3), 4).

1 Relazioni. Definizione Una relazione R su un insieme A si dice relazione d ordine se gode delle proprietà 1), 3), 4). 1 Relazioni 1. definizione di relazione; 2. definizione di relazione di equivalenza; 3. definizione di relazione d ordine Definizione Una corrispondenza tra due insiemi A e B è un sottoinsieme R del prodotto

Dettagli

COMPLEMENTI DEL CORSO DI MATEMATICA Anno Accademico 2012/2013 Prof. Francesca Visentin

COMPLEMENTI DEL CORSO DI MATEMATICA Anno Accademico 2012/2013 Prof. Francesca Visentin COMPLEMENTI DEL CORSO DI MATEMATICA Anno Accademico 0/03 Prof. Francesca Visentin CAPITOLO V ELEMENTI DI GEOMETRIA ANALITICA Riprendiamo alcune nozioni già date nel Capitolo II.. Coordinate cartesiane

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Contenuti Nel Piano

Dettagli

Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze

Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze Test su geometria Domanda 1 Fissato nel piano un sistema di assi cartesiani ortogonali Oxy, il luogo dei punti le cui coordinate (x; y) soddisfano l equazione x y = 1 è costituita da una circonferenza.

Dettagli

Prodotto scalare e norma

Prodotto scalare e norma Capitolo 7 Prodotto scalare e norma Riprendiamo ora lo studio dei vettori da un punto di vista più geometrico. È noto, per esempio dalla Fisica, che spesso è comodo visualizzare un vettore del piano o

Dettagli

22 Novembre Sia T α : RP 1 RP 1 la trasformazione proiettiva determinata dalla matrice non

22 Novembre Sia T α : RP 1 RP 1 la trasformazione proiettiva determinata dalla matrice non Primo esonero di GEOMETRIA 3 - C. L. Matematica 22 Novembre 2013 1. Sia T α : RP 1 RP 1 la trasformazione proiettiva determinata dalla matrice non singolare ( ) α 2. 1 0 (a) Si determini, al variare del

Dettagli

Elementi di Algebra e di Matematica Discreta Insiemi, relazioni

Elementi di Algebra e di Matematica Discreta Insiemi, relazioni Elementi di Algebra e di Matematica Discreta Insiemi, relazioni Cristina Turrini UNIMI - 2015/2016 Cristina Turrini (UNIMI - 2015/2016) Elementi di Algebra e di Matematica Discreta 1 / 65 index Matematica

Dettagli

Università degli Studi Di Salerno FACOLTÀ DI SCIENZE MATEMATICHE E FISICHE NATURALI. Corso di Analisi Matematica A.A. 2009 / 2010.

Università degli Studi Di Salerno FACOLTÀ DI SCIENZE MATEMATICHE E FISICHE NATURALI. Corso di Analisi Matematica A.A. 2009 / 2010. Università degli Studi Di Salerno FACOLTÀ DI SCIENZE MATEMATICHE E FISICHE NATURALI Corso di Analisi Matematica A.A. 009 / 00 Le Funzioni Fabio Memoli indice Il Concetto di Funzione Funzioni Reali Di Variabile

Dettagli

ESERCIZI SVOLTI SU: GEOMETRIA TRIDIMENSIONALE. 2. Fissato un sistema di riferimento cartesiano dello spazio euclideo O, i, j, k,

ESERCIZI SVOLTI SU: GEOMETRIA TRIDIMENSIONALE. 2. Fissato un sistema di riferimento cartesiano dello spazio euclideo O, i, j, k, ESERCIZI SVOLTI SU: GEOMETRIA TRIDIMENSIONALE 1. Fissato un sistema di riferimento cartesiano dello spazio euclideo O, i, j, k, determinare un equazione omogenea del piano parallelo al vettore v = i+j,

Dettagli

Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi.

Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi. Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi. (1) Sia A l insieme dei numeri dispari minori di 56 e divisibili per 3. Quale delle seguenti affermazioni

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

LEZIONE 11. s V : V V V (v 1, v 2 ) v 1 + v 2 = s V (v 1, v 2 ), p V : k V V. per cui valgono:

LEZIONE 11. s V : V V V (v 1, v 2 ) v 1 + v 2 = s V (v 1, v 2 ), p V : k V V. per cui valgono: LEZIONE 11 11.1. Spazi vettoriali ed esempi. La nozione di spazio vettoriale generalizza quanto visto nelle lezioni precedenti: l insieme k m,n delle matrici m n a coefficienti in k = R, C, l insieme V

Dettagli

1 IL LINGUAGGIO MATEMATICO

1 IL LINGUAGGIO MATEMATICO 1 IL LINGUAGGIO MATEMATICO Il linguaggio matematico moderno è basato su due concetti fondamentali: la teoria degli insiemi e la logica delle proposizioni. La teoria degli insiemi ci assicura che gli oggetti

Dettagli

1.1 Coordinate sulla retta e nel piano; rette nel piano

1.1 Coordinate sulla retta e nel piano; rette nel piano 1 Sistemi lineari 11 Coordinate sulla retta e nel piano; rette nel piano Coordinate sulla retta Scelti su una retta un primo punto O (origine) ed un diverso secondo punto U (unita ), l identificazione

Dettagli

Matematica ed Elementi di Statistica. L insieme dei numeri reali

Matematica ed Elementi di Statistica. L insieme dei numeri reali a.a. 2010/11 Laurea triennale in Scienze della Natura Matematica ed Elementi di Statistica L insieme dei numeri reali Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili

Dettagli

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Matematica Funzioni Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Le Funzioni e loro caratteristiche Introduzione L analisi di diversi fenomeni della natura o la risoluzione di problemi

Dettagli

Parte 9. Geometria del piano

Parte 9. Geometria del piano Parte 9. Geometria del piano A. Savo Appunti del Corso di Geometria 2013-14 Indice delle sezioni 1 Vettori geometrici del piano, 1 2 Lo spazio vettoriale VO 2, 3 3 Sistemi di riferimento, 8 4 Equazioni

Dettagli