Teoria dei giochi Gioco Interdipendenza strategica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Teoria dei giochi Gioco Interdipendenza strategica"

Transcript

1 Teoria dei giochi Gioco Interdipendenza strategica soggetti decisionali autonomi con obiettivi (almeno parzialmente) contrapposti guadagno di ognuno dipende dalle scelte sue e degli altri Giocatori razionali obiettivi definiti capacita computazionali illimitate Elementi costitutivi (sono per ipotesi conoscenza comune) I giocatori CHI Si strategie COSA ui guadagni QUANTO struttura informativa regole QUANDO Esempi SCACCHI: I=2 Si=azioni in ciascuna possibile situazione ui {1, 0, -1} info: al momento della scelta ciascun giocatore conosce tutte le mosse passate; regola: mosse alternate POKER E un gioco con info incompleta Info e regole: all inizio c e una mossa del Caso ( Natura ) che distribuisce le carte: ognuno conosce le proprie ma non quelle dell avversario Gli albori Primi studi nell ambito della teoria dell ologopolio: Cournot (1838), Bertrand (1883), Edgeworth (1925) Von Neumann-Morgenstern (1944): la teoria dei giochi potrebbe essere usata sistematicamente per analizzare molte questioni i economiche e presentano una teoria generale. Nash (1950) definisce l equilibrio omonimo. Selten (1965) nei giochi dinamici. Definisce l equilibrio perfetto nei sottogiochi. Harsanyi ( ) considera giochi con informazione incompleta e definisce l equilbrio di Nash Bayesiano 1

2 Le applicazioni hanno interessato praticamente tutti i campi della disciplina economica (e non solo) la teoria dell oligopolio la microeconomia la macroeconomia in economia chiusa ed aperta la politica economica inclusi problemi di regolamentazione etc. Il dilemma del prigioniero Due prigionieri vengono interrogati separatamente dalla polizia perche' sospettati di aver commesso un reato. Poiche' mancano le prove per incriminarli, la polizia cerca di indurre almeno uno dei due a confessare in cambio di una riduzione di pena. Se uno solo confessa, egli sara' liberato immediatamente mentre il complice dovra' scontare una pesante condanna. Se entrambi confessano, la pena sara' ridotta. Se nessuno dei due confessa, in mancanza di prove, dovranno essere liberati alla scadenza dei termini di carcerazione preventiva. Il dilemma del prigioniero (in forma normale) R \ C Non Confessa Confessa Non Confessa Confessa Alcune definizioni strategia dominante: è la risposta ottima a qualunque scelta dell avversario. strategia dominata: in corrispondenza di ogni possibile scelta dell avversario, esiste sempre una strategia che fornisce un guadagno superiore NON VIENE MAI SCELTA Esito Pareto-efficiente: qualunque altro esito fornisce un guadagno inferiore per almeno un giocatore Nel dilemma del prigioniero, l'equilibrio del gioco e' (C,C) e non e' l'esito pareto-efficiente 2

3 Eliminazione iterata di strategie dominate R \ C L C R Non sempre l eliminazione iterata di strategie dominate fornisce una soluzione R \ C L C R T T M M B B L'equilibrio di Nash Coppia di strategie, una per ciascun giocatore, tale che ciascun giocatore sceglie la risposta ottimale alle strategie di equilibrio dell'altro altro. in equilibrio, nessun giocatore e' incentivato a cambiare strategia se l'altro gioca la strategia di equilibrio. L'equilibrio di Nash Nell esempio precedente (B, C) è un EN Procedimento La funzione di reazione di Riga è MR R (L)=T MR R (C)=B MR R (R)=M La funzione di reazione di Colonna è MR C (T)=R MR C (M)=L MR C (B)=C 3

4 L equilibrio di Nash Equilibri multipli R \ C L C R R \ C L R T T M B B La caccia al cervo Il gioco della caccia al cervo descrive una situazione in cui due cacciatori si accordano per cacciare un cervo. Se entrambi si impegnano nella caccia l'obiettivo viene raggiunto ed i cacciatori ricevono il guadagno massimo. Tuttavia, per riuscire nell'impresa, i cacciatori devono separarsi e percorrere vie diverse. Lungo il cammino ciascun cacciatore ha l'opportunita' ' di cacciare conigli anziche' il cervo ma cosi' facendo pregiudica la caccia al cervo. Inoltre, ciascuno preferisce cacciare conigli mentre l'altro prosegue nella caccia al cervo. Qualunque sia la sua scelta, ciascun cacciatore preferisce che l'altro si impegni nella caccia al cervo. La matrice dei guadagni e' la seguente (C indica la caccia al cervo e R la caccia ai conigli) La battaglia tra i sessi Il gioco della battaglia tra i sessi descrive una situazione in cui un uomo ed una donna devono decidere se andare al cinema (C) o ad un incontro sportivo (IS). La donna preferisce il primo e l'uomo il secondo ma entrambi preferiscono andare insieme piuttosto che da soli. 4

5 Sherlock Holmes e Moriarty Sharlock Holmes cerca di catturare Moriarty e sa che il suo avversario si recherà a Victoria Station o a Kings Cross. Entrambi devono decidere a quale stazione recarsi. Se si incontrano Holmes cattura Moriarty, in caso contrario Moriarty riesce a fuggire. Ricapitolando Gioco definizione ed elementi costitutivi Il dilemma del prigioniero Forma normale di un gioco Strategie dominanti Strategie dominate Esito pareto-efficiente Equilibrio di Nash 2. Giochi sequenziali Un esempio: la battaglia tra i sessi. IS 3 2 D IS C 1 1 U IS 0 0 C D C 2 3 L albero del gioco (i) il nodo iniziale; (ii) i nodi, ovvero i punti in cui il giocatore di turno deve scegliere tra le alternative che si dipartono da quel nodo; (iii) i rami, ovvero le alternative che si dipartono da un nodo; (iv) i nodi terminali; (v) il guadagno, per ciascun giocatore, in corrispondenza dei nodi terminali; (vi) la struttura informativa. 5

6 Un esempio: la deterrenza all entrata (Fig 4.6 p 78) E E NE I A 0 50 G Induzione all indietro La deterrenza all entrata La guerra di prezzo non è una strategia credibile Al fine di eliminare minacce/promesse non credibili procediamo a ritroso, partendo dall ultimo stadio L incumbent, deve scegliere tra Accomodare l entrata e fare la Guerra dei prezzi. Nel primo caso i suoi profitti sono pari a 20, nel secondo caso pari a -10. I sceglie A Anticipando la risposta di I la potenziale entrante sceglie E L equilibrio credibile è: [E; A/E] Induzione all indietro Il gioco del centipede L equilibrio perfetto nei sottogiochi Sottogioco di un gioco in forma estesa Nodo non terminale, unico nell insieme di informazione, e tutta la parte del gioco (albero) che segue quel nodo Un equilibrio di Nash è perfetto nei sottogiochi se definisce un equilibrio di Nash in ciascun sottogioco Nel gioco del centipede ci sono 10 sottogiochi 6

7 L equilibrio perfetto nei sottogiochi Un esempio 1 I II 2 2 A B A B La forma normale Le strategie di 1 I, II Le strategie di 2 AA, AB, BA, BB AB= se I allora A ; se II allora B La forma normale mostra che ci sono due equilibri di Nash I; BB II; BA Gli equilibri di Nash 1 \2 AA AB BA BB I Un impegno vincolante Può avere un rilevante valore strategico e rendere credibile una minaccia Nel gioco di deterrenza all entrata, la scelta di investire in capacità produttiva (primo periodo) influenza la scelta del prezzo (secondo periodo) II

8 Un impegno vincolante I investe in capacità produttiva, costosa, che viene utilizzata solo in caso di guerra di prezzo. Supponiamo il costo sia pari a 40. E E NE I 0 10 A G Giochi ripetuti In molte situazioni economiche (e sociali) l'interazione tra gli agenti non e' uniperiodale ma si ripete nel tempo. L'introduzione del tempo modifica gli incentivi dei giocatori e rende rilevanti fenomeni quali la reputazione, le ritorsioni e i ricatti. Giochi ripetuti Un gioco ripetuto ha ad ogni replica le stesse caratteristiche del gioco base Forma normale e scelte simultanee: G(Si,ui)i I Forma estesa e scelte sequenziali: albero del gioco Ad ogni stadio i giocatori ricordando le scelte fatte da tutti nel passato 1 Euro oggi è meglio di 1 Euro domani I guadagni sono dati dal flusso scontato dei guadagni ottenuti in ciascun gioco costituente. Il fattore di sconto: δ=1 (1+r) r è il tasso di preferenza intertemporale 8

9 Il dilemma del prigioniero ripetuto T finito procedendo a ritroso l equilibrio perfetto nei sottogiochi è (C, C, C) T infinito oltre al precedente esistono molti altri equilibri trigger strategy: nel primo stadio non confessare; nello stadio t non confessare se in tutti gli stadi precedenti l esito è stato (NC, NC) altrimenti confessa da quel momento in poi è un equilibrio per δ>1/2 Somma di una serie geometrica Se δ< δ + δ +... = 1 δ Il dilemma del prigioniero ripetuto Se l avversario non confessa Se non confessa il guadagno è δ + 2δ +... = 1 δ Se confessa il guadagno è 2 δ 3 + δ + δ +... = δ Conviene proseguire con la trigger strategy se 2 δ > δ 1 δ cioè δ > 1 2 Folk Theorem In un gioco ripetuto, se i giocatori sono sufficientemente pazienti, ogni strategia che garantisce ai giocatori un guadagno maggiore del livello di sicurezza può essere sostenuta come equilibrio se i giocatori adottano strategie punitive, cioè strategie che penalizzano i giocatori che deviano dalla strategia di comportamento di equilibrio 9

10 L orizzonte temporale T infinito può essere interpretato come T indefinito + probabilità che il gioco finisca nel periodo successivo 10

Gli uni e gli altri. Strategie in contesti di massa

Gli uni e gli altri. Strategie in contesti di massa Gli uni e gli altri. Strategie in contesti di massa Alessio Porretta Universita di Roma Tor Vergata Gli elementi tipici di un gioco: -un numero di agenti (o giocatori): 1,..., N -Un insieme di strategie

Dettagli

Introduzione alla Teoria dei Giochi

Introduzione alla Teoria dei Giochi Introduzione alla Teoria dei Giochi A. Agnetis Questi appunti presentano alcuni concetti introduttivi fondamentali di Teoria dei Giochi. Si tratta di appunti pensati per studenti di Ingegneria Gestionale

Dettagli

Il principio di induzione e i numeri naturali.

Il principio di induzione e i numeri naturali. Il principio di induzione e i numeri naturali. Il principio di induzione è un potente strumento di dimostrazione, al quale si ricorre ogni volta che si debba dimostrare una proprietà in un numero infinito

Dettagli

2 Formulazione dello shortest path come problema di flusso

2 Formulazione dello shortest path come problema di flusso Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10 Lecture 20: 28 Maggio 2010 Cycle Monotonicity Docente: Vincenzo Auletta Note redatte da: Annibale Panichella Abstract In questa lezione

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Esame di Ricerca Operativa del 18/12/12. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 18/12/12. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 8// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x x x x x + x x x + x 8 x Base

Dettagli

Teoria dei giochi ed evoluzione delle norme morali

Teoria dei giochi ed evoluzione delle norme morali Etica & Politica / Ethics & Politics, IX, 2007, 2, pp. 148-181 Teoria dei giochi ed evoluzione delle norme morali ROBERTO FESTA Dipartimento di filosofia Università di Trieste festa@units.it ABSTRACT Mathematical

Dettagli

Equilibrio economico generale e benessere

Equilibrio economico generale e benessere Scambio Equilibrio economico generale e benessere Equilibrio economico generale e benessere (KR 12 + NS 8) Dipartimento di Economia Politica Università di Milano Bicocca Outline Scambio 1 Scambio 2 3 4

Dettagli

CAMPIONE DELL URSS MKKKKKKKKN I/@?@7@?0J I@#@?,#@?J I#@+$#@?$J I@?@?"?$3J I?@?@?@'@J I")&?@%@?J I?"!@?"!"J I@?@-2-6?J PLLLLLLLLO

CAMPIONE DELL URSS MKKKKKKKKN I/@?@7@?0J I@#@?,#@?J I#@+$#@?$J I@?@??$3J I?@?@?@'@J I)&?@%@?J I?!@?!J I@?@-2-6?J PLLLLLLLLO CAMPIONE DELL URSS Alla fine di novembre del 1956 cominciò a Tbilisi la semifinale del 24 campionato dell Urss. Tal vi prese parte. Aspiravano al diritto di giocare il torneo di campionato, tra gli altri,

Dettagli

10 1 Gli obiettivi dell OMC 2 I sussidi alle esportazioni agricole in un Paese piccolo 3 I sussidi alle esportazioni agricole in un Paese grande 4

10 1 Gli obiettivi dell OMC 2 I sussidi alle esportazioni agricole in un Paese piccolo 3 I sussidi alle esportazioni agricole in un Paese grande 4 I SUSSIDI ALLE ESPORTAZIONI NELL AGRICOLTURA E NEI SETTORI AD ALTA TECNOLOGIA 10 1 Gli obiettivi dell OMC 2 I sussidi alle esportazioni agricole in un Paese piccolo 3 I sussidi alle esportazioni agricole

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

COSTI DI TRANSIZIONE (Switching costs)

COSTI DI TRANSIZIONE (Switching costs) COSTI DI TRANSIZIONE (Switching costs) Spesso la tecnologia dell informazione assume la forma di un sistema, ovvero un insieme di componenti che hanno valore quando funzionano insieme. Per esempio, hardware

Dettagli

( ) ( ) 0. Entrata e uscita dal mercato. Entrata e uscita dal mercato. Libertà d entrata ed efficienza. Libertà d entrata e benessere sociale

( ) ( ) 0. Entrata e uscita dal mercato. Entrata e uscita dal mercato. Libertà d entrata ed efficienza. Libertà d entrata e benessere sociale Entrata e uscita dal mercato In assenza di comportamento strategico, le imprese decidono di entrare/uscire dal mercato confrontando i guadagni attesi con i costi di entrata. In assenza di barriere strategiche

Dettagli

Ricerca non informata in uno spazio di stati

Ricerca non informata in uno spazio di stati Università di Bergamo Facoltà di Ingegneria Intelligenza Artificiale Paolo Salvaneschi A5_2 V2.4 Ricerca non informata in uno spazio di stati Il contenuto del documento è liberamente utilizzabile dagli

Dettagli

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso Esercizio 1 Data la funzione di domanda: ELASTICITÀ Dire se partendo da un livello di prezzo p 1 = 1.5, al produttore converrà aumentare il prezzo fino al livello p 2 = 2. Sarebbe conveniente per il produttore

Dettagli

I numeri che si ottengono successivamente sono 98-2 = 96 4 = 92 8 = 84 16 = 68 32 = 36 e ci si ferma perché non possibile togliere 64

I numeri che si ottengono successivamente sono 98-2 = 96 4 = 92 8 = 84 16 = 68 32 = 36 e ci si ferma perché non possibile togliere 64 Problemini e indovinelli 2 Le palline da tennis In uno scatolone ci sono dei tubi che contengono ciascuno 4 palline da tennis.approfittando di una offerta speciale puoi acquistare 4 tubi spendendo 20.

Dettagli

Lezione XII: La differenziazione del prodotto

Lezione XII: La differenziazione del prodotto Lezione XII: La differenziazione del prodotto Ci sono mercati che per la natura del loro prodotto, la numerosità dei soggetti coinvolti su entrambi i lati del mercato (e in particolare, la bassa concentrazione

Dettagli

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 0// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x + x x +x x x x x x x 0 x x

Dettagli

LA RICLASSIFICAZIONE DEL BILANCIO:

LA RICLASSIFICAZIONE DEL BILANCIO: LA RICLASSIFICAZIONE DEL BILANCIO: STATO PATRIMONIALE ATTIVO: + ATTIVO IMMOBILIZZATO: Investimenti che si trasformeranno in denaro in un periodo superiore ad un anno + ATTIVO CIRCOLANTE: Investimenti che

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

Equilibrio generale ed efficienza dei mercati (Frank, Capitolo 15)

Equilibrio generale ed efficienza dei mercati (Frank, Capitolo 15) Equilibrio generale ed efficienza dei mercati (Frank, Capitolo 15) EQUILIBRIO ECONOMICO GENERALE Esistono molteplici relazioni tra mercati Per comprendere il funzionamento dell economia è quindi indispensabile

Dettagli

Modelli Binomiali per la valutazione di opzioni

Modelli Binomiali per la valutazione di opzioni Modelli Binomiali per la valutazione di opzioni Rosa Maria Mininni a.a. 2014-2015 1 Introduzione ai modelli binomiali La valutazione degli strumenti finanziari derivati e, in particolare, la valutazione

Dettagli

COOPERAZIONE INTERNAZIONALE E INTERDIPENDENZA ECONOMICA

COOPERAZIONE INTERNAZIONALE E INTERDIPENDENZA ECONOMICA Coop intern - 1 COOPERAZIONE INTERNAZIONALE E INTERDIPENDENZA ECONOMICA VARIE ACCEZIONI DEL TERMINE COOPERAZIONE INTERNAZIONALE CONSULTAZIONE TRA STATI COORDINAMENTO STRETTO DELLE POLITICHE COORDINAMENTO:

Dettagli

Gli algoritmi. Gli algoritmi. Analisi e programmazione

Gli algoritmi. Gli algoritmi. Analisi e programmazione Gli algoritmi Analisi e programmazione Gli algoritmi Proprietà ed esempi Costanti e variabili, assegnazione, istruzioni, proposizioni e predicati Vettori e matrici I diagrammi a blocchi Analisi strutturata

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

Corso di Matematica finanziaria

Corso di Matematica finanziaria Corso di Matematica finanziaria modulo "Fondamenti della valutazione finanziaria" Eserciziario di Matematica finanziaria Università degli studi Roma Tre 2 Esercizi dal corso di Matematica finanziaria,

Dettagli

CONNESSIONI IN MORSETTIERA. Caratteristiche generali. Morsettiere a 6 pioli per motori

CONNESSIONI IN MORSETTIERA. Caratteristiche generali. Morsettiere a 6 pioli per motori CONNESSIONI IN MORSETTIERA Morsettiere a 6 pioli per motori -monofase -monofase con condensatore di spunto -bifase -trifase a singola velocità -trifase dahlander -trifase bipolari -trifase tripolari forniti

Dettagli

Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k

Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k Pordenone Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità UNIVERSITAS STUDIORUM UTINENSIS Giorgio T. Bagni Facoltà di Scienze della Formazione Dipartimento di Matematica e Informatica

Dettagli

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione Alberi binari Ilaria Castelli castelli@dii.unisi.it Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione A.A. 2009/2010 I. Castelli Alberi binari, A.A. 2009/2010 1/20 Alberi binari

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

Il motore a corrente continua, chiamato così perché per. funzionare deve essere alimentato con tensione e corrente

Il motore a corrente continua, chiamato così perché per. funzionare deve essere alimentato con tensione e corrente 1.1 Il motore a corrente continua Il motore a corrente continua, chiamato così perché per funzionare deve essere alimentato con tensione e corrente costante, è costituito, come gli altri motori da due

Dettagli

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi

Dettagli

LA CORRUZIONE TRA PRIVATI:

LA CORRUZIONE TRA PRIVATI: LA CORRUZIONE TRA PRIVATI: APPROFONDIMENTI In data 18 ottobre 2012, dopo un lungo iter parlamentare, il Senato ha approvato il maxi-emendamento al Disegno di Legge recante Disposizioni per la prevenzione

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

Regolamento Nazionale Specialità "POOL 8-15" ( Buche Strette )

Regolamento Nazionale Specialità POOL 8-15 ( Buche Strette ) Regolamento Nazionale Specialità "POOL 8-15" ( Buche Strette ) SCOPO DEL GIOCO : Questa specialità viene giocata con 15 bilie numerate, dalla n 1 alla n 15 e una bilia bianca (battente). Un giocatore dovrà

Dettagli

Minimizzazione di Reti Logiche Combinatorie Multi-livello

Minimizzazione di Reti Logiche Combinatorie Multi-livello Minimizzazione di Reti Logiche Combinatorie Multi-livello Maurizio Palesi Maurizio Palesi 1 Introduzione Obiettivo della sintesi logica: ottimizzazione delle cifre di merito area e prestazioni Prestazioni:

Dettagli

Estensione di un servizo di messaggistica per telefonia mobile (per una società di agenti TuCSoN)

Estensione di un servizo di messaggistica per telefonia mobile (per una società di agenti TuCSoN) Estensione di un servizo di messaggistica per telefonia mobile (per una società di agenti TuCSoN) System Overview di Mattia Bargellini 1 CAPITOLO 1 1.1 Introduzione Il seguente progetto intende estendere

Dettagli

SUA CDL - CORSI GIA ATTIVI

SUA CDL - CORSI GIA ATTIVI SUA CDL - CORSI GIA ATTIVI La Scheda Unica Annuale (SUA) è lo strumento di programmazione dei Corsi di Laurea e attraverso il quale l ANVUR farà le proprie valutazioni sull accreditamento (iniziale e periodico)

Dettagli

In base alla formula di torneo adottata i tornei possono pertanto prevedere lo svolgimento di una o più partite.

In base alla formula di torneo adottata i tornei possono pertanto prevedere lo svolgimento di una o più partite. Formule di gioco La successione di mani necessarie per l eliminazione del penultimo giocatore o per la determinazione dei giocatori che accedono ad un turno successivo costituisce una partita. In base

Dettagli

STRUMENTI DI ANALISI E DI INTERPRETAZIONE DEI PROBLEMI: LE TECNICHE DI PROBLEM SOLVING

STRUMENTI DI ANALISI E DI INTERPRETAZIONE DEI PROBLEMI: LE TECNICHE DI PROBLEM SOLVING STRUMENTI DI ANALISI E DI INTERPRETAZIONE DEI PROBLEMI: LE TECNICHE DI PROBLEM SOLVING Gianna Maria Agnelli Psicologa Clinica e Psicoterapeuta Clinica del Lavoro "Luigi Devoto Fondazione IRCCS Ospedale

Dettagli

Può la descrizione quantomeccanica della realtà fisica considerarsi completa?

Può la descrizione quantomeccanica della realtà fisica considerarsi completa? Può la descrizione quantomeccanica della realtà fisica considerarsi completa? A. Einstein, B. Podolsky, N. Rosen 25/03/1935 Abstract In una teoria completa c è un elemento corrispondente ad ogni elemento

Dettagli

Quando troncare uno sviluppo in serie di Taylor

Quando troncare uno sviluppo in serie di Taylor Quando troncare uno sviluppo in serie di Taylor Marco Robutti October 13, 2014 Lo sviluppo in serie di Taylor di una funzione è uno strumento matematico davvero molto utile, e viene spesso utilizzato in

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani Ricerca Operativa Esercizi sul metodo del simplesso Luigi De Giovanni, Laura Brentegani 1 1) Risolvere il seguente problema di programmazione lineare. ma + + 3 s.t. 2 + + 2 + 2 + 3 5 2 + 2 + 6,, 0 Soluzione.

Dettagli

Introduzione all elettronica

Introduzione all elettronica Introduzione all elettronica L elettronica nacque agli inizi del 1900 con l invenzione del primo componente elettronico, il diodo (1904) seguito poi dal triodo (1906) i cosiddetti tubi a vuoto. Questa

Dettagli

L offerta economicamente più vantaggiosa. Alessandro Simonetta Consulenza per l Innovazione Tecnologica alessandro.simonetta@gmail.

L offerta economicamente più vantaggiosa. Alessandro Simonetta Consulenza per l Innovazione Tecnologica alessandro.simonetta@gmail. L offerta economicamente più vantaggiosa Alessandro Simonetta Consulenza per l Innovazione Tecnologica alessandro.simonetta@gmail.com 1 Quadro Legislativo D.P.R. n.544/99 D.Lgs n.163/06 e s.m.i. D. Lgs

Dettagli

Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi

Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi Laboratorio di Progettazione Esecutiva dell Architettura 2 Corso di Estimo a.a. 2007-08 Docente Renato Da Re Collaboratore: Barbara Bolognesi Microeconomia venerdì 29 febbraio 2008 La struttura della lezione

Dettagli

Funzione del benessere sociale e trade-off equità ed efficienza

Funzione del benessere sociale e trade-off equità ed efficienza Funzione del benessere sociale e trade-off equità ed efficienza Economia Pubblica lezione 3 1 Esistono infinite allocazioni Pareto-efficienti: Frontiera del Benessere (FB) o grande frontiera dell utilità

Dettagli

Capitolo 5. Il mercato della moneta

Capitolo 5. Il mercato della moneta Capitolo 5 Il mercato della moneta 5.1 Che cosa è moneta In un economia di mercato i beni non si scambiano fra loro, ma si scambiano con moneta: a fronte di un flusso reale di prodotti e di servizi sta

Dettagli

INTERPUMP GROUP SPA-VIA E. FERMI 25 42040 S.ILARIO (RE) http: //www.interpumpgroup.it

INTERPUMP GROUP SPA-VIA E. FERMI 25 42040 S.ILARIO (RE) http: //www.interpumpgroup.it PROCEDURA E-COMMERCE BUSINESS TO BUSINESS Guida alla Compilazione di un ordine INTERPUMP GROUP SPA-VIA E. FERMI 25 42040 S.ILARIO (RE) http: //www.interpumpgroup.it INDICE 1. Autenticazione del nome utente

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

TEST DELL'ABILITA' PRATICA DEL RAGIONAMENTO GLOBALE

TEST DELL'ABILITA' PRATICA DEL RAGIONAMENTO GLOBALE TEST DELL'ABILITA' PRATICA DEL RAGIONAMENTO GLOBALE COPYRIGHT 2008 PROCTER & GAMBLE CINCINNATI, OH 45202 U.S.A. AVVERTENZA: Tutti i diritti riservati. Questo opuscolo non può essere riprodotto in alcun

Dettagli

MODULO 3 LEZIONE 23 FORMAZIONE DEL MOVIMENTO (SECONDA PARTE)

MODULO 3 LEZIONE 23 FORMAZIONE DEL MOVIMENTO (SECONDA PARTE) MODULO 3 LEZIONE 23 FORMAZIONE DEL MOVIMENTO (SECONDA PARTE) Contenuti Michelene Chi Livello ottimale di sviluppo L. S. Vygotskij Jerome Bruner Human Information Processing Teorie della Mente Contrapposizione

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

In Consiglio regionale della Toscana i buoni consigli di ITIL Consiglio Regione Toscana

In Consiglio regionale della Toscana i buoni consigli di ITIL Consiglio Regione Toscana In Consiglio regionale della Toscana i buoni consigli di ITIL Consiglio Regione Toscana Equivale a livello regionale al Parlamento nazionale E composto da 65 consiglieri Svolge il compito di valutare /

Dettagli

Le imprese nell economia. esportazioni, multinazionali. Capitolo 8. adattamento italiano di Novella Bottini (ulteriore adattamento di Giovanni Anania)

Le imprese nell economia. esportazioni, multinazionali. Capitolo 8. adattamento italiano di Novella Bottini (ulteriore adattamento di Giovanni Anania) Capitolo 8 Le imprese nell economia globale: esportazioni, outsourcing e multinazionali [a.a. 2012/13] adattamento italiano di Novella Bottini (ulteriore adattamento di Giovanni Anania) 8-1 Struttura della

Dettagli

Si basano sul seguente Teorema: S = A sse S { A} è insoddisfacibile.

Si basano sul seguente Teorema: S = A sse S { A} è insoddisfacibile. Deduzione automatica La maggior parte dei metodi di deduzione automatica sono metodi di refutazione: anziché dimostrare direttamente che S A, si dimostra che S { A} è un insieme insoddisfacibile (cioè

Dettagli

NORME GENERALI PRINCIPI ETICI REGOLAMENTO INTERNO 2013 1

NORME GENERALI PRINCIPI ETICI REGOLAMENTO INTERNO 2013 1 REGOLAMENTO INTERNO 2013 1 NORME GENERALI Art. 1 Validità del regolamento interno Il presente regolamento, derivante dai principi espressi dallo Statuto da cui discende, rappresenta le regole e le concrete

Dettagli

Il Comitato dei Ministri, ai sensi dell'articolo 15.b dello Statuto del Consiglio d'europa,

Il Comitato dei Ministri, ai sensi dell'articolo 15.b dello Statuto del Consiglio d'europa, CONSIGLIO D EUROPA Raccomandazione CM/REC(2014) 3 del Comitato dei Ministri agli Stati Membri relativa ai delinquenti pericolosi (adottata dal Comitato dei Ministri il 19 febbraio 2014 nel corso della

Dettagli

Capitolo 15 LE SCELTE DI ORGANIZZAZIONE. G. Airoldi, G. Brunetti, V. Coda Corso di economia aziendale Il Mulino, 2005

Capitolo 15 LE SCELTE DI ORGANIZZAZIONE. G. Airoldi, G. Brunetti, V. Coda Corso di economia aziendale Il Mulino, 2005 Capitolo 15 LE SCELTE DI ORGANIZZAZIONE G. Airoldi, G. Brunetti, V. Coda Corso di economia aziendale Il Mulino, 2005 1 L ASSETTO ORGANIZZATIVO, IL COMPORTAMENTO ORGANIZZATIVO In organizzazione il centro

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

9. Urti e conservazione della quantità di moto.

9. Urti e conservazione della quantità di moto. 9. Urti e conservazione della quantità di moto. 1 Conservazione dell impulso m1 v1 v2 m2 Prima Consideriamo due punti materiali di massa m 1 e m 2 che si muovono in una dimensione. Supponiamo che i due

Dettagli

Ottimizzare gli sconti per incrementare i profitti

Ottimizzare gli sconti per incrementare i profitti Ottimizzare gli sconti per incrementare i profitti Come gestire la scontistica per massimizzare la marginalità di Danilo Zatta www.simon-kucher.com 1 Il profitto aziendale è dato da tre leve: prezzo per

Dettagli

Modelli di Sistemi di Produzione

Modelli di Sistemi di Produzione Modelli di Sistemi di Produzione 2 Indice 1 I sistemi di produzione 1 1.1 Generalità............................. 1 1.2 I principi dei sistemi manifatturieri............... 4 1.3 Descrizione dei principali

Dettagli

PRINCIPI BASILARI DI ELETTROTECNICA

PRINCIPI BASILARI DI ELETTROTECNICA PRINCIPI BASILARI DI ELETTROTECNICA Prerequisiti - Impiego di Multipli e Sottomultipli nelle equazioni - Equazioni lineari di primo grado e capacità di ricavare le formule inverse - nozioni base di fisica

Dettagli

Il concorso di persone nell illecito amministrativo ambientale: la disciplina normativa e la prassi applicativa

Il concorso di persone nell illecito amministrativo ambientale: la disciplina normativa e la prassi applicativa Il concorso di persone nell illecito amministrativo ambientale: la disciplina normativa e la prassi applicativa A cura della Dott.ssa Stefania Pallotta L art. 5 della legge n. 24 novembre 1981, n. 689

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

ITER AUTORIZZATIVO per un GRANDE IMPIANTO FOTOVOLTAICO ISCRIVERSI AL REGISTRO GRANDI IMPIANTI (E RISULTARE ISCRITTI NELLA GRADUATORIA GSE)

ITER AUTORIZZATIVO per un GRANDE IMPIANTO FOTOVOLTAICO ISCRIVERSI AL REGISTRO GRANDI IMPIANTI (E RISULTARE ISCRITTI NELLA GRADUATORIA GSE) Per accedere al IV Conto Energia è necessario superare 4 step per i grandi impianti. Questo documento ha lo scopo di analizzare in dettaglio ognuna delle fasi, presentandovi il quadro generale e offrendovi

Dettagli

La curva grafico della funzione, partendo dal punto A(a,f(a)), si snoda con continuità, senza interruzioni, fino ad approdare nel punto B(b,f(b)).

La curva grafico della funzione, partendo dal punto A(a,f(a)), si snoda con continuità, senza interruzioni, fino ad approdare nel punto B(b,f(b)). Calcolo differenziale Il teorema di Rolle TEOREMA DI ROLLE Ipotesi f continua su [a, b] f derivabile per lo meno su (a,b) f(a) = f(b) Tesi Esiste almeno un punto c in (a, b) tale che Giustificazione con

Dettagli

RELAZIONE TRA DUE VARIABILI QUANTITATIVE

RELAZIONE TRA DUE VARIABILI QUANTITATIVE RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quando si considerano due o più caratteri (variabili) si possono esaminare anche il tipo e l'intensità delle relazioni che sussistono tra loro. Nel caso in cui

Dettagli

Servizio Amministrativo di Supporto alle Autorità Indipendenti Via Michele Iacobucci, 4 L Aquila

Servizio Amministrativo di Supporto alle Autorità Indipendenti Via Michele Iacobucci, 4 L Aquila Modello B) REGIONE ABRUZZO CONSIGLIO REGIONALE Servizio Amministrativo di Supporto alle Autorità Indipendenti Via Michele Iacobucci, 4 L Aquila acquisito di materiale di cancelleria per l Ufficio amministrativo

Dettagli

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12 A / A / Seconda Prova di Ricerca Operativa Cognome Nome Numero Matricola Nota: LA RISOLUZIONE CORRETTA DEGLI ESERCIZI CONTRADDISTINTI DA UN ASTERISCO È CONDIZIONE NECESSARIA PER IL RAGGIUNGIMENTO DELLA

Dettagli

L evoluzione del software per l azienda moderna. Gestirsi / Capirsi / Migliorarsi

L evoluzione del software per l azienda moderna. Gestirsi / Capirsi / Migliorarsi IL GESTIONALE DEL FUTURO L evoluzione del software per l azienda moderna Gestirsi / Capirsi / Migliorarsi IL MERCATO ITALIANO L Italia è rappresentata da un numero elevato di piccole e medie aziende che

Dettagli

SISTEMI LINEARI QUADRATI: METODI ITERATIVI

SISTEMI LINEARI QUADRATI: METODI ITERATIVI SISTEMI LINEARI QUADRATI: METODI ITERATIVI CALCOLO NUMERICO e PROGRAMMAZIONE SISTEMI LINEARI QUADRATI:METODI ITERATIVI p./54 RICHIAMI di ALGEBRA LINEARE DEFINIZIONI A R n n simmetrica se A = A T ; A C

Dettagli

Regole del gioco UNO CONTENUTO DELLA CONFEZIONE: 108 Carte così distribuite: 19 Carte di colore Rosso che vanno dallo 0 al 9

Regole del gioco UNO CONTENUTO DELLA CONFEZIONE: 108 Carte così distribuite: 19 Carte di colore Rosso che vanno dallo 0 al 9 Regole del gioco UNO CONTENUTO DELLA CONFEZIONE: 108 Carte così distribuite: 19 Carte di colore Rosso che vanno dallo 0 al 9 19 Carte di colore Blu che vanno dallo 0 al 9 19 Carte di colore Giallo che

Dettagli

METODO PER LA COMPILAZIONE DELLE CLASSIFICHE FEDERALI 2014

METODO PER LA COMPILAZIONE DELLE CLASSIFICHE FEDERALI 2014 METODO PER LA COMPILAZIONE DELLE CLASSIFICHE FEDERALI 2014 PERIODO TEMPORALE CONSIDERATO Viene considerata tutta l attività svolta dalla prima settimana di novembre 2012 (5 11 novembre 2012 ), all ultima

Dettagli

Sistemi di supporto alle decisioni Ing. Valerio Lacagnina

Sistemi di supporto alle decisioni Ing. Valerio Lacagnina Cosa è il DSS L elevato sviluppo dei personal computer, delle reti di calcolatori, dei sistemi database di grandi dimensioni, e la forte espansione di modelli basati sui calcolatori rappresentano gli sviluppi

Dettagli

Valutazione di intangibili e impairment

Valutazione di intangibili e impairment IMPAIRMENT EVIDENZE DAI MEDIA ITALIANI Valutazione di intangibili e impairment -Valutazione di attività immateriali in aziende editoriali -Valutazioni per impairment test 1 La valutazione di asset si ha

Dettagli

ATTREZZATURE A TEMPERATURA POSITIVA

ATTREZZATURE A TEMPERATURA POSITIVA ANUGA COLONIA 05-09 OTTOBRE 2013 Ragione Sociale Inviare a : all'attenzione di : Padiglione Koelnmesse Srl Giulia Falchetti/Alessandra Cola Viale Sarca 336 F tel. 02/86961336 Stand 20126 Milano fax 02/89095134

Dettagli

Seconda Legge DINAMICA: F = ma

Seconda Legge DINAMICA: F = ma Seconda Legge DINAMICA: F = ma (Le grandezze vettoriali sono indicate in grassetto e anche in arancione) Fisica con Elementi di Matematica 1 Unità di misura: Massa m si misura in kg, Accelerazione a si

Dettagli

BREVI OSSERVAZIONI sul LAVORO DI PUBBLICA UTILITÀ

BREVI OSSERVAZIONI sul LAVORO DI PUBBLICA UTILITÀ BREVI OSSERVAZIONI sul LAVORO DI PUBBLICA UTILITÀ Tra le modifiche introdotte nell agosto 2010 all art. 186, C.d.S., vi è anche l inserimento del nuovo comma 9 bis, che prevede l applicazione del lavoro

Dettagli

L apertura di una economia ha 3 dimensioni

L apertura di una economia ha 3 dimensioni Lezione 19 (BAG cap. 6.1 e 6.3 e 18.1-18.4) Il mercato dei beni in economia aperta: moltiplicatore politica fiscale e deprezzamento Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia Economia

Dettagli

Come si indica un punto? Un punto si indica (distingue) con una lettera maiuscola dell alfabeto italiano.

Come si indica un punto? Un punto si indica (distingue) con una lettera maiuscola dell alfabeto italiano. Il punto Il punto è un elemento geometrico fondamentale privo di dimensioni ed occupa solo una posizione. Come si indica un punto? Un punto si indica (distingue) con una lettera maiuscola dell alfabeto

Dettagli

IL PROBLEMA DELLO SHORTEST SPANNING TREE

IL PROBLEMA DELLO SHORTEST SPANNING TREE IL PROBLEMA DELLO SHORTEST SPANNING TREE n. 1 - Formulazione del problema Consideriamo il seguente problema: Abbiamo un certo numero di città a cui deve essere fornito un servizio, quale può essere l energia

Dettagli

UTILIZZO DELLA PSICOCINETICA NELLA SCUOLA PRIMARIA E IN AMBITO SPORTIVO

UTILIZZO DELLA PSICOCINETICA NELLA SCUOLA PRIMARIA E IN AMBITO SPORTIVO UTILIZZO DELLA PSICOCINETICA NELLA SCUOLA PRIMARIA E IN AMBITO SPORTIVO Le capacità cognitive richieste per far fronte alle infinite modalità di risoluzione dei problemi motori e di azioni di gioco soprattutto

Dettagli

Legge sulla protezione dei dati personali (LPDP) 1)

Legge sulla protezione dei dati personali (LPDP) 1) 1.6.1.1 Legge sulla protezione dei dati personali (LPDP) (del 9 marzo 1987) IL GRAN CONSIGLIO DELLA REPUBBLICA E CANTONE TICINO visto il messaggio 2 ottobre 1985 n. 2975 del Consiglio di Stato, decreta:

Dettagli

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 1.1 Che cos è un algoritmo CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 Gli algoritmi sono metodi per la soluzione di problemi. Possiamo caratterizzare un problema mediante i dati di cui si dispone all inizio

Dettagli

è la manovra del bilancio dello Stato che ha per obiettivo una variazione del reddito e dell occupazione nel breve periodo

è la manovra del bilancio dello Stato che ha per obiettivo una variazione del reddito e dell occupazione nel breve periodo Politica fiscale Politica fiscale è la manovra del bilancio dello Stato che ha per obiettivo una variazione del reddito e dell occupazione nel breve periodo polit fiscale 2 Saldo complessivo B s Entrate

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Corso di Scienza Economica (Economia Politica) prof. G. Di Bartolomeo Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Facoltà di Scienze della Comunicazione Università di Teramo Scelta

Dettagli

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali.

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. CAPITOLO 7 Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. Esercizio 7.1. Determinare il rango delle seguenti matrici al variare del parametro t R. 1 4 2 1 4 2 A 1 = 0 t+1 1 A 2 = 0 t+1 1

Dettagli

DAL PROBLEMA AL PROGRAMMA

DAL PROBLEMA AL PROGRAMMA 1. I PROBLEMI E LA LORO SOLUZIONE DAL PROBLEMA AL PROGRAMMA L'uomo, per affrontare gli innumerevoli problemi postigli dallo sviluppo della civiltà, si è avvalso della scienza e della tecnica, i cui destini

Dettagli

CSI Varese Corso Allenatori di Calcio

CSI Varese Corso Allenatori di Calcio Lo sport è caratterizzato dalla RICERCA DEL CONTINUO MIGLIORAMENTO dei risultati, e per realizzare questo obiettivo è necessaria una PROGRAMMAZIONE (o piano di lavoro) che comprenda non solo l insieme

Dettagli

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali 1 Numeri naturali La successione di tutti i numeri del tipo: 0,1, 2, 3, 4,..., n,... forma l'insieme dei numeri naturali, che si indica con il simbolo N. Tale insieme si può disporre in maniera ordinata

Dettagli

I beni pubblici come causa del fallimento del mercato. Definizioni e caratteristiche

I beni pubblici come causa del fallimento del mercato. Definizioni e caratteristiche I beni pubblici come causa del fallimento del mercato. Definizioni e caratteristiche (versione provvisoria) Marisa Faggini Università di Salerno mfaggini@unisa.it I beni pubblici rappresentano un esempio

Dettagli

Richiedente: UFFICIO INFORMAZIONI TEST

Richiedente: UFFICIO INFORMAZIONI TEST Richiedente: UFFICIO INFORMAZIONI TEST Pratica: 1266018 Evasione: 2 giorni Fonti Banche dati Camere di Commercio Italiane Banche dati Atti Pregiudizievoli di Conservatoria Controllo operatori Reports Aggiornamento

Dettagli

Tesi per il Master Superformatori CNA

Tesi per il Master Superformatori CNA COME DAR VITA E FAR CRESCERE PICCOLE SOCIETA SPORTIVE di GIACOMO LEONETTI Scorrendo il titolo, due sono le parole chiave che saltano agli occhi: dar vita e far crescere. In questo mio intervento, voglio

Dettagli

COMMERCIO SU AREE PUBBLICHE

COMMERCIO SU AREE PUBBLICHE COMMERCIO SU AREE PUBBLICHE SUBINGRESSO NELL ESERCIZIO DELL ATTIVITÀ DI VENDITA SU AREE PUBBLICHE SIA DI TIPO A (su posteggi dati in concessione per dieci anni) SIA DI TIPO B (su qualsiasi area purché

Dettagli