Fisica 1 Anno Accademico 2011/2011

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Fisica 1 Anno Accademico 2011/2011"

Transcript

1 Matteo Luca Ruggiero di Torino Anno Accademico 011/011 (1 Marzo - 17 Marzo 01)

2 Sintesi Abbiamo introdotto lo studio del moto di un punto materiale partendo da un approccio cinematico. Una volta fissato il sistema di riferimento, il vettore posizione r individua la posizione del punto materiale; al variare del tempo r(t) definisce la legge oraria, da cui è possibile ricavare velocità e accelerazione. Posizione, velocità e accelerazione sono grandezze vettoriali, che possono essere espresse scegliendo coordinate e vettori di base opportuni: per i moti in un piano, accanto alle coordinate e ai vettori della base cartesiana, è possibile fare uso delle coordinate e della base polare, oltre che della base intrinseca. 1 Esercizi svolti ad Esercitazione Esercizio E.1.1 Un punto materiale si muove lungo una retta secondo la legge oraria: (i) x(t) = αt + b, (ii) x(t) = ct + dt + e. In entrambi i casi: (1) calcolare velocità ed accelerazione; () interpretare il significato fisico delle costanti α, b, c, e. Soluzione: (i): v(t) = α, a(t) = 0; (ii) v(t) = d + ct, a(t) = c. In (i): α rappresenta la velocità (costante) con cui avviene il moto, b rappresenta la posizione che il punto occupa a t = 0; in (ii) c = a/ rappresenta la metà dell accelerazione (costante), d rappresenta la velocità a t = 0, e rappresenta la posizione a t = 0. Il primo tipo di moto è uniforme, mentre il secondo è uniformemente accelerato. Esercizio E.1. Un punto materiale si muove lungo una retta secondo la legge oraria: x(t) = (5t t) m. (1) Calcolare velocità e accelerazione iniziali; () calcolare gli istanti in cui passa per l origine. Soluzione: (1) v(t) = (10t )m/s, a(t) = 10m/s. () t 1 = 0, t = /5 s. m Home Page di ML Ruggiero T B Pagina

3 Esercizio E.1.3 La velocità con cui un corpo si sta muovendo lungo una retta è data da v(t) = αt bt, con le due costanti α, b date da α = 1 m/s 3, b = m/s. All istante t = 0 il punto si trova in x = 1 m. (1) Calcolare la legge oraria; () calcolare l accelerazione; (3) calcolare la posizione in cui avviene l inversione del moto. Soluzione: (1) x(t) = αt 3 /3 bt / + x 0, con x 0 = 1 m. () a(t) = αt b. (3) t 1 = 0, t = b α = m/s 1m/s 3 = s Esercizio E.1.4 Un treno in modo lungo un binario rettilineo ha una velocità v 0 ; inizia a frenare e si osserva che esso si ferma in un tratto di lunghezza l. Supponendo che (i) a = cost, (ii) a = αt: Calcolare in entrambi i casi l accelerazione media. Soluzione Commentata: Lungo il binario consideriamo un sistema di riferimento, con origine per la variabile x nella posizione occupata a t = 0 dal treno. Nel caso (i) il treno si sta muovendo con accelerazione costante pari ad a. Possiamo quindi scrivere l equazione differenziale a = dv dt, (1) che dobbiamo risolvere per determinare v(t). Per questo, possiamo procedere separando le variabili, adt = dv, () e integriamo 1 t =t v adt = 0 = dv, (3) t =0 v 0 fra gli istanti (0, t), cui corrispondono, rispettivamente, i valori della velocità v 0, v. Si ottiene quindi a[t ] t 0 = [v ] v v 0 at = v v 0 v(t) = v 0 + at. (4) Notiamo che l equazione differenziale del primo ordine (1) ha una soluzione completa in funzione di una costante arbitraria la quale, nel nostro caso, corrisponde a v 0, il cui valore corrisponde alla condizione iniziale per la velocità. Procediamo in maniera simile per ottenere la legge oraria x(t) v = dx dt, (5) 1 Utilizziamo le variabili ausiliarie t, v per non confondere la variabili di integrazione con gli estremi di integrazione. m Home Page di ML Ruggiero T B Pagina 3

4 Separando le variabili ed integrando, utilizzando per v il valore dato dalla (4) otteniamo infine v 0 [t ] t 0 +a [ t ] t 0 t =t t =0 (v 0 + at) dt = 0 = x x 0 dx, (6) = [x ] x x 0 v 0 t+a t = x x 0 x(t) = x 0 +v 0 t+a t. (7) Anche in questo caso, abbiamo risolto l equazione differenziale del primo ordine (5) introducendo una costante arbitraria, x 0 la quale corrisponde alla posizione inziale. Notiamo che mettendo insieme le equazioni (1,5), otteniamo d x = a, la quale è una equazione differenziale del secondo ordine, la cui dt soluzione, data da x(t) = x 0 +v 0 t+a t, dipende dalle due costanti arbitrarie x 0, v 0. Per rispondere al quesito del problema, notiamo che possiamo scrivere la legge oraria nella forma x(t) = v 0 t + a t, (8) perchè scegliamo l origine della coordinata x nella posizione occupata dal treno all istante iniziale. Possiamo determinare il tempo di frenata t f imponendo v(t f ) = 0 nella (4), da cui t f = v 0 a. (9) Osserviamo che trattandosi di un moto decelerato, a < 0, per cui t f > 0. Lo spazio percorso dall istante iniziale fino al completo arresto si ottiene andando a sostituire t f nella (8): x(t f ) = v 0 t f + 1 at f x(t f) = v 0 a. (10) Essendo noto lo spazio di frenata, x(t f ) = l, abbiamo la relazione l = v 0 a. (11) L accelerazione media coincide con l accelerazione costante che si ricava dalla (11), ovvero a = v 0 (1) l Nel caso (ii), il procedimento è il medesimo: quello che cambia è il tipo di moto, perchè il treno si sta muovendo con una accelerazione variabile, m Home Page di ML Ruggiero T B Pagina 4

5 secondo la legge a(t) = αt. Per determinare la funzione v(t) dobbiamo risolvere l equazione differenziale αt = dv dt, (13) da cui si ottiene, procedendo nuovamente per separazione delle variabili v(t) = v 0 + α t (14) Per determinare la funzione x(t) dobbiamo risolvere l equazione differenziale v 0 + α t = dx dt, (15) da cui si ottiene, procedendo nuovamente per separazione delle variabili x(t) = x 0 + v 0 t + α t3 6 (16) Come prima, possiamo imporre x 0 = 0, per cui la legge oraria diventa x(t) = v 0 t + α t3 6 (17) Determiamo quindi lo spazio di frenata t f imponendo v(t f ) = 0 nella (14): t f = v 0 α. (18) Notiamo che la radice è ben definita, perchè α < 0, per avere una decelerazione. Lo spazio di frenata corrispondente si ottiene andando a sostituire il valore ottenuto nella legge oraria (17): ( x(t f ) = v 0 v 0 α α v 0 α ) 3 = v3 0 3 α, (19) dove si è tenuto conto del fatto che α < 0. Imponendo quindi x(t f ) = l, si ottiene α = 8 v l, (0) e andando a sostituire nella (18) Per ottenere l accelerazione media scriviamo t f = 3 l (1) v 0 a m = v f v 0 = v 0 = v0 t f t 0 t f 3 l () m Home Page di ML Ruggiero T B Pagina 5

6 Esercizio E.1.5 Un motociclista si sta muovendo con accelerazione costante lungo un tratto di pista rettilinea; quando passa nella posizione x 1 il suo tachimetro segna la velocità v 1, quando passa nella posizione x > x 1 il suo tachimetro segna la velocità v. Ponendo x x 1 = x: (1) Quanto vale l accelerazione? () Quanto impiega a percorrere il tratto x? Soluzione: (1) a = v v 1 ; () t = (x x 1 ) (x x 1 ) v +v 1. Suggerimento: Consideriamo la legge oraria che descrive il moto di un punto materiale che si muove sotto l azione di una forza costante, cui corrisponde un accelerazione che, genericamente, indichiamo con a: x(t) = x 0 + v 0 (t t 0 ) + 1 a(t t 0) (3) v(t) = v 0 + a(t t 0 ) (4) Elevando al quadrato la (4) si ottiene v v 0 = a ( v 0 (t t 0 ) + 1 a(t t 0) ) e, tenendo conto della (3) si ottiene v v 0 = a(x x 0) (5) Quindi, nello spazio x = x x 0, la velocita varia da v a v 0. La relazione (5) si comprende facilmente applicando il teorema delle forze vive ad un punto materiale soggetto ad una forza costante. Inoltre, il tempo trascorso si ricava dalla (4): t = v v 0 a = (v v 0( (x x 0 ) v v 0 = x x 0 v + v 0 (6) che si può scrivere anche nella forma avendo introdotto la velocità media v m = v+v 0. t = x x 0 v m (7) m Home Page di ML Ruggiero T B Pagina 6

7 Esercizio E.1.6 Un automobile in moto rettilineo parte dall origine di un riferimento cartesiano, mettendosi in moto con accelerazione a 0 = 1 m/s ; l accelerazione diminuisce linearmente fino ad annullarsi nell istante T in cui la velocità è pari a 108 chilometri orari. Quanto spazio ha percorso fino all istante T? Soluzione Commentata: la forma generale dell accelerazione è del tipo a(t) = a 0 + bt, con b costante da determinare imponendo che a(t) = 0. Si ottiene quindi ( a(t) = a 0 1 t ) (8) T Integrando l equazione differenziale a = dv, con a = a(t) determinato dalla dt (8), otteniamo ( ) v(t) = v 0 + a 0 t t, (9) T dove si può porre v 0 = 0, dato che l automobile parte da ferma: ( ) v(t) = a 0 t t, (30) T Sappiamo che v(t) = V = 108 km = h 30m. Allora dalla (30) otteniamo s E quindi possibile ricavare il tempo T, per cui V = v(t) = 1 a 0T (31) T = V a 0 = 30m s 1 m s = 60 s (3) Integrando l equazione differenziale v = dx, con v = v(t) determinato dalla dt (30), otteniamo ( ) t x(t) = x 0 + a 0 t3, (33) 6T dove si può porre x 0 = 0, dato che l automobile parte dall origine: x(t) = a 0 ( t t3 6T ). (34) Ponendo t = T nella (34) otteniamo lo spazio percorso fino all istante t = T: x(t) = a T = 1 m s 1 3 (60) s = 100 m. (35) m Home Page di ML Ruggiero T B Pagina 7

8 ESERCIZI PROPOSTI Esercizi Proposti Esercizio P.1.1 Un ciclista si muove lungo una pista circolare di raggio R, partendo da fermo, e compie un giro mantenendo una accelerazione tangenziale costante a. (1) Calcolare il vettore velocità alla fine del giro; () calcolare l espressione del vettore accelerazione lungo la traiettoria, in funzione del tempo; (3) calcolare il tempo impiegato a percorrere tutta la pista. Esercizio P.1. Le coordinate geografiche di Roma sono 41 gradi latitudine Nord e 1 gradi longitudine Est; quelle di Sydney sono 33 gradi di latitudine Sud 151 gradi di longitudine Est. Quanto è la loro distanza, calcolata lungo l arco di cerchio massimo che le unisce? Figura 1: Esercizio P.1.3 Esercizio P.1.3 Nel meccanismo in Figura 1 A e B sono due cerniere per le aste OA e AB che hanno uguale lunghezza l. A partire da t = 0, nella configurazione in cui m Home Page di ML Ruggiero T B Pagina 8

9 .1 Esercizio P QUESITI α = 0, B viene avvicinata a O, muovendola con velocita costante v. (1) Calcolare l angolo α in funzione del tempo. () Calcolare le componenti della velocità e dell accelerazione della cerniera A lungo l asse x..1 Esercizio P.1.4 Due treni viaggiano sullo stesso tratto di binario rettilineo, nella stessa direzione, con velocità v 1 = 144 km/h e v = 7 km/h. Il primo treno inizia a frenare quando si trova ad una distanza L dal secondo che lo precede, con una decelerazione costante pari a 4 m/s. Calcolare il valore minimo di L necessario per evitare l impatto.. Esercizio P.1.5 Le lancette dell orologio sono sovrapposte a mezzogiorno. A che ora saranno nuovamente sovrapposte?.3 Esercizio P.1.6 Un punto materiale si muove in un piano e le sue coordinate polari variano secondo le seguenti relazioni r(t) = Re t/t, θ(t) = ωt con R, T, ω costanti. Calcolare le componenti polari di (1) velocità e () accelerazione. 3 Quesiti 1.1 Sto viaggiando in automobile e osservo che il tachimetro segna sempre i 90 chilometri orari. Posso dedurre che 1. Ho accelerazione nulla. Ho accelerazione costante 3. Sto viaggiando in rettilineo 4. Nessuna delle risposte precedenti m Home Page di ML Ruggiero T B Pagina 9

10 3 QUESITI posizione Marco Giulia 4m s 4s 6s 8s 10s istanti di tempo Figura : Quesito Due bambini, Marco e Giulia, fanno una corsa in bicicletta, lungo una pista rettilinea. Ad un dato istante, che corrisponde a t = 0 nel grafico (Figura, sono riportate le posizioni occupate dai due bambini, in funzione degli istanti di tempo), Giulia precede Marco di metri. Marco, poi, sorpassa Giulia dopo secondi, avendo percorso 4 metri dall istante iniziale. Osservando il grafico, possiamo dedurre che: 1. La velocità di Marco è di metri al secondo. La velocità di Marco è di 4 metri al secondo 3. La velocità di Giulia è di metri al secondo 4. La velocità di Giulia è di 4 metri al secondo 1.3 Sia dato il seguente sistema di equazioni, che esprime la legge oraria x = x(t), y = y(t) del moto di un punto materiale nel piano xy: { x = at y = bt dove a, b sono costanti con le opportune dimensioni. L equazione della traiettoria rappresenta 1. una retta. una parabola m Home Page di ML Ruggiero T B 10

11 3 QUESITI v(t) P t P t Figura 3: Quesito un iperbole 4. una circonferenza 1.4 Un punto materiale si muove in un piano, ed è soggetto ad una accelerazione a costante. Allora 1. Si muove di moto rettilineo uniformemente accelerato. Si muove di moto circolare uniforme 3. Si muove di moto circolare vario 4. Non ci sono elementi sufficienti per descrivere il moto 1.5 In un grafico (Figura 3) che riporta la velocità v registrata in funzione del tempo t, in un moto unidimensionale, il coefficiente angolare della retta tangente al grafico, in un punto generico P rappresenta 1. la velocità in P. la velocità media 3. l accelerazione in P 4. non ha alcuna interpretazione fisica m Home Page di ML Ruggiero T B 11

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto SBarbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie Cap 2 Cinematica del punto 21 - Posizione, velocitá e accelerazione di una particella La posizione di una particella puó essere definita, ad

Dettagli

Esercizio (tratto dal Problema 2.8 del Mazzoldi 2)

Esercizio (tratto dal Problema 2.8 del Mazzoldi 2) 1 Esercizio (tratto dal Problema.8 del Mazzoldi ) Una particella si muove lungo una circonferenza di raggio R 50 cm. Inizialmente parte dalla posizione A (θ 0) con velocità angolare nulla e si muove di

Dettagli

Il moto uniformemente accelerato. Prof. E. Modica

Il moto uniformemente accelerato. Prof. E. Modica Il moto uniformemente accelerato! Prof. E. Modica www.galois.it La velocità cambia... Quando andiamo in automobile, la nostra velocità non si mantiene costante. Basta pensare all obbligo di fermarsi in

Dettagli

parametri della cinematica

parametri della cinematica Cinematica del punto Consideriamo il moto di una particella: per particella si intende sia un corpo puntiforme (ad es. un elettrone), sia un qualunque corpo esteso che si muove come una particella, ovvero

Dettagli

La descrizione del moto

La descrizione del moto Professoressa Corona Paola Classe 1 B anno scolastico 2016-2017 La descrizione del moto Il moto di un punto materiale La traiettoria Sistemi di riferimento Distanza percorsa Lo spostamento La legge oraria

Dettagli

Moto del Punto - Cinematica del Punto

Moto del Punto - Cinematica del Punto Moto del Punto - Cinematica del Punto Quiz 1 Posizione, spostamento e traiettoria 1. Un ciclista si sposta di 10km in una direzione formante un angolo di 30 rispetto all asse x di un fissato riferimento.

Dettagli

Università del Sannio

Università del Sannio Università del Sannio Corso di Fisica 1 Lezione 4 Prof.ssa Stefania Petracca 1 Vettore posizione Per poter generalizzare i concetti introdotti nella lezione precedente al caso bidimensionale, e successivamente

Dettagli

MOTO CIRCOLARE VARIO

MOTO CIRCOLARE VARIO MOTO ARMONICO E MOTO VARIO PROF. DANIELE COPPOLA Indice 1 IL MOTO ARMONICO ------------------------------------------------------------------------------------------------------ 3 1.1 LA LEGGE DEL MOTO

Dettagli

Esercitazione 1. Soluzione

Esercitazione 1. Soluzione Esercitazione 1 Esercizio 1 - Moto rettilineo uniforme Un bagnino B è sulla spiaggia a distanza d B = 50 m dalla riva e deve soccorrere un bagnante H che è in acqua a d H = 100 m dalla riva. La distanza

Dettagli

Cinematica. Descrizione dei moti

Cinematica. Descrizione dei moti Cinematica Descrizione dei moti Moto di un punto materiale Nella descrizione del moto di un corpo (cinematica) partiamo dal caso più semplice: il punto materiale, che non ha dimensioni proprie. y. P 2

Dettagli

Fisica 1 Anno Accademico 2011/2012

Fisica 1 Anno Accademico 2011/2012 Matteo Luca Ruggiero DISAT@Politecnico di Torino Anno Accademico 2011/2012 (7 Maggio - 11 Maggio 2012) Sintesi Abbiamo introdotto riformulato il teorema dell energia cinetica in presenza di forze non conservative,

Dettagli

Esercitazioni Fisica Corso di Laurea in Chimica A.A

Esercitazioni Fisica Corso di Laurea in Chimica A.A Esercitazioni Fisica Corso di Laurea in Chimica A.A. 2016-2017 Esercitatore: Marco Regis 1 I riferimenti a pagine e numeri degli esercizi sono relativi al libro Jewett and Serway Principi di Fisica, primo

Dettagli

Cinematica. Descrizione dei moti

Cinematica. Descrizione dei moti Cinematica Descrizione dei moti Moto di un punto materiale Nella descrizione del moto di un corpo (cinematica) partiamo dal caso più semplice: il punto materiale, che non ha dimensioni proprie. y. P 2

Dettagli

Cinematica in due o più dimensioni

Cinematica in due o più dimensioni Cinematica in due o più dimensioni Le grandezze cinematiche fondamentali: posizione, velocità, accelerazione, sono dei vettori nello spazio a due o tre dimensioni, dotati di modulo, direzione, verso. In

Dettagli

COSA E LA MECCANICA? Studio del MOTO DEI CORPI e delle CAUSE che lo DETERMINANO. Fisica con Elementi di Matematica 1

COSA E LA MECCANICA? Studio del MOTO DEI CORPI e delle CAUSE che lo DETERMINANO. Fisica con Elementi di Matematica 1 COSA E LA MECCANICA? Studio del MOTO DEI CORPI e delle CAUSE che lo DETERMINANO. Fisica con Elementi di Matematica 1 COSA E LA MECCANICA? Viene tradizionalmente suddivisa in: CINEMATICA DINAMICA STATICA

Dettagli

Esercizi di Cinematica

Esercizi di Cinematica Esercizi di Cinematica Esercizio 1 3 La posizione di un punto materiale in moto è data dall equazione vettoriale r(t) = 6ti 3t 2 2 j + t k. Determinare la velocità e l accelerazione del punto. Esercizio

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 075-585 2708 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://cms.pg.infn.it/santocchia/

Dettagli

ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO

ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO Revisione del 16/03/16 ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO Valdagno (VI) Corso di Fisica prof. Nardon MOTI ACCELERATI Richiami di teoria Moto uniformemente vario (accelerato) a = equazioni del moto:

Dettagli

Analisi del moto dei proietti

Analisi del moto dei proietti Moto dei proietti E il moto di particelle che vengono lanciate con velocità iniziale v 0 e sono soggette alla sola accelerazione di gravità g supposta costante. La pallina rossa viene lasciata cadere da

Dettagli

x =0 x 1 x 2 Esercizio (tratto dal Problema 1.4 del Mazzoldi)

x =0 x 1 x 2 Esercizio (tratto dal Problema 1.4 del Mazzoldi) 1 Esercizio (tratto dal Problema 1.4 del Mazzoldi) Un punto materiale si muove con moto uniformemente accelerato lungo l asse x. Passa per la posizione x 1 con velocità v 1 1.9 m/s, e per la posizione

Dettagli

Angolo polare, versori radiale e trasverso

Angolo polare, versori radiale e trasverso Angolo polare, versori radiale e trasverso Desideriamo descrivere il moto di un corpo puntiforme che ruota su una circonferenza attorno ad un asse fisso. Nella figura l asse di rotazione coincide con l

Dettagli

Corso di Fisica tecnica e ambientale a.a. 2011/ Docente: Prof. Carlo Isetti

Corso di Fisica tecnica e ambientale a.a. 2011/ Docente: Prof. Carlo Isetti CENNI DI CINEMATICA.1 GENERALITÀ La cinematica studia il moto dei corpi in relazione allo spazio ed al tempo indipendentemente dalle cause che lo producono. Un corpo si muove quando la sua posizione relativa

Dettagli

Fisica 1 Anno Accademico 2011/2012

Fisica 1 Anno Accademico 2011/2012 Matteo Luca Ruggiero DISAT@Politecnico di Torino Anno Accademico 2011/2012 (26 Marzo - 30 Marzo 2012) 1 ESERCIZI SVOLTI AD ESERCITAZIONE Sintesi Abbiamo studiato da vicino alcuni esempi di forza: partendo

Dettagli

Introduzione alla Meccanica: Cinematica

Introduzione alla Meccanica: Cinematica Introduzione alla Meccanica: Cinematica La Cinematica si occupa della descrizione geometrica del moto, senza riferimento alle sue cause. E invece compito della Dinamica mettere in relazione il moto con

Dettagli

6. IL MOTO Come descrivere un moto.

6. IL MOTO Come descrivere un moto. 6. IL MOTO Per definire il movimento di un corpo o il suo stato di quiete deve sempre essere individuato un sistema di riferimento e ogni movimento è relativo al sistema di riferimento in cui esso avviene.

Dettagli

Il moto. Studiamo il moto del punto materiale, definito come un oggetto estremamente piccolo rispetto al contesto

Il moto. Studiamo il moto del punto materiale, definito come un oggetto estremamente piccolo rispetto al contesto Il moto Studiamo il moto del punto materiale, definito come un oggetto estremamente piccolo rispetto al contesto Traiettoria: è il luogo dei punti occupati dall oggetto nel suo movimento Spazio percorso:

Dettagli

Fisica per Medicina. Lezione 2 - Matematica e Cinematica. Dr. Cristiano Fontana

Fisica per Medicina. Lezione 2 - Matematica e Cinematica. Dr. Cristiano Fontana Fisica per Medicina Lezione - Matematica e Cinematica Dr. Cristiano Fontana Dipartimento di Fisica ed Astronomia Galileo Galilei Università degli Studi di Padova 17 ottobre 17 Indice Richiami di matematica

Dettagli

Cinematica: considerazioni generali

Cinematica: considerazioni generali Cinematica: considerazioni generali La cinematica studia la descrizione del moto dei corpi (cioè la posizione di un oggetto nello spazio e nel tempo) senza considerare le cause che hanno prodotto il moto.

Dettagli

4. Su di una piattaforma rotante a 75 giri/minuto è posta una pallina a una distanza dal centro di 40 cm.

4. Su di una piattaforma rotante a 75 giri/minuto è posta una pallina a una distanza dal centro di 40 cm. 1. Una slitta, che parte da ferma e si muove con accelerazione costante, percorre una discesa di 60,0 m in 4,97 s. Con che velocità arriva alla fine della discesa? 2. Un punto materiale si sta muovendo

Dettagli

INTRODUZIONE ALLA CINEMATICA DEL PUNTO MATERIALE PROF. FRANCESCO DE PALMA

INTRODUZIONE ALLA CINEMATICA DEL PUNTO MATERIALE PROF. FRANCESCO DE PALMA INTRODUZIONE ALLA CINEMATICA DEL PUNTO MATERIALE PROF. FRANCESCO DE PALMA Sommario MOTO E TRAIETTORIA... 3 PUNTO MATERIALE... 3 TRAIETTORIA... 3 VELOCITÀ... 4 VELOCITÀ MEDIA... 4 VELOCITÀ ISTANTANEA...

Dettagli

Cinematica nello Spazio

Cinematica nello Spazio Cinematica nello Spazio Abbiamo introdotto, nelle precedenti lezioni, le grandezze fisiche: 1) Spostamento; 2) Velocità; 3) Accelerazione; 4) Tempo. Abbiamo ricavato le equazioni per i moti: a) uniforme;

Dettagli

Applicazioni delle leggi della meccanica: moto armnico

Applicazioni delle leggi della meccanica: moto armnico Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di

Dettagli

Esercitazioni di Fisica Corso di Laurea in Biotecnologie e Geologia

Esercitazioni di Fisica Corso di Laurea in Biotecnologie e Geologia Esercitazioni di Corso di Laurea in Biotecnologie e Geologia Ninfa Radicella Università del Sannio 6 Aprile 2016 Moto in due dimensioni Cinematica delle particelle in moto su un piano Cosa ci serve: Vettore

Dettagli

Quando un corpo è in movimento??? Ulteriori attività formative a.a. 2011/12 2

Quando un corpo è in movimento??? Ulteriori attività formative a.a. 2011/12 2 1 Quando un corpo è in movimento??? Ulteriori attività formative a.a. 2011/12 2 Infatti un passeggero seduto su un treno in corsa è in moto rispetto alla stazione, ma è fermo rispetto al treno stesso!

Dettagli

Il movimento dei corpi

Il movimento dei corpi 1 Per stabilire se un corpo si muove oppure no è necessario riferirsi a qualcosa che sicuramente è fermo. È necessario scegliere un sistema di riferimento. 1. Un passeggero di un treno in moto appare fermo

Dettagli

1. LA VELOCITA. Si chiama traiettoria la linea che unisce le posizioni successive occupate da un punto materiale in movimento.

1. LA VELOCITA. Si chiama traiettoria la linea che unisce le posizioni successive occupate da un punto materiale in movimento. 1. LA VELOCITA La traiettoria. Si chiama traiettoria la linea che unisce le posizioni successive occupate da un punto materiale in movimento Il moto rettilineo: si definisce moto rettilineo quello di un

Dettagli

Serway, Jewett Principi di Fisica IV Ed. Capitolo 3. Serway, Jewett Principi di Fisica, IV Ed. Capitolo 3

Serway, Jewett Principi di Fisica IV Ed. Capitolo 3. Serway, Jewett Principi di Fisica, IV Ed. Capitolo 3 Serway, Jewett Principi di Fisica IV Ed. Capitolo 3 Moti in due dimensioni Caso bidimensionale: tutte le grandezze viste fino ad ora (posizione, velocità, accelerazione devono essere trattate come vettori).

Dettagli

Unità didattica 1. Prima unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 1. Prima unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 1 Unità di misura Cinematica Posizione e sistema di riferimento....... 3 La velocità e il moto rettilineo uniforme..... 4 La velocità istantanea... 5 L accelerazione 6 Grafici temporali.

Dettagli

Problemi di massimo e minimo

Problemi di massimo e minimo Problemi di massimo e minimo Supponiamo di avere una funzione continua in Per il teorema di Weierstrass esistono il massimo assoluto M e il minimo assoluto m I problemi di massimo e minimo sono problemi

Dettagli

Esercizio (tratto dal Problema 1.6 del Mazzoldi)

Esercizio (tratto dal Problema 1.6 del Mazzoldi) 1 Esercizio (tratto dal Problema 1.6 del Mazzoldi) Una particella si muove lungo l asse x nel verso positivo con accelerazione costante a 1 = 3.1 m/s 2. All istante t = 0 la particella si trova nell origine

Dettagli

Meccanica del punto materiale

Meccanica del punto materiale Meccanica del punto materiale Princìpi della dinamica. Forze. Momento angolare. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Per consigli, suggerimenti, eventuali errori o altro

Dettagli

VELOCITÀ MOTO RETTILINEO UNIFORME MOTO UNIFORMEMENTE ACCELERATO

VELOCITÀ MOTO RETTILINEO UNIFORME MOTO UNIFORMEMENTE ACCELERATO 1 VELOCITÀ 1. (Da Veterinaria 2010) In auto percorriamo un primo tratto in leggera discesa di 100 km alla velocità costante di 100 km/h, e un secondo tratto in salita di 100 km alla velocità costante di

Dettagli

Movimento dei corpi 1

Movimento dei corpi 1 Movimento dei corpi 1 1. Corpo in quiete e corpo in moto Un corpo rispetto a un sistema di riferimento si dice in moto se cambia la sua posizione nel tempo; si dice in quiete se non cambia la sua posizione

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

7. Forze elastiche. Nella figura 1 il periodo è T = 2s e corrisponde ad un moto unidimensionale limitato tra i valori x = 0 ed x = 1.

7. Forze elastiche. Nella figura 1 il periodo è T = 2s e corrisponde ad un moto unidimensionale limitato tra i valori x = 0 ed x = 1. 1 Moti periodici 7. Forze elastiche Un caso particolare di moto accelerato è un moto periodico. In figura 1 è riportato un esempio di moto periodico unidimensionale. Un moto periodico si ripete identicamente

Dettagli

Esercizio (tratto dal Problema 3.35 del Mazzoldi 2)

Esercizio (tratto dal Problema 3.35 del Mazzoldi 2) 1 Esercizio (tratto dal Problema 3.35 del Mazzoldi 2) Un corpo sale lungo un piano inclinato (θ 18 o ) scabro (µ S 0.35, µ D 0.25), partendo dalla base con velocità v 0 10 m/s e diretta parallelamente

Dettagli

I MOTI NEL PIANO. Vettore posizione e vettore spostamento

I MOTI NEL PIANO. Vettore posizione e vettore spostamento I MOTI NEL IANO Vettore posizione e vettore spostamento Si parla di moto in un piano quando lo spostamento non avviene lungo una retta, ma in un piano, e può essere descritto usando un sistema di riferimento

Dettagli

Problema (tratto dal 7.42 del Mazzoldi 2)

Problema (tratto dal 7.42 del Mazzoldi 2) Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

Introduciamo il sistema di riferimento indicato in figura b) con F 1 = ( f, 0) ed F 2 = (f, 0). Se P = (x, y) la condizione (1) fornisce

Introduciamo il sistema di riferimento indicato in figura b) con F 1 = ( f, 0) ed F 2 = (f, 0). Se P = (x, y) la condizione (1) fornisce 1 L ellisse 1.1 Definizione Consideriamo due punti F 1 ed F 2 e sia 2f la loro distanza. L ellisse è il luogo dei punti P tali che la somma delle distanze PF 1 e PF 2 da F 1 ed F 2 è costante. Se indichiamo

Dettagli

1 Nozioni utili sul piano cartesiano

1 Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Il piano cartesiano è un sistema di riferimento costituito da due rette perpendicolari (una orizzontale detta asse delle ascisse x

Dettagli

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante

Dettagli

Cinematica del punto materiale

Cinematica del punto materiale Cinematica del punto materiale E ` la parte piu` elementare della meccanica: studia il moto dei corpi senza riferimento alle sue cause Il moto e` determinato se e` nota la posizione del corpo in funzione

Dettagli

Fisica 1 Anno Accademico 2011/2012

Fisica 1 Anno Accademico 2011/2012 Matteo Luca Ruggiero DISAT@Politecnico di Torino Anno Accademico 2011/2012 (16 Aprile - 20 Aprile 2012) 1 ESERCIZI SVOLTI AD ESERCITAZIONE Sintesi Abbiamo studiato le equazioni che determinano il moto

Dettagli

2. SIGNIFICATO FISICO DELLA DERIVATA

2. SIGNIFICATO FISICO DELLA DERIVATA . SIGNIFICATO FISICO DELLA DERIVATA Esempi 1. Un auto viaggia lungo un percorso rettilineo, con velocità costante uguale a 70 km/h. Scrivere la legge oraria s= s(t) e rappresentarla graficamente. 1. Scriviamo

Dettagli

Cinematica del punto materiale

Cinematica del punto materiale Cinematica del punto materiale Punto materiale Velocità e accelerazione Moto rettilineo uniforme Moto naturalmente accelerato Moto parabolico Moto armonico Antonio Pierro Per consigli, suggerimenti, eventuali

Dettagli

Lezione 5 MOTO CIRCOLARE UNIFORME

Lezione 5 MOTO CIRCOLARE UNIFORME Corsi di Laurea in Scienze motorie - Classe L-22 (D.M. 270/04) Dr. Andrea Malizia 1 MOTO CIRCOLARE UNIFORME 2 Per descrivere un moto curvilineo occorrono due assi cartesiani ortogonali ed un orologio.

Dettagli

CINEMATICA a.s.2007/08 Classe III C Scuola Media Sasso Marconi. SINTESI E APPUNTI Prof.ssa Elena Spera

CINEMATICA a.s.2007/08 Classe III C Scuola Media Sasso Marconi. SINTESI E APPUNTI Prof.ssa Elena Spera CINEMATICA a.s.2007/08 Classe III C Scuola Media Sasso Marconi SINTESI E APPUNTI Prof.ssa Elena Spera 1 SISTEMI DI RIFERIMENTO Il moto è relatio Ogni moto a studiato dopo aere fissato un sistema di riferimento,

Dettagli

1 Sistemi di riferimento

1 Sistemi di riferimento Università di Bologna - Corsi di Laurea Triennale in Ingegneria, II Facoltà - Cesena Esercitazioni del corso di Fisica Generale L-A Anno accademico 2006-2007 1 Sistemi di riferimento Le grandezze usate

Dettagli

STATICA = studia le condizioni di equilibrio dei corpi

STATICA = studia le condizioni di equilibrio dei corpi IL MOTO MECCANICA = parte della fisica che studia il movimento dei corpi CINEMATICA = descrive il moto dei corpi senza indagare le cause che lo hanno prodotto DINAMICA = studia il moto dei corpi in relazione

Dettagli

prof. Antonio Marino a.s Liceo Zucchi Monza Il moto circolare uniforme

prof. Antonio Marino a.s Liceo Zucchi Monza Il moto circolare uniforme Il moto circolare uniforme 1. Definizione di moto circolare uniforme Un punto P si muove di moto circolare uniforme 1 se percorre una circonferenza con velocità scalare costante. Pertanto, il modulo della

Dettagli

Cap 1 - Cinematica (Mazzoldi)

Cap 1 - Cinematica (Mazzoldi) 1 DEFINIZIONI COMUNI NELLA MECCANICA Cap 1 - Cinematica (Mazzoldi) Cap 1 - Cinematica (Mazzoldi) La meccanica è la parte della fisica che studia il moto dei corpi e le cause del loro moto. Per trovare

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN TUTELA E BENESSERE ANIMALE Corso di : FISICA MEDICA A.A. 015 /016 Docente: Dott. Chiucchi Riccardo mail:rchiucchi@unite.it Medicina Veterinaria: CFU

Dettagli

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,

Dettagli

=50 1. Lo spazio percorso in 15 è = =50 15 = =45000 =45.

=50 1. Lo spazio percorso in 15 è = =50 15 = =45000 =45. MOTO RETTILINEO UNIFORME Esercizi Problema 1 Un auto viaggia alla velocità di 50. Determinare la velocità in h e lo spazio percorso in 15 minuti. La trasformazione della velocità in h è : 50 1 50 1000

Dettagli

La Cinematica. Problemi di Fisica. Moti unidimensionali

La Cinematica. Problemi di Fisica. Moti unidimensionali Problemi di Fisica Moti unidimensionali Sei in un automobile che sta andando in autostrada. Quale sarà la tua traiettoria rispetto al sistema di riferimento automobile che sta sorpassando? Il moto è un

Dettagli

Meccanica: Introduzione. Lo Studio del moto degli oggetti

Meccanica: Introduzione. Lo Studio del moto degli oggetti Meccanica: Introduzione Lo Studio del moto degli oggetti 1 Grandezze fisiche n Scalari : esprimibili mediante singoli numeri (es. massa,temperatura, energia, carica elettrica ecc.) n Vettoriali : per essere

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Cinematica Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica Razionale - a.a.

Dettagli

FISICA. Serie 3: Cinematica del punto materiale II. Esercizio 1 Velocità media. I liceo

FISICA. Serie 3: Cinematica del punto materiale II. Esercizio 1 Velocità media. I liceo FISICA Serie 3: Cinematica del punto materiale II I liceo Le funzioni affini Una funzione f è detta una funzione del tempo se ad ogni istante t associa il valore di una grandezza fisica f a quell istante,

Dettagli

La retta nel piano cartesiano

La retta nel piano cartesiano La retta nel piano cartesiano Cominciamo con qualche esempio. I) Rette parallele agli assi cartesiani Consideriamo la retta r in figura: i punti della retta hanno sempre ordinata uguale a 3. P ( ;3) Q

Dettagli

GRAFICO 1. Sapendo che S 0 = - 5 m, dove si trova il corpo dopo 2 secondi dalla partenza? Cosa succede a 7 s dalla partenza?

GRAFICO 1. Sapendo che S 0 = - 5 m, dove si trova il corpo dopo 2 secondi dalla partenza? Cosa succede a 7 s dalla partenza? ESERCIZI SUL MOTO Un'automobile compie un viaggio di 100 km in tre tappe: 20 km a 60 km/h, 40 km a 80 km/h e 40 km a 30 km/h. Calcolare il tempo impiegato nel viaggio e la velocità media dell'automobile.

Dettagli

Geometria analitica del piano II (M.S. Bernabei & H. Thaler)

Geometria analitica del piano II (M.S. Bernabei & H. Thaler) Geometria analitica del piano II (M.S. Bernabei & H. Thaler) Equazione della retta in forma esplicita Sia data una retta r ax + by + c = 0 con b 0. Svolgendo questa equazione per y otteniamo e ponendo

Dettagli

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton Corsi di Laurea in Scienze motorie - Classe L-22 (D.M. 270/04) Dr. Andrea Malizia 1 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton Sistemi

Dettagli

Corso Meccanica Anno Accademico 2016/17 Scritto del 24/07/2017

Corso Meccanica Anno Accademico 2016/17 Scritto del 24/07/2017 Esercizio n. 1 Un punto materiale di massa m è vincolato a muoversi sotto l azione della gravità su un vincolo bilaterale (vedi figura) formato da un arco di circonferenza, AB, sotteso ad un angolo di

Dettagli

Correzione 1 a provetta del corso di Fisica 1,2

Correzione 1 a provetta del corso di Fisica 1,2 Correzione 1 a provetta del corso di Fisica 1, novembre 005 1. Primo Esercizio (a) Indicando con r (t) il vettore posizione del proiettile, la legge oraria del punto materiale in funzione del tempo t risulta

Dettagli

Meccanica. 10. Pseudo-Forze. Domenico Galli. Dipartimento di Fisica e Astronomia

Meccanica. 10. Pseudo-Forze.  Domenico Galli. Dipartimento di Fisica e Astronomia Meccanica 10. Pseudo-Forze http://campus.cib.unibo.it/2429/ Domenico Galli Dipartimento di Fisica e Astronomia 17 febbraio 2017 Traccia 1. Le Pseudo-Forze 2. Esempi 3. Pseudo-Forze nel Riferimento Terrestre

Dettagli

P = r. o + r. O + ω r (1)

P = r. o + r. O + ω r (1) 1 5.1-MOTI RELATIVI Parte I 5.1-Moti relativi-cap5 1 5.1-Moti relativi Teorema delle velocità relative Riprendiamo l impostazione tracciata nel paragrafo 2.6 (moti relativi 2-D) e consideriamo un sistema

Dettagli

Rette e piani in R 3

Rette e piani in R 3 Rette e piani in R 3 In questa dispensa vogliamo introdurre in modo elementare rette e piani nello spazio R 3 (si faccia riferimento anche al testo Algebra Lineare di S. Lang). 1 Rette in R 3 Vogliamo

Dettagli

j B Dati: ω1=100 rad/s velocità angolare della manovella (1); l = 250 mm (lunghezza della biella 2); r = 100 mm (lunghezza della manovella 1).

j B Dati: ω1=100 rad/s velocità angolare della manovella (1); l = 250 mm (lunghezza della biella 2); r = 100 mm (lunghezza della manovella 1). j B A l 2 1 ω1 r ϑ i Piede di biella Testa di biella Biella Braccio di manovella Siti interessanti sul meccanismo biella-manovella: http://it.wikipedia.org/wiki/meccanismo_biella-manovella http://www.istitutopesenti.it/dipartimenti/meccanica/meccanica/biella.pdf

Dettagli

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA FOGLIO DI ESERCIZI 1 GEOMETRIA 2009/10 Esercizio 1.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i

Dettagli

VII ESERCITAZIONE - 29 Novembre 2013

VII ESERCITAZIONE - 29 Novembre 2013 VII ESERCITAZIONE - 9 Novembre 013 I. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria.

Dettagli

Esercitazioni del 11 marzo Ricerca della parametrizzazione di una curva γ in R 3

Esercitazioni del 11 marzo Ricerca della parametrizzazione di una curva γ in R 3 Esercizio 1 Esercitazioni del 11 marzo 213 Ricerca della parametrizzazione di una curva γ in R 3 Fornire una parametrizzazione per l arco di curva γ appartenente alla superficie di equazione z = 2y 2 x

Dettagli

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si PROBLEMA Determinare il punto simmetrico di P( ;) rispetto alla retta x y =0 Soluzione Il simmetrico di P rispetto ad una retta r è il punto P che appartiene alla retta passante per P, perpendicolare ad

Dettagli

0.1 Arco di curva regolare

0.1 Arco di curva regolare .1. ARCO DI CURVA REGOLARE 1.1 Arco di curva regolare Se RC(O, i, j, k ) è un riferimento cartesiano fissato per lo spazio euclideo E, e se v (t) = x(t) i + y(t) j + z(t) k è una funzione a valori vettoriali

Dettagli

Le Derivate. Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri

Le Derivate. Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri Le Derivate Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato durante

Dettagli

ESAMI DEL PRECORSO DI FISICA CORSO A 13 OTTOBRE 2006

ESAMI DEL PRECORSO DI FISICA CORSO A 13 OTTOBRE 2006 CORSO A 13 OTTOBRE 2006 Esercizio 1 - Ad una valigia di massa 6 Kg appoggiata su un piano xy privo di attrito vengono applicate contemporaneamente due forze costanti parallele al piano. La prima ha modulo

Dettagli

In un punto qualsiasi (P) della traiettoria è definita la direzione tangente t e la direzione perpendicolare n. d dt

In un punto qualsiasi (P) della traiettoria è definita la direzione tangente t e la direzione perpendicolare n. d dt Moti piani su traiettorie qualsiasi In un punto qualsiasi (P) della traiettoria è definita la direzione tangente t e la direzione perpendicolare n. n ˆ P ˆ t traiettoria La velocità in ogni punto della

Dettagli

POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I a prova in itinere, 10 maggio 2013

POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I a prova in itinere, 10 maggio 2013 POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a. 2012-13 I a prova in itinere, 10 maggio 2013 Giustificare le risposte e scrivere in modo chiaro e leggibile.

Dettagli

3)QUAL È LA LEGGE ORARIA DEL MOTO RETTILINEO UNIFORME? (PUNTI=1) 6)DESCRIVERE GLI STRUMENTI CON LE CARATTERISTICHE USATE NELL ESPERIENZA.

3)QUAL È LA LEGGE ORARIA DEL MOTO RETTILINEO UNIFORME? (PUNTI=1) 6)DESCRIVERE GLI STRUMENTI CON LE CARATTERISTICHE USATE NELL ESPERIENZA. Alunno Classe. UNA LEGGE CHE LEGA VARIE GRANDEZZE FISICHE AL TEMPO NEI MOTI. E UNA LEGGE SUL TEMPO E LO SPAZIO. E UNA LEGGE CHE VALE SOLO NEL CASO DEL TEMPO POSITIVO. E UNA LEGGE CHE VALE QUANDO IL MOTO

Dettagli

Corso di Fisica generale

Corso di Fisica generale Corso di Fisica generale Liceo Scientifico Righi, Cesena Anno Scolastico 2014/15 3B Appunti sulla Cinematica di un Punto Materiale Riccardo Fabbri 1 (Dispense ed esercizi su www.riccardofabbri.eu) Il Moto

Dettagli

) 2 + β 2. Il primo membro si semplifica tenendo conto che

) 2 + β 2. Il primo membro si semplifica tenendo conto che Calcolo vettoriale 1) Sono dati due vettori uguali in modulo a e b e formanti un certo angolo θ ab. Calcolare m = a = b sapendo che il modulo della loro somma vale 8 e che il modulo del loro prodotto vettoriale

Dettagli

Esercizio 5. Risoluzione

Esercizio 5. Risoluzione Esercizio 1 Un sasso viene lasciato cadere da fermo in un pozzo; il rumore dell impatto con l acqua giunge all orecchio del lanciatore dopo un intervallo di tempo t* = 10s. Sapendo che il suono si propaga

Dettagli

Lezione 3. Principi generali della Meccanica Cinematica, Statica e Dinamica

Lezione 3. Principi generali della Meccanica Cinematica, Statica e Dinamica Lezione 3 Principi generali della Meccanica Cinematica, Statica e Dinamica Premessa L Universo in cui viviamo costituisce un sistema dinamico, cioè un sistema in evoluzione nel tempo secondo opportune

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

Piano cartesiano. O asse delle ascisse

Piano cartesiano. O asse delle ascisse Piano cartesiano E costituito da due rette orientate e perpendicolari tra di loro chiamate assi di riferimento. Il loro punto di intersezione O si chiama origine del riferimento. L asse orizzontale è detto

Dettagli

Il moto armonico. Comincio a studiare il moto di quando il corpo passa per il punto in figura 2 :

Il moto armonico. Comincio a studiare il moto di quando il corpo passa per il punto in figura 2 : Il moto armonico 1. Definizione di moto armonico Un punto P si muove di moto circolare uniforme lungo la circonferenza Γ in figura, con velocità angolare. Considero uno dei diametri della circonferenza

Dettagli

Esercitazione VI - Leggi della dinamica III

Esercitazione VI - Leggi della dinamica III Esercitazione VI - Leggi della dinamica III Esercizio 1 I corpi 1, 2 e 3 rispettivamente di massa m 1 = 2kg, m 2 = 3kg ed m 3 = 4kg sono collegati come in figura tramite un filo inestensibile. Trascurando

Dettagli

Problemi di dinamica del punto materiale

Problemi di dinamica del punto materiale Problemi di dinamica del punto materiale 1. Un corpo di massa M = 200 kg viene lanciato con velocità v 0 = 36 km/ora su un piano inclinato di un angolo θ = 30 o rispetto all orizzontale. Nel salire, il

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli