1 Introduzione alle matrici quadrate 2 2 a coefficienti in R.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "1 Introduzione alle matrici quadrate 2 2 a coefficienti in R."

Transcript

1 1 Introduzione alle matrici quadrate 2 2 a coefficienti in R Per introdurre il concetto di matrice, a 2 righe e 2 colonne, iniziamo col considerare griglie o tabelle di numeri Gli elementi della griglia, vengono identificati tramite la loro posizione nella tabella, e cioè dal numero della riga e della colonna corrispondente Esempio La seguente è un esempio di tabella con due righe e due colonne colonna 1 colonna 2 riga 1 riga L insieme che stiamo costruendo, che indicheremo con M 2 2 R, ha come elementi delle specie di tabelle quadrate il cui numero delle righe è uguale al numero delle colonne di numeri reali Definizione 11 Una matrice a 2 righe 2 colonne e ad elementi nel campo R, è un rettangolo di elementi a ij R disposti come in figura: ; a ij indica l elemento corrispondente alla riga i-ma e colonna j-ma, con 1 i 2 e 1 j 2 L insieme i cui elementi sono le matrici a 2 righe e 2 colonne sarà indicato con M 2 2 R Esempio La seguente 6 4 è la matrice corrispondente alla griglia dell esempio precedente L analogia tra la scrittura precedente e la tabella presentata all inizio dovrebbe risultare chiara: nella tabella sono indicati il numero della riga e il numero della colonna, mentre nella matrice questo è sottinteso quando in essa compaiono numeri, oppure, nel caso si voglia indicare una matrice generica, si usano simboli del tipo a ij, dove i indica il numero della riga e j quello della colonna Dopo aver costruito questo nuovo insieme definiamo l uguaglianza tra i suoi elementi In altre parole vogliamo dare esplicitamente le condizioni che, se verificate, stabiliscono l uguaglianza tra matrici Definizione 12 Due matrici A, B M 2 2 sono uguali se hanno gli stessi elementi nella stessa posizione Più precisamente, siano A = b11 b e B = ; A = B se b 21 b 22 e solo se a ij = b ij 1

2 11 La somma tra matrici Sull insieme delle matrici a 2 righe e 2 colonne definiamo un operazione tra matrici, che chiameremo somma, + M nel seguente modo: b11 b + a11 + b a 21 a M = 11 a + b = A + 22 b 21 b 22 a 21 + b 21 a 22 + b M B, 22 dove il + nella terza matrice indica la somma tra numeri reali La somma + M verifica gli assiomi A 1, A 2, A 3 e A 1 4 In particolare lo zero elemento neutro rispetto alla somma o matrice nulla è O = Si può affermare che l operazione + M sia stata definita in modo naturale poiché nel costruirla abbiamo utilizzato la somma tra numeri e abbiamo addizionato gli elementi corrispondenti alle medesime posizioni rispetto alla riga e alla colonna della matrice La matrice nulla O = si comporta, rispetto alla somma + M, come lo 0 zero rispetto alla somma + nei numeri Infatti per ogni matrice A = si ha che 0 + a1 + a O + M A = = A 0 + a 2 + a 22 Esercizio Calcolare la somma tra le seguenti matrici: 2 5 A 1 = e A 2 = B 1 = e B 2 = Esercizio Data una matrice A =, determinare l opposto di A 12 Il prodotto righe per colonne Oltre all operazione + M definiamo anche un prodotto M detto righe per colonne tra due matrici A e B M 2 2 R, nel seguente modo questa volta non così non naturale come il precedente Se A = b11 b e B = Il prodotto righe per colonne A M B b 21 b 22 c11 c dà come risultato una matrice C = dove c c 21 c 11 = a 11 b 11 +a b 21, in altri termini 22 l elemento della prima riga e prima colonna matrice risultato C si ottiene moltiplicando il primo elemento della prima riga di A per il primo elemento della prima colonna di B e sommandolo al prodotto del secondo elemento della prima riga di A per il secondo elemento della prima colonna di B Analogamente, l elemento c = a 11 b + a b 22, ecc 1 Si veda l appendice 1 2

3 Osservazione 1 Il prodotto righe per colonne è definito per per ogni coppia di matrici appartenenti all insieme M 2 2 R; in altre parole il prodotto righe per colonne si può sempre eseguire, tra coppie di matrici 2 2 scelte arbitrariamente e il risultato di tale prodotto in M 2 2 R è sempre un elemento di M 2 2 R Inoltre questa operazione verifica le proprietà associativa, esistenza dell elemento neutro e distributiva del prodotto rispetto alla somma Esercizio Scrivere gli elementi c 21 e c 22 della matrice C = A M B Esempio 1 Date le matrici A, B M 2 2 R A =, B = 2 2, calcolare il prodotto A M B c11 c Abbiamo A M B = C = c 21 c Risposta A M B =, con c 11 = ,, c 22 = Non commutatività e zerodivisori propri Soffermiamoci ora sulle novità che l anello delle matrici quadrate porta con sè, in particolar modo sui divisori propri dello zero e sul fatto che il prodotto righe per colonne non è commutativo Prima di far questo verifichiamo che l assioma A 7 esistenza dell identità del prodotto è soddisfatto nell anello M n n R A 7 Esiste in M 2 2 R, + M, M l identità, cioè 1 M M 2 2 R, tale che A M 1 M = 1 M A = A, A M 2 2 R Tale elemento si chiama anche matrice identità e si denota I 2 per ricordare che siamo in M 2 2 R, o semplicemente con I Tale matrice è I n = In altre parole la matrice identità I 2 è la matrice che ha tutti 1 sulla diagonale principale che è quella formata da a 11, a 22 e tutti zeri al di fuori Ora è veramente un facile ed utile esercizio mostrare che l assioma A 7 è verificato con 1 M = I 2 Cominciamo col far vedere che non tutte le matrici appartenenti all insieme M 2 2 R ammettono inversa e cioè che esiste almeno una matrice per la quale non esiste la matrice inversa Basta trovare un esempio meglio: un controesempio per il quale l assioma è falso 3

4 La seguente matrice A M 2 2 R, A =, pur essendo diversa dalla matrice nulla non ammette matrice inversa Infatti se per assurdo tale matrice inversa esistesse, essa x y sarebbe del tipo A =, x, y, z, t R e dovrebbe soddisfare le uguaglianze z t A M A = A M A = I 2 = Ora abbiamo, ad esempio: A M A = M x y z t = x y L assurdo prova che l inversa non esiste Vi sono tuttavia matrici che ammettono inversa, ad esempio la matrice A = ammette inversa 1 1 Anche la proprietà assioma A 8 commutativa del prodotto non vale per tutte le matrici 2 2, ciò equivale a dire che il prodotto non è commutativo Per dimostrare che una proprietà non vale sempre, basta far vedere che non vale almeno in un caso e per far questo basta trovarne un controesempio Vediamo un controesempio: A =e e B = Si ha A M B =, mentre B M A =, provando che A è falso Una prima conseguenza di questi nuovi fatti fa cadere anche altri risultati la cui derivazione seguiva da quelli In particolare non è più valida la legge di annullamento del prodotto In sostanza nell anello delle matrici quadrate, se A M B = O, matrice nulla, questo non implica che almeno uno dei due fattori sia la matrice nulla In altri termini non è vero che A M B = O A = O oppure B = O La regola di annullamento del prodotto è falsa perché possono esistere due matrici A e B entrambe diverse dalla matrice nulla il cui prodotto righe per colonne è la matrice nulla: A M B = O con A O e B O Due tali matrici si chiamano divisori propri dello zero Più precisamente abbiamo Definizione 13 In un anello A, +, un elemento a A si dice divisore dello zero se b A, con b 0, tale che a b = 0 Lo zero 0 è un divisore dello zero di A che si chiama divisore improprio dello zero 4

5 Esempio 1 Divisori dello zero e controesempi alla regola di annullamento di un prodotto Le due matrici A = e B = sono diverse dalla matrice nulla O e tuttavia A M B = O Osservazione 1 Le matrici dell Esempio 1 sono tali che A M B = O, ma B M A O Infatti B M A = = A O Osservazione 2 La matrice A di sopra è tale che A M A = A 2 = O Una tale matrice si dice a potenza nulla o nilpotente Anche le leggi di cancellazione non sono sempre valide In altri termini non è sempre vero che: Se A M C = A M B e A O B = C, oppure che A M B = C M B e B O A = C Esempio 2 Controesempi alle leggi di cacellazione 1 Dall osservazione 2 precedente: A M A = O M A = O ma A O 2 Siano A e B come nell Esempio 1 Abbiamo dall Esempio 1 e dall Osservazione 2: A M B = A M A = O, con A O Se valesse la cancellazione si potrebbe dedurre che A = B, il che è evidentemente falso Domanda: L aver presentato dei controesempi nell anello delle matrici quadrate che falsificano le leggi dell annullamento di un prodotto e di cancellazione, ci autorizza a considerarle sempre false? La risposta è No Si dimostra infatti che in un anello A, +,, e in particolare nell anello delle matrici quadrate, valgono le leggi di cancellazione modificate come di seguito: i Se X Y = X Z e se esiste X 1 A, allora Y = Z ii Se X Y = Z Y e se esiste Y 1 A, allora X = Z Dalla discussione fatta sull anello delle matrici quadrate è emerso che non tutti i suoi elementi diversi da O ammettono inverso In sostanza esistono alcune matrici quadrate diverse da O per le quali esiste l inverso, per altre invece questo elemento particolare non esiste proprio Ci chiediamo se esitste un metodo che ci dia informazioni sull esistenza o sulla non esistenza dell inverso di una matrice A qualsiasi La risposta a questa domanda è affermativa; un tale metodo esiste e si basa su un calcolo da eseguire sugli elementi di una matrice quadrata di ordine n qualsiasi Essendoci noi limitati ad analizzare le matrici quadrate di ordine 2 continueremo su questa strada, fornendo tale metodo solo per M 2 2 R 5

6 14 Il determinante di una matrice quadrata Il determinante di una matrice A è un numero ottenuto da una serie di operazioni tra gli elementi di una matrice e verrà indicato con deta Più tecnicamente det : M 2 2 R R è una funzione che riceve in entrata una matrice e restituisce un numero reale Tale numero ci fornirà l informazione di cui andiamo in cerca: 1 Se tale numero è zero, allora la matrice non sarà invertibile cioè non esiste l inversa 2 Se tale numero è diverso da zero, allora la matrice sarà invertibile cioè esiste l inversa Ma vediamo in modo effettivo come si calcola il determinante di una matrice quadrata di ordine 2 Data una matrice A =, il determinante di A è: deta = a 11 a 22 a 21 a Esempio Stabilire se le matrici A, B e C ammettono inversa A = B = C = Per rispondere alla domanda, calcoliamo il determinante delle due matrici, 1 2 iniziando da A deta = = 2 0 quindi la matrice A è invertibile detb = quindi la matrice B è invertibile detc = = 0 quindi la matrice C non è invertibile Esercizio Determinare l inversa delle matrici A e B dell esempio precedente Suggerimento: x y si consideri una matrice generica M = e si uguagli il loro prodotto alla matrice z t identità 2 Appendice 1 21 Assiomi di gruppi, anelli e campi Definizione 1 Si dice anello un insieme A sul quale sono date due operazioni, che indicheremo +, e che chiameremo rispettivamente somma, prodotto, tali che A, + sia un gruppo abeliano, e cioè verifichi i seguenti assiomi: - A 1 : x + y + z = x + y + z, per ogni x, y, z in A - A 2 : e A tale che x A si abbia x + e = e + x = x 6

7 - A 3 : x A x A tale che x + x = x + x = e, - A-4: x + y = y + x, x, y A, ed inoltre siano soddisfatti i seguenti assiomi: - A 5 : x y z = x y z, x, y, z A, proprietà associativa rispetto al prodotto; - A 6 : { x y + z = x y + x z x + y z = x z + y z x, y, z A, proprietà distributive distributività del prodotto rispetto alla somma Notazioni e terminologia L anello A con le operazioni + e sarà denotato A, +, L elemento neutro rispetto alla somma nel gruppo A, + si chiama zero e si denota 0 A o semplicemente 0 L inverso rispetto alla somma di un elemento x del gruppo A, + si chiama opposto e si denota x Definizione 2 Un anello A, +, si dice unitario o con identità se soddisfa il seguente assioma - A 7 : Esiste in A un elemento neutro rispetto al prodotto di A Tale elemento si chiama identità e si denota 1 A, o semplicemente 1 In simboli l assioma dice: 1 A tale che x 1 = 1 x = x, x A Definizione 3 Un anello A, +, si dice commutativo se soddisfa il seguente assioma - A 8 : x y = y x, x, y A, proprietà commutativa del prodotto Esempio Gli interi Z con la somma + e il prodotto usuali sono un anello Z, +, commutativo con identità Definizione 4 assioma Un anello con identità K, +, si dice corpo se soddisfa il seguente A 9 : Se x 0 allora esiste l inverso x K di x rispetto al prodotto; in simboli: se x 0 x K tale che x + x = x + x = 1, dove 1 è l identità di K Osservazione 1 Se vogliamo elencare tutti gli assiomi che occorrono per arrivare alla definizione di corpo, abbiamo: A 1, A 2, A 3, A 4, per l operazione + e gli assiomi A 5, A 6, A 7, A 9 escluso A 8 per il 7

= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con

= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con Definizione di matrice Una matrice (di numeri reali) è una tabella di m x n numeri disposti su m righe e n colonne. I numeri che compaiono nella tabella si dicono elementi della matrice. La loro individuazione

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

Definizione di anello

Definizione di anello Definizione di anello Definizione Sia A un insieme dotato di due leggi di composizione interne + e. Si dice che la struttura algebrica (A, +, ) è un anello se: Definizione di anello Definizione Sia A un

Dettagli

Qualche informazione su gruppi e anelli

Qualche informazione su gruppi e anelli Qualche informazione su gruppi e anelli 1. Gruppi e sottogruppi: prime proprietà Cominciamo subito scrivendo la definizione formale di gruppo. Definizione 0.1. Un gruppo G è un insieme non vuoto dotato

Dettagli

Lezione 4 - Esercitazioni di Algebra e Geometria - Anno accademico

Lezione 4 - Esercitazioni di Algebra e Geometria - Anno accademico Trasformazioni elementari sulle matrici Data una matrice A K m,n definiamo su A le seguenti tre trasformazioni elementari: T : scambiare tra loro due righe (o due colonne) di A; T : sommare ad una riga

Dettagli

X Settimana = 0 R. = 0 R x, x R. + (x 0 R. ) x 0 R = = x 0 R

X Settimana = 0 R. = 0 R x, x R. + (x 0 R. ) x 0 R = = x 0 R X Settimana 1 Elementi basilari della teoria degli anelli (I parte) Un anello (R, +, ) è un insieme non vuoto R dotato di due operazioni (binarie), denotate per semplicità con i simboli + e + : R R R,

Dettagli

Anno 4 Matrice inversa

Anno 4 Matrice inversa Anno 4 Matrice inversa 1 Introduzione In questa lezione parleremo della matrice inversa di una matrice quadrata: definizione metodo per individuarla Al termine della lezione sarai in grado di: descrivere

Dettagli

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3 SISTEMI LINEARI. Esercizi Esercizio. Verificare se (,, ) è soluzione del sistema x y + z = x + y z = 3. Trovare poi tutte le soluzioni del sistema. Esercizio. Scrivere un sistema lineare di 3 equazioni

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni Corso di Geometria 2- BIAR, BSIR Esercizi 2: soluzioni Esercizio Calcolare il determinante della matrice 2 3 : 3 2 a) con lo sviluppo lungo la prima riga, b) con lo sviluppo lungo la terza colonna, c)

Dettagli

Le matrici. Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1.

Le matrici. Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1. Le matrici Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1. Siano m, n N\{0}. Una matrice m n a coefficienti in K è una tabella di m n elementi di K disposti

Dettagli

4 0 = 4 2 = 4 4 = 4 6 = 0.

4 0 = 4 2 = 4 4 = 4 6 = 0. Elementi di Algebra e Logica 2008. Esercizi 4. Gruppi, anelli e campi. 1. Determinare la tabella additiva e la tabella moltiplicativa di Z 6. (a) Verificare dalla tabella moltiplicativa di Z 6 che esistono

Dettagli

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari Introduzione soft alla matematica per l economia e la finanza Marta Cardin, Paola Ferretti, Stefania Funari Capitolo Sistemi di equazioni lineari.8 Il Teorema di Cramer Si consideri un generico sistema

Dettagli

MATRICI. 1. Esercizi

MATRICI. 1. Esercizi MATICI Esercizio Siano A = 0, B = Esercizi 2, C = 0 2 2 Calcolare: a2a B; b3a + 2B 4C; c 2A + B + 2C 2B; d3b + 2(2A C (A + B + 2C isolvere, se possibile: ( 3X + 2(A X + B + 2(C + 2X = 0; (2 4A + 2(B +

Dettagli

APPUNTI DI ALGEBRA LINEARE

APPUNTI DI ALGEBRA LINEARE APPUNTI DI ALGEBRA LINEARE. Definizione Si dice spazio vettoriale (sul campo dei numeri reali R) un insieme V per il quale siano definite l operazione interna di somma (che ad ogni coppia di vettori e

Dettagli

Geometria BIAR Esercizi 2

Geometria BIAR Esercizi 2 Geometria BIAR 0- Esercizi Esercizio. a Si consideri il generico vettore v b R c (a) Si trovi un vettore riga x (x, y, z) tale che x v a (b) Si trovi un vettore riga x (x, y, z) tale che x v kb (c) Si

Dettagli

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Antonio Lanteri e Cristina Turrini UNIMI - 2016/2017 Antonio Lanteri e Cristina Turrini (UNIMI - 2016/2017 Elementi di Algebra Lineare

Dettagli

Corso di Matematica e Statistica 3 Algebra delle matrici. Una tabella rettangolare: la matrice. Una tabella rettangolare: la matrice

Corso di Matematica e Statistica 3 Algebra delle matrici. Una tabella rettangolare: la matrice. Una tabella rettangolare: la matrice Pordenone Corso di Matematica e Statistica 3 Algebra delle UNIVERSITAS STUDIORUM UTINENSIS Giorgio T. Bagni Facoltà di Scienze della Formazione Dipartimento di Matematica e Informatica Università di Udine

Dettagli

Esercitazioni di Algebra e Geometria

Esercitazioni di Algebra e Geometria Esercitazioni di Algebra e Geometria Anno Accademico 2011 2012 Dott.ssa Elisa Pelizzari e-mail elisa.peli@libero.it Esercitazioni: lunedì 14.30 16.30 venerdì 14.30 16.30 Ricevimento studenti: venerdì 13.00

Dettagli

MATRICI E VETTORI APPROFONDIMENTO PER IL CORSO DI LABORATORIO DI INFORMATICA SARA POLTRONIERI

MATRICI E VETTORI APPROFONDIMENTO PER IL CORSO DI LABORATORIO DI INFORMATICA SARA POLTRONIERI MATRICI E VETTORI APPROFONDIMENTO PER IL CORSO DI LABORATORIO DI INFORMATICA SARA POLTRONIERI LE MATRICI DEFINIZIONE: Una matrice è un insieme di numeri disposti su righe e colonne. 1 3 7 M = 2 5 1 M è

Dettagli

3/10/ Divisibilità e massimo comun divisore

3/10/ Divisibilità e massimo comun divisore MCD in N e Polinomi 3/10/2013 1 Divisibilità e massimo comun divisore 1.1 Divisibilità in N In questa sezione introdurremo il concetto di divisibilità e di massimo comun divisore di due numeri naturali

Dettagli

LEZIONE 1 C =

LEZIONE 1 C = LEZIONE 1 11 Matrici a coefficienti in R Definizione 111 Siano m, n Z positivi Una matrice m n a coefficienti in R è un insieme di mn numeri reali disposti su m righe ed n colonne circondata da parentesi

Dettagli

Determinanti. Definizione ed esempi. Definizione ed esempi. Proprietà dei determinanti Rango di matrici

Determinanti. Definizione ed esempi. Definizione ed esempi. Proprietà dei determinanti Rango di matrici Introduzione S S S Rango di matrici Si dice sottomatrice d'una matrice data la matrice ottenuta selezionando un certo numero di righe e di colonne della matrice iniziale. Lezione 24.wpd 08/01/2011 XXIV

Dettagli

Giovanna Carnovale. October 18, Divisibilità e massimo comun divisore

Giovanna Carnovale. October 18, Divisibilità e massimo comun divisore MCD in N e Polinomi Giovanna Carnovale October 18, 2011 1 Divisibilità e massimo comun divisore 1.1 Divisibilità in N In questa sezione introdurremo il concetto di divisibilità e di massimo comun divisore

Dettagli

LeLing9: Prodotto tra matrici.

LeLing9: Prodotto tra matrici. Geometria Lingotto LeLing9: Prodotto tra matrici Ārgomenti svolti: Prodotto tra matrici Dimostrazione del teorema del rango L algebra delle matrici quadrate: Il prodotto tra matrici non e commutativo Rotazioni

Dettagli

Terminiamo gli esercizi dell ultima lezione. (LUCIDI) Calcolare, se possibile, AC, CA, CH e HC. (LUCIDI)

Terminiamo gli esercizi dell ultima lezione. (LUCIDI) Calcolare, se possibile, AC, CA, CH e HC. (LUCIDI) Terminiamo gli esercizi dell ultima lezione. (LUCIDI) Esempi Calcolare, se possibile, AC, CA, CH e HC. (LUCIDI) Osservazioni per le matrici quadrate a) Data A M n (K) è possibile definire ricorsivamente

Dettagli

NUMERI REALI. x(y + z) = xy + xz. Nel seguito faremo uso delle seguenti notazioni. IR+ 0 = {x IR : 0 x} IR 0 = {x IR : 0 x}

NUMERI REALI. x(y + z) = xy + xz. Nel seguito faremo uso delle seguenti notazioni. IR+ 0 = {x IR : 0 x} IR 0 = {x IR : 0 x} NUMERI REALI In quanto segue non diremo che cosa è un numero reale ma definiremo per via assiomatica l insieme dei numeri reali. Insieme che denotiamo con IR. L insieme dei numeri reali è un campo totalmente

Dettagli

SISTEMI DI EQUAZIONI LINEARI

SISTEMI DI EQUAZIONI LINEARI SISTEMI DI EQUAZIONI LINEARI Date le rette di equazioni ax + by + c = 0 e a x + b y + c = 0 quanti punti hanno in comune? Per rispondere devo risolvere il sistema ax + by + c = 0 ቊ a x + b y + c = 0 e

Dettagli

1 (A,+) sia un gruppo abeliano, cioè soddisfi gli assiomi: x (y + z) = x y + x z (y + z) x = y x + z x

1 (A,+) sia un gruppo abeliano, cioè soddisfi gli assiomi: x (y + z) = x y + x z (y + z) x = y x + z x ANE ANELLI. Anelli In questa unità ci occupiamo di un particolare anelloide che prende il nome di anello. Si chiama anello ogni anelloide (A + ) tale che: (A+) sia un gruppo abeliano cioè soddisfi gli

Dettagli

Monomi L insieme dei monomi

Monomi L insieme dei monomi Monomi 10 10.1 L insieme dei monomi Definizione 10.1. Un espressione letterale in cui numeri e lettere sono legati dalla sola moltiplicazione si chiama monomio. Esempio 10.1. L espressione nelle due variabili

Dettagli

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4B) January 17, 005 1 SISTEMI LINEARI Se a ik, b i R,

Dettagli

Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale

Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale Esercizi svolti 1. Matrici e operazioni fra matrici 1.1 Date le matrici 1 2 1 6 A = B = 5 2 9 15 6 risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale Osservazione iniziale: qualunque

Dettagli

Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani

Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE Giovanni Villani Matrici Definizione 1 Si definisce matrice di tipo m n una funzione che associa

Dettagli

Operazioni tra matrici. Moltiplicazione per uno Scalare Moltiplicare ogni elemento della matrice per lo scalare. Sia c = 3

Operazioni tra matrici. Moltiplicazione per uno Scalare Moltiplicare ogni elemento della matrice per lo scalare. Sia c = 3 Operazioni tra matrici Definizione di matrice a ij è un elemento di A a ij è detto l elemento ij-esimo di A Moltiplicazione per uno Scalare Moltiplicare ogni elemento della matrice per lo scalare. Sia

Dettagli

Operazioni tra matrici e n-uple

Operazioni tra matrici e n-uple CAPITOLO Operazioni tra matrici e n-uple Esercizio.. Date le matrici 0 4 e dati λ = 5, µ =, si calcoli AB, BA, A+B, B A, λa+µb. Esercizio.. Per ognuna delle seguenti coppie di matrici A, B e scalari λ,

Dettagli

Il determinante. Calcolo del determinante di matrici particolari. matrici di ordine 2: sia. a11 a A = allora

Il determinante. Calcolo del determinante di matrici particolari. matrici di ordine 2: sia. a11 a A = allora Calcolo del determinante di matrici particolari matrici di ordine 2: sia allora Esempio. [ ] a11 a A = 12, a 21 a 22 det A = a 11 a 22 a 21 a 12. Calcolare il determinante di [ ] 1 2 A =. 3 4 matrici di

Dettagli

2 Sistemi lineari. Metodo di riduzione a scala.

2 Sistemi lineari. Metodo di riduzione a scala. Sistemi lineari. Metodo di riduzione a scala. Esercizio.1 Utilizzando il metodo di eliminazione di Gauss, risolvere i seguenti sistemi lineari: 1. 3. x 1 x + 3x 3 = 1 x 1 x x 3 = x 1 + x + 3x 3 = 5 x 1

Dettagli

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA STRUTTURE ALGEBRICHE

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA STRUTTURE ALGEBRICHE M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA STRUTTURE ALGEBRICHE Operazioni in un insieme Sia A un insieme non vuoto; una funzione f : A A A si dice operazione binaria (o semplicemente

Dettagli

AL220 - Gruppi, Anelli e Campi

AL220 - Gruppi, Anelli e Campi AL220 - Gruppi, Anelli e Campi Prof. Stefania Gabelli - a.a. 2013-2014 Settimana 1 - Traccia delle Lezioni Funzioni tra insiemi Ricordiamo che una funzione o applicazione di insiemi f : A B è una corrispondenza

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI 1 Rappresentazione di dati strutturati MATRICI E SISTEMI LINEARI Gli elementi di una matrice, detti coefficienti, possono essere qualsiasi e non devono necessariamente essere omogenei tra loro; di solito

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante

Dettagli

SISTEMI LINEARI MATRICI E SISTEMI 1

SISTEMI LINEARI MATRICI E SISTEMI 1 MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui

Dettagli

RIDUZIONE E RANGO , C = 2 5 1

RIDUZIONE E RANGO , C = 2 5 1 MATRICI E SISTEMI RIDUZIONE E RANGO Riduzione di matrici (definizioni, trasformazioni elementari). Calcolo del rango e dell inversa (metodo di Gauss, metodo di Gauss-Jordan). 3 4 Esercizio Ridurre per

Dettagli

LEZIONE i i 3

LEZIONE i i 3 LEZIONE 5 51 Determinanti In questo lezione affronteremo da un punto di vista prettamente operativo la nozione di determinante, descrivendone le proprietà ed i metodi di calcolo, senza entrare nei dettagli

Dettagli

Elementi di Algebra e di Matematica Discreta Strutture algebriche: anelli

Elementi di Algebra e di Matematica Discreta Strutture algebriche: anelli Elementi di Algebra e di Matematica Discreta Strutture algebriche: anelli Cristina Turrini UNIMI - 2016/2017 Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra e di Matematica Discreta 1 / 29 index

Dettagli

Introduzione all algebra delle matrici. Appunti a cura di Lara Ercoli

Introduzione all algebra delle matrici. Appunti a cura di Lara Ercoli Introduzione all algebra delle matrici ppunti a cura di Lara Ercoli Indice Definizioni 3. Matrici particolari............................ 4 2 Operazioni con le matrici 8 2. Somma di matrici.............................

Dettagli

2. I numeri reali e le funzioni di variabile reale

2. I numeri reali e le funzioni di variabile reale . I numeri reali e le funzioni di variabile reale Introduzione Il metodo comunemente usato in Matematica consiste nel precisare senza ambiguità i presupposti, da non cambiare durante l elaborazione dei

Dettagli

i) la somma e il prodotto godano delle proprietà associativa, commutativa e distributiva;

i) la somma e il prodotto godano delle proprietà associativa, commutativa e distributiva; 1 Spazi vettoriali 11 Definizioni ed assiomi Definizione 11 Un campo è un insieme K dotato di una operazione somma K K K, (x, y) x + y e di una operazione prodotto K K K, (x, y) xy tali che i) la somma

Dettagli

1 Relazione di congruenza in Z

1 Relazione di congruenza in Z 1 Relazione di congruenza in Z Diamo ora un esempio importante di relazione di equivalenza: la relazione di congruenza modn in Z. Definizione 1 Sia X = Z, a,b Z ed n un intero n > 1. Si dice a congruo

Dettagli

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se Lezioni di Algebra Lineare. Versione novembre 2008 VI. Il determinante Il determinante det A di una matrice A, reale e quadrata, è un numero reale associato ad A. Dunque det è una funzione dall insieme

Dettagli

ALGEBRA LINEARE PARTE II

ALGEBRA LINEARE PARTE II DIEM sez. Matematica Finanziaria Marina Resta Università degli studi di Genova Dicembre 005 Indice PREMESSA INVERSA DI UNA MATRICE DETERMINANTE. DETERMINANTE DI MATRICI ELEMENTARI................. MATRICI

Dettagli

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo Corso di Approfondimenti di Matematica Biotecnologie, Anno Accademico 2010-2011, http://users.mat.unimi.it/users/colombo/programmabio.html Vettori Vettori 1 2 3 4 di di Ricordiamo il in R n Dati a = (a

Dettagli

1. equivalenze e implicazioni logiche. Esercizio 1.2. Trovare le implicazioni che legano i seguenti enunciati (x, y R):

1. equivalenze e implicazioni logiche. Esercizio 1.2. Trovare le implicazioni che legano i seguenti enunciati (x, y R): . equivalenze e implicazioni logiche Esercizio.. Trovare le implicazioni che legano i seguenti enunciati (x, y R): () x < y, () x = y, () x y, () x y, () (x y) > 0. Osserviamo subito che (x y) > 0 equivale

Dettagli

ALGEBRA I: SOLUZIONI QUINTA ESERCITAZIONE 9 maggio 2011

ALGEBRA I: SOLUZIONI QUINTA ESERCITAZIONE 9 maggio 2011 ALGEBRA I: SOLUZIONI QUINTA ESERCITAZIONE 9 maggio 2011 Esercizio 1. Usando l algoritmo euclideo delle divisioni successive, calcolare massimo comune divisore e identità di Bézout per le seguenti coppie

Dettagli

Sistemi lineari - Parte Seconda - Esercizi

Sistemi lineari - Parte Seconda - Esercizi Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione

Dettagli

Appunti di Geometria e Algebra L-A Seconda Facoltà di Ingegneria - Cesena. Marco Alessandrini

Appunti di Geometria e Algebra L-A Seconda Facoltà di Ingegneria - Cesena. Marco Alessandrini Appunti di Geometria e Algebra L-A Seconda Facoltà di Ingegneria - Cesena Marco Alessandrini Ottobre 2006 Indice 1 Informazioni del corso 3 1.1 Programma............................ 3 1.2 Docenti..............................

Dettagli

Matematica ed Elementi di Statistica. Regole di calcolo

Matematica ed Elementi di Statistica. Regole di calcolo a.a. 2011/12 Laurea triennale in Scienze della Natura Matematica ed Elementi di Statistica Regole di calcolo Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità

Dettagli

Insiemi numerici. Teoria in sintesi NUMERI NATURALI

Insiemi numerici. Teoria in sintesi NUMERI NATURALI Insiemi numerici Teoria in sintesi NUMERI NATURALI Una delle prime attività matematiche che viene esercitata è il contare gli elementi di un dato insieme. I numeri con cui si conta 0,,,. sono i numeri

Dettagli

Elementi di Algebra e Logica Determinare la tavola della verità di ciascuna delle seguenti forme proposizionali:

Elementi di Algebra e Logica Determinare la tavola della verità di ciascuna delle seguenti forme proposizionali: Elementi di Algebra e Logica 2008. 8. Logica. 1. Determinare la tavola della verità di ciascuna delle seguenti forme proposizionali: (a) p ( q r); (b) p (q r); (c) (p q) ( p r); (d) (p q) ( p r); (e) (p

Dettagli

Lezioni di Algebra Lineare. II. Aritmetica delle matrici e eliminazione di Gauss. versione ottobre 2008

Lezioni di Algebra Lineare. II. Aritmetica delle matrici e eliminazione di Gauss. versione ottobre 2008 versione ottobre 2008 Lezioni di Algebra Lineare II. Aritmetica delle matrici e eliminazione di Gauss Contenuto. 1. Somma di matrici e prodotto di una matrice per uno scalare 2. Prodotto di matrici righe

Dettagli

1 Funzioni reali di una variabile reale

1 Funzioni reali di una variabile reale 1 Funzioni reali di una variabile reale Qualche definizione e qualche esempio che risulteranno utili più avanti Durante tutto questo corso studieremo funzioni reali di una variabile reale, cioè Si ha f

Dettagli

Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}.

Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}. Teoria degli insiemi Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: A = {a, b, c} B = {1, 2} C = {2, 4, 6, 8, 10,...}. 2. Enunciando una proprietà che è

Dettagli

Gli insiemi N, Z e Q. I numeri naturali

Gli insiemi N, Z e Q. I numeri naturali Università Roma Tre L. Chierchia 1 Gli insiemi N, Z e Q Il sistema dei numeri reali (R, +,, ) può essere definito tramite sedici assiomi: quindici assiomi algebrici (si veda ad esempio 2.3 in [Giusti,

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari 1 Sistemi di equazioni lineari 1.1 Determinante di matrici quadrate Ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante della matrice

Dettagli

Esercitazione di Calcolo Numerico 1 22 Aprile Determinare la fattorizzazione LU della matrice a 1 1 A = 3a 2 a 2a a a 2 A =

Esercitazione di Calcolo Numerico 1 22 Aprile Determinare la fattorizzazione LU della matrice a 1 1 A = 3a 2 a 2a a a 2 A = Esercitazione di Calcolo Numerico 22 Aprile 29. Determinare la fattorizzazione LU della matrice a A = 3a 2 a 2a a a 2 ed utilizzarla per calcolare il det(a). 2. Calcolare il determinante della matrice

Dettagli

Applicazioni eliminazione di Gauss

Applicazioni eliminazione di Gauss Applicazioni eliminazione di Gauss. Premessa Nel seguito supporremo sempre di applicare il metodo di eliminazione di Gauss allo scopo di trasformare la matrice del sistema Ax = b in una matrice triangolare

Dettagli

Giuseppe Accascina. Note del corso di Geometria e Algebra

Giuseppe Accascina. Note del corso di Geometria e Algebra Giuseppe Accascina Note del corso di Geometria e Algebra Corso di Laurea Specialistica in Ingegneria Gestionale Anno Accademico 26-27 ii Istruzioni per l uso Faremo spesso riferimento a ciò che è stato

Dettagli

c A (a c = b) Le ipotesi che abbiamo ci dicono che esistono h, k A tali che:

c A (a c = b) Le ipotesi che abbiamo ci dicono che esistono h, k A tali che: Definizione 1. Dato un insieme A, un operazione su A è una applicazione da A A a valori in A. Definizione 2. Se A è un insieme con una operazione, dati a, b A diciamo che a divide b (e scriviamo a b) se

Dettagli

Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Vettori e matrici Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utentiunifeit/lorenzopareschi/ lorenzopareschi@unifeit Lorenzo Pareschi Univ Ferrara

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA RADICALI Dr. Erasmo Modica erasmo@galois.it LE RADICI Abbiamo visto che l insieme dei numeri reali è costituito da tutti

Dettagli

Matrici. Prof. Walter Pugliese

Matrici. Prof. Walter Pugliese Matrici Prof. Walter Pugliese Le matrici Una matrice è un insieme di numeri reali organizzati in righe e colonne. Se n è il numero delle righe e m e il numero delle colonne si dice che la matrice è di

Dettagli

Complemento 1 Gli insiemi N, Z e Q

Complemento 1 Gli insiemi N, Z e Q AM110 Mat, Univ. Roma Tre (AA 2010/11 L. Chierchia) 30/9/10 1 Complemento 1 Gli insiemi N, Z e Q Il sistema dei numeri reali (R, +,, ) può essere definito tramite sedici assiomi: quindici assiomi algebrici

Dettagli

Esercizi di Algebra 2, C.S. in Matematica, a.a

Esercizi di Algebra 2, C.S. in Matematica, a.a 26 Esercizi di Algebra 2, C.S. in Matematica, a.a.2008-09. Parte V. Anelli Nota. Salvo contrario avviso il termine anello sta per anello commutativo con identità. Es. 154. Provare che per ogni intero n

Dettagli

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI Assumiamo come primitivo il concetto di insieme e quello di appartenenza di un elemento a un insieme. La notazione x A indica

Dettagli

1 Cenni di teoria degli insiemi

1 Cenni di teoria degli insiemi 1 Cenni di teoria degli insiemi 1.1. Siano A, B, C,... insiemi. Scriveremo a A, a / A per affermare rispettivamente che l elemento a appartiene all insieme A e che l elemento a non appartiene ad A. Diremo

Dettagli

Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016.

Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016. Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016 Di seguito si riporta il riassunto degli argomenti svolti; i riferimenti sono a parti del Cap8 Elementi di geometria e algebra lineare Par5

Dettagli

x n i sima pos. x, y = x T y = x i y i R. i=1

x n i sima pos. x, y = x T y = x i y i R. i=1 1 Elementi di Algebra Lineare In questo capitolo introduttivo al corso di Calcolo Numerico per la laurea triennale in Informatica, saranno presentate una serie di definizioni e proprietà di matrici e dei

Dettagli

0.1. MATRICI SIMILI 1

0.1. MATRICI SIMILI 1 0.1. MATRICI SIMILI 1 0.1 Matrici simili Definizione 0.1.1. Due matrici A, B di ordine n si dicono simili se esiste una matrice invertibile P con la proprietà che P 1 AP = B. Con questa terminologia dunque

Dettagli

A m n B n p = P m p. 0 1 a b c d. a b. 0 a 0 c Il risultato e lo stesso solo nel caso in cui c = 0 e a = d.

A m n B n p = P m p. 0 1 a b c d. a b. 0 a 0 c Il risultato e lo stesso solo nel caso in cui c = 0 e a = d. Matematica II, 220404 Il prodotto di matrici e un operazione parziale che prende in entrata una matrice A ed una matrice B, tali che il numero delle colonne di A sia uguale al numero delle righe di B,

Dettagli

MATRICI Vol.1. Pag. 1/24

MATRICI Vol.1. Pag. 1/24 MATRICI Vol.1 Sommario ALGEBRA DELLE MATRICI... 3 Matrici nulla, diagonale e unità... 3 Matrice simmetrica e matrice trasposta... 3 Combinazioni lineari e differenza tra matrici. Matrice emisimmetrica...

Dettagli

a + 2b + c 3d = 0, a + c d = 0 c d

a + 2b + c 3d = 0, a + c d = 0 c d SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,

Dettagli

LEZIONE 11. s V : V V V (v 1, v 2 ) v 1 + v 2 = s V (v 1, v 2 ), p V : k V V. per cui valgono:

LEZIONE 11. s V : V V V (v 1, v 2 ) v 1 + v 2 = s V (v 1, v 2 ), p V : k V V. per cui valgono: LEZIONE 11 11.1. Spazi vettoriali ed esempi. La nozione di spazio vettoriale generalizza quanto visto nelle lezioni precedenti: l insieme k m,n delle matrici m n a coefficienti in k = R, C, l insieme V

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 7 - CALCOLO NUMERICO CON MATRICI Richiami teorici Operazioni fondamentali Siano A = {a ij } e B = {b ij }, i = 1,..., m, j = 1,..., n due

Dettagli

Studieremo le congruenze lineari, cioe le equazioni del tipo

Studieremo le congruenze lineari, cioe le equazioni del tipo Congruenze lineari 1. Oggetto di studio - Definizione 1. Studieremo le congruenze lineari, cioe le equazioni del tipo dove ax b (mod n) (1) n, il modulo della congruenza, e un intero positivo fissato x,

Dettagli

Funzioni Esercizi e complementi

Funzioni Esercizi e complementi Funzioni Esercizi e complementi e-mail: maurosaita@tiscalinet.it Novembre 05. Indice Esercizi Insiemi ininiti 6 Suggerimenti e risposte 9 Esercizi. Scrivere la deinizione di unzione e ornire almeno un

Dettagli

MATEMATICA. a.a. 2014/ Sistemi di equazioni lineari

MATEMATICA. a.a. 2014/ Sistemi di equazioni lineari MATEMATICA a.a. 2014/15 8. Sistemi di equazioni lineari SISTEMI LINEARI Si definisce sistema lineare un sistema di p equazioni di primo grado in q incognite. a11x1 + a12 x2 +... + a1 qxq = k1 a21x1 + a22x2

Dettagli

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare

Dettagli

Inversa di una matrice

Inversa di una matrice Geometria Lingotto. LeLing: La matrice inversa. Ārgomenti svolti: Inversa di una matrice. Unicita e calcolo della inversa. La inversa di una matrice. Il gruppo delle matrici invertibili. Ēsercizi consigliati:

Dettagli

Introduzione alla TEORIA DEI NUMERI

Introduzione alla TEORIA DEI NUMERI Renato Migliorato Introduzione alla teoria dei numeri Introduzione alla TEORIA DEI NUMERI Avvertenza: questo è l inizio di un testo pensato come supporto al corso di Matematiche Complementari I ed ancora

Dettagli

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5.

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. A.A. 2015-2016. CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. Esercizio 5.1. Determinare le ultime tre cifre di n = 13 1625. (Suggerimento. Sfruttare il Teorema di Eulero-Fermat)

Dettagli

Determinante. Elisabetta Colombo. Determinante. Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico ,

Determinante. Elisabetta Colombo. Determinante. Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico , Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 2011-2012, 1 n=2 2 3 con le 4 n=2 n=2 con le Ad ogni matrice quadrata A = (a ij ) j=1...n i=1...n di ordine n si può associare

Dettagli

Definizione: Due monomi si dicono simili se hanno la stessa parte letterale.

Definizione: Due monomi si dicono simili se hanno la stessa parte letterale. CALCOLO LETTERALE Definizione: Data una formula si dicono variabili le lettere alle quali può essere sostituito qualsiasi valore numerico; i numeri si dicono, invece, costanti. Nella formula per il calcolo

Dettagli

Punti di massimo o di minimo per funzioni di n variabili reali

Punti di massimo o di minimo per funzioni di n variabili reali Punti di massimo o di minimo per funzioni di n variabili reali Dati f : A R n R ed X 0 A, X 0 si dice : punto di minimo assoluto se X A, f ( x ) f ( X 0 ) punto di massimo assoluto se X A, f ( x ) f (

Dettagli

Appunti su Indipendenza Lineare di Vettori

Appunti su Indipendenza Lineare di Vettori Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo

Dettagli

Matematica ed Elementi di Statistica. L insieme dei numeri reali

Matematica ed Elementi di Statistica. L insieme dei numeri reali a.a. 2010/11 Laurea triennale in Scienze della Natura Matematica ed Elementi di Statistica L insieme dei numeri reali Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili

Dettagli

Moltiplicazione. Divisione. Multipli e divisori

Moltiplicazione. Divisione. Multipli e divisori Addizione Sottrazione Potenze Moltiplicazione Divisione Multipli e divisori LE QUATTRO OPERAZIONI Una operazione aritmetica è quel procedimento che fa corrispondere ad una coppia ordinata di numeri (termini

Dettagli

Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente

Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente Dati i vettori di R (i) Calcolare il prodotto scalare v w, (ii) Stabilire se v e w sono ortogonali, (ii) Stabilire

Dettagli

Strutture algebriche. Leggi di composizione. Leggi di composizione. Gruppi Insiemi di numeri Polinomi

Strutture algebriche. Leggi di composizione. Leggi di composizione. Gruppi Insiemi di numeri Polinomi Introduzione S S S S Le strutture algebriche sono date da insiemi con leggi di composizione binarie (operazioni) ed assiomi (proprietà) Una legge di composizione binaria è una funzione : I J K, una legge

Dettagli

Il teorema di Rouché-Capelli

Il teorema di Rouché-Capelli Luciano Battaia Questi appunti (1), ad uso degli studenti del corso di Matematica (A-La) del corso di laurea in Commercio Estero dell Università Ca Foscari di Venezia, campus di Treviso, contengono un

Dettagli

Lezione 9: Le matrici

Lezione 9: Le matrici Lezione 9: Le matrici Ancora un po di sistemi in generale: le notazioni Nella lezione precedente abbiamo visto vari esempi di sistemi lineari in cui si verificavano i seguenti casi: una sola soluzione,

Dettagli

SPAZI VETTORIALI CON PRODOTTO SCALARE A =

SPAZI VETTORIALI CON PRODOTTO SCALARE A = SPAZI VETTORIALI CON PRODOTTO SCALARE Esercizi Esercizio. Nello spazio euclideo standard (R 2,, ) sia data la matrice 2 3 A = 3 2 () Determinare una base rispetto alla quale A sia la matrice di un endomorfismo

Dettagli