La valutazione dei rischi. Corso di risk management Prof. Giuseppe D Onza

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "La valutazione dei rischi. Corso di risk management Prof. Giuseppe D Onza"

Transcript

1 La valutazione dei rischi Corso di risk management Prof. Giuseppe D Onza

2 LA VALUTAZIONE DEI RISCHI E un attività che caratterizza la gestione dei rischi finalizzata ad apprezzare la gravità dei fenomeni rischiosi (esposizione dell azienda al rischio). Le ragioni della valutazione: Apprezzare l entità del rischio che grava sulle attività aziendali Esprimere in termini omogenei gli n eventi rischiosi identificati Definire le priorità di intervento

3 LE TECNICHE QUANTITATIVE

4 Tecniche di valutazione quantitativa Applicabili in presenza di dati storici particolarmente ampi (in termini di osservazioni temporali) in grado di rappresentare, con un certo intervello di confidenza, l andamento della probabilità e dell impatto Se applicabili potrebbero conferire una maggior oggettività alla valutazione Le più applicate sono le tecniche probabilistiche che si basano sulla costruzione delle distribuzioni di probabilità delle perdite associabili agli eventi dannosi. Esempi sono costituiti dal VaR, Cash flow at risk or earning at risk Tecniche non probabilistiche sono costituite dall analisi di sensitività, analisi di scenario, stress testing

5 IL Value at risk

6 IL Value at risk: che cos è? E una misura del rischio di mercato (prezzo, tasso di interesse, cambio, ecc.) che caratterizza un portafoglio di attività finanziarie (o una singola attività finanziaria) divenuta nota per merito di J.P. Morgan In particolare esprime la perdita massima potenziale che un attività finanziaria (o un portafoglio di attività finanziarie) può subire in un dato orizzonte temporale e con una data probabilità (livello di confidenza) Un VaR =1000 Euro relativo ad un portafoglio di attività finanziarie, calcolato su di un orizzonte temporale di una settimana, con un livello di confidenza del 99%, ci dice che, con una probabilità pari al 99%, la perdita che subirà il portafoglio nell arco di una settimana non sarà superiore a 1000 Euro.

7 VaR: significato grafico 1% V V = Variazione attesa del portafoglio Esiste una probabilità pari a 1-α di subire una perdita superiore al VAR. Nel nostro caso esiste 1% di probabilità che

8 IL Value at risk (p=95%) Nel caso di un livello di confidenza è del 95%, il VaR indica la perdita che potrebbe essere subita in un orizzonte temporale (una settimana) tale per cui vi sia una probabilità del 5% che la perdita effettiva sia superiore al VaR Una riduzione del livello di confidenza mi fa diminuire il VAR in quanto è maggiore la possibilità di subire perdite effettive superiori rispetto al VaR

9 Parametri VaR Il VaR è funzione di due parametri: il livello di confidenza. Dipende dal livello di avversione al rischio e soggetti avversi al rischio scelgono livelli di confidenza maggiori (tipicamente 99%). Nella prassi non si va al di sotto del 95% l orizzonte temporale. Può essere 1 giorno, 5 giorni, 10 giorni, 1 mese, 1 anno. Nella realtà dipendere dalla liquidabilità dell attività finanziaria, dalla frequenza con cui viene ricalibrato un portafoglio o dall holding period.

10 Approcci al VaR La metodologia VAR differisce principalmente nel modo in cui viene costruita la funzione di densità di probabilità. Tre approcci al VaR: 1) Approccio varianze-covarianze proposto da J.P Morgan (detto anche parametrico) 2) Simulazioni storiche 3) Simulazioni Montecarlo

11 L approccio varianze/covarianze Il percentile x p di qualunque distribuzione normale a media nulla si ottiene moltiplicando la sua deviazione standard x per il corrispondente percentile z p della distribuzione normale standard Se ho un investimento iniziale W0. Ipotizziamo che σ è la volatilità giornaliera. Ipotizzando µ=0 e considerando α=99% questo si traduce nel dire che il VAR ad un giorno sarà VAR=2,33σW0 Il VaR a N giorni si ottiene ipotizzando VAR=2,33σW0 N

12 La volatilità nel VAR (1) Nel calcolo del VAR l elemento determinante è la volatilità. Ma come si calcola? Utilizziamo la formula della Deviazione Standard Campionaria Esempio: se i rendimenti negli ultimi 5 giorni sono -6%, -3%, 0%, +4% e +10%, il valore medio è 1%, pari a (-0,06-0,03+0+0,04+0,1)/5, mentre lo scarto quadratico medio é pari a: (-0,06-0,01)2 + (-0,03-0,01) 2+ (0-0,01) 2 + (0,04-0,01) 2 + (0,1-0,01) 2 = 0,0624 4

13 La volatilità nel VAR (2) Per semplicità si può considerare quella storica riferita all ultimo anno Nel modello VAR si utilizza una volatilità giornaliera. Se ci sono 252 giorni lavorativi in un anno, la relazione tra la volatilità giornaliera, σg e quella annuale, σa, è la seguente: σg = σa / 252 Nella formula di JP Morgan si usa una misura diversa che l exponentially weighted moving average model (EWMA)

14 IL Value at risk esempio (1) Esempio: Azioni FIAT Supponiamo di avere in portafoglio azioni FIAT per un valore pari a Euro La volatilità su base annuale (ultimo anno) è del 32% Applicando la formula precedente della volatilità giornaliera avremo un valore del 2% Con un intervallo di significatività del 99% (Z=2,58) Con N=1 Con N=10 VAR = 2,58*2%*10.000= 469 VAR = 2,58*2%*10.000* 10 = 1.485

15 IL Value at risk esempio (2) Esempio: BTP BTP decennali per un valore nominale di 1 milione Prezzo tel quel: 105 Duration media = 7 anni che in giorni sono pari a 1764 (ipotizzando 252 giorni) Intervallo di significatività del 99% Variazione giornaliera : 0,15% VAR = 2,58*0,15%* 1764* =

16 L approccio varianze/covarianze Assunzioni di base 1. La distribuzione empirica dei profitti e delle perdite (la distribuzione dei rendimenti) abbia una determinata forma, cioè sia una distribuzione normale 2. Il concetto di stazionarietà, che implica che la media, la varianza e la correlazione di una distribuzione sono costanti nel tempo.dunque Si utilizzano metodi fondati sulla simulazione

17 Altre tecniche probabilistiche CASH FLOW AT RISK: Simile al VaR con l eccezione che la stima riguarda i cash flow di un organizzazione o di una sua unità organizzativa EARNING AT RISK: Simile al Cash flow at risk e consiste nella stima della variabilità degli utili. LOSS DISTRIBUTION: Consente di stimare la distribuzione della probabilità e dell impatto (utilizzando generalmente una distribuzione normale delle perdite). Può essere utilizzato per la stima dei rischi di credito (o operativi) in cui si suddividono i dati delle perdite in relazione agli eventi di origine.

Il Value at risk. Misurazione del rischio di mercato. Da quale esigenza e nato il VaR? Anno accademico 2005/06. m=7.6m$ Prof.ssa Rosella Giacometti

Il Value at risk. Misurazione del rischio di mercato. Da quale esigenza e nato il VaR? Anno accademico 2005/06. m=7.6m$ Prof.ssa Rosella Giacometti Il Value at risk Modelli Matematici per i Mercati Finanziari Anno accademico 005/06 Nuove metriche di rischio: il VaR -Cosa è il VaR -Come si calcola:la stima dei parametri di un modello VaR multinormale

Dettagli

Laboratorio: Metodi quantitativi avanzati per la valutazione del rischio di mercato. Aldo Nassigh Financial Risk Management A.A.

Laboratorio: Metodi quantitativi avanzati per la valutazione del rischio di mercato. Aldo Nassigh Financial Risk Management A.A. Laboratorio: Metodi quantitativi avanzati per la valutazione del rischio di mercato Aldo Nassigh Financial Risk Management A.A. 2011/12 Lezione 6 FAT TAILS La distribuzione empirica di numerosi fattori

Dettagli

CAPITALE, REQUISITI PATRIMONIALI e

CAPITALE, REQUISITI PATRIMONIALI e CAPITALE, REQUISITI PATRIMONIALI e Value at Risk (VaR) Rif. Bibliografici: Biasin, Cosma e Oriani (a cura di), La banca, Cap.16 Hull, Risk Management ed Istituzioni Finanziarie, Cap. 7 e 8 Il ruolo del

Dettagli

Matematica e Risk Management

Matematica e Risk Management Matematica e Risk Management MatFinTN2012 Claudio Kofler 24 Gennaio 2012, Facoltà di Scienze, Povo (TN) PensPlan Invest SGR S.p.A. 2012 Performance Attribution Performance Attribution La performance attribution

Dettagli

Il VaR: i modelli di simulazione. Prof. Ugo Pomante Università di Roma Tor Vergata

Il VaR: i modelli di simulazione. Prof. Ugo Pomante Università di Roma Tor Vergata Il VaR: i modelli di simulazione Prof. Ugo Pomante Università di Roma Tor Vergata Agenda I modelli di simulazione: caratteristiche generali Le simulazioni storiche L approccio ibrido Le simulazioni Monte

Dettagli

Indice della lezione. Incertezza e rischio: sinonimi? Le Ipotesi della Capital Market Theory UNIVERSITA DEGLI STUDI DI PARMA FACOLTA DI ECONOMIA

Indice della lezione. Incertezza e rischio: sinonimi? Le Ipotesi della Capital Market Theory UNIVERSITA DEGLI STUDI DI PARMA FACOLTA DI ECONOMIA UNIVERSIT DEGLI STUDI DI PRM FCOLT DI ECONOMI Indice della lezione Corso di Pianificazione Finanziaria Introduzione al rischio Rischio e rendimento per titoli singoli La Teoria di Portafoglio di Markowitz

Dettagli

Cognome e Nome:... Matricola e corso di laurea:...

Cognome e Nome:... Matricola e corso di laurea:... Statistica - corso base Prof. B. Liseo Prova di esame dell 8 gennaio 2014 Cognome e Nome:................................................................... Matricola e corso di laurea:...................................................

Dettagli

Indice della lezione. Incertezza e rischio: sinonimi? UNIVERSITA DEGLI STUDI DI PARMA FACOLTA DI ECONOMIA

Indice della lezione. Incertezza e rischio: sinonimi? UNIVERSITA DEGLI STUDI DI PARMA FACOLTA DI ECONOMIA UNIVERSIT DEGLI STUDI DI PRM FCOLT DI ECONOMI Corso di Corporate anking a.a. 2010 2011 (Professor Eugenio Pavarani) Introduzione al rischio CPITOLO 9 1 Indice della lezione Rischio e rendimento per titoli

Dettagli

Esercitazione del

Esercitazione del Esercizi sulla regressione lineare. Esercitazione del 21.05.2013 Esercizio dal tema d esame del 13.06.2011. Si consideri il seguente campione di n = 9 osservazioni relative ai caratteri ed Y: 7 17 8 36

Dettagli

Il processo ERM: metodologie, strumenti, strategie di riduzione e controllo dei rischi a cura del Dott.RobertoMuscogiuri 16/06/2016

Il processo ERM: metodologie, strumenti, strategie di riduzione e controllo dei rischi a cura del Dott.RobertoMuscogiuri 16/06/2016 Il processo ERM: metodologie, strumenti, strategie di riduzione e controllo dei rischi a cura del Dott.RobertoMuscogiuri 16/06/2016 Rischio 1 Rischio 2 Rischio Rischio j Rischio j+1 Rischio j+k Rischio

Dettagli

Misura e Valutazione del

Misura e Valutazione del - Finanza Aziendale Prof. Arturo Capasso 8 Misura e Valutazione del A. Rischio - Argomenti Il rischio Il rischio negli investimenti finanziari La misurazione del rischio Varianza e scarto quadratico medio

Dettagli

Il Modello di Markowitz e la frontiera efficiente (1952)

Il Modello di Markowitz e la frontiera efficiente (1952) Il Modello di Markowitz e la frontiera efficiente (1952) Introduzione La selezione di portafoglio consiste nella ripartizione di un capitale tra più investimenti di reddito aleatorio Il capitale da ripartire

Dettagli

MATEMATICA FINANZIARIA RISCHI: RAPPRESENTAZIONE E GESTIONE (CENNI)

MATEMATICA FINANZIARIA RISCHI: RAPPRESENTAZIONE E GESTIONE (CENNI) Matematica Finanziaria, a.a. 2011/2012 p. 1/315 UNIVERSITA DEGLI STUDI DI PARMA FACOLTA DI ECONOMIA MATEMATICA FINANZIARIA RISCHI: RAPPRESENTAZIONE E GESTIONE (CENNI) ANNAMARIA OLIVIERI a.a. 2011/2012

Dettagli

Manage your risk! La volatilità nei mercati azionari: rischi e opportunità

Manage your risk! La volatilità nei mercati azionari: rischi e opportunità Manage your risk! La volatilità nei mercati azionari: rischi e opportunità Volatilità: definizione La volatilità è una misura della dispersione delle variazioni dei prezzi delle attività finanziarie e

Dettagli

ESAME. 9 Gennaio 2017 COMPITO B

ESAME. 9 Gennaio 2017 COMPITO B ESAME 9 Gennaio 2017 COMPITO B Cognome Nome Numero di matricola 1) Approssimare tutti i calcoli alla quarta cifra decimale. 2) Ai fini della valutazione si terrà conto solo ed esclusivamente di quanto

Dettagli

Capitolo 5 Variabili aleatorie discrete notevoli Insegnamento: Statistica Applicata Corso di Laurea in "Scienze e Tecnologie Alimentari"

Capitolo 5 Variabili aleatorie discrete notevoli Insegnamento: Statistica Applicata Corso di Laurea in Scienze e Tecnologie Alimentari Levine, Krehbiel, Berenson Statistica Capitolo 5 Variabili aleatorie discrete notevoli Insegnamento: Statistica Applicata Corso di Laurea in "Scienze e Tecnologie Alimentari" Unità Integrata Organizzativa

Dettagli

Il processo inferenziale consente di generalizzare, con un certo grado di sicurezza, i risultati ottenuti osservando uno o più campioni

Il processo inferenziale consente di generalizzare, con un certo grado di sicurezza, i risultati ottenuti osservando uno o più campioni La statistica inferenziale Il processo inferenziale consente di generalizzare, con un certo grado di sicurezza, i risultati ottenuti osservando uno o più campioni E necessario però anche aggiungere con

Dettagli

Capitolo 8. Intervalli di confidenza. Statistica. Levine, Krehbiel, Berenson. Casa editrice: Pearson. Insegnamento: Statistica

Capitolo 8. Intervalli di confidenza. Statistica. Levine, Krehbiel, Berenson. Casa editrice: Pearson. Insegnamento: Statistica Levine, Krehbiel, Berenson Statistica Casa editrice: Pearson Capitolo 8 Intervalli di confidenza Insegnamento: Statistica Corso di Laurea Triennale in Economia Dipartimento di Economia e Management, Università

Dettagli

Paragrafo 13 Rischio di Mercato

Paragrafo 13 Rischio di Mercato Paragrafo 13 Rischio di Mercato 13.1 Requisiti patrimoniali ripartiti per metodo di calcolo Requisito patrimoniale Informazione 3 giugno 21 3 giugno 215 Esposizioni ponderate per il rischio totali: rischio

Dettagli

La valutazione dei rischi. Corso di risk management Prof. Giuseppe D Onza

La valutazione dei rischi. Corso di risk management Prof. Giuseppe D Onza La valutazione dei rischi Corso di risk management Prof. Giuseppe D Onza Le tecniche non probabilistiche ØSENSITIVITY ANALYSIS ØSCENARIO ANALYSIS ØSTRESS TESTING Sensitivity analysis ØUtilizzata per valutare

Dettagli

UNIVERSITÀ DEGLI STUDI DI PERUGIA

UNIVERSITÀ DEGLI STUDI DI PERUGIA SIGI, Statistica II, esercitazione n. 3 1 UNIVERSITÀ DEGLI STUDI DI PERUGIA FACOLTÀ DI ECONOMIA CORSO DI LAUREA S.I.G.I. STATISTICA II Esercitazione n. 3 Esercizio 1 Una v.c. X si dice v.c. esponenziale

Dettagli

STATISTICA ESERCITAZIONE 13

STATISTICA ESERCITAZIONE 13 STATISTICA ESERCITAZIONE 13 Dott. Giuseppe Pandolfo 9 Marzo 2015 Errore di I tipo: si commette se l'ipotesi nulla H 0 viene rifiutata quando essa è vera Errore di II tipo: si commette se l'ipotesi nulla

Dettagli

e) Calcolare la frazione di studenti che ottengono un punteggio esattamente uguale al punteggio minimo richiesto per superare il test di ammissione:

e) Calcolare la frazione di studenti che ottengono un punteggio esattamente uguale al punteggio minimo richiesto per superare il test di ammissione: ESERCIZIO 1 Il test di ammissione alla prestigiosa Università STUDY produce punteggi che seguono una distribuzione normale con media 500 e scarto quadratico medio 100. Il punteggio necessario per superare

Dettagli

CURVE DI DURATA: Introduzione e Rappresentazione analitica

CURVE DI DURATA: Introduzione e Rappresentazione analitica CURVE DI DURATA: Introduzione e Rappresentazione analitica Premesse Si definisce durata di una portata Q riferita ad una sezione di misura, l'intervallo di tempo in cui le portate naturali del corso d

Dettagli

Il VaR per la misurazione dei rischi di mercato. Prof. Ugo Pomante Università di Roma Tor Vergata

Il VaR per la misurazione dei rischi di mercato. Prof. Ugo Pomante Università di Roma Tor Vergata Il VaR per la misurazione dei rischi di mercato Prof. Ugo Pomante Università di Roma Tor Vergata Agenda I rischi di mercato I modelli VaR L approccio varianze-covarianze La stima della volatilità Il livello

Dettagli

La gestione dei rischi nelle banche

La gestione dei rischi nelle banche La gestione dei rischi nelle banche ECONOMIA DEGLI INTERMEDIARI FINANZIARI I RISCHI BANCARI 1. Rischi di controparte Rischio di credito Rischio di regolamento 2. Rischi di mercato Rischio di interesse

Dettagli

Gli errori nella verifica delle ipotesi

Gli errori nella verifica delle ipotesi Gli errori nella verifica delle ipotesi Nella statistica inferenziale si cerca di dire qualcosa di valido in generale, per la popolazione o le popolazioni, attraverso l analisi di uno o più campioni E

Dettagli

Introduzione a rischio, rendimento e costo opportunità del capitale

Introduzione a rischio, rendimento e costo opportunità del capitale Copyright 007 - The McGraw-Hill Companies srl QUIZ CAPITOLO 7 Introduzione a rischio, rendimento e costo opportunità del capitale. Il risultato atteso è 00 e il rendimento atteso è zero. La varianza è

Dettagli

STATISTICA SERALE (NOF) Appello del 12/07/12 Effettuare i calcoli arrotondando alla seconda cifra decimale A PARTE PRIMA

STATISTICA SERALE (NOF) Appello del 12/07/12 Effettuare i calcoli arrotondando alla seconda cifra decimale A PARTE PRIMA Appello del 12/07/12 A PARTE PRIMA 1) Enunciare e dimostrare le due proprietà della media aritmetica. 2) Il prospetto che segue si riferisce ad una parte della distribuzione per età delle donne italiane

Dettagli

3.1 Classificazione dei fenomeni statistici Questionari e scale di modalità Classificazione delle scale di modalità 17

3.1 Classificazione dei fenomeni statistici Questionari e scale di modalità Classificazione delle scale di modalità 17 C L Autore Ringraziamenti dell Editore Elenco dei simboli e delle abbreviazioni in ordine di apparizione XI XI XIII 1 Introduzione 1 FAQ e qualcos altro, da leggere prima 1.1 Questo è un libro di Statistica

Dettagli

Esercizi di statistica

Esercizi di statistica Esercizi di statistica Test a scelta multipla (la risposta corretta è la prima) [1] Il seguente campione è stato estratto da una popolazione distribuita normalmente: -.4, 5.5,, -.5, 1.1, 7.4, -1.8, -..

Dettagli

UNIVERSITA DI PARMA FACOLTA DI ECONOMIA. Corso di pianificazione finanziaria A.a. 2003/2004. La stima del costo del capitale proprio

UNIVERSITA DI PARMA FACOLTA DI ECONOMIA. Corso di pianificazione finanziaria A.a. 2003/2004. La stima del costo del capitale proprio UNIVERSITA DI PARMA FACOLTA DI ECONOMIA Corso di pianificazione finanziaria A.a. 2003/2004 Parma, 21 ottobre 2003 La stima del costo del capitale proprio Il Weighted average cost of capital (Wacc) WACC

Dettagli

Introduzione al rischio, rendimento e costo opportunità del capitale

Introduzione al rischio, rendimento e costo opportunità del capitale Introduzione al rischio, rendimento e costo opportunità del capitale Nozione di Costo Opportunità del Capitale Il rendimento che i finanziatori otterrebbero impiegando i propri fondi in attività alternative,

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale a) L Intervallo di Confidenza b) La distribuzione t di Student c) La differenza delle medie d) L intervallo di confidenza della differenza Prof Paolo Chiodini Dalla Popolazione

Dettagli

Presentazione dell edizione italiana

Presentazione dell edizione italiana 1 Indice generale Presentazione dell edizione italiana Prefazione xi xiii Capitolo 1 Una introduzione alla statistica 1 1.1 Raccolta dei dati e statistica descrittiva... 1 1.2 Inferenza statistica e modelli

Dettagli

Statistica di base per l analisi socio-economica

Statistica di base per l analisi socio-economica Laurea Magistrale in Management e comunicazione d impresa Statistica di base per l analisi socio-economica Giovanni Di Bartolomeo gdibartolomeo@unite.it Definizioni di base Una popolazione è l insieme

Dettagli

ADDENDUM: VALUTARE IL RISCHIO. Simulazioni e Business Plan - CLASEP

ADDENDUM: VALUTARE IL RISCHIO. Simulazioni e Business Plan - CLASEP ADDEDUM: VALUTARE IL RISCHIO Il rischio - misurazione Il rischio è definito come la possibilità che il rendimento effettivo (ex post) diverga da quello atteso (ex ante). L entità del rischio dipende dallo

Dettagli

Risk management, gestione del capitale e controlli interni

Risk management, gestione del capitale e controlli interni Risk management, gestione del capitale e controlli interni Agenda Il capitale a copertura dei rischi Capitale a rischio, capitale disponibile e pianificazione del capitale Il problema dell integrazione

Dettagli

Cognome e Nome:... Corso di laurea:...

Cognome e Nome:... Corso di laurea:... Statistica - corso base Prof. B. Liseo Prova di esame dell 8 gennaio 201 Cognome e Nome:................................................................... Corso di laurea:.......................................................................

Dettagli

Prova Scritta di METODI STATISTICI PER L AMMINISTRAZIONE DELLE IMPRESE (Milano, )

Prova Scritta di METODI STATISTICI PER L AMMINISTRAZIONE DELLE IMPRESE (Milano, ) Università degli Studi di Milano Bicocca Scuola di Economia e Statistica Corso di Laurea in Economia e Amministrazione delle Imprese (ECOAMM) Prova Scritta di METODI STATISTICI PER L AMMINISTRAZIONE DELLE

Dettagli

Dispensa di Statistica

Dispensa di Statistica Dispensa di Statistica 1 parziale 2012/2013 Diagrammi... 2 Indici di posizione... 4 Media... 4 Moda... 5 Mediana... 5 Indici di dispersione... 7 Varianza... 7 Scarto Quadratico Medio (SQM)... 7 La disuguaglianza

Dettagli

Analisi della varianza

Analisi della varianza Analisi della varianza Prof. Giuseppe Verlato Sezione di Epidemiologia e Statistica Medica, Università di Verona ANALISI DELLA VARIANZA - 1 Abbiamo k gruppi, con un numero variabile di unità statistiche.

Dettagli

I modelli probabilistici

I modelli probabilistici e I modelli probabilistici Finora abbiamo visto che esistono modelli probabilistici che possiamo utilizzare per prevedere gli esiti di esperimenti aleatori. Naturalmente la previsione è di tipo probabilistico:

Dettagli

Variabili aleatorie discrete. Giovanni M. Marchetti Statistica Capitolo 5 Corso di Laurea in Economia

Variabili aleatorie discrete. Giovanni M. Marchetti Statistica Capitolo 5 Corso di Laurea in Economia Variabili aleatorie discrete Giovanni M. Marchetti Statistica Capitolo 5 Corso di Laurea in Economia 2015-16 1 / 45 Variabili aleatorie Una variabile aleatoria è simile a una variabile statistica Una variabile

Dettagli

UNIVERSITÁ DI FOGGIA DIPARTIMENTO DI ECONOMIA CORSO DI MATEMATICA FINANZIARIA A-L PROF. ANDREA DI LIDDO TEMI ASSEGNATI DURANTE LE PROVE SCRITTE DA

UNIVERSITÁ DI FOGGIA DIPARTIMENTO DI ECONOMIA CORSO DI MATEMATICA FINANZIARIA A-L PROF. ANDREA DI LIDDO TEMI ASSEGNATI DURANTE LE PROVE SCRITTE DA UNIVERSITÁ DI FOGGIA DIPARTIMENTO DI ECONOMIA CORSO DI MATEMATICA FINANZIARIA A-L PROF ANDREA DI LIDDO TEMI ASSEGNATI DURANTE LE PROVE SCRITTE DA DICEMBRE 2016 aa 2016-2017-6 GIUGNO 2017 NUMERO DI CFU

Dettagli

Laboratorio di Didattica di elaborazione dati 5 STIMA PUNTUALE DEI PARAMETRI. x i. SE = n.

Laboratorio di Didattica di elaborazione dati 5 STIMA PUNTUALE DEI PARAMETRI. x i. SE = n. 5 STIMA PUNTUALE DEI PARAMETRI [Adattato dal libro Excel per la statistica di Enzo Belluco] Sia θ un parametro incognito della distribuzione di un carattere in una determinata popolazione. Il problema

Dettagli

STATISTICA A K (60 ore)

STATISTICA A K (60 ore) STATISTICA A K (60 ore) Marco Riani mriani@unipr.it http://www.riani.it Richiami sulla regressione Marco Riani, Univ. di Parma 1 MODELLO DI REGRESSIONE y i = a + bx i + e i dove: i = 1,, n a + bx i rappresenta

Dettagli

Capitolo 8. Probabilità: concetti di base

Capitolo 8. Probabilità: concetti di base 1 Capitolo 8 Probabilità: concetti di base Statistica - Metodologie per le scienze economiche e sociali 2/ed S. Borra, A. Di Ciaccio Copyright 2008 The McGraw-Hill Companies srl 2 Concetti primitivi di

Dettagli

05. Errore campionario e numerosità campionaria

05. Errore campionario e numerosità campionaria Statistica per le ricerche di mercato A.A. 01/13 05. Errore campionario e numerosità campionaria Gli schemi di campionamento condividono lo stesso principio di fondo: rappresentare il più fedelmente possibile,

Dettagli

DIPLOMA DI EUROPEAN FINANCIAL SERVICES PER PROMOTORI FINANZIARI

DIPLOMA DI EUROPEAN FINANCIAL SERVICES PER PROMOTORI FINANZIARI in collaborazione con SDA Bocconi School of Management DIPLOMA DI EUROPEAN FINANCIAL SERVICES PER PROMOTORI FINANZIARI Corso di preparazione all esame DEFS per Promotori Finanziari iscritti all Albo Percorso

Dettagli

Contenuti: Capitolo 14 del libro di testo

Contenuti: Capitolo 14 del libro di testo Test d Ipotesi / TIPICI PROBLEMI DI VERIFICA DI IPOTESI SONO Test per la media Test per una proporzione Test per la varianza Test per due campioni indipendenti Test di indipendenza Contenuti Capitolo 4

Dettagli

1 Esercizi sulla teoria del portafoglio

1 Esercizi sulla teoria del portafoglio 1 Esercizi sulla teoria del portafoglio 1. Sia dato un mercato uniperiodale in cui siano disponibili soltanto due titoli rischiosi A e B caratterizzati da scarto quadratico medio e coefficiente di correlazione

Dettagli

ALM e rischio di interesse: Il repricing gap. Prof. Ugo Pomante Università di Roma Tor Vergata

ALM e rischio di interesse: Il repricing gap. Prof. Ugo Pomante Università di Roma Tor Vergata ALM e rischio di interesse: Il repricing gap Prof. Ugo Pomante Università di Roma Tor Vergata Agenda Il rischio di interesse Il modello del repricing gap Gap marginali e cumulati Maturity adusted gap Gap

Dettagli

Ringraziamenti dell Editore

Ringraziamenti dell Editore Indice Elenco dei simboli e delle abbreviazioni in ordine di apparizione Ringraziamenti dell Editore XI XVII 1 Introduzione FAQ e qualcos altro, da leggere prima 1 1.1 QuestoèunlibrodiStatistica....................

Dettagli

Lezione 16. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 16. A. Iodice. Ipotesi statistiche

Lezione 16. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 16. A. Iodice. Ipotesi statistiche Statistica Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () Statistica 1 / 23 Outline 1 2 3 4 5 6 () Statistica 2 / 23 La verifica delle ipotesi Definizione Un ipotesi statistica

Dettagli

Distribuzioni e inferenza statistica

Distribuzioni e inferenza statistica Distribuzioni e inferenza statistica Distribuzioni di probabilità L analisi statistica spesso studia i fenomeni collettivi confrontandoli con modelli teorici di riferimento. Tra di essi, vedremo: la distribuzione

Dettagli

BLAND-ALTMAN PLOT. + X 2i 2 la differenza ( d ) tra le due misure per ognuno degli n campioni; d i. X i. = X 1i. X 2i

BLAND-ALTMAN PLOT. + X 2i 2 la differenza ( d ) tra le due misure per ognuno degli n campioni; d i. X i. = X 1i. X 2i BLAND-ALTMAN PLOT Il metodo di J. M. Bland e D. G. Altman è finalizzato alla verifica se due tecniche di misura sono comparabili. Resta da comprendere cosa si intenda con il termine metodi comparabili

Dettagli

Argomenti. Misura e valutazione del rischio. Teoria della Finanza Aziendale

Argomenti. Misura e valutazione del rischio. Teoria della Finanza Aziendale Teoria della Finanza Aziendale Misura e valutazione del rischio 7 - Argomenti Il rischio Il rischio negli investimenti finanziari La misurazione del rischio Varianza e scarto quadratico medio Il rischio

Dettagli

COMUNE DI CONSIGLIO DI RUMO

COMUNE DI CONSIGLIO DI RUMO COMUNE DI CONSIGLIO DI RUMO Provincia di Como Aggiornamento della componente geologica, idrogeologica e sismica di supporto al Piano di Governo del Territorio - L.R. 1/05 e successive modifiche. ANALISI

Dettagli

Statistica descrittiva II

Statistica descrittiva II Probabilità e Statistica Esercitazioni a.a. 009/010 C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Statistica descrittiva II Ines Campa Probabilità e Statistica - Esercitazioni

Dettagli

Quanti soggetti devono essere selezionati?

Quanti soggetti devono essere selezionati? Quanti soggetti devono essere selezionati? Determinare una appropriata numerosità campionaria già in fase di disegno dello studio molto importante è molto Studi basati su campioni troppo piccoli non hanno

Dettagli

ESERCIZI DI RIEPILOGO 1

ESERCIZI DI RIEPILOGO 1 ESERCIZI DI RIEPILOGO 1 ESERCIZIO 1 La tabella seguente contiene la distribuzione di frequenza della variabile X = età (misurata in anni) per un campione casuale di bambini: x i 4.6 8 3.2 3 5.4 6 2.6 2

Dettagli

Quiz di verifica Classificazione

Quiz di verifica Classificazione Quiz di verifica Classificazione Strumenti Quantitativi per la gestione Le domande 1 4 si riferiscono al seguente problema: Supponiamo di raccogliere dati per un gruppo di studenti della classe di SQG

Dettagli

Istituzioni di Statistica e Statistica Economica

Istituzioni di Statistica e Statistica Economica Istituzioni di Statistica e Statistica Economica Università degli Studi di Perugia Facoltà di Economia, Assisi, a.a. 2013/14 Esercitazione n. 1 A. I dati riportati nella seguente tabella si riferiscono

Dettagli

4. Si supponga che il tempo impiegato da una lettera spedita dall Italia per arrivare a destinazione segua una distribuzione normale con media

4. Si supponga che il tempo impiegato da una lettera spedita dall Italia per arrivare a destinazione segua una distribuzione normale con media Esercizi sulle distribuzioni, il teorema limite centrale e la stima puntuale Corso di Probabilità e Inferenza Statistica, anno 007-008, Prof. Mortera 1. Sia X la durata in mesi di una valvola per radio.

Dettagli

Value at Risk. Value At Risk

Value at Risk. Value At Risk Value at Risk 288 Value At Risk obbiettivo: misurazione dei rischi finanziari al fine del loro controllo rischi: di mercato (tasso, cambio,... ), credito, operativo,... utilizzo: stabilire requisiti di

Dettagli

b) E necessario formulare delle ipotesi per calcolare l intervallo di confidenza ottenuto al punto a? (motivare brevemente la risposta):

b) E necessario formulare delle ipotesi per calcolare l intervallo di confidenza ottenuto al punto a? (motivare brevemente la risposta): ESERCIZIO 1 Una grande banca vuole stimare l ammontare medio di denaro che deve essere corrisposto dai correntisti che hanno il conto scoperto. Si seleziona un campione di 100 clienti su cui si osserva

Dettagli

Indice della lezione

Indice della lezione UNIVERSIT DEGLI STUDI DI PRM FCOLT DI ECONOMI Corso di Corporate anking and Finance a.a. 2012 2013 (Professor Eugenio Pavarani) Introduzione al rischio PF CPITOLO 9 1 Indice della lezione Rischio e rendimento

Dettagli

Analisi della disponibilità d acqua. Valutazione dell impianto attraverso il calcolo di un indice economico (criterio)

Analisi della disponibilità d acqua. Valutazione dell impianto attraverso il calcolo di un indice economico (criterio) Analisi della disponibilità d acqua Valutazione dell impianto attraverso il calcolo di un indice economico (criterio) Approccio diverso a seconda del criterio di valutazione Nel caso di criterio statistico

Dettagli

standardizzazione dei punteggi di un test

standardizzazione dei punteggi di un test DIAGNOSTICA PSICOLOGICA lezione! Paola Magnano paola.magnano@unikore.it standardizzazione dei punteggi di un test serve a dare significato ai punteggi che una persona ottiene ad un test, confrontando la

Dettagli

Fondamenti di statistica per il miglioramento genetico delle piante. Antonio Di Matteo Università Federico II

Fondamenti di statistica per il miglioramento genetico delle piante. Antonio Di Matteo Università Federico II Fondamenti di statistica per il miglioramento genetico delle piante Antonio Di Matteo Università Federico II Modulo 2 Variabili continue e Metodi parametrici Distribuzione Un insieme di misure è detto

Dettagli

Indici di posizione e dispersione per distribuzioni di variabili aleatorie

Indici di posizione e dispersione per distribuzioni di variabili aleatorie Indici di posizione e dispersione per distribuzioni di variabili aleatorie 12 maggio 2017 Consideriamo i principali indici statistici che caratterizzano una distribuzione: indici di posizione, che forniscono

Dettagli

Compiti tematici dai capitoli 2,3,4

Compiti tematici dai capitoli 2,3,4 Compiti tematici dai capitoli 2,3,4 a cura di Giovanni M. Marchetti 2016 ver. 0.8 1. In un indagine recente, i rispondenti sono stati classificati rispetto al sesso, lo stato civile e l area geografica

Dettagli

Prospetto Semplificato relativo all offerta di quote del fondo Aureo Rendimento Assoluto versamento in unica soluzione

Prospetto Semplificato relativo all offerta di quote del fondo Aureo Rendimento Assoluto versamento in unica soluzione Prospetto Semplificato relativo all offerta di quote del fondo Aureo Rendimento Assoluto versamento in unica soluzione Informazioni specifiche La parte Informazioni Specifiche del Prospetto Semplificato,

Dettagli

ECONOMIA DEI MERCATI FINANZIARI

ECONOMIA DEI MERCATI FINANZIARI ECONOMIA DEI MERCATI FINANZIARI 6 febbraio 2012 PROVA SCRITTA Inserire i propri dati: Numero di Matricola Nome Cognome CORSO DI LAUREA: Sezione 1. Indicare se le seguenti affermazioni sono vere o false,

Dettagli

Statistica. Esercitazione 14. Alfonso Iodice D Enza Università degli studi di Cassino. Statistica. A. Iodice. Verifica di ipotesi

Statistica. Esercitazione 14. Alfonso Iodice D Enza Università degli studi di Cassino. Statistica. A. Iodice. Verifica di ipotesi Esercitazione 14 Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () 1 / 14 Ex.1: Verifica Ipotesi sulla media (varianza nota) Le funi prodotte da un certo macchinario hanno una

Dettagli

Misurazione dei Rischi e Valutazione della Performance in Banca. Prof. Franco Fiordelisi. a.a

Misurazione dei Rischi e Valutazione della Performance in Banca. Prof. Franco Fiordelisi. a.a Misurazione dei Rischi e Valutazione della Performance in Banca Prof. Franco Fiordelisi a.a. 2008-09 Indice Obiettivi del corso 3 Descrizione del corso 3 Learining outcomes 4 Modalità di svolgimento del

Dettagli

Sommario. Capitolo 1 I dati e la statistica 1. Capitolo 2 Statistica descrittiva: tabelle e rappresentazioni grafiche 25

Sommario. Capitolo 1 I dati e la statistica 1. Capitolo 2 Statistica descrittiva: tabelle e rappresentazioni grafiche 25 Sommario Presentazione dell edizione italiana Prefazione xv xiii Capitolo 1 I dati e la statistica 1 Statistica in pratica: BusinessWeek 1 1.1 Le applicazioni in ambito aziendale ed economico 3 Contabilità

Dettagli

Problema tipico delle applicazioni idrologiche: qual'è la portata con tempo di ritorno T?

Problema tipico delle applicazioni idrologiche: qual'è la portata con tempo di ritorno T? Problema tipico delle applicazioni idrologiche: qual'è la portata con tempo di ritorno T? Il problema dell'inferenza: dato un campione, individuare la distribuzione di probabilità da cui ha avuto origine.

Dettagli

Statistica 1- parte II

Statistica 1- parte II Statistica 1- parte II Esercitazione 3 Dott.ssa Antonella Costanzo 25/02/2016 Esercizio 1. Verifica di ipotesi sulla media (varianza nota) Il preside della scuola elementare XYZ sospetta che i suoi studenti

Dettagli

Statistica Metodologica Avanzato Test 1: Concetti base di inferenza

Statistica Metodologica Avanzato Test 1: Concetti base di inferenza Test 1: Concetti base di inferenza 1. Se uno stimatore T n è non distorto per il parametro θ, allora A T n è anche consistente B lim Var[T n] = 0 n C E[T n ] = θ, per ogni θ 2. Se T n è uno stimatore con

Dettagli

Corso di Statistica Esercitazione 1.8

Corso di Statistica Esercitazione 1.8 Corso di Statistica Esercitazione.8 Test su medie e proporzioni Prof.ssa T. Laureti a.a. 202-203 Esercizio Un produttore vuole monitorare i valori dei livelli di impurità contenute nella merce che gli

Dettagli

Impairment test CGU (40%)

Impairment test CGU (40%) Impairment test CGU (40%) 1. VALORI DELLA CGU E CALCOLO DELL AVVIAMENTO CGU EURO Valore contabile netto attività e passività acquisite (A) 207.206 Rettifiche per calcolare il FV di attività e passività

Dettagli

Variabili casuali. - di Massimo Cristallo -

Variabili casuali. - di Massimo Cristallo - Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 16 e 27 maggio 2013 - di Massimo Cristallo - Variabili casuali

Dettagli

STATISTICA A K (60 ore)

STATISTICA A K (60 ore) STATISTICA A K (60 ore) Marco Riani mriani@unipr.it http://www.riani.it Esercizio: si consideri una generica popolazione X con media µ e varianza σ 2 Siano T 1 =(X 1 +X 2 +X 3 +X 4 )/4 e T 2 =(3X 1 +4X

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 006/07 Esercizio 1 Prova scritta del 16/1/006 In un ufficio postale lavorano due impiegati che svolgono lo stesso compito in maniera indipendente, sbrigando

Dettagli

Università degli Studi di Parma. Prof.ssa Paola Schwizer Anno accademico 2010-2011. Definizione

Università degli Studi di Parma. Prof.ssa Paola Schwizer Anno accademico 2010-2011. Definizione Università degli Studi di Parma Corso di Asset and liability management Prof.ssa Paola Schwizer Anno accademico 2010-2011 Definizione Rischio derivante da esposizioni verso controparti, gruppi di controparti

Dettagli

x ;x Soluzione Gli intervalli di confidenza possono essere ottenuti a partire dalla seguente identità: da cui si ricava: IC x ;x = +

x ;x Soluzione Gli intervalli di confidenza possono essere ottenuti a partire dalla seguente identità: da cui si ricava: IC x ;x = + ESERCIZIO 6.1 Si considerino i 0 campioni di ampiezza n = estratti da una popolazione X di N = 5 elementi distribuiti normalmente, con media µ = 13,6 e σ = 8,33. A partire dalle 0 determinazioni della

Dettagli

Applicazioni statistiche in ambito bancario

Applicazioni statistiche in ambito bancario Ph.D. Federico De Marchi Credit Risk Management Banca Carige federico.demarchi@carige.it Struttura del corso Lezione 1 Teoria dei test statistici Lezione 2 Teoria della regressione Lezione 3 Davanti al

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 5

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 5 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Approssimazione normale della Poisson (TLC) In un determinato tratto di strada il numero di incidenti

Dettagli

Capitolo 6 La distribuzione normale

Capitolo 6 La distribuzione normale Levine, Krehbiel, Berenson Statistica Casa editrice: Pearson Capitolo 6 La distribuzione normale Insegnamento: Statistica Corso di Laurea Triennale in Economia Dipartimento di Economia e Management, Università

Dettagli

STATISTICA ESERCITAZIONE

STATISTICA ESERCITAZIONE STATISTICA ESERCITAZIONE Dott. Giuseppe Pandolfo 1 Giugno 2015 Esercizio 1 Una fabbrica di scatole di cartone evade il 96% degli ordini entro un mese. Estraendo 300 campioni casuali di 300 consegne, in

Dettagli

Questo calcolo richiede che si conoscano media e deviazione standard della popolazione.

Questo calcolo richiede che si conoscano media e deviazione standard della popolazione. Università del Piemonte Orientale Corso di laurea in biotecnologie Corso di Statistica Medica La distribuzione t - student 1 Abbiamo visto nelle lezioni precedenti come il calcolo del valore Z, riferito

Dettagli

Confronto tra due popolazioni Lezione 6

Confronto tra due popolazioni Lezione 6 Last updated May 9, 06 Confronto tra due popolazioni Lezione 6 G. Bacaro Statistica CdL in Scienze e Tecnologie per l'ambiente e la Natura I anno, II semestre Concetti visti nell ultima lezione Le media

Dettagli

IL METODO DISCOUNTED CASH FLOW

IL METODO DISCOUNTED CASH FLOW 1 IL METODO DISCOUNTED CASH FLOW Federico Lozzi 2 Il valore di un impresa è determinato dalla capacità della stessa di generare flussi di cassa nel lungo periodo. 3 PROBLEMATICHE grado di prevedibilità

Dettagli

UNIVERSITA DI PARMA FACOLTA DI ECONOMIA. Corso di pianificazione finanziaria

UNIVERSITA DI PARMA FACOLTA DI ECONOMIA. Corso di pianificazione finanziaria UNIVERSITA DI PARMA FACOLTA DI ECONOMIA Corso di pianificazione finanziaria A.a. 2005/2006 Evoluzione della teoria del rischio finanziario 1 Indice Evoluzione della teoria del rischio finanziario La Capital

Dettagli

ASPETTI INTRODUTTIVI DI PRICING

ASPETTI INTRODUTTIVI DI PRICING 1 ASPETTI INTRODUTTIVI DI PRICING L opzione europea (o vanilla) è una scommessa sul valore del sottostante ad una scadenza determinata T La call è una scommessa sul rialzo al di sopra di K La put è una

Dettagli

ARGOMENTI TRATTATI NEL CORSO DI ANALISI II

ARGOMENTI TRATTATI NEL CORSO DI ANALISI II ARGOMENTI TRATTATI NEL CORSO DI ANALISI II ANALISI Limiti Curve Convergenza di una successione di punti Definizione di limite Condizione necessaria e condizione sufficiente all esistenza del limite in

Dettagli

Università del Piemonte Orientale. Corso di laurea in medicina e chirurgia. Corso di Statistica Medica. La distribuzione t - student

Università del Piemonte Orientale. Corso di laurea in medicina e chirurgia. Corso di Statistica Medica. La distribuzione t - student Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica La distribuzione t - student 1 Abbiamo visto nelle lezioni precedenti come il calcolo del valore Z,

Dettagli

La valutazione dei modelli VaR

La valutazione dei modelli VaR Slides tratte da: Andrea Resti Andrea Sironi Rischio e valore nelle banche Misura, regolamentazione, gestione Egea, 2008 AGENDA Il backtesting dei modelli VaR Il test dell unconditional coverage Il test

Dettagli