Forza gravitazionale

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Forza gravitazionale"

Transcript

1 Foza gavitazionale Tea Mecuio Venee Mate Pianeti inteni ano Nettuno Plutone Satuno iove Sistea solae Il oto dei pianeti descitto dalle 3 leggi di Kepleo Di qui Newton icavò la legge di gavitazione univesale: a foza fondaentale

2 a Legge di Kepleo i pianeti si uovono su obite piane ed ellittiche, aventi il sole in uno dei fuochi se si estende al oto di un copo qualsiasi, la condizione è che sia una conica (ellisse, ipebole o paabola) a a Legge di Kepleo la velocità aeolae è costante 5,5 3 a Legge di Kepleo Il quadato del tepo di ivoluzione è popozionale al cubo del seiasse aggioe Veifica con dati pesi da intenet: log(t(d)) 5,0 4,5 4,0 3,5 3,0 y,4999x +,566 3 T a logt.5log a + k,5,0 Solo se (M sole >> M pianeta ),5-0,5 0 0,5,5 log(a (A))

3 Legge di avitazione nivesale F /(kg s ) Foza sepe attattiva La costante è piccola. Inteazione fa copi + pincipio di sovapposizione. igoosaente vea pe copi puntifoi a anche pe copi sfeici se si considea la distanza dal cento M anubio obile M Misuata in laboatoio da Cavendish nel 798 con bilancia a tosione

4 avitazione in possiità della supeficie teeste La foza peso è la foza di attazione gavitazionale da pate della Tea. Se ne deducono alcune popietà coe la dipendenza di g dall altezza. Nota g e la legge di gavitazione univesale si può icavae la assa teeste. g g T T g 4 T kg essendo 637 k il aggio edio teeste Coe vaia g con l altezza? g ( h) T ( + h) g ( h) T T ( 0) g ( + h) + h + h h3k pe iduzione dell %

5 avitazione in possiità della supeficie teeste peché l acceleazione di gavità non è costante sulla supeficie teeste?. otazione g N Che succede alle alte latitudini? quanto vaia N all equatoe, pe la otazione teeste? equatoe 9,8065 /s non è la «vea» acceleazione di gavità!. Defoazione In pia appossiazione la tea è un ellissoide di otazione: EQ POL 6378,37 k 6356,75 k la cui supeficie è otogonale a g eff

6 acceleazione di gavità o capo gavitazionale? agente su un copo La quantità Foza gavitazionale assa si chiaa anche Capo gavitazionale del copo è la stessa cosa dell acceleazione di gavità. Cabia peò il odo di vedee Due Teoei il capo gavitazionale geneato da una distibuzione sfeica di assa, all esteno, è uguale a quello che saebbe geneato dalla stessa assa, puntifoe, posta al cento il capo gavitazionale geneato da una distibuzione supeficiale sfeica di assa (un guscio sfeico), all inteno è nullo. che succede all inteno della Tea?

7 Obite cicolai. In geneale le obite dei pianeti sono ellittiche e seguono le leggi di Kepleo. Noi ci liiteeo ad obite cicolai (oto cicolae unifoe). v Es. pianeta in obita cicolae intono al sole. P v P Pω T π S 4 3 P S 3 a legge di Kepleo ecco la costante di popozionalità! Nota e i paaeti dell obita teeste, o di alti pianeti, si icava la assa del sole 30 S.99 0 kg Pe un satellite in obita intono alla tea, a distanza dal cento: T π 4 T 3 Se l obita è geostazionaia: T4h > h k

8 Lavoo della foza gavitazionale. Caso geneale. Anche in questo caso si tova che il lavoo non dipende dal pecoso Se gli spostaenti sono gandi e non è lecito consideae costante l acceleazione di gavità. Bisogna utilizzae l espessione geneale che, pe due copi, vale: F F F in uno spostaento infinitesio: dl F dl ds d dl 0 quindi il lavoo è pai a: O L

9 Enegia Potenziale avitazionale A) Appossiazione di foza costante (es. in possiità della supeficie teeste) B A gy B gy A da cui si icava gy + cost dove y è la posizione lungo l asse veticale oientato in su. Di solito si pone cost0 (equivale a pendee (y0)0: si assue un livello di ifeiento y0) B) Caso geneale (Legge di gavitazione di Newton) B A + A B da cui + cost. di solito si pone cost 0 ( nulla a distanza infinita) Il secondo caso ette in evidenza che l enegia potenziale è l enegia potenziale del sistea di due asse e : ad esepio del sistea Tea + palla Pe copi estesi a sfeici vale la stessa foula, dove è la distanza fa i centi.

10 Enegia potenziale gavitazionale La foza di gavitazione univesale è consevativa. L enegia potenziale è: E M 0 gafico dell enegia assuendo 0 a distanza infinita Applicazioni: Stiae la velocità al suolo di un eteoite (da gande distanza) Calcolae la velocità di fuga dalla tea.

11 Foza gavitazionale. Consevazione dell enegia n oggetto è lanciato veso l alto, dalla supeficie teeste, con velocità v 0. Calcolae l altezza assia aggiunta (tascuando la esistenza dell aia) In appossiazione di g costante si aveva: Ma g vaia con l altezza! v0 gh h v0 g sando l espessione esatta: v 0 M M + h V 0 (/s) h (g cost) (k) h esatto (k) h/h (%) ,97 5,38 0, ,6 3, pe h Velocità di fuga E E F M + E + E PF KF v 0 I v M Velocità inia affinché si un copo si allontani indefinitaente pe la Tea v F 80 /s 4050 k/h

12 Ossevazioni M F o F g? g M è la stessa cosa, se si considea che ( ) pesso la supeficie teeste g è paticaente costante: + h g 0 M M o gy? l espessione a desta vale solo nel liite di g costante, ovveo in una egione liitata + con y M M M + + y y y << cost + gy

Forza gravitazionale

Forza gravitazionale Foza gavitazionale Tea Mecuio Venee Mate Pianeti inteni Uano Nettuno Plutone atuno Giove istea solae Il oto dei pianeti descitto dalle 3 leggi di Kepleo Di qui Newton icavò la legge di gavitazione univesale:

Dettagli

Meccanica Gravitazione

Meccanica Gravitazione Meccanica 016-017 Gavitazione 3 oza Mediatoe Gavitazione Intensità elativa Andaento asintotico Raggio d'azione Inteazione fote gluone 10 38 0 10-15 Inteazione elettoagnetica Inteazione debole fotone 10

Dettagli

Forza gravitazionale di un corpo sferico omogeneo

Forza gravitazionale di un corpo sferico omogeneo La foza con cui un copo sfeico oogeneo di assa M attae un alta assa è la stessa che si avebbe se tutta la assa fosse concentata nel cento della sfea : M T γ oza gavitazionale di un copo sfeico oogeneo

Dettagli

Gravitazione. Dati due corpi di massa m 1 e m 2, posti ad una distanza r, tra di essi si esercita una forza attrattiva data in modulo da

Gravitazione. Dati due corpi di massa m 1 e m 2, posti ad una distanza r, tra di essi si esercita una forza attrattiva data in modulo da Gavitazione Dati due copi di massa m 1 e m 2, posti ad una distanza, ta di essi si esecita una foza attattiva data in modulo da F = G m 1m 2 dove G è una costante univesale, avente lo stesso valoe pe tutte

Dettagli

mm r r r r Si noti che: 1) F e centrale F F 3) e attrattiva soddisfa il principio di sovrapposizione:

mm r r r r Si noti che: 1) F e centrale F F 3) e attrattiva soddisfa il principio di sovrapposizione: La legge univesale della gavitazione (dovuta ad Isaac Newton): Pe due punti ateiali,, sepaati da distanza, la foza di attazione gavitazionale e: = γ dove γ e la costante di gavitazione univesale: γ = 6.67

Dettagli

Gravitazione universale

Gravitazione universale INGEGNERIA GESTIONALE coso di Fisica Geneale Pof. E. Puddu LEZIONE DEL 22 OTTOBRE 2008 Gavitazione univesale 1 Legge della gavitazione univesale di Newton Ogni paticella attae ogni alta paticella con una

Dettagli

Fisica Generale II con Laboratorio. Lezione - 3

Fisica Generale II con Laboratorio. Lezione - 3 Fisica Geneale II con Laboatoio Lezione - 3 Richiami - I Riassunto leggi della meccanica: Leggi di Newton 1) Pincipio di inezia Esistono sistemi di ifeimento ineziali (nei quali un copo non soggetto a

Dettagli

Energia cinetica di un corpo rigido in rotazione. ogni elemento del corpo ha la stessa velocità angolare m 2

Energia cinetica di un corpo rigido in rotazione. ogni elemento del corpo ha la stessa velocità angolare m 2 Enegia cinetica di un copo igido in otazione z Copo igido con asse di otazione fisso (Z) 1 1 ogni eleento del copo ha la stessa velocità angolae K un eleento a distanza K dall asse di otazione ha velocità

Dettagli

TEORIA DELLA GRAVITAZIONE

TEORIA DELLA GRAVITAZIONE LEGGI DI KEPLEO EOI DELL GVIZIONE Dopo la ivoluzionaia teoia eliocentica del monaco polacco Copenico, Giovanni Kepleo fomulò te leggi a coeggee e miglioae ulteiomente il modello copenicano. Egli è infatti

Dettagli

5) Il modulo della velocità del centro di massa del cilindro, calcolata quando esso raggiunge il fondo del piano inclinato vale:

5) Il modulo della velocità del centro di massa del cilindro, calcolata quando esso raggiunge il fondo del piano inclinato vale: Facoltà di Ingegneia Pova Scitta di Fisica I - Luglio 005 Quesito n. Dalla soità di uno scivolo, liscio, descitto in figua, viene fatto patie, a quota e da feo, un copo puntifoe di assa. aggiunto il fondo

Dettagli

Per migliorare la trasmissione tra satellite e Terra, emerge la necessità di portare il satellite ad un orbita circolare diversa.

Per migliorare la trasmissione tra satellite e Terra, emerge la necessità di portare il satellite ad un orbita circolare diversa. 1 Esecizio (tatto dagli esempi 5.3 e 5.4 del cap. V del Mazzoldi-Nigo-Voci) Un satellite atificiale di massa m 10 3 Kg uota attono alla Tea descivendo un obita cicolae di aggio 1 6.6 10 3 Km. 1. Calcolae

Dettagli

( ) Problemi)di)paragrafo)

( ) Problemi)di)paragrafo) Poblemi)di)paagafo) 1) Pe la teza legge di Kepleo, il appoto fa la distanza Sole-pianeta e quella Sole-Tea è pai alla adice cubica fa i quadati dei due peiodi di ivoluzione, che in questo caso vale 64.

Dettagli

Esistono due tipi di forze di attrito radente: le forze di attrito statico, per cui vale la relazione:

Esistono due tipi di forze di attrito radente: le forze di attrito statico, per cui vale la relazione: oze di attito f N P Le foze di attito adente si geneano sulla supeficie di contatto di due copi e hanno la caatteistica di opposi sepe al oto elativo dei due copi. Le foze di attito adente non dipendono,

Dettagli

Conduttori in equilibrio elettrostatico

Conduttori in equilibrio elettrostatico onduttoi in equilibio elettostatico In un conduttoe in equilibio, tutte le caiche di conduzione sono in equilibio Se una caica di conduzione è in equilibio, in quel punto il campo elettico è nullo caica

Dettagli

9 GRAVITAZIONE UNIVERSALE

9 GRAVITAZIONE UNIVERSALE 9 GRAVIAZIONE UNIVERSAE e conoscenze elative alla foza di gavitazione si sono sviluppate a patie dalle ossevazioni astonomiche del moto dei pianeti del sistema solae Attaveso tali ossevazioni yco Bahe

Dettagli

int Schiusa Schiusa r r Φ = r r S o 1 Anno scolastico

int Schiusa Schiusa r r Φ = r r S o 1 Anno scolastico Anno scolastico 4 + ε ε int dt E d C dt d E C Q E S o S Schiusa Schiusa gandezza definizione fomula Foza di Loentz Foza agente su una caica q in moto con velocità v in una egione in cui è pesente un campo

Dettagli

FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 5

FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 5 8360 - FISICA MATEMATICA 1 A.A. 014/15 Poblemi dal libo di testo: D. Giancoli, Fisica, a ed., CEA Capitolo 5 Poblema 1 Un bimbo su una giosta si muove con una velocità di 1.5 m/s quando è a 1.10 m dal

Dettagli

SECONDA LEZIONE: lavoro elettrico, potenziale elettrostatico, teorema di Gauss (prima parte)

SECONDA LEZIONE: lavoro elettrico, potenziale elettrostatico, teorema di Gauss (prima parte) A. Chiodoni esecizi di Fisica II SECONDA LEZIONE: lavoo elettico, potenziale elettostatico, teoea di Gauss (pia pate) Esecizio Te caiche sono poste ai vetici di un tiangolo euilateo di lato l, calcolae

Dettagli

M = 1500 kg. m 9 m 3 m M F

M = 1500 kg. m 9 m 3 m M F 1) La figua descive un copo di assa appoggiato ad un piano inclinato di un angolo ispetto all oizzontale, con un coefficiente di attito dinaico fa copo e piano µ. Il copo è collegato, pe ezzo di una fune,

Dettagli

Facoltà di Ingegneria Fisica II Compito A

Facoltà di Ingegneria Fisica II Compito A Facoltà di ngegneia Fisica 66 Compito A Esecizio n Un filo di mateiale isolante, con densità di caica lineae costante, viene piegato fino ad assumee la foma mostata in figua (la pate cicolae ha aggio e

Dettagli

IL POTENZIALE. = d quindi: LAB

IL POTENZIALE. = d quindi: LAB 1 IL POTENZIALE Sappiamo che il campo gavitazionale è un campo consevativo cioè nello spostamento di un copo ta due punti del campo gavitazionale teeste, le foze del campo compiono un lavoo che dipende

Dettagli

H = G m r 3 r. I. Le orbite dei pianeti sono ellissi, dei quali il Sole occupa uno dei fuochi.

H = G m r 3 r. I. Le orbite dei pianeti sono ellissi, dei quali il Sole occupa uno dei fuochi. 9 Gavitazione (3 poblemi difficoltà 7 soglia 159) Fomulaio Legge di Newton F = G m 1 m 3 (G = 667. 10 11 N m /kg ) Campo gavitazionale H = G m 3 Leggi di Kepleo I. Le obite dei pianeti sono ellissi dei

Dettagli

IL POTENZIALE. Nello spostamento successivo B B, poiché la forza elettrica risulta perpendicolare allo spostamento, il lavoro L è nullo.

IL POTENZIALE. Nello spostamento successivo B B, poiché la forza elettrica risulta perpendicolare allo spostamento, il lavoro L è nullo. 1 I POTENZIAE Sappiamo che il campo gavitazionale è un campo consevativo cioè nello spostamento di un copo ta due punti del campo gavitazionale teeste, le foze del campo compiono un lavoo che dipende dalla

Dettagli

( ) ( ) ( ) ( ) Esercizi 2 Legge di Gauss

( ) ( ) ( ) ( ) Esercizi 2 Legge di Gauss Esecizi Legge di Gauss. Un involuco sfeico isolante ha aggi inteno ed esteno a e b, ed e caicato con densita unifome ρ. Disegnae il diagamma di E in funzione di La geometia e mostata nella figua: Usiamo

Dettagli

( ) Energia potenziale U = GMm r. GMm r. GMm L AB. = r. r r. Definizione di energia potenziale

( ) Energia potenziale U = GMm r. GMm r. GMm L AB. = r. r r. Definizione di energia potenziale Enegia potenziale Definizione di enegia potenziale Il lavoo, compiuto da una foza consevativa nello spostae il punto di applicazione da a, non dipende dal cammino seguito, ma esclusivamente dai punti e.

Dettagli

GRAVITAZIONE UNIVERSALE.

GRAVITAZIONE UNIVERSALE. GAVITAZIONE UNIVESALE. Intoduzione. Aistotele sosteneva che copi divesi, di peso diveso, cadono tanto più veloceente quanto aggioi sono le sue diensioni. Tale affeazione è stata confutata solo 000 anni

Dettagli

Le Galassie. Lezione 4

Le Galassie. Lezione 4 Le Galassie Lezione 4 Fotometia delle ellittiche Le galassie ellittiche pesentano isofote ben appossimabili con ellissi. In geneale la fomula di Sesic fonisce un fit miglioe al pofilo di billanza a tutte

Dettagli

Il Problema di Keplero

Il Problema di Keplero Il Poblema di Kepleo Il poblema di Kepleo nel campo gavitazionale Intoduzione Con Poblema di Kepleo viene indicato il poblema del moto di un copo in un campo di foze centali. Nel caso specifico gavitazionale

Dettagli

Biomeccanica. Cinematica Dinamica Statica dei corpi rigidi Energia e principi di conservazione

Biomeccanica. Cinematica Dinamica Statica dei corpi rigidi Energia e principi di conservazione Biomeccanica Cinematica Dinamica Statica dei copi igidi Enegia e pincipi di consevazione Posizione: definita da : z modulo, diezione, veso vettoe s s z s s y unità di misua (S.I.) : meto x s x y Taiettoia:

Dettagli

Elettrostatica. P. Maestro Elettrostatica pag. 1

Elettrostatica. P. Maestro Elettrostatica pag. 1 Elettostatica Composizione dell atomo Caica elettica Legge di Coulomb Campo elettico Pincipio di sovapposizione Enegia potenziale del campo elettico Moto di una caica in un campo elettico statico Teoema

Dettagli

Unità Didattica N 6. La gravitazione universale

Unità Didattica N 6. La gravitazione universale Unità Didattica N 06 La Gaitazione Uniesale - 1 - Unità Didattica N 6 La gaitazione uniesale 01) Le leggi di Kepleo 0) La legge di gaitazione uniesale 03) L acceleazione di gaità 04) La assa della ea e

Dettagli

Politecnico di Milano Fondamenti di Fisica Sperimentale a.a Facoltà di Ingegneria Industriale - Ind. Aero-Energ-Mecc

Politecnico di Milano Fondamenti di Fisica Sperimentale a.a Facoltà di Ingegneria Industriale - Ind. Aero-Energ-Mecc Politecnico di Milano Fondamenti di Fisica Speimentale a.a. 9-1 - Facoltà di Ingegneia Industiale - Ind. Aeo-Eneg-Mecc II pova in itinee - 5/7/1 Giustificae le isposte e scivee in modo chiao e leggibile.

Dettagli

GRAVITAZIONE UNIVERSALE E APPLICAZIONI Per la classe settima della licenza liceale europea

GRAVITAZIONE UNIVERSALE E APPLICAZIONI Per la classe settima della licenza liceale europea GRAVITAZIONE UNIVERSALE E APPLICAZIONI Pe la classe settima della licenza liceale euopea A cua di Raffaele SANTORO INTRODUZIONE... LE LEGGI DI KEPLERO... LA LEGGE DI GRAVITAZIONE UNIVERSALE DI NEWTON...

Dettagli

Sorgenti del campo magnetico.

Sorgenti del campo magnetico. Sogenti del campo magnetico. n Campo magnetico podotto da una coente n ima legge elementae di Laplace n Legame campo elettico e magnetico Campo magnetico podotto da una coente n ima legge elementae di

Dettagli

La struttura stellare

La struttura stellare La stuttua stellae La stuttua stellae Una stella è una sfea di gas tenuta insieme dall auto gavità ed il cui collasso è impedito dalla pesenza di gadienti di pessione. Con ottima appossimazione una stella

Dettagli

F 1 F 2 F 3 F 4 F 5 F 6. Cosa è necessario per avere una rotazione?

F 1 F 2 F 3 F 4 F 5 F 6. Cosa è necessario per avere una rotazione? Cosa è necessaio pe avee una otazione? Supponiamo di vole uotae il sistema in figua intono al bullone, ovveo intono all asse veticale passante pe, usando foze nel piano oizzontale aventi tutte lo stesso

Dettagli

Lezione 3. Applicazioni della Legge di Gauss

Lezione 3. Applicazioni della Legge di Gauss Applicazioni della Legge di Gauss Lezione 3 Guscio sfeico di aggio con caica totale distibuita unifomemente sulla supeficie. immetia sfeica, dipende solo da supeficie sfeica di aggio

Dettagli

Appunti su argomenti monografici per il corso di FM1 Prof. Pierluigi Contucci. Gravità e Teorema di Gauss

Appunti su argomenti monografici per il corso di FM1 Prof. Pierluigi Contucci. Gravità e Teorema di Gauss 1 Appunti su agomenti monogafici pe il coso di FM1 Pof. Pieluigi Contucci Gavità e Teoema di Gauss Vogliamo dimostae, a patie dalla legge di gavitazione univesale che il campo gavitazionale geneato da

Dettagli

Facoltà di Ingegneria

Facoltà di Ingegneria Facoltà di Ingegneia Poa in Itinee di Fisica I (a. a. 004-005) 6 Noebe 004 COPITO C Esecizio n. 1 Un copo di assa è appoggiato su di un piano oizzontale scabo, con coefficiente di attito dinaico µ d. Coe

Dettagli

CAMPI CONSERVATIVI. 1) Definizioni generali

CAMPI CONSERVATIVI. 1) Definizioni generali CAMI CONSERVATIVI ) Definizioni geneali e gli sviluppi del nosto studio conviene fin da oa genealizzae quanto già visto, guadagnandoci anche in chiaezza. Ci sono gosse diffeenze ta foze coe quella di gavità

Dettagli

AZIONE A DISTANZA E TEORIA DI CAMPO (1)

AZIONE A DISTANZA E TEORIA DI CAMPO (1) Il campo elettico AZION A DITANZA TOIA DI CAMPO () Come fanno due caiche elettiche ad inteagie fa di loo? All inizio del 9 si sono confontate due ipotesi:.le caiche si scambiano dei messaggei e uindi si

Dettagli

Nome..Cognome. classe 5D 29 Novembre VERIFICA di FISICA: Elettrostatica Domande

Nome..Cognome. classe 5D 29 Novembre VERIFICA di FISICA: Elettrostatica Domande Nome..ognome. classe 5 9 Novembe 8 RIFI di FISI: lettostatica omande ) ai la definizione di flusso di un campo vettoiale attaveso una supeficie. nuncia il teoema di Gauss pe il campo elettico (senza dimostalo)

Dettagli

Problema generale dell elettrostatica

Problema generale dell elettrostatica Poblema geneale dell elettostatica Deteminae il campo elettico in tutto lo spazio uando pe M conduttoi sono fissati i potenziali e pe i imanenti N sono note le caiche possedute Nello spazio esteno ai conduttoi

Dettagli

qq r Elettrostatica Legge di Coulomb permette di calcolare la forza che si esercita tra due particelle cariche.

qq r Elettrostatica Legge di Coulomb permette di calcolare la forza che si esercita tra due particelle cariche. lettostatica La mateia è costituita da atomi. Gli atomi sono fomati da un nucleo, contenete paticelle neute (neutoni) e paticelle caiche positivamente (potoni). Intono al nucleo ci sono paticelle caiche

Dettagli

Facoltà di Ingegneria 2 a prova in itinere di Fisica II Compito A

Facoltà di Ingegneria 2 a prova in itinere di Fisica II Compito A Facoltà di ngegneia a pova in itinee di Fiica.6.5 Copito C 9 Cotanti: ε = 8,85, µ 4 = π elettone: = 9. kg, e =.6 C e N Eecizio n. Un olenoide ettilineo di lunghezza 5 c, a ezione cicolae di aggio c, è

Dettagli

L = F s cosα = r F r s

L = F s cosα = r F r s LVORO Se su un copo agisce una foza F, il lavoo compiuto dalla foza pe uno spostamento s è (podotto scalae di due vettoi): L = F s cosα = F s F α s LVORO L unità di misua del lavoo nel S.I. si chiama Joule:

Dettagli

Fondamenti di Gravitazione

Fondamenti di Gravitazione Fondamenti di Gavitazione Intoduzione all Astofisica AA 205/206 Pof. Alessando Maconi Dipatimento di Fisica e Astonomia Univesità di Fienze Dispense e pesentazioni disponibili all indiizzo http://www.aceti.asto.it/

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE

CORSO DI LAUREA IN SCIENZE BIOLOGICHE RS DI LURE IN SIENZE BILGIE Pova di isica del 17 aio 6 Giustiicae il pocediento seuito, sostituie alla ine i valoi nueici, non dienticae le unità di isua,scivee in odo chiao. 1 Un poiettile di si ea in

Dettagli

Rotazioni in Astrofisica

Rotazioni in Astrofisica Rotazioni in Astofisica Paolo de Benadis Dipatimento di Fisica, La Sapienza 25/11/2011 Le leggi che avete visto in azione in laboatoio Funzionano anche nello spazio, ed in galassie lontanissime, nello

Dettagli

Potenziale elettrostatico e lavoro. Potenziale elettrostatico Energia potenziale elettrostatica Esempi Moto di una carica in un potenziale e.s.

Potenziale elettrostatico e lavoro. Potenziale elettrostatico Energia potenziale elettrostatica Esempi Moto di una carica in un potenziale e.s. Potenziale elettostatico e lavoo Potenziale elettostatico Enegia potenziale elettostatica Esempi Moto di una caica in un potenziale e.s. Potenziale elettostatico Campo e.s. geneato da una caica puntifome

Dettagli

I 0 Principio o legge d inerzia: un corpo non soggetto ad alcuna sollecitazione esterna mantiene il suo stato di quiete o di moto rettilineo uniforme

I 0 Principio o legge d inerzia: un corpo non soggetto ad alcuna sollecitazione esterna mantiene il suo stato di quiete o di moto rettilineo uniforme Le leggi Newtoniane del moto Le foze sono vettoi I 0 Pincipio o legge d inezia: un copo non soggetto ad alcuna sollecitazione estena mantiene il suo stato di quiete o di moto ettilineo unifome Moto acceleato:

Dettagli

Un punto di vista euristico relativo alla evoluzione del Sistema Solare Convegno Mathesis

Un punto di vista euristico relativo alla evoluzione del Sistema Solare Convegno Mathesis 1 Un punto di vista euistico elativo alla evoluzione del Sistema Solae Paolo Allievi Albeto Totta Convegno Mathesis Tento,3,4 Novembe 006 Ipotesi di base: ogni copo emette natualmente e continuamente enegia

Dettagli

E, ds. - Flusso totale uscente dalla superficie chiusa S: è la somma di tutti i flussi elementari, al tendere a zero delle aree infinitesime: r )

E, ds. - Flusso totale uscente dalla superficie chiusa S: è la somma di tutti i flussi elementari, al tendere a zero delle aree infinitesime: r ) Flusso del campo elettico e legge di Gauss. - Si definisce supeficie gaussiana una ipotetica supeficie S chiusa, che contiene un volume V. - La legge di Gauss mette in elazione i valoi dei campi elettici

Dettagli

Determinare la massa dei corpi del Sistema Solare

Determinare la massa dei corpi del Sistema Solare Deteinae la assa dei copi del istea olae Daniele Gaspai La deteinazione della assa dei copi celesti è una delle isuazioni in assoluto più difficili da effettuae, non tanto pe difficoltà teoiche, quanto

Dettagli

Esercizi di Statica. Esercitazioni di Fisica LA per ingegneri - A.A

Esercizi di Statica. Esercitazioni di Fisica LA per ingegneri - A.A Esecizio 1 Esecizi di Statica Esecitazioni di Fisica LA pe ingegnei - A.A. 2004-2005 Un punto ateiale di assa = 0.1 kg (vedi FIG.1) é situato all esteitá di una sbaetta indefoabile di peso tascuabile e

Dettagli

Macchina di Atwood. Serve a studiare i moti accelerati nel campo gravitazionale terrestre variando a piacimento l accelerazione di gravità g.

Macchina di Atwood. Serve a studiare i moti accelerati nel campo gravitazionale terrestre variando a piacimento l accelerazione di gravità g. acchina di Atwood E costituita da due asse attacate l una all alta da una fune ideale (inestendibile e di assa tascuabile) e sospese taite una caucola anch essa ideale (attito e assa tascuabili). Seve

Dettagli

Fisica Generale A. 9. Forze Inerziali. Cambiamento di Sistema di Riferimento. SdR in Moto Traslatorio Rettilineo Uniforme (II)

Fisica Generale A. 9. Forze Inerziali. Cambiamento di Sistema di Riferimento. SdR in Moto Traslatorio Rettilineo Uniforme (II) isica Geneale A 9. oze Ineziali http://campus.cib.unibo.it/2429/ ctobe 21, 2010 ambiamento di istema di ifeimento ome cambia la descizione del moto passando da un d a un alto? In paticolae, come cambia

Dettagli

AI VERTICI DI UN QUADRATO DI LATO 2L SONO POSTE 4 CARICHE UGUALI Q. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE.

AI VERTICI DI UN QUADRATO DI LATO 2L SONO POSTE 4 CARICHE UGUALI Q. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE. ESERCIZIO 1 AI VERTICI DI UN UADRATO DI LATO SONO POSTE 4 CARICHE UGUALI. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE. 4 caiche uguali sono poste ai vetiti di un quadato. L asse di un quadato

Dettagli

I principi della dinamica ed il concetto di massa e di forza. Le forze nascono da interazioni tra corpi Questo però non è sempre vero!

I principi della dinamica ed il concetto di massa e di forza. Le forze nascono da interazioni tra corpi Questo però non è sempre vero! Lezione III 1 I pincipi della dinamica ed il concetto di massa e di foza Le foze sono la causa del cambiamento nel moto dei copi. In geneale noi associamo all azione di una foza la pesenza di un alto copo

Dettagli

effettuato una rotazione di 60 ; c) la velocità angolare quando il sistema ha effettuato una rotazione di 180.

effettuato una rotazione di 60 ; c) la velocità angolare quando il sistema ha effettuato una rotazione di 180. CORPO RIGIDO EX Un pofilo igido è costituito da un tatto ettileo AB e da una semiciconfeenza di aggio R=0cm come figua. Dal punto A viene lanciata una moneta di aggio =cm. Calcolae la mima velocità che

Dettagli

4. DINAMICA. I tre principi della dinamica per un corpo puntiforme (detto anche punto materiale o particella) sono:

4. DINAMICA. I tre principi della dinamica per un corpo puntiforme (detto anche punto materiale o particella) sono: 4.1 Pincipi della dinamica 4. DINAMICA I te pincipi della dinamica pe un copo puntifome (detto anche punto mateiale o paticella) sono: 1) pincipio di intezia di Galilei; 2) legge dinamica di Newton; 3)

Dettagli

CENTRO DI MASSA. Il centro di massa C divide il segmento AB in parti inversamente proporzionali alle masse: AC. x C = m A x A + m B x B.

CENTRO DI MASSA. Il centro di massa C divide il segmento AB in parti inversamente proporzionali alle masse: AC. x C = m A x A + m B x B. Due paticelle: CENTRO DI MASSA 0 A m A A C m B B B C Il cento di massa C divide il segmento AB in pati invesamente popozionali alle masse: AC CB = m B m A C A B C = m B m A m A C m A A = m B B m B C (

Dettagli

Fisica II Secondo Appello - 7/2/2008

Fisica II Secondo Appello - 7/2/2008 Fisica II Secondo Appello - 7/2/2008 Chi ecupea il pimo compitino fa il pimo esecizio in due oe Chi ecupea il secondo compitino fa gli ultimi due esecizi in due oe Chi non ecupea fa le pime 4 domande del

Dettagli

Energia potenziale elettrica

Energia potenziale elettrica Enegia potenziale elettica L ultima ossevazione del capitolo pecedente iguadava le analogie e le diffeenze ta il campo elettico e il campo gavitazionale pendendo in esame la foza di Coulomb e la legge

Dettagli

Richiami di Fisica Generale

Richiami di Fisica Generale Richiami di Fisica Geneale Slide 1 Caica elettica (I) La caica elettica (q) è la popietà delle paticelle sensibili alla foza (inteazione) elettomagnetica, così come la massa (o caica) gavitazionale (m)

Dettagli

SELEZIONE DI ESERCIZI DI ELETTROSTATICA.

SELEZIONE DI ESERCIZI DI ELETTROSTATICA. Fisica geneale II, a.a. 13/14 SELEZIONE DI ESEIZI DI ELETTOSTATIA..1. Un pocesso elettolitico divide 1.3 mg di Nal (massa di una mole = 59 g) in Na + e l. Le caiche positive vengono allontanate da quelle

Dettagli

Fenomeni elettrici. I primordi

Fenomeni elettrici. I primordi enomeni elettici. I pimodi già gli antichi Geci ossevaono fenomeni di «elettizzazione», ad es. dell amba «ελεκτρον» Questi studi fuono ipesi in modo sistematico dagli «eletticisti» del XVIII- La mateia

Dettagli

Attività didattica Determinazione della massa di Giove tramite le osservazioni dei satelliti galileiani

Attività didattica Determinazione della massa di Giove tramite le osservazioni dei satelliti galileiani Piazza. Ungaetti, 1 81100 Caseta tel. 08/44580 - www.planetaiodicaseta.it, info@planetaiodicaseta.it Attività didattica Deteminazione della massa di iove tamite le ossevazioni dei satelliti galileiani

Dettagli

Equilibrio dei corpi rigidi- Statica

Equilibrio dei corpi rigidi- Statica Equilibio dei copi igidi- Statica Ci ifeiamo solo a situazioni paticolai in cui i copi igidi non si muovono in nessun modo: ne taslano ( a 0 ), ne uotano ( 0 ), ossia sono femi in un oppotuno sistema di

Dettagli

Gravitazione Universale 2/20

Gravitazione Universale 2/20 Gavitazione Univesale /0 GRAVITAZIONE UNIVERSALE. La filosofia antica. La concezione filosofica dominante pima del 600 ea che i moti dei copi celesti fosseo pefetti, incouttibili ed eteni mente quelli

Dettagli

DISTRIBUZIONE DELLA CARICA NEI CONDUTTORI

DISTRIBUZIONE DELLA CARICA NEI CONDUTTORI 1 DISTRIBUZIONE DELLA CARICA NEI CONDUTTORI I copi conduttoi sono caatteizzati dal fatto di avee moltissimi elettoni libei di muovesi (elettoni di conduzione). Cosa accade se un copo conduttoe viene caicato

Dettagli

CASO 2 CASO 1. δ Lo. e N. δ Lo. e L. PROBLEMA A Corso di Fisica 1- Prima provetta- 22 maggio 2004 Facoltà di Ingegneria dell Università di Trento

CASO 2 CASO 1. δ Lo. e N. δ Lo. e L. PROBLEMA A Corso di Fisica 1- Prima provetta- 22 maggio 2004 Facoltà di Ingegneria dell Università di Trento PROBEMA A Coso di Fisica 1- Pima povetta- maggio 004 Facoltà di Ingegneia dell Univesità di Tento Un anello di massa m= 70 g, assimilabile ad un copo puntifome, è infilato in una asta igida liscia di lunghezza

Dettagli

Unità Didattica N 10 : I momenti delle forze

Unità Didattica N 10 : I momenti delle forze Unità didattica N 10 I momenti delle foze 1 Unità Didattica N 10 : I momenti delle foze 01) omento di una foza ispetto ad un punto 02) omento isultante di un sistema di foze 03) omento di una coppia di

Dettagli

A.A. 2009/ Appello del 15 giugno 2010

A.A. 2009/ Appello del 15 giugno 2010 Fisica I pe Ing. Elettonica e Fisica pe Ing. Infomatica A.A. 29/21 - Appello del 15 giugno 21 Soluzione del poblema n. 1a 1. All uscita della guida, nel punto D, il copo compie un moto paabolico con velocità

Dettagli

Il parametro G che compare nella formula è una costante di proporzionalità che vale

Il parametro G che compare nella formula è una costante di proporzionalità che vale La legge di gaitazione unieale La legge di gaitazione unieale La legge di gaitazione unieale enne foulata nel 78 da Iaac Newton (4-77) Oeando i oti di pianeti e atelliti nel itea olae, Newton aanzò l ipotei

Dettagli

Lezione mecc n.13 pag 1

Lezione mecc n.13 pag 1 Lezione mecc n.3 pag Agomenti di questa lezione Intoduzione alla dinamica dei sistemi Definizione di cento di massa Foze estene ed intene ad un sistema Quantità di moto e sue vaiazioni (pima equazione

Dettagli

Legge di Gauss. Superficie Σ immersa nel campo elettrostatico generato da una carica q. da! r 2. d!(! E) "! E #! n da = q r 2! er!!

Legge di Gauss. Superficie Σ immersa nel campo elettrostatico generato da una carica q. da! r 2. d!(! E) ! E #! n da = q r 2! er!! Legge di Gauss Legge di Gauss in foma integale e locale Esempi Equazioni di Poisson e di Laplace Poblemi di Diichlet e Neumann Poblema geneale dell elettostatica Legge di Gauss Supeficie Σ immesa nel campo

Dettagli

Vista dall alto. Vista laterale. a n. Centro della traiettoria

Vista dall alto. Vista laterale. a n. Centro della traiettoria I poblema Un ciclista pedala su una pista cicolae di aggio 5 m alla velocità costante di 3.4 km/h. La massa complessiva del ciclista e della bicicletta è 85.0 kg. Tascuando la esistenza dell aia calcolae

Dettagli

GM, si ottiene 0 r a

GM, si ottiene 0 r a Esecitazione n FIICA PEIMENALE (CL In Edi) (Pof Gabiele Faa) AA / Gaitazione i iaini di scaae un tunnel passante pe il cento della ea e colleante due punti diaetalente opposti della supeficie teeste upponendo

Dettagli

Gravitazione Universale

Gravitazione Universale Gavitazione Univesale Liceo Ginnasio Statale S.M. Legnani Anno Scolastico 2007/08 Classe 3B IndiizzoClassico Pof.Robeto Squellati 1 Le leggi di Kepleo Ossevando la posizione di Mate ispetto alle alte stelle,

Dettagli

IL CAMPO ELETTROMAGNETICO DIPENDENTE DAL TEMPO

IL CAMPO ELETTROMAGNETICO DIPENDENTE DAL TEMPO IL CAMPO ELETTROMAGNETICO DIPENDENTE DAL TEMPO Legge di Faaday-Heny (o dell induzione elettomagnetica); Applicazioni della legge dell induzione e.m., caso della spia otante; Il fenomeno dell autoinduzione

Dettagli

ISTITUTO D ISTRUZIONE SECONDARIA SUPERIORE E. FERDINANDO MESAGNE INDIRIZZI SCIENTIFICO-COMMERCIALE-COREUTICO

ISTITUTO D ISTRUZIONE SECONDARIA SUPERIORE E. FERDINANDO MESAGNE INDIRIZZI SCIENTIFICO-COMMERCIALE-COREUTICO ISTITUTO D ISTRUZION SONDARIA SUPRIOR. FRDINANDO MSAGN INDIRIZZI SINTIFIO-OMMRIAL-ORUTIO ANNO SOLASTIO LASS.... MATRIA FISIA DONT MILIZIA ROBRTO A VRIFIA SRITTA SU ARIA LTTRIA AMPO LTTRIO ALUNNO/A.. DATA...

Dettagli

Lo schema seguente spiega come passare da una equazione all altra e al grafico della circonferenza. Svolgere i calcoli.

Lo schema seguente spiega come passare da una equazione all altra e al grafico della circonferenza. Svolgere i calcoli. D4. Ciconfeenza D4.1 Definizione di ciconfeenza come luogo di punti Definizione: una ciconfeenza è fomata dai punti equidistanti da un punto detto cento. La distanza (costante) è detta aggio. Ci sono due

Dettagli

Effetto delle Punte e problema dell elettrostatica

Effetto delle Punte e problema dell elettrostatica Effetto delle Punte e poblema dell elettostatica 4 4 R Q R Q πε πε / / R R R R E E Effetto delle punte E L effetto paafulmine E E E R R Nel caso del paafulmine, R 6 Km è il aggio di cuvatua della supeficie

Dettagli

Moto di puro rotolamento

Moto di puro rotolamento oto-taslaione di un copo igido di seione cicolae (disco,cilindo,sfea) su di un piano, pe il quale il punto (o i punti) di contatto ta il copo ed il piano è femo ispetto a questo ( non vi è stisciamento

Dettagli

FISICA GENERALE T-A 23 luglio 2012 prof. spighi (CdL ingegneria Energetica)

FISICA GENERALE T-A 23 luglio 2012 prof. spighi (CdL ingegneria Energetica) ISICA GENEAE T-A 3 luglio 1 pof. spighi (Cd ingegneia Enegetica) 1) Un punto ateiale si uove nello spazio secondo la seguente legge oaia: x( t) = t + 3 t; ( t) = t + 5; z( t) = t; deteinae: a) la velocità

Dettagli

Formulario di Fisica 1. Per studenti lavoratori di Ingegneria. AA

Formulario di Fisica 1. Per studenti lavoratori di Ingegneria. AA omulaio di isica. Pe studenti lavoatoi di Ingegneia. 006-007. Pate. Cinematica D. In un moto ettilineo (lungo l'asse x) si definisce x x x spostamento velocità media: v da cui x v t t tempo tascoso In

Dettagli

Interazioni di tipo elettrico

Interazioni di tipo elettrico INGGNRIA GSTIONAL coso di Fisica Geneale Pof.. Puddu Inteazioni di tipo elettico 1 L'elettizzazione Dei pimi semplici espeimenti foniono le caatteistiche di una popietà della mateia chiamata elettizzazione.

Dettagli

Campo magnetico, forza magnetica, momenti meccanici sui circuiti piani

Campo magnetico, forza magnetica, momenti meccanici sui circuiti piani Campo magnetico, foza magnetica, momenti meccanici sui cicuiti piani Esecizio 1 Un potone d enegia cinetica E k 6MeV enta in una egione di spazio in cui esiste un campo magnetico B1T otogonale al piano

Dettagli

Dinamica. [studio delle cause del moto: forze] La forza è una grandezza vettoriale: una trazione o spinta ha sempre

Dinamica. [studio delle cause del moto: forze] La forza è una grandezza vettoriale: una trazione o spinta ha sempre Dinamica [studio delle cause del moto: foze] Il temine foza nel senso comune indica una tazione o una spinta La foza è una gandezza vettoiale: una tazione o spinta ha sempe una intensità (il modulo) una

Dettagli

Cambiamento del Sistema di Riferimento

Cambiamento del Sistema di Riferimento Cambiamento del Sistema di Rifeimento Il moto dipende dal sistema di ifeimento dal quale viene ossevato: Un viaggiatoe seduto sul sedile di una caozza feoviaia non si muove ispetto al vagone Se ossevato

Dettagli

GRAVITAZIONE. F = G m 1m 2 d 2. 2.3 10 12 = 19 m. F S L = G m Sm L d 2 S L F T L = G m T m L d 2 T L. = G m Sm L S L. 20 kg 7.0 kg 18 2 = 2.

GRAVITAZIONE. F = G m 1m 2 d 2. 2.3 10 12 = 19 m. F S L = G m Sm L d 2 S L F T L = G m T m L d 2 T L. = G m Sm L S L. 20 kg 7.0 kg 18 2 = 2. GAVITAZIONE Esecizi svolti e discussi dal pof. Gianluigi Tivia scitto con Lyx - www.lyx.og. Legge di gavitazione Esecizio. Tovae la distanza che sepaa due copi puntifomi, con masse 5. kg e.4 kg, anché

Dettagli

Massa del neutrino e massa mancante dell universo

Massa del neutrino e massa mancante dell universo assa del neutino e massa mancante dell univeso Figua Andamento della velocità di otazione dei copi della via Lattea in funzione della distanza dal cento della galassia (linea continua). 1 kpc = 3 10 10

Dettagli

I.15. Il teorema di conservazione dell'energia nella meccanica classica

I.15. Il teorema di conservazione dell'energia nella meccanica classica L enegia meccanica: consevazione e non consevazione Consevazione dell enegia nel caso di foze costanti Consevazione dell enegia nel caso di sistemi obitanti I diagammi della enegia potenziale Quesiti di

Dettagli

Momenti. Momento di inerzia, momento di una forza, momento angolare

Momenti. Momento di inerzia, momento di una forza, momento angolare Momenti Momento di inezia, momento di una foza, momento angolae Conce&o di Momento I momenti in fisica sono cose molto divese fa loo. Cetamente non hanno sempe la stessa unità di misua; ed avemo cua di

Dettagli

Momenti. Momento di inerzia, momento di una forza, momento angolare

Momenti. Momento di inerzia, momento di una forza, momento angolare Momenti Momento di inezia, momento di una foza, momento angolae Conce&o di Momento I momenti in fisica sono cose molto divese fa loo. Cetamente non hanno sempe la stessa unità di misua; ed avemo cua di

Dettagli

per Scienze Geologiche prof. Maurizio Spurio

per Scienze Geologiche prof. Maurizio Spurio pe Scienze Geologiche pof. Mauizio Spuio mauizio.spuio@unibo.it 1 Il Metodo Scientifico La stoia della Scienza modena inizia in Gecia: nascita della logica, della filosofia, della matematica e pimi tentativi

Dettagli

Momenti. Momento di una forza, momento di inerzia, momento angolare

Momenti. Momento di una forza, momento di inerzia, momento angolare Momenti Momento di una foza, momento di inezia, momento angolae Momento di una foza Supponiamo di avee una pota vista dall alto e supponiamo che sia incadinata su un lato, diciamo in A. A Se applicassimo

Dettagli

Università degli Studi di Milano. Corso di Laurea in Informatica. Anno accademico 2013/14, Laurea Triennale FISICA. Lezione n.

Università degli Studi di Milano. Corso di Laurea in Informatica. Anno accademico 2013/14, Laurea Triennale FISICA. Lezione n. Univesità degli Studi di Milano Coso di Lauea in Infomatica Anno accademico 3/4, Lauea Tiennale FISICA Lezione n. (4 oe) Foze elettiche, campi e potenziale elettostatico Flavia Maia Goppi (A-G) & Calo

Dettagli

SESTA LEZIONE: campo magnetico, forza magnetica, momenti meccanici sui circuiti piani

SESTA LEZIONE: campo magnetico, forza magnetica, momenti meccanici sui circuiti piani A. Chiodoni esecizi di Fisica II SESTA LEZIONE: campo magnetico, foza magnetica, momenti meccanici sui cicuiti piani Esecizio 1 Un potone d enegia cinetica E k 6MeV enta in una egione di spazio in cui

Dettagli