Misure elettriche. Scopo: misurare il comportamento elettrico di resistenze e condensatori misurare la costante dielettrica di alcuni materiali

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Misure elettriche. Scopo: misurare il comportamento elettrico di resistenze e condensatori misurare la costante dielettrica di alcuni materiali"

Transcript

1 Misure elettriche Scopo: misurare il comportamento elettrico di resistenze e condensatori misurare la costante dielettrica di alcuni materiali Consideriamo un circuito elettrico in AC con una resistenza ed un condensatore, applichiamo una tensione e consideriamo la corrente che passa. Attraverso R si ha dissipazione di una una parte del campo elettrico: gli elettroni vengono frenati e si produce calore. Attraverso C si ha accumulo di della parte elettrica del campo elettromagnetico. Questa energia può essere poi restituita. Come definiamo possiamo definire attraverso una logica formale sviluppata negli anni 30: Proprietà di accumulare il campo V(jωt)/I(jωt) La parte immaginaria dell impedenza si chiama reattanza X=1/ωC dove C= capacità del condensatore 1

2 Attraverso misure di impedenza in corrente alternata possiamo determinare i parametri di un condensatore Per definizione di Capacità e di quantità di carica si può scrivere: V = Q/C = Idt/C e differenziando : I = C dv/dt che esprime l intensità di corrente attraverso il condensatore. Corrente AC e DC! Se si usa una tensione sinusoidale del tipo V = V 0 sin(ωt), ω=2πf, allora I = C V 0 ω cos(ωt), quindi si deduce che la corrente è sfasata rispetto alla tensione di π/2, almeno nel caso ideale privo di perdite. In un dielettrico reale esiste una perdita di potenza dovuta all anelasticità della materia per cui la deformazione si ritarda rispetto allo sforzo. 2

3 I condensatori I condensatori sono formati da un materiale isolante tra due piastre conduttive. Sulle piastre si accumula la carica. La corrente può passare attraverso il materiale isolante per il fenomeno della polarizzazione: Elettronica Ionica Per orientamento POLARIZZAZIONE Le cariche (nuvole elettroniche, ioni o dipoli) all interno della materia oscillano in maniera elastica come delle molle alla frequenza del campo elettrico applicato. 3

4 La capacità del condensatore (Farad), cioè l attitudine a accumulare campo dipende dalla configurazione geometrica e dalla natura del dielettrico. La natura del dielettrico dipende dalla costante dielettrica, che è una proprietà specifica di ogni materiale C=εS/l Quindi per misurare la costante dielettrica di un materiale, si può usarlo come dielettrico di un condensatore, inserirlo in un circuito AC e misurarne la capacità attraverso misure di impedenza. l A Dielettrico da misurare 4

5 Misura dell impedenza: si applica un potenziale sinusoidale di eccitazione AC di ± 5mV. si misura lo la corrente alternata in uscita e lo sfasamento del segnale. Il segnale di corrente in uscita viene analizzato come serie di Fourier dal computer. 5

6 Costante dielettrica relativa εr ε r = ε/ ε 0 ε 0 permeattività del vuoto = 8, Farad/cm ε r dei gas è circa uguale a 1, ε r dei solidi è maggiore di 1: 5-10 per i solidi ionici fino a nei materiali ferroelettrici come il titanato di bario. Dipende dal grado di polarizzazione che può avvenire nel materiale. In genere cresce leggermente con la temperatura e diminuisce al crescere della frequenza La costante dielettrica quindi caratterizza la densità di energia elettrica che, per effetto del campo si può accumulare nel dielettrico a cui sia applicata una tensione alternata. La costante dielettrica è costante per tutte le frequenze del campo elettrico? Polarizzazione: spostamento del baricentro dellle cariche positive e negative Elettronica τ sec Atomica τ sec Dipolare τ sec Ionica o interfacciale τ sec Tempo di rilassamento: tempo impiegato dai dipoli ad invertire la loro orientazione quando il campo si inverte. Non a tutte le frequenze di oscillazione del campo, infatti, saranno attivi tutti e 4 meccanismi 6

7 PRESENTAZIONE DEI DATI Diagramma di Nyquist: L impedenza è una grandezza complessa, formata da una parte reale ed una immaginaria. Z(ω)=Z 0 (cosφ+jsenφ) jsenφ NYQUIST cosφ Un altro metodo per rappresentare lo spettro d impedenza è il diagramma di Bode: 7

8 I componenti normalmente usati per interpretare i dati sperimentali sono: resistenze V=RI Z=R induttanze V=L di/dt Z=jωL capacità I=C dv/dt Z=1/jωC questi componenti portano ognuno un contributo di impedenza e si riferiscono in genere ognuno ad un fenomeno fisico ben preciso. I contributi si possono poi sommare in serie o in parallelo per formare l impedenza del circuito Quindi in un caso reale abbiamo molti effetti contemporaneamente, ognuno contribuisce alla misura reale con una sua impedenza I circuiti si possono sommare in serie: O in parallelo: 8

9 Comportamento di alcuni componenti elettrici Resistenze Condensatori Induttanze Circuito RC RESISTENZA Z = R (non dipende dalla frequenza) Z = R = 1000Ω Z = 0 θ (sfasamento del segnale) = Z'' Z' Z theta

10 CONDENSATORE Z = 1/ (ωc) (dipende dalla frequenza) Z = 0 Z = 1/ (iωc) C=0.001 F θ (sfasamento del segnale) = - π/ Z'' Z' Z theta INDUTTANZA Z = ωl (dipende dalla frequenza) Z = 0 Z = iωl L=0.001 H θ (sfasamento del segnale) = π/2-500 Z'' Z' Z theta 10

11 Z'' Z' Circuito RC Z (iω)=z + iz C=0.001 F R=100 Ω basse frequenze Z 0, Z R alte frequenze Z 0, Z Rinterna ( 0) A basse frequenze si comporta come una resistenza pura, ad alte frequenze prevale la componente capacitiva. θ (sfasamento del segnale) = dipende dalla frequenza Z theta Si può ricavare la costante dielettrica del materiale esaminato dalla misura di capacità, che può essere interessante nel caso di sintesi di materiali innovativi 11

12 Costanti dielettriche di alcuni materiali Aria Acqua Vetro comune Plexiglas Mica polistirolo ceramica Alumina Bakelite mylar Cement (Plain ) Epoxy Resin (Cast ) Ferrous Oxide (60 F) Graphite teflon Mezzo Costante dielettrica relativa e r ca , Dielettrici non ideali o non omogenei. Al posto della capacità si usa un elemento virtuale molto simile (con le stesse dimensioni): il constant phase element CPE che ha una espressione matematica più complicata per correlare lo stimolo alla risposta, ma rappresenta bene nella realtà la distorsione delle curve di Nyquist e Bode 12

ing. Patrizia Ferrara I Condensatori

ing. Patrizia Ferrara I Condensatori I Condensatori Definizione Il condensatore è un componente elettrico caratterizzato da un ben determinato valore di capacità Struttura I condensatori sono in genere strutturati da 2 superfici parallele

Dettagli

ELETTRONICA : Compiti delle vacanze. Nome e Cognome:.

ELETTRONICA : Compiti delle vacanze. Nome e Cognome:. POR FSE 04-00 PARTE : LEGGI I SEGUENTI CAPITOLI DEL LIBRO DEL LIBRO L ENERGIA ELETTRICA, E RISPONDI ALLE DOMANDE. Capitoli 0- del libro L energia elettrica.. Che cosa è il magnetismo?e cosa si intende

Dettagli

Note sui circuiti a corrente alternata

Note sui circuiti a corrente alternata Note sui circuiti a corrente alternata Versione provvisoria. Novembre 018 1 Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it Indice 1 Corrente alternata 1.1 Circuito

Dettagli

1. RELAZIONI TENSIONE-CORRENTE NEL DOMINIO DEL TEMPO. i(t) = v(t) / R = V M / R sen ωt i(t) = I M sen ωt I(t) = I M e jωt

1. RELAZIONI TENSIONE-CORRENTE NEL DOMINIO DEL TEMPO. i(t) = v(t) / R = V M / R sen ωt i(t) = I M sen ωt I(t) = I M e jωt 1. RELAZIONI TENSIONE-CORRENTE NEL DOMINIO DEL TEMPO i(t) Tensione applicata : v(t) v(t) = V M sen ωt V(t) = V M e jωt : vettore ruotante che genera la sinusoide RESISTORE i(t) = v(t) / R = V M / R sen

Dettagli

Componenti di un circuito elettrico in regime sinusoidale

Componenti di un circuito elettrico in regime sinusoidale omponenti di un circuito elettrico in regime sinusoidale omponenti di un circuito elettrico in regime sinusoidale Introduzione: a corrente elettrica, nel suo passaggio all interno di un conduttore, produce

Dettagli

LA CORRENTE ALTERNATA

LA CORRENTE ALTERNATA CAPITOLO 39 LA COENTE ALTENATA L ALTENATOE È la legge di Faraday-Neumann, perché in linea di principio l alternatore è costituito da una spira che viene fatta ruotare all interno di un campo magnetico.

Dettagli

Metodologie Elettromagnetiche per la Geofisica. Proprietà elettromagnetiche di suoli e rocce (I)

Metodologie Elettromagnetiche per la Geofisica. Proprietà elettromagnetiche di suoli e rocce (I) Metodologie Elettromagnetiche per la Geofisica Proprietà elettromagnetiche di suoli e rocce (I) Anno Accademico 29/21 Docente:Elena Pettinelli Proprietà dei dielettrici I dielettrici ideali sono materiali

Dettagli

Ruggero Caravita, Giacomo Guarnieri Gruppo Gi101 Circuiti 1. Circuiti 1. Relazione sperimentale A P P A R A T O S P E R I M E N T A L E

Ruggero Caravita, Giacomo Guarnieri Gruppo Gi101 Circuiti 1. Circuiti 1. Relazione sperimentale A P P A R A T O S P E R I M E N T A L E Relazione sperimentale Scopo dell esperienza è quella di determinare il valore di un set di resistenze incognite mediante la tecnica del ponte di Wheatstone. Sono inoltre indagate le caratteristiche di

Dettagli

Metodologie Elettromagnetiche per la geofisica. Proprietà elettromagnetiche di suoli e rocce (II)

Metodologie Elettromagnetiche per la geofisica. Proprietà elettromagnetiche di suoli e rocce (II) Metodologie Elettromagnetiche per la geofisica Proprietà elettromagnetiche di suoli e rocce (II) Anno Accademico 2009/2010 Docente:Elena Pettinelli Dielettrici e conduttori σ s ε e = ε + ω σ è la conducibilità

Dettagli

. Il modulo è I R = = A. La potenza media è 1 VR 2

. Il modulo è I R = = A. La potenza media è 1 VR 2 0.4 La corrente nel resistore vale 0. l modulo è A. La potenza media è 0 W 0.7 l circuito simbolico è mostrato di seguito. La potenza viene dissipata solo nel resistore. 0, 4 - La corrente è 4 4 0, 0,

Dettagli

C = Q/V = 4π ε R. . Conseguentemente

C = Q/V = 4π ε R. . Conseguentemente Capacità di un conduttore sferico Per una sfera conduttrice di raggio R isolata e caricata con carica Q, i punti della superficie sono equipotenziali Q 1 Q V= 4π ε R Definiamo Capacità il rapporto Q/V

Dettagli

ITIS G. CARDANO - PAVIA A.S. 2013/2014. Il condensatore. Presentazione di: Sacchi Riccardo Setti Cristian

ITIS G. CARDANO - PAVIA A.S. 2013/2014. Il condensatore. Presentazione di: Sacchi Riccardo Setti Cristian ITIS G. CARDANO - PAVIA A.S. 2013/2014 Il condensatore Presentazione di: Sacchi Riccardo Setti Cristian Il condensatore Un condensatore elettrico è un elemento collegabile in un circuito in due bipoli

Dettagli

Misure con circuiti elettrici

Misure con circuiti elettrici Misure con circuiti elettrici Samuele Straulino Laboratorio di Fisica II - S.S.I.S. 2008 2009 http://hep.fi.infn.it/ol/samuele/dida.php Descriverò in particolare questi aspetti: comportamento a regime

Dettagli

. Il modulo è I R = = A. La potenza media è 1 VR 2

. Il modulo è I R = = A. La potenza media è 1 VR 2 0.4 La corrente nel resistore vale 0. l modulo è A. La potenza media è P 0 W 0.7 l circuito simbolico è mostrato di seguito. La potenza viene dissipata solo nel resistore. 0, 4 - La corrente è 4 4 0, 0,

Dettagli

R = 2.2 kω / 100 kω Tensione di alimentazione picco-picco ε = 2 V (R int = 600 Ω)

R = 2.2 kω / 100 kω Tensione di alimentazione picco-picco ε = 2 V (R int = 600 Ω) Strumentazione: oscilloscopio, generatore di forme d onda (utilizzato con onde sinusoidali), 2 sonde, basetta, componenti R,L,C Circuito da realizzare: L = 2 H (±10%) con resistenza in continua di R L

Dettagli

FISICA GENERALE II CdL in Scienza dei Materiali a.a. 2018/2019 Prof. Roberto Francini Programma del corso:

FISICA GENERALE II CdL in Scienza dei Materiali a.a. 2018/2019 Prof. Roberto Francini Programma del corso: FISICA GENERALE II CdL in Scienza dei Materiali a.a. 2018/2019 Prof. Roberto Francini Programma del corso: - Proprietà generali delle cariche elettriche - Cariche puntiformi e distribuzioni continue di

Dettagli

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G.

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G. L INDUZIONE ELETTROMAGNETICA V Scientifico Prof.ssa Delfino M. G. INDUZIONE E ONDE ELETTROMAGNETICHE 1. Il flusso del vettore B 2. La legge di Faraday-Neumann-Lenz 3. Induttanza e autoinduzione 4. I circuiti

Dettagli

Circuiti in corrente alternata

Circuiti in corrente alternata Capitolo 2 Circuiti in corrente alternata 2.1 Generatori di corrente alternata Un generatore di corrente alternata è un generatore in cui la differenza di potenziale in uscita varia in modo sinusoidale

Dettagli

Consideriamo ora circuiti in cui siano presenti più componenti. Circuito ohmico-induttivo R-L con resistenza e reattanza in serie.

Consideriamo ora circuiti in cui siano presenti più componenti. Circuito ohmico-induttivo R-L con resistenza e reattanza in serie. Circuiti RC ed RL Consideriamo ora circuiti in cui siano presenti più componenti. Circuito ohmico-induttivo R-L con resistenza e reattanza in serie. Figura A In figura vi è lo schema riferito ad un generatore

Dettagli

LEZIONE DI ELETTRONICA

LEZIONE DI ELETTRONICA LEZIONE DI ELETTRONICA Analisi dei circuiti lineari in regime sinusoidale 2 MODULO : Analisi dei circuiti lineari in regime sinusoidale PREMESSA L analisi dei sistemi elettrici lineari, in regime sinusoidale,

Dettagli

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici Complementi di Analisi per nformatica *** Capitolo 2 Numeri Complessi e Circuiti Elettrici Sergio Benenti Prima versione settembre 2013 Revisione settembre 2017? ndice 21 Circuito elettrico elementare

Dettagli

Molti ceramici sono sempre più utilizzati nel settore dell elettrotecnica e dell elettronica. Possono costituire il substrato isolante di dispositivi

Molti ceramici sono sempre più utilizzati nel settore dell elettrotecnica e dell elettronica. Possono costituire il substrato isolante di dispositivi Molti ceramici sono sempre più utilizzati nel settore dell elettrotecnica e dell elettronica. Possono costituire il substrato isolante di dispositivi elettrici o elettronici (quando la costante dielettrica

Dettagli

9.8 Con la LKT si scrive l equazione seguente: di (1) dt La costante di tempo èτ

9.8 Con la LKT si scrive l equazione seguente: di (1) dt La costante di tempo èτ 9.8 Con la LKT si scrive l equazione seguente: di L Ri cos( t) () dt La costante di tempo èτ L / R ms / 5s ; la soluzione della () è 5t i( t) Ke Acos(t θ ) () Sia A θ il fasore corrispondente alla risposta

Dettagli

CIRCUITI IN REGIME SINUSOIDALE

CIRCUITI IN REGIME SINUSOIDALE IUITI IN EGIME SINUSOIDALE 9.1. Nel circuito della figura il voltaggio alternato è V = V 0 cost con = 314 rad/s, V 0 = 311 V, L = 0.9 H, = 6.96 F. Se il fattore di potenza del circuito è pari a 0.98, la

Dettagli

44) Applicando una tensione di 100 V su una resistenza di 0,050 KΩ, quanto sarà la potenza dissipata a) 20W b) 200W c) 2W

44) Applicando una tensione di 100 V su una resistenza di 0,050 KΩ, quanto sarà la potenza dissipata a) 20W b) 200W c) 2W PROVA DI ESAME 20) Qual è la relazione che lega la lunghezza d onda [m] e la frequenza [Hz] di un onda elettromagnetica? a) λ= 3 * 10 8 / f b) λ= f /3 *10 8 c) λ= f * 3 x 10 8 37) Quali sono i dispositivi

Dettagli

Potenza in regime sinusoidale

Potenza in regime sinusoidale 26 Con riferimento alla convenzione dell utilizzatore, la potenza istantanea p(t) assorbita da un bipolo è sempre definita come prodotto tra tensione v(t) e corrente i(t): p(t) = v(t) i(t) Considerando

Dettagli

CONDENSATORI. Ricerca ed organizzazione appunti: Prof. ing. Angelo Bisceglia

CONDENSATORI. Ricerca ed organizzazione appunti: Prof. ing. Angelo Bisceglia CONDENSATORI Ricerca ed organizzazione appunti: Prof. ing. Angelo Bisceglia Dal punto di vista fisico, un condensatore è costituito da due superfici metalliche ( e quindi conduttrici ), dette armature,

Dettagli

Circuiti elettrici. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Circuiti elettrici. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico Circuiti elettrici Per muovere una carica tra due punti ci vuole un campo elettrico, quindi una differenza di potenziale (ddp) Se la carica si muove in un percorso chiuso (circuito) ho bisogno di un congegno

Dettagli

Fondamenti di Elettronica, Sez.1

Fondamenti di Elettronica, Sez.1 Fondamenti di Elettronica, Sez.1 Alessandra Flammini alessandra.flammini@unibs.it Ufficio 24 Dip. Ingegneria dell Informazione 030-3715627 Lunedì 16:30-18:30 Fondamenti di elettronica, A. Flammini, AA2018-2019

Dettagli

1) quali sono i metodi per elettrizzare un corpo?

1) quali sono i metodi per elettrizzare un corpo? 1) quali sono i metodi per elettrizzare un corpo? 2) Enuncia il principio di conservazione della carica e spiega il concetto di quantizzazione della carica 3) illustra il fenomeno di polarizzazione per

Dettagli

Lez.19 Rifasamento e risonanza. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 19 Pagina 1

Lez.19 Rifasamento e risonanza. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 19 Pagina 1 Lez.19 Rifasamento e risonanza Università di Napoli Federico II, CdL Ing. Meccanica, A.A. 2017-2018, Elettrotecnica. Lezione 19 Pagina 1 Rifasamento Nel trasporto dell energia elettrica lungo le reti di

Dettagli

Esercitazione 7 Dicembre 2012 Potenze e rifasamento monofase

Esercitazione 7 Dicembre 2012 Potenze e rifasamento monofase Esercitazione 7 Dicembre 0 Potenze e rifasamento monofase Esercizio Con riferimento al circuito riportato in Fig, calcolare la potenze attiva P e la potenza reattiva Q erogate dal generatore o R C o 0

Dettagli

condensatori2.notebook January 17, 2015

condensatori2.notebook January 17, 2015 Se in un conduttore neutro cavo inseriamo mediante un manico isolante una carica positiva q, questa richiama sulla parete interna del conduttore cariche negative, per un contributo complessivo pari a q.

Dettagli

Appunti di Fisica II

Appunti di Fisica II UNIVERSITÀ DEGLI STUDI DI ROMA TOR VERGATA CORSO DI LAUREA IN MATEMATICA Appunti di Fisica II Emanuele Santovetti 20 dicembre 2017 2 Indice 1 Campi elettrici 5 2 Onde elettromagnetiche 7 3 Circuiti in

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2016/2017

ISTITUTO ISTRUZIONE SUPERIORE L. EINAUDI ALBA ANNO SCOLASTICO 2016/2017 ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2016/2017 CLASSE 4 I Disciplina: Elettrotecnica ed Elettronica PROGETTAZIONE DIDATTICA ANNUALE Elaborata dai docenti: Linguanti Vincenzo,

Dettagli

R e R L. La soluzione per i(t) é quindi identica alla soluzione per Q(t) nel caso di un circuito RC, a meno delle dette sostituzioni:

R e R L. La soluzione per i(t) é quindi identica alla soluzione per Q(t) nel caso di un circuito RC, a meno delle dette sostituzioni: Circuiti L/LC Circuiti L La trattazione di un circuito L nel caso in cui venga utilizzato un generatore di tensione indipendente dal tempo é del tutto analoga alla trattazione di un circuito C, nelle stesse

Dettagli

cos( ωt + ϕ)= Re v t = V o e jωt cos ωt + ϕ vt ()=V o e jϕ che è un numero complesso costante, di modulo V O ed e jωt = cos ωt + j sinωt

cos( ωt + ϕ)= Re v t = V o e jωt cos ωt + ϕ vt ()=V o e jϕ che è un numero complesso costante, di modulo V O ed e jωt = cos ωt + j sinωt . METODO SIMBOLIO, O METODO DEI FASORI..Introduzione Questo metodo applicato a reti lineari permanenti consente di determinare la soluzione in regime sinusoidale solamente per quanto attiene il regime

Dettagli

Circuiti elettrici. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Circuiti elettrici. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico Circuiti elettrici Possiamo combinare molti oggetti già studiati per fare circolare corrente nel modo che ci conviene Possiamo usare condensatori e solenoidi Introdurremo anche generatori (i motori delle

Dettagli

CONDENSATORE ELETTRICO

CONDENSATORE ELETTRICO CONDENSATORE ELETTRICO Il condensatore è un dispositivo a due terminali, nella sua forma più semplice (condensatore piano), è costituito da due piastre conduttrici (armature) piane e parallele, provviste

Dettagli

I Decibel (db) sono un modo per esprimere rapporti. Un rapporto K può essere espresso in decibel (G)

I Decibel (db) sono un modo per esprimere rapporti. Un rapporto K può essere espresso in decibel (G) Uso dei decibel I Decibel (db) sono un modo per esprimere rapporti Un rapporto K può essere espresso in decibel (G) G = K(dB) = 0 log 0 K Nel caso degli amplificatori i db sono utilizzabili per esprimere

Dettagli

Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia

Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia Prof. Dino Zardi Dipartimento di Ingegneria Civile, Ambientale e Meccanica Fisica Componenti elementari

Dettagli

Dielettrici V = V 0. E = V h = V 0 kh = E 0

Dielettrici V = V 0. E = V h = V 0 kh = E 0 Dielettrici Dielettrico: materiale non conduttore (gomma, vetro, carta paraffinata) Al contrario dei conduttori anche in presenza di un campo elettrico esterno in essi non si genera un movimento di cariche.

Dettagli

ITI M. FARADAY Programmazione modulare

ITI M. FARADAY Programmazione modulare ITI M. FARADAY Programmazione modulare A.S. 2014/15 Indirizzo: ELETTROTECNICA ed ELETTRONICA Disciplina: ELETTROTECNICA ed ELETTRONICA Classe: V A elettrotecnica Ore settimanali previste: 6 INSEGNANTI:

Dettagli

SISTEMI TRIFASE. Nel. Nella forma polare: Nella forma cartesiana o algebrica:

SISTEMI TRIFASE. Nel. Nella forma polare: Nella forma cartesiana o algebrica: SISTEMI TRIFASE 3_FASE I sistemi 3fase hanno fondamentale importanza nella produzione, trasformazione e trasmissione dell energia elettrica. Il sistema trifase è applicato in campo industriale o comunque

Dettagli

Capacità ele+rica. Condensatori

Capacità ele+rica. Condensatori Capacità ele+rica Condensatori Condensatori Il condensatore è il sistema più semplice per immagazzinare energia elettrostatica. Consideriamo due piani metallici separati da un isolante. La relazione che

Dettagli

I SEGNALI SINUSOIDALI

I SEGNALI SINUSOIDALI I SEGNALI SINUSOIDALI I segnali sinusoidali sono i segnali più importanti nello studio dell elettronica e dell elettrotecnica. La forma d onda sinusoidale è una funzione matematica indispensabile per interpretare

Dettagli

Oscillazioni LC Applicando la legge di Faraday: ma Φ B. in direzione I. ovvero. La soluzione di questa equazone e:

Oscillazioni LC Applicando la legge di Faraday: ma Φ B. in direzione I. ovvero. La soluzione di questa equazone e: Oscillazioni Applicando la legge di Faraday: E d l d ma Φ B con d l in direzione d E dl ovvero ovvero d + q / n base alla nostra scelta di polarizzazione di pero', si ha' che: dq Segue che: A d d q Allora,

Dettagli

PROGRAMMA DEFINITIVO di Tecnologie Elettrico-Elettroniche ed Applicazioni. Docente: VARAGNOLO GIAMPAOLO. Insegnante Tecnico Pratico: ZENNARO LUCIANO

PROGRAMMA DEFINITIVO di Tecnologie Elettrico-Elettroniche ed Applicazioni. Docente: VARAGNOLO GIAMPAOLO. Insegnante Tecnico Pratico: ZENNARO LUCIANO ISTITUTO VERONESE MARCONI Sede di Cavarzere (VE) PROGRAMMA DEFINITIVO di Tecnologie Elettrico-Elettroniche ed Applicazioni Docente: VARAGNOLO GIAMPAOLO Insegnante Tecnico Pratico: ZENNARO LUCIANO Classe

Dettagli

Lez Dai segnali nel dominio del tempo a studio di segnali nel dominio della frequenza.

Lez Dai segnali nel dominio del tempo a studio di segnali nel dominio della frequenza. Lez. 09-3-3 Dai segnali nel dominio del tempo a studio di segnali nel dominio della frequenza. Consideriamo ora un circuito elettrico alimentato da un generatore di f.e.m composto dalla serie di una R,

Dettagli

III Esperienza: 2-3 Aprile Circuiti RC ed RC in regime sinusoidale Circuiti attenuatori passa banda

III Esperienza: 2-3 Aprile Circuiti RC ed RC in regime sinusoidale Circuiti attenuatori passa banda III Esperienza: 2-3 Aprile 204 Circuiti RC ed RC in regime sinusoidale Circuiti attenuatori passa banda Scopo dell esperienza: studio dei circuiti CR ed RC in corrente alternata, studiandone il comportamento

Dettagli

Gli effetti di interazione tra campo EM e mezzo. Si analizzeranno in particolare gli effetti

Gli effetti di interazione tra campo EM e mezzo. Si analizzeranno in particolare gli effetti Gli effetti di interazione tra campo M e mezzo Si analizzeranno in particolare gli effetti dovuti al campo elettrico e quindi il comportamento della ε. Infatti quasi sempre risulta μ = μ I principali effetti

Dettagli

Fondamenti di fisica

Fondamenti di fisica Fondamenti di fisica Elettromagnetismo: 6-7 Circuiti in corrente alternata Tensioni e correnti alternate Vettori di fase, valori quadratici medi Potenza media Sicurezza nei circuiti domestici Circuiti

Dettagli

Elettronica delle Telecomunicazioni Esercizi cap 5: Interconnessioni. 5.2 Verifica di funzionalità e calcolo del tempo di trasmissione

Elettronica delle Telecomunicazioni Esercizi cap 5: Interconnessioni. 5.2 Verifica di funzionalità e calcolo del tempo di trasmissione 5. Calcolo del tempo di trasmissione icavare l espressione del tempo di trasmissione t TX.per una interconnessione modellata con resistenza di uscita del driver, collegamento diretto, capacità di ingresso

Dettagli

Principi di ingegneria elettrica. Reti in regime sinusoidale. Lezione 13 a. Impedenza Ammettenza

Principi di ingegneria elettrica. Reti in regime sinusoidale. Lezione 13 a. Impedenza Ammettenza Principi di ingegneria elettrica Lezione 3 a Reti in regime sinusoidale mpedenza Ammettenza Legge di Ohm simbolica n un circuito lineare comprendente anche elementi dinamici (induttori e condensatori)

Dettagli

COMPORTAMENTO DI UN CONDENSATORE AL VARIARE DELLA FREQUENZA

COMPORTAMENTO DI UN CONDENSATORE AL VARIARE DELLA FREQUENZA COMPORTAMENTO DI UN CONDENSATORE AL VARIARE DELLA FREQUENZA Per studiare il comportamento in frequenza di un condensatore ho usato un circuito costituito da un resistore in serie ad un condensatore alimentato

Dettagli

Circuito RC con d.d.p. sinusoidale

Circuito RC con d.d.p. sinusoidale Circuito C con d.d.p. sinusoidale Un circuito C-serie ha la seguente configurazione: G è la resistenza interna del generatore. Misura dello sfasamento della tensione ai capi del condensatore rispetto alla

Dettagli

Elettrostatica II. Energia Elettrostatica (richiamo) Potenziale Elettrico. Potenziale di cariche puntiformi. Superfici equipotenziali.

Elettrostatica II. Energia Elettrostatica (richiamo) Potenziale Elettrico. Potenziale di cariche puntiformi. Superfici equipotenziali. Elettrostatica II Energia Elettrostatica (richiamo) Potenziale Elettrico Potenziale di cariche puntiformi Superfici equipotenziali Condensatori Dielettrici Energia potenziale di due cariche Si può dimostrare

Dettagli

CORRENTI ALTERNATE. Dopo che la spira è ruotata di in certo angolo in un tempo t si ha

CORRENTI ALTERNATE. Dopo che la spira è ruotata di in certo angolo in un tempo t si ha 1 easy matematica CORRENI ALERNAE Consideriamo una bobina ruotante, con velocità angolare ω costante all'interno di un campo magnetico uniforme B. Gli estremi della spira sono collegati a due anelli chiamati

Dettagli

INDUZIONE E AUTOINDUZIONE

INDUZIONE E AUTOINDUZIONE E possibile avere un effetto analogo anche in un singolo circuito Un circuito percorso da una corrente variabile può indurre una f.e.m., e quindi una corrente indotta su se stesso, in questo caso il fenomeno

Dettagli

Elettrotecnica - A.A Prova n. 2 3 febbraio 2011

Elettrotecnica - A.A Prova n. 2 3 febbraio 2011 Cognome Nome Matricola Firma 1 Parti svolte: E1 E2 D Esercizio 1 Supponendo noti i valori delle resistenze, della tensione V G1 e dei parametri di trasferimento dei generatori dipendenti, illustrare il

Dettagli

Fisica generale II - Ingegneria Biomedica - A.A. 2015/2016 Esame parziale (Prima parte) - Versione 1 - data: 18 / 04 / Cognome: Nome: Matricola:

Fisica generale II - Ingegneria Biomedica - A.A. 2015/2016 Esame parziale (Prima parte) - Versione 1 - data: 18 / 04 / Cognome: Nome: Matricola: Fisica generale II - Ingegneria Biomedica - A.A. 2015/2016 Esame parziale (Prima parte) - Versione 1 - data: 18 / 04 / 2016 Cognome: Nome: Matricola: 1. Scrivere l equazione dimensionale della quantità

Dettagli

Esercizi aggiuntivi Unità A2

Esercizi aggiuntivi Unità A2 Esercizi aggiuntivi Unità A2 Esercizi svolti Esercizio 1 A2 ircuiti in corrente alternata monofase 1 Un circuito serie, con 60 Ω e 30 mh, è alimentato con tensione V 50 V e assorbe la corrente 0,4 A. alcolare:

Dettagli

Grande rilevanza hanno in elettronica i segnali sinusoidali. Un. segnale sinusoidale è un segnale che varia nel tempo con una legge

Grande rilevanza hanno in elettronica i segnali sinusoidali. Un. segnale sinusoidale è un segnale che varia nel tempo con una legge I segnali sinusoidali Grande rilevanza hanno in elettronica i segnali sinusoidali. Un segnale sinusoidale è un segnale che varia nel tempo con una legge del seguente tipo u = U sen( ω t+ ϕ ) Figura A andamento

Dettagli

CIRCUITI IN REGIME SINUSOIDALE

CIRCUITI IN REGIME SINUSOIDALE CIRCUITI IN REGIME SINUSOIDALE CIRCUITO PURAMENTE OHMICO Esaminiamo il comportamento dei circuiti in regime sinusoidale iniziando da un circuito puramente ohmico. Si consideri (figura 1) un circuito costituito

Dettagli

UNITÀ 1 LA CARICA ELETTRICA E L'ELETTRIZZAZIONE. I corpi possono acquisire (prendere) una proprietà che si chiama carica elettrica.

UNITÀ 1 LA CARICA ELETTRICA E L'ELETTRIZZAZIONE. I corpi possono acquisire (prendere) una proprietà che si chiama carica elettrica. UNITÀ 1 Prerequisiti: conoscere le caratteristiche del modello atomico conoscere e operare con le potenze: prodotto e divisione tra potenze con stessa base, potenze di 10, potenze ad esponente negativo

Dettagli

Lez.17 Bipoli in regime sinusoidale. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 17 Pagina 1

Lez.17 Bipoli in regime sinusoidale. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 17 Pagina 1 Lez.17 Bipoli in regime sinusoidale Università di Napoli Federico II, CdL Ing. Meccanica, A.A. 2017-2018, Elettrotecnica. Lezione 17 Pagina 1 L operatore impedenza L uso dei fasori consente di scrivere

Dettagli

RISONANZA. Fig.1 Circuito RLC serie

RISONANZA. Fig.1 Circuito RLC serie RISONANZA Risonanza serie Sia dato il circuito di fig. costituito da tre bipoli R, L, C collegati in serie, alimentati da un generatore sinusoidale a frequenza variabile. Fig. Circuito RLC serie L impedenza

Dettagli

Compito di Elettrotecnica II prova - 7 giugno 2018 Ing. Nome: Cognome: Mtr:

Compito di Elettrotecnica II prova - 7 giugno 2018 Ing. Nome: Cognome: Mtr: Nel circuito a regime sinusoidale in figura, Ricavare la corrente i x =0.01F =1H 1100 e 230 Veff, chiuso su un carico di impedenza 15+j15. I parametri relativi alla diverse perdite perdite nel rame al

Dettagli

Capacità. Capacità elettrica Condensatore Condensatore = sistema per immagazzinare energia (elettrica)

Capacità. Capacità elettrica Condensatore Condensatore = sistema per immagazzinare energia (elettrica) Capacità Capacità elettrica Condensatore Condensatore = sistema per immagazzinare energia (elettrica) Definizione C Capacità Q V La capacità è una misura di quanta carica debba possedere un certo tipo

Dettagli

Quesiti di Fisica Generale

Quesiti di Fisica Generale Quesiti di Fisica Generale 3. Elettromagnetismo prof. Domenico Galli, prof. Umberto Marconi 3 aprile 2012 I compiti scritti di esame del prof. D. Galli e del prof. U. Marconi propongono 4 quesiti, sorteggiati

Dettagli

Corso di fisica generale con elementi di fisica tecnica

Corso di fisica generale con elementi di fisica tecnica Corso di fisica generale con elementi di fisica tecnica Aniello (Daniele) Mennella Dipartimento di Fisica Secondo modulo Parte prima (fondamenti di elettromagnetismo) Lezione 2 Circuiti elettrici Sommario

Dettagli

LISTA PROVVISIORIA DELLE DOMANDE D'ESAME FISICA GENERALE 2 A/A

LISTA PROVVISIORIA DELLE DOMANDE D'ESAME FISICA GENERALE 2 A/A LISTA PROVVISIORIA DELLE DOMANDE D'ESAME FISICA GENERALE 2 PRIMA PARTE: Elettrostatica A/A 2017-2018 Proff. P. Monaco e F. Longo 1. Cos'e' la quantizzazione della carica elettrica? 2. Cosa stabilisce il

Dettagli

teoria di Elettrotecnica

teoria di Elettrotecnica 1 teoria di corrente alternata monofase teoria di Elettrotecnica CORRENTE ALTERNATA MONOFASE A cura del prof. M. ZIMOTTI 1 teoria di corrente alternata monofase INTRODUZIONE TRIGONOMETRIA In un triangolo

Dettagli

Impedenze e circuiti. Prof. Mario Angelo GIORDANO. PDF created with pdffactory trial version

Impedenze e circuiti. Prof. Mario Angelo GIORDANO. PDF created with pdffactory trial version Impedenze e circuiti Prof. Mario Angelo GIORDANO Impedenza Si definisceimpedenzail numero complesso dato dal rapporto trailnumero complesso cherappresentala tensioneed il numero complesso cherappresental

Dettagli

Circuiti Elettrici Lineari Risposta in frequenza

Circuiti Elettrici Lineari Risposta in frequenza Facoltà di Ingegneria Università degli studi di Pavia Corso di aurea Triennale in Ingegneria Elettronica e Informatica Circuiti Elettrici ineari isposta in frequenza Circuiti Elettrici ineari a.a. 89 Prof.

Dettagli

Corso di Microonde Esercizi su Linee di Trasmissione

Corso di Microonde Esercizi su Linee di Trasmissione Corso di Microonde Esercizi su Linee di Trasmissione Tema del 6.7.1999 Il carico resistivo R L è alimentato alla frequenza f =3GHz attraverso una linea principale di impedenza caratteristica Z 0 = 50 Ω

Dettagli

Tensioni e correnti alternate, impedenza nei sistemi monofase.

Tensioni e correnti alternate, impedenza nei sistemi monofase. Tensioni e correnti alternate, impedenza nei sistemi monofase http://riccardocavallaro.weebly.com 02 1 La tensione monofase Vp=230/0,707 230V 0 Europa: 230V 50Hz Nelle prese di corrente civili si può misurare

Dettagli

Potenza elettrica circuito elettrico effetto Joule

Potenza elettrica circuito elettrico effetto Joule Potenza elettrica Si chiama circuito elettrico un generico percorso chiuso in cui le cariche possono muoversi con continuità, costituito da un insieme di componenti collegati tra loro mediante fili conduttori.

Dettagli

Dielettrici (Isolanti)

Dielettrici (Isolanti) Dielettrici (Isolanti) N.B. nelle operazioni che svolgeremo avremo a che fare con condensatori carichi. Si può operare in due diverse condizioni: 1) a carica costante: condensatore caricato e poi scollegato

Dettagli

Indice. Fisica: una introduzione. Il moto in due dimensioni. Moto rettilineo. Le leggi del moto di Newton

Indice. Fisica: una introduzione. Il moto in due dimensioni. Moto rettilineo. Le leggi del moto di Newton Indice 1 Fisica: una introduzione 1.1 Parlare il linguaggio della fisica 2 1.2 Grandezze fisiche e unità di misura 3 1.3 Prefissi per le potenze di dieci e conversioni 7 1.4 Cifre significative 10 1.5

Dettagli

PROGRAMMA PREVENTIVO di Tecnologie Elettrico-Elettroniche ed Applicazioni. Docente: VARAGNOLO GIAMPAOLO. Insegnante Tecnico Pratico: ZENNARO LUCIANO

PROGRAMMA PREVENTIVO di Tecnologie Elettrico-Elettroniche ed Applicazioni. Docente: VARAGNOLO GIAMPAOLO. Insegnante Tecnico Pratico: ZENNARO LUCIANO ISTITUTO VERONESE MARCONI Sede di Cavarzere (VE) PROGRAMMA PREVENTIVO di Tecnologie Elettrico-Elettroniche ed Applicazioni Docente: VARAGNOLO GIAMPAOLO Insegnante Tecnico Pratico: ZENNARO LUCIANO Classe

Dettagli

ARI - Sezione di Vercelli (1301) Corso per il conseguimento della Patente di Radioamatore

ARI - Sezione di Vercelli (1301) Corso per il conseguimento della Patente di Radioamatore ARI - Sezione di Vercelli (1301) Corso per il conseguimento della Patente di Radioamatore Orario delle lezioni: dalle 21:30 alle 23:00 GIOVEDÌ, 3 NOVEMBRE 2011 Presentazione del corso Iscrizioni MERCOLEDÌ,

Dettagli

Reattanza del condensatore o capacitivaa

Reattanza del condensatore o capacitivaa Pagina 1 di 5 Reattanza del condensatore o capacitivaa Utilizzando la relazione costitutiva di un condensatore, in cui C è la capacità del condensatore, e tenendo presente la proprietà di derivazione dei

Dettagli

Esercitazioni 26/10/2016

Esercitazioni 26/10/2016 Esercitazioni 26/10/2016 Esercizio 1 Un anello sottile di raggio R = 12 cm disposto sul piano yz (asse x uscente dal foglio) è composto da due semicirconferenze uniformemente cariche con densità lineare

Dettagli

Proprietà dei sistemi ed operatori

Proprietà dei sistemi ed operatori Segnali e Sistemi Un segnale è una qualsiasi grandezza che evolve nel tempo. Sono funzioni che hanno come dominio il tempo e codominio l insieme di tutti i valori che può assumere la grandezza I sistemi

Dettagli

ELETTROTECNICA. Condensatori. Livello 8. Andrea Ros sdb

ELETTROTECNICA. Condensatori. Livello 8. Andrea Ros sdb ELETTROTECNICA Livello 8 Condensatori Andrea Ros sdb Livello 8 Condensatori Dopo aver compreso il concetto di resistenza, facciamo un passo avanti e passiamo alla capacità. Sezione 1 Il campo elettrico

Dettagli

Capacità. Capacità elettrica Condensatore Condensatore = sistema per immagazzinare energia (elettrica) Fisica II CdL Chimica

Capacità. Capacità elettrica Condensatore Condensatore = sistema per immagazzinare energia (elettrica) Fisica II CdL Chimica Capacità Capacità elettrica Condensatore Condensatore = sistema per immagazzinare energia (elettrica) Definizione Capacità La capacità è una misura di quanta carica debba possedere un certo tipo di condensatore

Dettagli

Circuiti Elettrici Lineari Sinusoidi e fasori

Circuiti Elettrici Lineari Sinusoidi e fasori Facoltà di Ingegneria Uniersità degli studi di Paia Corso di Laurea Triennale in Ingegneria Elettronica e Informatica Circuiti Elettrici Lineari Sinusoidi e fasori Circuiti Elettrici Lineari a.a. 08/9

Dettagli

PROGRAMMA PREVENTIVO di Tecnologie Elettrico-Elettroniche ed Applicazioni. Docente: VARAGNOLO GIAMPAOLO. Insegnante Tecnico Pratico: ZENNARO LUCIANO

PROGRAMMA PREVENTIVO di Tecnologie Elettrico-Elettroniche ed Applicazioni. Docente: VARAGNOLO GIAMPAOLO. Insegnante Tecnico Pratico: ZENNARO LUCIANO ISTITUTO VERONESE MARCONI Sede di Cavarzere (VE) PROGRAMMA PREVENTIVO di Tecnologie Elettrico-Elettroniche ed Applicazioni Docente: VARAGNOLO GIAMPAOLO Insegnante Tecnico Pratico: ZENNARO LUCIANO Classe

Dettagli

Corso di Sistemi Prof. Aniello Celentano anno scolastico 2015/2016 ITIS G. Ferraris (NA)

Corso di Sistemi Prof. Aniello Celentano anno scolastico 2015/2016 ITIS G. Ferraris (NA) I Numeri complessi I numeri complessi sono costituiti da una coppia di numeri reali (a,b). Il numero reale a è la parte reale, mentre b è la parte immaginaria. La parte immaginaria è sempre accompagnata

Dettagli

CORRENTE ELETTRICA parte I a

CORRENTE ELETTRICA parte I a Richiami sulla CORRENTE ELETTRICA parte I a - CORRENTE ELETTRICA - LEGGI DI OHM - CIRCUITI IN CORRENTE CONTINUA Corrente elettrica Un flusso di cariche elettriche da un punto ad un altro di un conduttore

Dettagli

5. Amplificatori. Corso di Fondamenti di Elettronica Fausto Fantini a.a

5. Amplificatori. Corso di Fondamenti di Elettronica Fausto Fantini a.a 5. Amplificatori Corso di Fondamenti di Elettronica Fausto Fantini a.a. 2010-2011 Amplificazione Amplificare un segnale significa produrre un segnale in uscita (output) con la stessa forma d onda del segnale

Dettagli

RESISTORI. Un resistore è un blocco di materiale che limita il flusso della corrente. Più grande è la resistenza più piccola è la corrente.

RESISTORI. Un resistore è un blocco di materiale che limita il flusso della corrente. Più grande è la resistenza più piccola è la corrente. RESISTORI Un resistore è un blocco di materiale che limita il flusso della corrente. Più grande è la resistenza più piccola è la corrente. Legge di Ohm R = V/I R= ρ l/s 1) Coefficiente di temperatura α

Dettagli

Corso di fisica applicata con elementi di fisica tecnica A.A. 2016/2017

Corso di fisica applicata con elementi di fisica tecnica A.A. 2016/2017 Corso di fisica applicata con elementi di fisica tecnica A.A. 2016/2017 Programma svolto Lezione 1 Carica elettrica, legge di Coulomb, campo elettrico, potenziale elettrico Breve storia dell elettricità

Dettagli

valore v u = v i / 2 V u /V i = 1/ 2

valore v u = v i / 2 V u /V i = 1/ 2 I Filtri Il filtro è un circuito che ricevendo in ingresso segnali di frequenze diverse è in grado di trasferire in uscita solo i segnali delle frequenze volute, in pratica seleziona le frequenze che si

Dettagli

La risposta numerica deve essere scritta nell apposito riquadro e giustificata accludendo i calcoli relativi.

La risposta numerica deve essere scritta nell apposito riquadro e giustificata accludendo i calcoli relativi. Corso di Laurea in Matematica Seconda prova in itinere di Fisica (Prof. E. Santovetti) 13 gennaio 016 Nome: La risposta numerica deve essere scritta nell apposito riquadro e giustificata accludendo i calcoli

Dettagli

MACCHINE ELETTRICHE 11 gennaio 2006 Elettrotecnica _ Energetica _

MACCHINE ELETTRICHE 11 gennaio 2006 Elettrotecnica _ Energetica _ MACCHINE ELETTRICHE 11 gennaio 2006 Elettrotecnica _ Energetica _ DOMANDE DI TEORIA 1) Diagrammi di Blondel e delle due reattanze. 2) Motore asincrono trifase: regolazione della velocità. 3) Motore a corrente

Dettagli

Formulario. (ε = ε 0 nel vuoto, ε 0 ε r nei mezzi; µ = µ 0 nel vuoto, µ 0 µ r nei mezzi) Forza di Coulomb: F = k Q 1Q 2 r 2 = 1 Q 1 Q 2

Formulario. (ε = ε 0 nel vuoto, ε 0 ε r nei mezzi; µ = µ 0 nel vuoto, µ 0 µ r nei mezzi) Forza di Coulomb: F = k Q 1Q 2 r 2 = 1 Q 1 Q 2 Formulario (ε = ε 0 nel vuoto, ε 0 ε r nei mezzi; µ = µ 0 nel vuoto, µ 0 µ r nei mezzi) Forza di Coulomb: F = k Q Q 2 r 2 = Q Q 2 4πε r 2 Campo elettrico: E F q Campo coulombiano generato da una carica

Dettagli

dq dt Università degli Studi di Bari Aldo Moro Dip. DiSAAT - Ing. Francesco Santoro Corso di Fisica

dq dt Università degli Studi di Bari Aldo Moro Dip. DiSAAT - Ing. Francesco Santoro Corso di Fisica Corrente elettrica Consideriamo il moto non accelerato e con velocità piccole rispetto a quella della luce nel vuoto di un insieme di particelle dotate di carica elettrica: possono ritenersi valide le

Dettagli

Compito di Elettrotecnica, Ing. Gestionale, Pisa, 5 Giugno vista dai morsetti 1-2 del bipolo in figura (A da tabella)

Compito di Elettrotecnica, Ing. Gestionale, Pisa, 5 Giugno vista dai morsetti 1-2 del bipolo in figura (A da tabella) Compito di Elettrotecnica, Ing. Gestionale, Pisa, 5 Giugno 214 Allievo... 1) Calcolare la R eq vista dai morsetti 1-2 del bipolo in figura (A da tabella) 2) Calcolare la E th (tensione di Thevenin) ai

Dettagli