Università del Piemonte Orientale. Corsi di Specialità. Corso di Statistica Medica. Analisi dei dati quantitativi : Analisi della varianza

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Università del Piemonte Orientale. Corsi di Specialità. Corso di Statistica Medica. Analisi dei dati quantitativi : Analisi della varianza"

Transcript

1 Università del Piemonte Orientale Corsi di Specialità Corso di Statistica Medica Analisi dei dati quantitativi : Analisi della varianza Università del Piemonte Orientale Corso di laurea in biotecnologie mediche Corso di Statistica Medica Analisi della varianza ad un criterio di classificazione

2 Analisi di una variabile quantitativa con il confronto tra diversi gruppi di soggetti: A. Confronto tra una media campionaria ed una popolazione i cui parametri sono noti B. Confronto tra una media campionaria ed una popolazione di cui è nota la media ma non la deviazione standard C. Confronto tra 2 campioni appaiati D. Confronto tra due campioni indipendenti E. Confronto tra n campioni indipendenti F. Confronto tra misure ripetute sugli stessi soggetti Il caso E corrisponde all'analisi della varianza Università del Piemonte Orientale Corso di laurea in biotecnologie mediche Corso di Statistica Medica Analisi della varianza ad un criterio di classificazione

3 L'analisi della varianza serve a confrontare tra loro le medie di 3 o più gruppi di soggetti. Var. quantitativa L analisi della varianza consente di valutare quantitativamente l importanza delle diverse fonti di variazione nella variabilità osservata nel corso di un esperimento. Le fonti di variazione possono essere: sistematiche (sotto controllo dello sperimentatore); casuali (variabilità biologica, condizioni ambientali, errore di misura, ecc..) Var. Categorica Università del Piemonte Orientale Corso di laurea in biotecnologie mediche Corso di Statistica Medica Analisi della varianza ad un criterio di classificazione

4 Obiettivo dell'analisi è misurare se la differenza tra le medie (variabilità tra gruppi) è superiore alla variabilità interna a ciascun gruppo (variabilità entro gruppi). Si tratta di un metodo molto potente che si presta anche ad analisi molto complesse. Università del Piemonte Orientale Corso di laurea in biotecnologie mediche Corso di Statistica Medica Analisi della varianza ad un criterio di classificazione

5 Parliamo di analisi della varianza ad 1 criterio di classificazione quando consideriamo una sola variabile di ordinamento. Il livello minimo della variabile di ordinamento è nominale. Università del Piemonte Orientale Corso di laurea in biotecnologie mediche Corso di Statistica Medica Analisi della varianza ad un criterio di classificazione

6 Partiamo da un esempio con dati sulla resa di una coltura agricola in relazione al tipo di trattamento fertilizzante. La resa è espressa in q.li / ha. Il tipo di trattamento è una variabile nominale con 3 valori: 1, 2, 3. Incominciamo con alcune esplorazioni grafiche dei dati. Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica 6 Confronto tra due medie

7 resa trattam. 6,27 1 5,36 1 6,39 1 4,85 1 5,99 1 7,14 1 5,08 1 4,07 1 4,35 1 4,95 1 3,07 2 3,29 2 4,04 2 4,19 2 3,41 2 3,75 2 4,87 2 3,94 2 6,28 2 3,15 2 4,04 3 3,79 3 4,56 3 4,55 3 4,55 3 4,53 3 3,53 3 3,71 3 7,00 3 4,61 3 Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica 7 Confronto tra due medie

8 Plot dei dati r esa Case Number Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 8

9 Box plot X a b c Group Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 9

10 Diagramma a punti Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 10

11 I grafici suggeriscono una differenza tra i tre gruppi. Vediamo dal grafico seguente che i tre gruppi sono in posizione diversa rispetto alla media generale, calcolata su tutte le osservazioni. Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 11

12 resa Case Number Media Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 12

13 Com'è distribuita la variabilità in queste osservazioni? Esaminiamo prima la variabilità totale, poi quella all'interno di ciascun gruppo ed in ultimo la variabilità delle medie dei diversi gruppi. Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 13

14 La variabilità totale Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 14

15 La variabilità entro gruppi o within groups Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 15

16 La variabilità tra gruppi (la differenza tra le medie dei diversi gruppi e la media generale) o between groups Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 16

17 I dati osservati possono essere rappresentati mediante un modello lineare in cui yij = u i + ε ij yij è la generica osservazione dell i-esimo trattamento sulla j-esima unità sperimentale u i è la media del trattamento ε ij errore casuale Generalmente si assume i = 1,..., k e j =1,..., ni. Se il disegno è bilanciato, n1 = n2 =... = np =n. o più semplicemente: L'equazione fondamentale dell'analisi della varianza Variabilità totale = variabilità tra gruppi + variabilità entro gruppi Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 17

18 Ipotesi di lavoro : H1: non tutti i tre gruppi hanno media uguale (sono possibili diverse combinazioni) H0: µ 1 = µ 2 = µ 3 =µ Vogliamo testare questa ipotesi a un livello di significatività pari a 0.05 Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 18

19 Come costruire il test? Il test è basato sulla seguente considerazione: Se è vera l ipotesi nulla, i dati differiscono tra loro per il solo effetto della variabilità casuale. Se invece è vera l ipotesi alternativa, entrambe le fonti di variabilità contribuiscono a determinare la variabilità complessiva Il test è quindi basato sull analisi della variabilità complessiva in funzione delle diverse cause. Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 19

20 Per questo motivo, anche se il test è sulle medie, la tecnica viene chiamata Analisi della Varianza. Assunzione fondamentale: σ = = = 1 2 σ σ 3 σ 2 La variabilità dei dati osservati può essere misurata mediante gli scostamenti dei dati dalla media. La devianza totale è definita nel modo seguente: n 1 _ ) 2 ( x ij x Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 20

21 La devianza totale può essere scomposta nel modo seguente: devianza totale= devianza tra i gruppi + devianza entro i gruppi n 1 _ k k ( xkj x) = nk ( x k x) + ( nk 1) Sk 1 1 Le due quantità sono dette rispettivamente: Devianza tra gruppi (trattamenti): misura la quota di variabilità attribuibile alle differenze trai trattamenti. Devianza entro gruppi (d errore): misura la quota di variabilità imputabile a tutte le cause non controllate nell esperimento e all errore di campionamento Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 21

22 Se è vera l ipotesi nulla, ci possiamo attendere uno scarso contributo della devianza tra gruppi alla devianza totale. Se è vera l ipotesi alternativa, ci possiamo attendere che entrambe le devianze contribuiscano a determinare la devianza totale. A questo livello non è però possibile fare confronti, perchè le devianze hanno un numero di addendi diverso. Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 22

23 I gradi di libertà Ad ognuna delle devianze sono associati i gradi di libertà: la devianza totale ha nkk 1 gradi di libertà la devianza tra gruppi ha k 1 gradi di libertà la devianza d errore ha k(nk 1) gradi di libertà Le varianze si ottengono dividendo le devianze per i gradi di libertà. Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 23

24 Se l'assunzione della stessa varianza per i diversi gruppi è vera, la variabilità 'entro gruppi' (within groups) sarà uguale nei tre gruppi. La stima migliore di questa variabilità è la stima pooled (analoga a quella già vista per il test t di student per gruppi appaiati). S 2 w = k 1 ( 1) n k n k S 2 k k= numero dei gruppi n= numero osservazioni S 2 k = varianza nel gruppo k-esimo Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 24

25 La variabilità 'tra gruppi' (between groups) sarà stimata dalla somma degli scostamenti tra le medie dei diversi gruppi e la media generale pesati per il numero di osservazioni nel gruppo ( n k ), divisa per il numero di gruppi -1 (k - 1). S 2 b = k 1 n k ( x x) k k 1 2 k= numero dei gruppi ; n k = numero osservazioni nel gruppo k xk = media nel gruppo k-esimo x = media generale Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 25

26 Il test è basato sul confronto tra la varianza tra trattamenti e la varianza d errore. Se l ipotesi nulla è vera, le due varianze dovrebbero essere molto simili tra loro, mentre se l ipotesi nulla è falsa, la varianza tra trattamenti dovrebbe essere molto più grande della varianza d errore. Se H0 è vera allora la variabilità tra gruppi sarà dovuta solo all'effetto degli errori casuali e quindi le variabilità tra ed entro gruppi saranno uguali S = 2 2 b S w Se rifiuto H0 allora la variabilità tra i gruppi non è dovuta al solo effetto del caso S > 2 2 b S w Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 26

27 Un test in grado di misurare la probabilità di osservare una differenza tra le due varianze è il test F F = S S 2 b 2 w Il valore del test F viene letto su apposite tavole (es tav. A5 del testo di Pagano e Gavreau o tav.g del testo di Daniel). Il numero di gradi di libertà a numeratore è: numero di gruppi-1 Il numero di gradi di libertà a denominatore è: numero di soggetti -numero di gruppi Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 27

28 resa trattam. n media gruppo 6, ,36 1 6,39 1 4,85 1 5,99 1 7,14 1 5,08 1 4,07 1 4,35 1 4,95 1 3, ,29 2 4,04 2 4,19 2 3,41 2 3,75 2 4,87 2 3,94 2 6,28 2 3,15 2 4, ,79 3 4,56 3 4,55 3 4,55 3 4,53 3 3,53 3 3,71 3 7,00 3 4,61 3 varianza gruppo Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 28

29 Conviene calcolare separatamente le varianze dei diversi gruppi e quindi inserirle nella formula. Per convenienza calcolo separatamente i seguenti valori: Media generale (del totale delle osservazioni) Media in ciascun gruppo Scostamento tra la media del gruppo e la media generale Varianza in ciascun gruppo Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 29

30 n media gruppo mediagruppo - mediagenerale varianza nel gruppo 10 5,445 0,8013 0, ,999-0,6447 0, ,487-0,1567 0,9501 media generale 4,6434 Numero totale numero gruppi 30 3 Occorre prestare attenzione al valore della varianza in ciascun gruppo: se le varianze sono diverse cade un requisito essenziale per la validità dell'anova Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 30

31 Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 31 Posso quindi calcolare gli addendi alle sommatorie per il calcolo della varianza tra gruppi ed entro gruppi. Questi addendi corrispondono alle devianze. ( ) = k x x n S k k k b ( ) k n S n S k k k w =

32 n media gruppo mediagruppo - mediagenerale Devianza tra 10 5,445 0,8013 6, ,999-0,6447 4, ,487-0,1567 0,2454 media totale Numero gruppi 4, S 2 b = k 1 n k ( x x) k k 1 2 Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 32

33 n varianza nel gruppo Devianza entro 10 0,9525 8, ,9443 8, ,9501 8,5506 numero totale Numero gruppi 30 3 S 2 w = k 1 ( 1) n k n k S 2 k Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 33

34 Calcolo quindi la varianza tra gruppi, sommando gli addendi e dividendo per i rispettivi gradi di libertà. n media gruppo mediagruppo - mediagenerale varianza nel gruppo Devianza tra Devianza entro 10 5,445 0,8013 0,9525 6,4214 8, ,999-0,6447 0,9443 4,1560 8, ,487-0,1567 0,9501 0,2454 8,5506 g.l. 2 numero Numero media totale Varianza tra totale gruppi 30 4, ,4114 Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 34

35 Analogamente per la varianza entro gruppi n media gruppo mediagruppo - mediagenerale varianza nel gruppo Devianza tra Devianza entro 10 5,445 0,8013 0,9525 6,4214 8, ,999-0,6447 0,9443 4,1560 8, ,487-0,1567 0,9501 0,2454 8,5506 g.l. 27 numero Numero Varianza media totale Varianza tra totale gruppi entro 30 4, ,4114 0,9490 Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 35

36 e la statistica F numero Numero Varianza media totale Varianza tra totale gruppi entro 30 4, ,4114 0,9490 F= 5,4114 / 0,9490 = 5,7024 Il valore della statistica F (2; 27 gl) corrisponde ad una probabilità < 0,001 Il numero di gradi di libertà a numeratore è: numero di gruppi-1 Il numero di gradi di libertà a denominatore è: numero di soggetti -numero di gruppi Conclusione? Rifiutiamo l ipotesi nulla: almeno una media è diversa dalle altre Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 36

37 Riepilogo dei calcoli Resa Trattam n mediagruppo - media mediagenerale gruppo varianza nel gruppo Contributo del Contributo del gruppo gruppo alla alla varianza tra varianza entro 6, ,445 0,8013 0,9525 6,4214 8,5729 5,36 1 6,39 1 4,85 1 5,99 1 7,14 1 5,08 1 4,07 1 4,35 1 4,95 1 3, ,999-0,6447 0,9443 4,1560 8,4987 3,29 2 4,04 2 4,19 2 3,41 2 3,75 2 4,87 2 3,94 2 6,28 2 3,15 2 4, ,487-0,1567 0,9501 0,2454 8,5506 3,79 3 4,56 3 4,55 3 4,55 3 4,53 3 3,53 3 3, ,61 3 numero gruppi numero totale media totale Varianza tra Varianza entro ,6434 5,4114 0,9490 F= 5,7024 Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 37

38 I valori di probabilità corrispondenti alla distribuzione F si leggono tra F e Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 38

39 Un'avvertenza per chi usa programmi statistici La varianza entro gruppi è spesso indicata come: MS (Mean Sum Squares o Scarto Quadratico Medio) within groups oppure Error MS La varianza tra gruppi è spesso indicata come: MS between groups oppure Effect MS Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 39

40 Questo è l'output di XLstats, per i dati usati nell'esempio H 0 : All population means (of resa) are equal H 1 : Not all population means (of resa) are equal p-value = 0, Tra Entro ANOVA Table Source DF SS MS F trattam. 2 10, , , Error 27 25, , Total 29 36,4449 Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 40

41 La devianza entro gruppi è spesso indicata come: SS (Sum of Squares o Somma degli Scarti Quadratici) within groups oppure Error SS La devianza tra gruppi è spesso indicata come: SS between groups oppure Effect SS La devianza totale è spesso indicata come: SS Total Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 41

42 H 0 : All population means (of resa) are equal H 1 : Not all population means (of resa) are equal p-value = 0, Tra Entro ANOVA Table Source DF SS MS F trattam. 2 10, , , Error 27 25, , Total 29 36,4449 Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 42

43 MS = SS / DF Varianza = Devianza / Gradi_libertà H 0 : All population means (of resa) are equal H 1 : Not all population means (of resa) are equal p-value = 0, ANOVA Table Source DF SS MS F trattam. 2 10, , , Error 27 25, , Total 29 36,4449 Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 43

44 Giunti a questo punto, vogliamo sapere quali sono i gruppi diversi tra loro. Sono possibili diversi confronti; gruppo 1 vs. gruppo 2 gruppo 2 vs. gruppo 3 gruppo 1 vs. gruppo 3 Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 44

45 Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 45

46 Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 46

47 Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 47

48 Problema.. Se conduciamo tutti questi confronti aumenta la probabilità di errore di I tipo α (0.05), ovvero la probabilità di rifiutare erroneamente l ipotesi nulla, quando questa è vera. 1 α (0.95) è la probabilità di accettare H0 quando H0 è vera, in altri termini è la probabilità di ottenere un risultato non significativo. Se testiamo k ipotesi indipendenti la probabilità che i test siano congiuntamente non significativi è data da ( 1 α) *( 1 α) *( 1 α) ( 1 α) ne consegue che la probabilità di avere almeno un test significativo sarà: 1 (1 α) numeroconfronti k Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 48

49 Nel nostro caso con 3 confronti otteniamo: = 1 - (0,95) 3 = 1-0,85 = 0,15 L'errore di primo tipo complessivo (che almeno uno dei confronti dia risultato significativo solo per effetto del caso) è del 15%, ben superiore al valore prescelto del 5%. Attenzione: il non tener conto della molteplicità dà luogo ad un aumento della probabilità di trovare risultati significativi in favore dell ipotesi alternativa, quando l ipotesi nulla è vera Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 49

50 Per ovviare questo inconveniente Bonferroni ha proposto la seguente correzione: α ' = α /numero_confronti La soglia di rifiuto dell'ipotesi nulla viene quindi fissata a α / numero_confronti Il numero di confronti è il numero di confronti che si intende effettuare, pianificato nel disegno dell'analisi statisticai confronti sono condotti usando il test t per il confronto tra le medie di due campioni indipendenti. Nella lettura del valore di p viene applicata la correzione di Bonferroni. Riportiamo i risultati dei calcoli eseguiti con il programma XLstats. Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 50

51 Tests for comparing two categories Categories Cat. 1: b Cat. 2: c Two-Sample t-tests (Differences Between Means, µ) Sample Data n 1 10 n 2 10 X 1 3,999 X 2 4,487 s 1 0,97175 s 2 0, Assume equal standard deviations X1 X 2-0,488 SE Difference 0, Hypothesis Tests Confidence Intervals H 0 : µ 1 - µ 2 =0 for µ 1 - µ 2 Alternative > < Type (2,U,L) 2 Level 0,95 H 1 : µ 1 - µ 2 0 ME Lower Upper T -1, , , , DF 17 p-value = 0, Power Analysis Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 51

52 Tests for comparing two categories Categories Cat. 1: a Cat. 2: c Two-Sample t-tests (Differences Between Means, µ) Sample Data n 1 10 n 2 10 X1 5,445 X 2 4,487 s 1 0, s 2 0, Assume equal standard deviations X1 X 2 0,958 SE Difference 0, Hypothesis Tests Confidence Intervals H 0 : µ 1 - µ 2 =0 for µ 1 - µ 2 Alternative > < Type (2,U,L) 2 Level 0,95 H 1 : µ 1 - µ 2 0 ME Lower Upper T 2, , , , DF 17 p-value = 0, Power Analysis Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 52

53 Tests for comparing two categories Categories Cat. 1: a Cat. 2: b Two-Sample t-tests (Differences Between Means, µ) Sample Data n 1 10 n 2 10 X 1 5,445 X 2 3,999 s 1 0, s 2 0,97175 Assume equal standard deviations X1 X 2 1,446 SE Difference 0, Hypothesis Tests Confidence Intervals H 0 : µ 1 - µ 2 =0 for µ 1 - µ 2 Alternative > < Type (2,U,L) 2 Level 0,95 H 1 : µ 1 - µ 2 0 ME Lower Upper T 3, , , , DF 17 p-value = 0,00405 Power Analysis Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 53

54 Conclusioni? Quali dei tre confronti sono significativi? Se siamo interessati ad un errore α complessivo < 0,05 ed applichiamo la correzione di Bonferroni dovremo considerare solo in confronti il cui valore di p è < 0,05 / 3 p < 0,05 / 3 p < 0,0167 a vs. b -> rifiuto H0 commento: il terreno a cui è stato applicato il trattamento A ha in media una resa migliore rispetto al terreno a cui è stato applicato il trattamento B a vs. c -> non rifiuto H0 b vs. c -> non rifiuto H0 Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 54

55 Approfondimento sugli errori conseguenti all'uso dell'anova quando i tre gruppi hanno diverse varianze In questo esempio la varianza è uguale nei tre gruppi. In simili situazioni la probabilità di rifiutare l'ipotesi nulla in assenza di differenza nella media dei tre gruppi è simile al valore nominale (alpha o probabilità dell'errore di primo tipo). Results of 1000 Replication Experiment alpha =.05 alpha =.01 Reject Null Hypothesis 5,6% 0,8% Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 55

56 In questo esempio la varianza è diversa nei tre gruppi. In simili situazioni la probabilità di rifiutare l'ipotesi nulla in assenza di differenza nella media dei tre gruppi è sistematicamente diversa dal valore nominale. Results of 1000 Replication Experiment alpha =.05 alpha =.01 Reject Null Hypothesis 8,2% 2,0% Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 56

57 In questo esempio i tre gruppi hanno la stessa varianza e tre medie diverse. Qui l'analisi della varianza è appropriata Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 57

58 Approfondimento sulla simulazione di analisi della varianza Immaginiamo di condurre un esperimento ripetuto 1000 volte con campioni tratti dalla stessa popolazione: la distribuzione delle medie campionarie. Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 58

59 la distribuzione della statistica F. Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 59

60 Il numero di campioni che avrebbe portato al rifiuto dell'ipotesi nulla. Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 60

61 Le corrispondenti immagini nel caso di campioni da tre diverse popolazioni Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 61

62 Esercizi dal testo p 226 n 2 p 226 n 4 p 226 n 6 p 226 n 7 p 226 n 8 Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica Analisi della varianza ad 1 criterio di classificazione 62

Statistica. Lezione 6

Statistica. Lezione 6 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 6 a.a 011-01 Dott.ssa Daniela Ferrante

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi :

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi : Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Analisi dei dati quantitativi : Confronto tra due medie Università del Piemonte Orientale Corso di laurea in

Dettagli

L Analisi della Varianza ANOVA (ANalysis Of VAriance)

L Analisi della Varianza ANOVA (ANalysis Of VAriance) L Analisi della Varianza ANOVA (ANalysis Of VAriance) 1 CONCETTI GENERALI Finora abbiamo descritto test di ipotesi finalizzati alla verifica di ipotesi sulla differenza tra parametri di due popolazioni

Dettagli

Confronto tra gruppi (campioni indipendenti)

Confronto tra gruppi (campioni indipendenti) Confronto tra gruppi (campioni indipendenti) Campioni provenienti da una popolazione Normale con medie che possono essere diverse ma varianze uguali campioni: Test z or t sulla differenza tra medie 3,

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 29-Analisi della potenza statistica vers. 1.0 (12 dicembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

4. Confronto tra medie di tre o più campioni indipendenti

4. Confronto tra medie di tre o più campioni indipendenti BIOSTATISTICA 4. Confronto tra medie di tre o più campioni indipendenti Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

Inferenza statistica. Statistica medica 1

Inferenza statistica. Statistica medica 1 Inferenza statistica L inferenza statistica è un insieme di metodi con cui si cerca di trarre una conclusione sulla popolazione sulla base di alcune informazioni ricavate da un campione estratto da quella

Dettagli

3. Confronto tra medie di due campioni indipendenti o appaiati

3. Confronto tra medie di due campioni indipendenti o appaiati BIOSTATISTICA 3. Confronto tra medie di due campioni indipendenti o appaiati Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

Statistica. Esercitazione 15. Alfonso Iodice D Enza iodicede@unicas.it. Università degli studi di Cassino. Statistica. A. Iodice

Statistica. Esercitazione 15. Alfonso Iodice D Enza iodicede@unicas.it. Università degli studi di Cassino. Statistica. A. Iodice Esercitazione 15 Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () 1 / 18 L importanza del gruppo di controllo In tutti i casi in cui si voglia studiare l effetto di un certo

Dettagli

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Verifica di ipotesi Idea di base Supponiamo di avere un idea del valore (incognito) di una media di un campione, magari attraverso

Dettagli

4.2. IL TEST F DI FISHER O ANALISI DELLA VARIANZA (ANOVA)

4.2. IL TEST F DI FISHER O ANALISI DELLA VARIANZA (ANOVA) 4.2. IL TEST F DI FISHER O ANALISI DELLA VARIANZA (ANOVA) L analisi della varianza è un metodo sviluppato da Fisher, che è fondamentale per l interpretazione statistica di molti dati biologici ed è alla

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Nella verifica delle ipotesi è necessario fissare alcune fasi prima di iniziare ad analizzare i dati. a) Si deve stabilire quale deve essere l'ipotesi nulla (H0) e quale l'ipotesi

Dettagli

Capitolo 11 Test chi-quadro

Capitolo 11 Test chi-quadro Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 11 Test chi-quadro Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università di Padova

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 10-Il test t per un campione e la stima intervallare (vers. 1.1, 25 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia,

Dettagli

Esperimenti in vaso: disegni a randomizzazione completa

Esperimenti in vaso: disegni a randomizzazione completa Esperimenti in vaso: disegni a randomizzazione completa Andrea Onofri 10 marzo 2015 Indice 1 Disegno sperimentale 2 2 Analisi dei dati 3 2.1 Analisi della varianza (ANOVA).................. 4 2.2 Errore

Dettagli

L analisi dei rischi: l aspetto statistico Ing. Pier Giorgio DELLA ROLE Six Sigma Master Black Belt

L analisi dei rischi: l aspetto statistico Ing. Pier Giorgio DELLA ROLE Six Sigma Master Black Belt L analisi dei rischi: l aspetto statistico Ing. Pier Giorgio DELL ROLE Six Sigma Master lack elt Dicembre, 009 Introduzione Nell esecuzione dei progetti Six Sigma è di fondamentale importanza sapere se

Dettagli

Relazioni tra variabili

Relazioni tra variabili Università degli Studi di Padova Facoltà di Medicina e Chirurgia Corso di Laurea in Medicina e Chirurgia - A.A. 009-10 Scuole di specializzazione in: Medicina Legale, Medicina del Lavoro, Igiene e Medicina

Dettagli

Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo

Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo Metodi statistici per l economia (Prof. Capitanio) Slide n. 9 Materiale di supporto per le lezioni. Non sostituisce il libro di testo 1 TEST D IPOTESI Partiamo da un esempio presente sul libro di testo.

Dettagli

La logica statistica della verifica (test) delle ipotesi

La logica statistica della verifica (test) delle ipotesi La logica statistica della verifica (test) delle ipotesi Come posso confrontare diverse ipotesi? Nella statistica inferenziale classica vengono sempre confrontate due ipotesi: l ipotesi nulla e l ipotesi

Dettagli

Statistiche campionarie

Statistiche campionarie Statistiche campionarie Sul campione si possono calcolare le statistiche campionarie (come media campionaria, mediana campionaria, varianza campionaria,.) Le statistiche campionarie sono stimatori delle

Dettagli

Potenza dello studio e dimensione campionaria. Laurea in Medicina e Chirurgia - Statistica medica 1

Potenza dello studio e dimensione campionaria. Laurea in Medicina e Chirurgia - Statistica medica 1 Potenza dello studio e dimensione campionaria Laurea in Medicina e Chirurgia - Statistica medica 1 Introduzione Nella pianificazione di uno studio clinico randomizzato è fondamentale determinare in modo

Dettagli

Metodi statistici e probabilistici per l ingegneria. Corso di Laurea in Ingegneria Civile A.A. 2009-10. Facoltà di Ingegneria. Università di Padova

Metodi statistici e probabilistici per l ingegneria. Corso di Laurea in Ingegneria Civile A.A. 2009-10. Facoltà di Ingegneria. Università di Padova Metodi statistici e probabilistici per l ingegneria Corso di Laurea in Ingegneria Civile A.A. 29- Facoltà di Ingegneria Università di Padova Docente: Dott. L. Corain ESERCIZIO (TEST AD UN CAMPIONE) Un

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 7

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 7 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 7 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Test delle ipotesi per la media (varianza nota), p-value del test Il manager di un fast-food

Dettagli

STATISTICA IX lezione

STATISTICA IX lezione Anno Accademico 013-014 STATISTICA IX lezione 1 Il problema della verifica di un ipotesi statistica In termini generali, si studia la distribuzione T(X) di un opportuna grandezza X legata ai parametri

Dettagli

Analisi della varianza

Analisi della varianza 1. 2. univariata ad un solo fattore tra i soggetti (between subjects) 3. univariata: disegni fattoriali 4. univariata entro i soggetti (within subjects) 5. : disegni fattoriali «misti» L analisi della

Dettagli

Piacenza, 10 marzo 2014 La preparazione della tesi di Laurea Magistrale

Piacenza, 10 marzo 2014 La preparazione della tesi di Laurea Magistrale Piacenza, 0 marzo 204 La preparazione della tesi di Laurea Magistrale ma questa statistica a che cosa serve? non vedo l ora di cominciare a lavorare per la tesi. e dimenticarmi la statistica!! il mio relatore

Dettagli

T DI STUDENT Quando si vogliono confrontare solo due medie, si può utilizzare il test t di Student La formula per calcolare il t è la seguente:

T DI STUDENT Quando si vogliono confrontare solo due medie, si può utilizzare il test t di Student La formula per calcolare il t è la seguente: T DI STUDENT Quando si vogliono confrontare solo due medie, si può utilizzare il test t di Student La formula per calcolare il t è la seguente: t = X i X j s 2 i (n i 1) + s 2 j (n j 1) n i + n j - 2 1

Dettagli

Test non parametrici. Test non parametrici. Test non parametrici. Test non parametrici

Test non parametrici. Test non parametrici. Test non parametrici. Test non parametrici Test non parametrici Test non parametrici Il test T di Student per uno o per due campioni, il test F di Fisher per l'analisi della varianza, la correlazione, la regressione, insieme ad altri test di statistica

Dettagli

è decidere sulla verità o falsità

è decidere sulla verità o falsità I test di ipotesi I test di ipotesi Il test delle ipotesi consente di verificare se, e in quale misura, una determinata ipotesi (di carattere sociale, biologico, medico, economico, ecc.) è supportata dall

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2014-2015 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE

STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE STATISTICA INFERENZIALE PER VARIABILI QUALITATIVE La presentazione dei dati per molte ricerche mediche fa comunemente riferimento a frequenze, assolute o percentuali. Osservazioni cliniche conducono sovente

Dettagli

Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 = 1

Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 = 1 Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 3 - Pag. 1 Capitolo 3. L'analisi della varianza. Il problema dei confronti multipli. La soluzione drastica di Bonferroni ed il test

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale di area tecnica. Corso di Statistica Medica

Università del Piemonte Orientale. Corsi di Laurea Triennale di area tecnica. Corso di Statistica Medica Università del Piemonte Orientale Corsi di Laurea Triennale di area tecnica Corso di Statistica Medica Campionamento e distribuzione campionaria della media Corsi di laurea triennale di area tecnica -

Dettagli

Tema A. 1.2. Se due eventi A e B sono indipendenti e tali che P (A) = 1/2 e P (B) = 2/3, si può certamente concludere che

Tema A. 1.2. Se due eventi A e B sono indipendenti e tali che P (A) = 1/2 e P (B) = 2/3, si può certamente concludere che Statistica Cognome: Laurea Triennale in Biologia Nome: 26 luglio 2012 Matricola: Tema A 1. Parte A 1.1. Sia x 1, x 2,..., x n un campione di n dati con media campionaria x e varianza campionaria s 2 x

Dettagli

La statistica nella ricerca scientifica

La statistica nella ricerca scientifica La statistica nella ricerca scientifica Pubblicazione dei risultati Presentazione dei dati e la loro elaborazione devono seguire criteri universalmente validi Impossibile verifica dei risultati da parte

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 12-Il t-test per campioni appaiati vers. 1.2 (7 novembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

INTRODUZIONE AL DOE come strumento di sviluppo prodotto Francesca Campana Parte 3 Piani a fattore singolo e relativi test di interpretazione

INTRODUZIONE AL DOE come strumento di sviluppo prodotto Francesca Campana Parte 3 Piani a fattore singolo e relativi test di interpretazione INTRODUZIONE AL DOE come strumento di sviluppo prodotto Francesca Campana Parte 3 Piani a fattore singolo e relativi test di interpretazione Pagina 1 PIANI A SINGOLA VARIABILE Questi piani sono l esempio

Dettagli

Corso di Psicometria Progredito

Corso di Psicometria Progredito Corso di Psicometria Progredito 3.1 Introduzione all inferenza statistica Prima Parte Gianmarco Altoè Dipartimento di Pedagogia, Psicologia e Filosofia Università di Cagliari, Anno Accademico 2013-2014

Dettagli

Statistica descrittiva: prime informazioni dai dati sperimentali

Statistica descrittiva: prime informazioni dai dati sperimentali SECONDO APPUNTAMENTO CON LA SPERIMENTAZIONE IN AGRICOLTURA Statistica descrittiva: prime informazioni dai dati sperimentali La statistica descrittiva rappresenta la base di partenza per le applicazioni

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Intervalli di confidenza

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Intervalli di confidenza Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Intervalli di confidenza Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2013-2014 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva

Università del Piemonte Orientale. Corsi di Laurea Triennale. Corso di Statistica e Biometria. Introduzione e Statistica descrittiva Università del Piemonte Orientale Corsi di Laurea Triennale Corso di Statistica e Biometria Introduzione e Statistica descrittiva Corsi di Laurea Triennale Corso di Statistica e Biometria: Introduzione

Dettagli

Esercitazione Statistica Computazionale B Modelli di regressione lineare semplice Verifica di ipotesi - Analisi della varianza

Esercitazione Statistica Computazionale B Modelli di regressione lineare semplice Verifica di ipotesi - Analisi della varianza Esercitazione Statistica Computazionale B Modelli di regressione lineare semplice Verifica di ipotesi - Analisi della varianza 3 maggio 2005 Esercizio 1 Consideriamo l esempio del libro di testo Annette

Dettagli

INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1)

INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1) INTRODUZIONE AL DESIGN OF EXPERIMENTS (Parte 1) 151 Introduzione Un esperimento è una prova o una serie di prove. Gli esperimenti sono largamente utilizzati nel campo dell ingegneria. Tra le varie applicazioni;

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 5-Indici di variabilità (vers. 1.0c, 20 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

ANALISI DELLA VARIANZA A PIU CRITERI DI CLASSIFICAZIONE

ANALISI DELLA VARIANZA A PIU CRITERI DI CLASSIFICAZIONE ANALISI DELLA VARIANZA A PIU CRITERI DI CLASSIFICAZIONE CON REPLICHE INTRODUZIONE Lo studio di un fenomeno non si deve limitareit alla valutazione dei singoli fattori in studio ma molto spesso è importante

Dettagli

Problema pratico: Test statistico = regola di decisione

Problema pratico: Test statistico = regola di decisione La verifica delle ipotesi statistiche Problema pratico: Quale, tra diverse situazioni possibili, riferite alla popolazione, è quella meglio sostenuta dalle evidenze empiriche? Coerenza del risultato campionario

Dettagli

Concetto di potenza statistica

Concetto di potenza statistica Calcolo della numerosità campionaria Prof. Giuseppe Verlato Sezione di Epidemiologia e Statistica Medica, Università di Verona Concetto di potenza statistica 1 Accetto H 0 Rifiuto H 0 Ipotesi Nulla (H

Dettagli

La distribuzione Gaussiana

La distribuzione Gaussiana Università del Piemonte Orientale Corso di Laurea in Biotecnologie Corso di Statistica Medica La distribuzione Normale (o di Gauss) Corso di laurea in biotecnologie - Corso di Statistica Medica La distribuzione

Dettagli

Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008

Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica. 18 dicembre 2008 Università di Firenze - Corso di laurea in Statistica Seconda prova intermedia di Statistica 18 dicembre 008 Esame sull intero programma: esercizi da A a D Esame sulla seconda parte del programma: esercizi

Dettagli

Argomenti della lezione:

Argomenti della lezione: Lezione 13 L analisi della Varianza (ANOVA): il modello lineare Argomenti della lezione: Modello lineare Disegni a una via L Analisi della Varianza (ANOVA): Esamina differenze tra le medie di due o più

Dettagli

Analisi di dati di frequenza

Analisi di dati di frequenza Analisi di dati di frequenza Fase di raccolta dei dati Fase di memorizzazione dei dati in un foglio elettronico 0 1 1 1 Frequenze attese uguali Si assuma che dalle risposte al questionario sullo stato

Dettagli

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a) Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B Eventi indipendenti: un evento non influenza l altro Eventi disgiunti: il verificarsi di un evento esclude l altro Evento prodotto:

Dettagli

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato.

1a) Calcolare gli estremi dell intervallo di confidenza per µ al 90% in corrispondenza del campione osservato. Esercizio 1 Sia X 1,..., X un campione casuale estratto da una variabile aleatoria normale con media pari a µ e varianza pari a 1. Supponiamo che la media campionaria sia x = 2. 1a) Calcolare gli estremi

Dettagli

Esercitazione n.2 Inferenza su medie

Esercitazione n.2 Inferenza su medie Esercitazione n.2 Esercizio L ufficio del personale di una grande società intende stimare le spese mediche familiari dei suoi impiegati per valutare la possibilità di attuare un programma di assicurazione

Dettagli

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 Facoltà di Psicologia Università di Padova Anno Accademico 010-011 Corso di Psicometria - Modulo B Dott. Marco Vicentini marco.vicentini@unipd.it Rev. 10/01/011 La distribuzione F di Fisher - Snedecor

Dettagli

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al primo anno.

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al primo anno. Corso di Statistica Medica Il corso si colloca nell ambito del corso integrato di scienze quantitative, al primo anno. Sono previste 40 ore complessive, di cui almeno 16 di lezione frontale e le restanti

Dettagli

Capitolo 12 La regressione lineare semplice

Capitolo 12 La regressione lineare semplice Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 12 La regressione lineare semplice Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara

Dettagli

LEZIONE n. 5 (a cura di Antonio Di Marco)

LEZIONE n. 5 (a cura di Antonio Di Marco) LEZIONE n. 5 (a cura di Antonio Di Marco) IL P-VALUE (α) Data un ipotesi nulla (H 0 ), questa la si può accettare o rifiutare in base al valore del p- value. In genere il suo valore è un numero molto piccolo,

Dettagli

METODOLOGIA CLINICA Necessita di: Quantificazione Formalizzazione matematica

METODOLOGIA CLINICA Necessita di: Quantificazione Formalizzazione matematica METODOLOGIA CLINICA Necessita di: Quantificazione Formalizzazione matematica EPIDEMIOLOGIA Ha come oggetto lo studio della distribuzione delle malattie in un popolazione e dei fattori che la influenzano

Dettagli

Approfondimento 4.6. La valutazione statistica della discriminatività di un item

Approfondimento 4.6. La valutazione statistica della discriminatività di un item Approfondimento.6 La valutazione statistica della discriminatività di un item. Item di test di prestazione massima Per valutare la discriminatività di un item di un test di prestazione massima occorre

Dettagli

CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI

CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI VERO FALSO CAPITOLO 8 LA VERIFICA D IPOTESI. I FONDAMENTI 1. V F Un ipotesi statistica è un assunzione sulle caratteristiche di una o più variabili in una o più popolazioni 2. V F L ipotesi nulla unita

Dettagli

Controllo Statistico della Qualità. Qualità come primo obiettivo dell azienda produttrice di beni

Controllo Statistico della Qualità. Qualità come primo obiettivo dell azienda produttrice di beni Controllo Statistico della Qualità Qualità come primo obiettivo dell azienda produttrice di beni Qualità come costante aderenza del prodotto alle specifiche tecniche Qualità come controllo e riduzione

Dettagli

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 L4, Corso Integrato di Psicometria - Modulo B Dr. Marco Vicentini marco.vicentini@unipd.it Rev. 18/04/2011 Inferenza statistica Formulazione

Dettagli

CAPITOLO III CONFRONTI TRA DISTRIBUZIONI

CAPITOLO III CONFRONTI TRA DISTRIBUZIONI CAPITOLO III CONFRONTI TRA DISTRIBUZIONI 3.1 CONFRONTI TRA DISTRIBUZIONI OSSERVATE E DISTRIBUZIONI TEORICHE OD ATTESE. Nella teoria statistica e nella pratica sperimentale, è frequente la necessità di

Dettagli

Statistica Medica. Verranno presi in esame:

Statistica Medica. Verranno presi in esame: Statistica Medica Premessa: il seguente testo cerca di riassumere e rendere in forma comprensibile ai non esperti in matematica e statistica le nozioni e le procedure necessarie a svolgere gli esercizi

Dettagli

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili:

Abbiamo visto due definizioni del valore medio e della deviazione standard di una grandezza casuale, in funzione dalle informazioni disponibili: Incertezze di misura Argomenti: classificazione delle incertezze; definizione di incertezza tipo e schemi di calcolo; schemi per il calcolo dell incertezza di grandezze combinate; confronto di misure affette

Dettagli

Verità ed esperienza: come la natura genera le osservazioni sperimentali

Verità ed esperienza: come la natura genera le osservazioni sperimentali Verità ed esperienza: come la natura genera le osservazioni sperimentali Andrea Onofri Dipartimento di Scienze Agrarie ed Ambientali Universitá degli Studi di Perugia 10 gennaio 2012 Indice 1 Presupposti

Dettagli

Test d ipotesi. Statistica e biometria. D. Bertacchi. Test d ipotesi

Test d ipotesi. Statistica e biometria. D. Bertacchi. Test d ipotesi In molte situazioni una raccolta di dati (=esiti di esperimenti aleatori) viene fatta per prendere delle decisioni sulla base di quei dati. Ad esempio sperimentazioni su un nuovo farmaco per decidere se

Dettagli

Cenni di Statistica Inferenziale

Cenni di Statistica Inferenziale Cenni di Statistica Inferenziale Teorema del limite centrale Data una variabile, qualsiasi sia la sua distribuzione, la media di tutti i suoi campioni di ampiezza n ha una distribuzione normale: dove:

Dettagli

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA)

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA) Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 4: Analisi della varianza (ANOVA) Analisi della varianza Analisi della varianza (ANOVA) ANOVA ad

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 8 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Test delle ipotesi sulla varianza In un azienda che produce componenti meccaniche, è stato

Dettagli

Università del Piemonte Orientale. Corso di dottorato in medicina molecolare. a.a. 2002 2003. Corso di Statistica Medica. Inferenza sulle medie

Università del Piemonte Orientale. Corso di dottorato in medicina molecolare. a.a. 2002 2003. Corso di Statistica Medica. Inferenza sulle medie Università del Piemonte Orientale Corso di dottorato in medicina molecolare aa 2002 2003 Corso di Statistica Medica Inferenza sulle medie Statistica U Test z Test t campioni indipendenti con uguale varianza

Dettagli

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale

2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale BIOSTATISTICA 2. Un carattere misurato in un campione: elementi di statistica descrittiva e inferenziale Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk

Dettagli

Corso di laurea in Scienze Motorie. Corso di Statistica. Docente: Dott.ssa Immacolata Scancarello Lezione 2: Misurazione, tabelle

Corso di laurea in Scienze Motorie. Corso di Statistica. Docente: Dott.ssa Immacolata Scancarello Lezione 2: Misurazione, tabelle Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione : Misurazione, tabelle 1 Misurazione Definizione: La misura è l attribuzione di un valore numerico

Dettagli

Analisi statistica di dati biomedici Analysis of biologicalsignals

Analisi statistica di dati biomedici Analysis of biologicalsignals Analisi statistica di dati biomedici Analysis of biologicalsignals II Parte Verifica delle ipotesi (a) Agostino Accardo (accardo@units.it) Master in Ingegneria Clinica LM in Neuroscienze 2013-2014 e segg.

Dettagli

LEZIONI DI STATISTCA APPLICATA. Parte 2. Statistica inferenziale. Variabili continue per categoriali. Alessandro Valbonesi

LEZIONI DI STATISTCA APPLICATA. Parte 2. Statistica inferenziale. Variabili continue per categoriali. Alessandro Valbonesi LEZIONI DI STATISTCA APPLICATA Parte 2 Statistica inferenziale Variabili continue per categoriali Alessandro Valbonesi SARRF di Scienze ambientali Anno accademico 2010-11 CAPITOLO 4 - TEST STATISTICI CHE

Dettagli

Università del Piemonte Orientale. Corsi di laurea triennale di area tecnica. Corso di Statistica Medica. Analisi dei dati in tabelle di contingenza

Università del Piemonte Orientale. Corsi di laurea triennale di area tecnica. Corso di Statistica Medica. Analisi dei dati in tabelle di contingenza Università del Piemonte Orientale Corsi di laurea triennale di area tecnica Corso di Statistica Medica Analisi dei dati in tabelle di contingenza Corsi di laurea triennale di area tecnica - Corso di Statistica

Dettagli

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione)

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione) Esercitazione #5 di Statistica Test ed Intervalli di Confidenza (per una popolazione) Dicembre 00 1 Esercizi 1.1 Test su media (con varianza nota) Esercizio n. 1 Il calore (in calorie per grammo) emesso

Dettagli

l insieme delle misure effettuate costituisce il campione statistico

l insieme delle misure effettuate costituisce il campione statistico Statistica negli esperimenti reali si effettuano sempre un numero finito di misure, ( spesso molto limitato ) l insieme delle misure effettuate costituisce il campione statistico Statistica descrittiva

Dettagli

Strumenti informatici 13.1

Strumenti informatici 13.1 1 Strumenti informatici 1.1 I test post-hoc nel caso del confronto fra tre o più proporzioni dipendenti e la realizzazione del test Q di Cochran in SPSS Nel caso dei test post-hoc per il test Q di Cochran,

Dettagli

Il controllo delle prestazioni del provider. IL CONTROLLO DELLE PRESTAZIONI DEL PROVIDER (riferimenti)

Il controllo delle prestazioni del provider. IL CONTROLLO DELLE PRESTAZIONI DEL PROVIDER (riferimenti) del provider IL CONTROLLO DELLE PRESTAZIONI DEL PROVIDER (riferimenti) 1 del provider - premessa (1) in merito alla fase di gestione ordinaria dell outsourcing sono state richiamate le prassi di miglioramento

Dettagli

3) ANALISI DEI RESIDUI

3) ANALISI DEI RESIDUI 3) ANALISI DEI RESIDUI Dopo l analisi di regressione si eseguono alcuni test sui residui per avere una ulteriore conferma della validità del modello e delle assunzioni (distribuzione normale degli errori,

Dettagli

RAPPRESENTAZIONE DEI DATI

RAPPRESENTAZIONE DEI DATI Rappresentazione dei Dati RAPPRESENTAZIONE DEI DATI Quando si dispone di un alto numero di misure della stessa grandezza fisica è opportuno organizzarle in modo da rendere evidente Quandoil si loro dispone

Dettagli

I punteggi zeta e la distribuzione normale

I punteggi zeta e la distribuzione normale QUINTA UNITA I punteggi zeta e la distribuzione normale I punteggi ottenuti attraverso una misurazione risultano di difficile interpretazione se presi in stessi. Affinché acquistino significato è necessario

Dettagli

La regressione lineare multipla

La regressione lineare multipla 13 La regressione lineare multipla Introduzione 2 13.1 Il modello di regressione multipla 2 13.2 L analisi dei residui nel modello di regressione multipla 9 13.3 Il test per la verifica della significatività

Dettagli

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER VARIABILI

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER VARIABILI Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER VARIABILI 1. L azienda Wood produce legno compensato per costruzioni

Dettagli

LE ASSUNZIONI DELL'ANOVA

LE ASSUNZIONI DELL'ANOVA LE ASSUNZIONI DELL'ANOVA Sono le assunzioni del test t, ma estese a tutti i gruppi: o La variabile deve avere una distribuzione normale in tutte le popolazioni corrispondenti ai gruppi campionati o Le

Dettagli

In una tabella 2 x 2 il valore del chiquadrato, che quantifica la differenza fra i numero osservati e quelli attesi, è la somma delle quattro celle

In una tabella 2 x 2 il valore del chiquadrato, che quantifica la differenza fra i numero osservati e quelli attesi, è la somma delle quattro celle Test statistici il chi quadrato Valutare la differenza tra due percentuali o proporzioni L'ipotesi zero (o ipotesi nulla) afferma che la differenza osservata - di qualsiasi entità essa sia - è dovuta al

Dettagli

ANALISI DELLE FREQUENZE: IL TEST CHI 2

ANALISI DELLE FREQUENZE: IL TEST CHI 2 ANALISI DELLE FREQUENZE: IL TEST CHI 2 Quando si hanno scale nominali o ordinali, non è possibile calcolare il t, poiché non abbiamo medie, ma solo frequenze. In questi casi, per verificare se un evento

Dettagli

Esercizio 1. Verifica di ipotesi sulla media (varianza nota), p-value del test

Esercizio 1. Verifica di ipotesi sulla media (varianza nota), p-value del test STATISTICA (2) ESERCITAZIONE 6 05.03.2014 Dott.ssa Antonella Costanzo Esercizio 1. Verifica di ipotesi sulla media (varianza nota), p-value del test Il preside della scuola elementare XYZ sospetta che

Dettagli

Il Controllo Interno di Qualità dalla teoria alla pratica: guida passo per passo IL MODELLO TEORICO. Pasquale Iandolo

Il Controllo Interno di Qualità dalla teoria alla pratica: guida passo per passo IL MODELLO TEORICO. Pasquale Iandolo Il Controllo Interno di Qualità dalla teoria alla pratica: guida passo per passo IL MODELLO TEORICO Pasquale Iandolo Laboratorio analisi ASL 4 Chiavarese, Lavagna (GE) 42 Congresso Nazionale SIBioC Roma

Dettagli

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE SIMULAZIONE della PROVA SCRITTA di STATISTICA 23/03/2011

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE SIMULAZIONE della PROVA SCRITTA di STATISTICA 23/03/2011 FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE SIMULAZIONE della PROVA SCRITTA di STATISTICA 23/3/2 ESERCIZIO (2+2+2+2) La seguente tabella riporta la distribuzione della variabile "Stato Civile"

Dettagli

VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD. Si definisce scarto quadratico medio o deviazione standard la radice quadrata della varianza.

VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD. Si definisce scarto quadratico medio o deviazione standard la radice quadrata della varianza. VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD Si definisce varianza campionaria l indice s 2 = 1 (x i x) 2 = 1 ( xi 2 n x 2) Si definisce scarto quadratico medio o deviazione standard la radice quadrata della

Dettagli

Laboratorio R Corso di Algebra e Modelli lineari (Anno Accademico 2011-12)

Laboratorio R Corso di Algebra e Modelli lineari (Anno Accademico 2011-12) Laboratorio R Corso di Algebra e Modelli lineari (Anno Accademico 011-1) REGRESSIONE LINEARE SEMPLICE OPEN STATISTICA 8.44 Per 8 settimanali, appartenenti alla medesima fascia di prezzo e presenti in edicola

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

FACOLTÀ DI ECONOMIA Soluzione della Prova di autovalutazione 2012 (primi 6 CFU) ANALISI STATISTICA PER L IMPRESA

FACOLTÀ DI ECONOMIA Soluzione della Prova di autovalutazione 2012 (primi 6 CFU) ANALISI STATISTICA PER L IMPRESA FACOLTÀ DI ECONOMIA Soluzione della Prova di autovalutazione 2012 (primi 6 CFU) ANALISI STATISTICA PER L IMPRESA NB Come potete vedere facendo la somma dei punteggi il numero di quesiti è superiore a quello

Dettagli

8 Elementi di Statistica

8 Elementi di Statistica 8 Elementi di Statistica La conoscenza di alcuni elementi di statistica e di analisi degli errori è importante quando si vogliano realizzare delle osservazioni sperimentali significative, ed anche per

Dettagli

ANALISI DI CORRELAZIONE

ANALISI DI CORRELAZIONE ANALISI DI CORRELAZIONE Esempio: Dati raccolti da n = 129 studenti di Pavia (A.A. 21/2) Altezza (cm) Peso (Kg) Voto Algebra e Geometria Voto Fisica I Valutare la correlazione delle seguenti coppie: Peso

Dettagli