( pi + σ ) nds = 0 (3)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "( pi + σ ) nds = 0 (3)"

Transcript

1 OLUZIONE IMULAZIONE EAME 0 DICEMBRE 05 I Parte Domanda (5 punti) Un fluido incomprimibile viene pompato in tubo orizzontale di lunghezza L e diametro D. La differenza di pressione agli estremi del tubo è pari Δp. Assumendo condizioni di flusso laminare stazionarie, si scriva il bilancio della quantità di moto macroscopico (cioè su tutto il volume del tubo) lungo la direzione del moto e si ricavi da questo l'espressione dello sforzo viscoso tangenziale alla parete del tubo, σ w, in funzione delle altre variabili del problema oluzione (la soluzione è stata sviluppata in maniera molto generale, è sufficiente anche solo la parte che comincia subito dopo l'eq ()) In condizioni stazionarie il moto nel tubo del fluido incomprimibile è governato dall'equazione di bilancio della quantità di moto. La sua versione macroscopica, considerando anche che il moto è rettilineo, si riduce a: ρg dv + t n d = 0 () V La () sancisce il concetto fisico che, in tali condizioni, il bilancio di quantità di moto si riduce ad un bilancio di forze. La proiezione lungo la direzione (orizzontale) della () implica prima di tutto che il contributo della forza peso (verticale) è nullo in tale direzione. Inoltre, ricordando che: t n = T n = ( pi + σ ) n () la () diventa: ( pi + σ ) nd = 0 () Per rendere operativa la () dobbiamo individuare le superfici del volume di controllo e stabilire quali sono le forze agenti su di esse e che hanno componente nella direzione del flusso. Le superfici sono quelle di un cilindro e quindi sono le due basi e la superficie laterale. ulle superfici di base le uniche forze agenti in direzione del flusso sono quelle di pressione: π D pi nd = p p π D π D = Δp (4) L 4 4 ulla superficie laterale le uniche forze con componente orizzontale sono quelle determinate dallo sforzo tangenziale alla parete, cioè appunto σ w : σ nd = σ w π DL (5) i ottiene quindi: da cui: Δp π D 4 +σ π DL = 0 (6) w σ w = Δp L D 4 (7) Domanda (5 punti) In un CTR di volume V avvengono le seguenti reazioni chimiche: ) A B e ) B C + D. Entrambe le reazioni sono irreversibili con cinetica elementare e costanti cinetiche k (reazione ) e k (reazione ). Il CTR viene alimentato con una portata volumetrica Q contenente il solo reagente A alla concentrazione c A 0. i scrivano in condizioni stazionarie le equazioni di bilancio di materia di tutte le specie chimiche coinvolte. Inoltre, utilizzando unità di misura del istema cgs, si scrivano le dimensioni della costante cinetica k.

2 oluzione Le equazioni di bilancio di materia delle quattro specie chimiche coinvolte nella reazione devono tenere conto dei termini di ingresso, di uscita e di generazione. i ha: Qc 0 A Qc A k c A V = 0 Qc B + ( k c A + k c B )V = 0 Qc C + k c V = 0 B Qc D + k c V = 0 B Le dimensioni di k si ricavano considerando che la velocità di reazione per la scomparsa di B dalla reazione ) è: r B = k c B (9) Considerando che le unità di misura di r B sono moli/(cm s), quelle di k devono essere: k = cm6 / moli s (8) (0)

3 II parte Problema (0 punti) Un catalizzatore poroso sferico è costituito da una parte interna di raggio R =cm ricoperta da una parte esterna compresa tra R e R =cm. La reazione catalitica A B del primo ordine (costante cinetica k=0. min - ) avviene solo nella parte interna (dove A è caratterizzato da una diffusività effettiva D i =0-4 cm /s), mentre in quella esterna, che serve solo a proteggere il (costoso) catalizzatore interno, A diffonde senza reagire con un coefficiente di diffusione D e = 0-4 cm /s. e la concentrazione di A sulla superficie esterna del catalizzatore (r=r ) vale c =mole/cm, si determini, in condizioni stazionarie: - la concentrazione di A all'interfaccia tra i due solidi porosi( cioè a r=r ), c, in moli/cm - la portata molare di A che reagisce nel catalizzatore, N A in moli/min R R oluzione Un bilancio di materia macroscopico sul volume interno di catalizzatore sancisce, in condizioni stazionarie, che la portata molare di A entrante è pari a quella reagita. i ha quindi: c N A = 4πD e R R c = 4 R R π R kc η () Nella () il primo membro è stato scritto in termini di portata molare che attraversa lo strato esterno, mentre il secondo membro in termini di portata molare reagita. Nel secondo membro η è l efficienza del catalizzatore, calcolabile come: η = Λ tanh Λ Λ () dove il modulo di Thiele, per un catalizzatore sferico, vale: Λ = kr () 9D i ed è calcolabile a priori in quanto sono noti tutti i parametri fisici. Da quanto detto risulta che la () è una equazione di I grado nella incognita c, che può essere risolta fornendo: D c = c e R (4) R ( R R )kη + D e R Passando ai numeri, il modulo di Thiele vale: Λ = kr = 0.00 =.9 9D i (5) i noti che nella (5)la costante cinetica è stata espressa in s - per garantire l omogeneità dimensionale. Dalla () si ha: η = Λ tanh Λ Λ =.9 e quindi, usando la (4), otteniamo c come: tanh(.9).9 = 0.40 (6)

4 D c = c e R 0 4 = R ( R R )kη + D e R ( ) = 0.89moli / cm (7) La portata molare è poi calcolabile utilizzando una delle due espressioni riportate nella (). Ad esempio: N A = 4 π R kc η = 4 π = moli / s (8) o anche, nelle unità richieste dal problema, N A =0. moli/min. Problema (0 punti) Nella macchinetta moka l'acqua liquida (viscosita µ=0.00 Pa s e densità ρ= g/cm ) viene spinta attraverso il filtro contenente il caffè dalla pressione del vapore surriscaldato all'interno della caldaia. Il filtro è a tutti gli effetti un letto fisso di particelle di caffè di diametro D=.5 e altezza H=.5cm. i assuma la polvere di caffè costituita da particelle sferiche tutte uguali di diametro d p =0.mm. La pressione all'imbocco del filtro è di 0. bar più alta di quella all'uscita (atmosferica). i calcoli il grado di vuoto necessario ad ottenere 0 cm di caffè in un minuto. i assumano condizioni stazionarie. H D oluzione i tratta di un problema di moto in letto fisso di particelle, in cui sono noti tutti i parametri fisici ad eccezione del grado di vuoto. Infatti, l informazione che si vogliono ottenere 0 cm in un minuto fissa la portata volumetrica Q=0/60=0.67 cm /s. Dalla portata, conoscendo il diametro del filtro, si calcola anche la velocità superficiale v = 4Q π D = = 0.040cm / s (9) π.5 come rapporto tra portata e sezione del filtro. I dati del problema forniscono anche la differenza di pressione Δp tra l ingresso e l uscita del letto, posti a distanza H. Possiamo quindi scrivere la legge di Ergun, che regola il moto in letti fissi: f p = (0) Re p e possiamo esplicitare le espressioni per il fattore di attrito e il numero di Reynolds nel letto: Re p = D p µ ε f p = Δ D ε p Lρv ε () () i ha quindi:

5 Δpd p ε Hρv ( ε ) 50µ ( ε ) = +.75 () d p La (), come detto, è una equazione algebrica non lineare nella sola incognita ε. Tra le procedure di soluzione si può pensare ad un procedimento di tipo iterativo, ad esempio esprimendo il grado di vuoto nei seguenti termini: 50µ ε Hρv ε = +.75 ε (4) d p Δpd p e risolvendo la (4) per successive iterazioni a partire da un valore di ε di primo tentativo. iccome tutti i parametri sono noti si può procedere a calcolare tutte le quantità costanti. i ha (tutte le grandezze sono espresse in unità I): 50µ = d p i ha in definitiva: H Δpd p = ε = 0 ε La soluzione per iterazione fornisce ε= = = { +.75 ( ε )} (5) (6)

La lezione di oggi. I fluidi reali La viscosità Flussi laminare e turbolento. La resistenza idrodinamica

La lezione di oggi. I fluidi reali La viscosità Flussi laminare e turbolento. La resistenza idrodinamica 1 La lezione di oggi I fluidi reali La viscosità Flussi laminare e turbolento La resistenza idrodinamica 2 La lezione di oggi Forze di trascinamento nei fluidi La legge di Stokes La centrifuga 3 ! Viscosità!

Dettagli

Bilanci macroscopici. Esercizi dal libro Fenomeni di Trsporto, Bird, Stewart, Lightfoot

Bilanci macroscopici. Esercizi dal libro Fenomeni di Trsporto, Bird, Stewart, Lightfoot Bilanci macroscopici Esercizi dal libro Fenomeni di Trsporto, Bird, Stewart, Lightfoot 7A 7B 7C 7D 7E 7F Esercizio 1 Due recipienti, le cui basi si trovano su uno stesso piano, sono messi in comunicazione

Dettagli

Eq. bilancio quantità di moto

Eq. bilancio quantità di moto Eq. bilancio quantità di moto Contributo relativo alle superfici permeabili, ovvero interessate da flussi di massa (nullo, dato che il fluido è macroscopicamente in quiete) Integrale degli sforzi superficiali

Dettagli

Fluidodinamica. Q=V/Δt=costante

Fluidodinamica. Q=V/Δt=costante Liquido perfetto o ideale: Fluidodinamica Incomprimibile (densità costante sia nel tempo che nello spazio) Assenza di attrito interno (in un liquido reale si conserva la caratteristica dell incompressibilità

Dettagli

STATICA E DINAMICA DEI FLUIDI

STATICA E DINAMICA DEI FLUIDI STATICA E DINAMICA DEI FLUIDI Pressione Principio di Pascal Legge di Stevino Spinta di Archimede Conservazione della portata Teorema di Bernoulli Legge di Hagen-Poiseuille Moto laminare e turbolento Stati

Dettagli

Esperienza 1/3: viscosità. della glicerina. Laboratorio di Fisica 1 A. Baraldi, M. Riccò. Università di Parma. a.a. 2012/2013

Esperienza 1/3: viscosità. della glicerina. Laboratorio di Fisica 1 A. Baraldi, M. Riccò. Università di Parma. a.a. 2012/2013 Esperienza 1/3: viscosità Università di Parma della glicerina a.a. 2012/2013 Laboratorio di Fisica 1 A. Baraldi, M. Riccò Coefficiente di viscosità La viscosità è quella grandezza fisica che ci permette

Dettagli

Dinamica dei Fluidi. Moto stazionario

Dinamica dei Fluidi. Moto stazionario FLUIDODINAMICA 1 Dinamica dei Fluidi Studia il moto delle particelle di fluido* sotto l azione di tre tipi di forze: Forze di superficie: forze esercitate attraverso una superficie (pressione) Forze di

Dettagli

ESPERIENZA DELLA BURETTA

ESPERIENZA DELLA BURETTA ESPERIENZA DELLA BURETTA SCOPO: Misura del coefficiente di viscosità di un fluido Alcune considerazioni teoriche: consideriamo un fluido incomprimibile, cioè a densità costante in ogni suo punto, e viscoso

Dettagli

La corrente di un fluido

La corrente di un fluido La corrente di un fluido 0 La corrente di un fluido è il movimento ordinato di un liquido o di un gas. 0 La portata q è il rapporto tra il volume di fluido V che attraversa una sezione in un tempo t ed

Dettagli

Pillole di Fluidodinamica e breve introduzione alla CFD

Pillole di Fluidodinamica e breve introduzione alla CFD Pillole di Fluidodinamica e breve introduzione alla CFD ConoscereLinux - Modena Linux User Group Dr. D. Angeli diego.angeli@unimore.it Sommario 1 Introduzione 2 Equazioni di conservazione 3 CFD e griglie

Dettagli

Fluidi (FMLP: Cap. 11 Meccanica dei fluidi)

Fluidi (FMLP: Cap. 11 Meccanica dei fluidi) In un fluido Fluidi (FMLP: Cap. 11 Meccanica dei fluidi) le molecole non sono vincolate a posizioni fisse a differenza di quello che avviene nei solidi ed in particolare nei cristalli Il numero di molecole

Dettagli

Applicazione equazione di Bernoulli: stenosi arteriosa(restringimento arteria)

Applicazione equazione di Bernoulli: stenosi arteriosa(restringimento arteria) Applicazione equazione di Bernoulli: stenosi arteriosa(restringimento arteria) Applicazione equazione di Bernoulli: Aneurisma (dilatazione arteria) Liquidi reali attrito interno-viscosita' la velocita'

Dettagli

Chimica e Tecnologia Farmaceutiche Esercitazioni di Fisica a.a Emanuele Biolcati

Chimica e Tecnologia Farmaceutiche Esercitazioni di Fisica a.a Emanuele Biolcati Esercitazione 5 Dr. Monica Casale Chimica e Tecnologia Farmaceutiche Esercitazioni di Fisica a.a. 2010-2011 Emanuele Biolcati Ringraziamenti speciali a Monica Casale per la preparazione delle slides Fluidi

Dettagli

IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO

IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO A - IDRAULICA IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO FLUIDO CORPO MATERIALE CHE, A CAUSA DELLA ELEVATA MOBILITA' DELLE PARTICELLE CHE LO COMPONGONO, PUO' SUBIRE RILEVANTI VARIAZIONI

Dettagli

Esercizi di Esame.mcd (1/8)

Esercizi di Esame.mcd (1/8) Esercizi di Esame.mcd (/8) Un ugello convergente è collegato ad un condotto circolare (D : 3.99mm) nel quale è imposto un flusso di energia nel modo calore Q 2. All'uscita del condotto vi è un ugello divergente

Dettagli

Alcuni utili principi di conservazione

Alcuni utili principi di conservazione Alcuni utili principi di conservazione Portata massica e volumetrica A ds Portata massica: massa di fluido che attraversa la sezione A di una tubazione nell unità di tempo [kg/s] ρ = densità (massa/volume)

Dettagli

Esempi di esercizi per la preparazione al primo compito di esonero

Esempi di esercizi per la preparazione al primo compito di esonero Esempi di esercizi per la preparazione al primo compito di esonero 1. Quanto sangue è approssimativamente presente in un essere umano? Esprimere il risultato in ml. 2. La densità dell etanolo e pare a

Dettagli

5. Esercitazione 5: Dimensionamento del primo stadio di una turbina assiale

5. Esercitazione 5: Dimensionamento del primo stadio di una turbina assiale 5. Esercitazione 5: Dimensionamento del primo stadio di una turbina assiale Lo scopo della presente esercitazione è il dimensionamento del primo stadio di una turbina assiale con i seguenti valori di progetto:

Dettagli

17.2 La temperatura data della piastra è pari a 60 C. Le proprietà dell'aria alla temperatura di film

17.2 La temperatura data della piastra è pari a 60 C. Le proprietà dell'aria alla temperatura di film 1 RISOLUZIONI cap.17 17.1 Le proprietà dell'aria alla temperatura di film (a) In questo caso la lunghezza caratteristica è il diametro esterno del tubo, δ = D = 0,06 m. Quindi, (b) La potenza termica ceduta

Dettagli

Densita. FLUIDI : liquidi o gas. macroscop.:

Densita. FLUIDI : liquidi o gas. macroscop.: 6-SBAC Fisica 1/10 FLUIDI : liquidi o gas macroscop.: microscop.: sostanza che prende la forma del contenitore che la occupa insieme di molecole tenute insieme da deboli forze di coesione (primi vicini)

Dettagli

Prima verifica A. v.limite o di sedimentazione : v sed = 2 9 gr2 d gl d pl

Prima verifica A. v.limite o di sedimentazione : v sed = 2 9 gr2 d gl d pl Prima verifica F1) Un corpo di massa 200 g si muove lungo l asse x sotto l azione di una forza, parallela all asse x, la cui intensità in funzione di x è data nel grafico B Per quali valori di x l accelerazione

Dettagli

Fenomeni di trasporto Esercitazione sul trasporto di materia per convezione

Fenomeni di trasporto Esercitazione sul trasporto di materia per convezione Fenomeni di trasporto Esercitazione sul trasporto di materia per convezione Problemi stazionari 1. Anidride carbonica viene fatta gorgogliare attraverso acqua in un recipiente di volume totale pari a 2

Dettagli

FISICA per SCIENZE BIOLOGICHE, A.A. 2007/2008 Appello straordinario del 28 maggio 2008

FISICA per SCIENZE BIOLOGICHE, A.A. 2007/2008 Appello straordinario del 28 maggio 2008 FISIC per SCIENZE BIOLOGICHE,.. 2007/2008 ppello straordinario del 28 maggio 2008 1) Un corpo di massa m = 40 g, fissato ad una fune di lunghezza L = 1m si muove di moto circolare (in senso antiorario)

Dettagli

I fluidi Approfondimento I

I fluidi Approfondimento I I fluidi Approfondimento I statica dei fluidi Legge di Stevino, Principio di Pascal, Principio di Archimede e applicazioni dinamica dei fluidi ideali Flusso di un fluido e continuità Equazione di Bernoulli

Dettagli

Meccanica dei Fluidi: statica e dinamica

Meccanica dei Fluidi: statica e dinamica Meccanica dei Fluidi: statica e dinamica Stati della materia (classificazione assai approssimativa!) Solido: ha una forma propria, poco compressibile, alta densità Liquido: non ha una forma propria, poco

Dettagli

Esercitazione di Meccanica dei fluidi con Fondamenti di Ingegneria Chimica. Scambio di materia (II)

Esercitazione di Meccanica dei fluidi con Fondamenti di Ingegneria Chimica. Scambio di materia (II) Esercitazione di Meccanica dei fluidi con Fondamenti di Ingegneria himica Esercitazione 6 (FI) - 1 Gennaio 016 Scambio di materia (II) Esercizio 1 Evaporazione di acqua da una piscina Stimare la perdita

Dettagli

5. Calcolo termodinamico e fluidodinamico di progetto di un riscaldatore d aria con fluidi in controcorrente.

5. Calcolo termodinamico e fluidodinamico di progetto di un riscaldatore d aria con fluidi in controcorrente. 5. Calcolo termodinamico e fluidodinamico di progetto di un riscaldatore d aria con fluidi in controcorrente. Si vuole effettuare il dimensionamento di un riscaldatore d aria con fluidi in controcorrente

Dettagli

è completamente immerso in acqua. La sua

è completamente immerso in acqua. La sua In un tubo scorre in regime stazionario un liquido ideale con densità 1.00 10 3 kg/m 3 ; in un punto A il tubo ha raggio R A = 2.00 cm, la velocità di scorrimento è v A = 5.00 m/se la pressione è P A =

Dettagli

IDROSTATICA leggi dell'equilibrio. IDRODINAMICA leggi del movimento

IDROSTATICA leggi dell'equilibrio. IDRODINAMICA leggi del movimento IDROSTATICA leggi dell'equilibrio IDRODINAMICA leggi del movimento La materia esite in tre stati: SOLIDO volume e forma propri LIQUIDO volume proprio ma non una forma propria (forma del contenitore) AERIFORME

Dettagli

La distribuzione delle pressioni all interno di un fluido in quiete, pesante e incomprimibile, è governata da:

La distribuzione delle pressioni all interno di un fluido in quiete, pesante e incomprimibile, è governata da: Statica Distribuzione delle pressioni La distribuzione delle pressioni all interno di un fluido in quiete, pesante e incomprimibile, è governata da: z+p/γ= cost LEE DI STEVIN Il valore della costante è

Dettagli

I D R O S T A T I C A

I D R O S T A T I C A I D R O S T A T I C A Caratteristiche stato liquido (descr.) FLUIDI Massa volumica (def. + formula) Volume massico (def. + formula) Peso volumico (def. + formula) Legame massa volumica - peso volumico

Dettagli

Vd Vd Vd Re = Per definire il REGIME di moto si individua il: Numero indice di Reynolds (adimensionale)

Vd Vd Vd Re = Per definire il REGIME di moto si individua il: Numero indice di Reynolds (adimensionale) CINEMATICA Esperienza di Osborne Reynolds (1842-1912) Per basse velocità: moto per filetti viscoso laminare Al crescere velocità: moto di transizione V d V d Per elevate velocità: moto turbolento V d CINEMATICA

Dettagli

Applicazioni. Ogni corpo immerso in un fluido riceve da questo una spinta dal basso verso l'alto pari al peso del volume di fluido spostato

Applicazioni. Ogni corpo immerso in un fluido riceve da questo una spinta dal basso verso l'alto pari al peso del volume di fluido spostato Applicazioni Legge di Archimede. Ogni corpo immerso in un fluido riceve da questo una spinta dal basso verso l'alto pari al peso del volume di fluido spostato Prima del posizionamento del corpo: volume

Dettagli

Esercizio U4.1 - Diffusione gassosa

Esercizio U4.1 - Diffusione gassosa Esercizio U4.1 - Diffusione gassosa Si effettua una diffusione di fosforo della durata di 4 ore alla temperatura di 1 C entro un substrato di tipo p, drogato con boro con densità 2 1 15 cm 3. La concentrazione

Dettagli

Esperienza del viscosimetro a caduta

Esperienza del viscosimetro a caduta Esperienza del viscosimetro a caduta Parte del corso di fisica per CTF dr. Gabriele Sirri sirri@bo.infn.it http://ishtar.df.unibo.it/uni/bo/farmacia/all/navarria/stuff/homepage.htm Esperienza del viscosimetro

Dettagli

Illustrazione 1: Sviluppo dello strato limite idrodinamico in un flusso laminare interno a un tubo circolare

Illustrazione 1: Sviluppo dello strato limite idrodinamico in un flusso laminare interno a un tubo circolare 1 Flusso interno Un flusso interno è caratterizzato dall essere confinato da una superficie. Questo fa sì che lo sviluppo dello strato limite finisca per essere vincolato dalle condizioni geometriche.

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE II compitino di FISICA, 17 Giugno 2010

CORSO DI LAUREA IN SCIENZE BIOLOGICHE II compitino di FISICA, 17 Giugno 2010 CORSO DI LAUREA IN SCIENZE BIOLOGICHE II compitino di FISICA, 17 Giugno 2010 1) Due cariche +2q e q sono fissate lungo l asse x, rispettivamente nei punti O = (0,0) ed A=(d,0), con d = 2 m. Determinare:

Dettagli

Prova scritta di Fisica Generale I Corso di Laurea in Astronomia 23 giugno 2015

Prova scritta di Fisica Generale I Corso di Laurea in Astronomia 23 giugno 2015 Prova scritta di Fisica Generale I Corso di Laurea in Astronomia 3 giugno 015 Problema 1 Si consideri un sistema costituito da un cilindro omogeneo di raggio R 1 = 10 cm e altezza h = 0 cm, inserito all

Dettagli

Meccanica dei fluidi. ! definizioni; ! statica dei fluidi (principio di Archimede); ! dinamica dei fluidi (teorema di Bernoulli).

Meccanica dei fluidi. ! definizioni; ! statica dei fluidi (principio di Archimede); ! dinamica dei fluidi (teorema di Bernoulli). Meccanica dei fluidi! definizioni;! statica dei fluidi (principio di Archimede);! dinamica dei fluidi (teorema di Bernoulli). [importanti applicazioni in biologia / farmacia : ex. circolazione del sangue]

Dettagli

Legge di Stevino ( d.c.)

Legge di Stevino ( d.c.) Legge di Stevino (1548-1620 d.c.) PA =F A /A= (Ah)g/A= hg conosciuta come legge di Stevino che quindi afferma che la pressione esercitata dal liquido su una superficie interna e' proporzionale alla densita'

Dettagli

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero Facoltà di Farmacia - Anno Accademico 2009-2010 A 18 febbraio 2010 primo esonero Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Canale: Docente: Riportare sul presente

Dettagli

Metodo degli elementi finiti per le equazioni di Navier-Stokes

Metodo degli elementi finiti per le equazioni di Navier-Stokes Metodo degli elementi finiti per le equazioni di Navier-Stokes Francesco Visentin Dottorato di Ricerca in Informatica - XXVIII Ciclo Università degli Studi di Verona Fluidodinamica Le equazioni di Navier-Stokes

Dettagli

PER ESERCITARSI Parte 2. Esercizi su Corpo rigido, variabili angolari, momenti, fluidi, termodinamica

PER ESERCITARSI Parte 2. Esercizi su Corpo rigido, variabili angolari, momenti, fluidi, termodinamica PER ESERCITARSI Parte 2 Esercizi su Corpo rigido, variabili angolari, momenti, fluidi, termodinamica ESERCIZIO n.1 Due forze uguali ed opposte sono applicate ad un oggetto lungo rette di azione tra loro

Dettagli

Lezione 9. Statica dei fluidi

Lezione 9. Statica dei fluidi Lezione 9 Statica dei fluidi Meccanica dei fluidi Un fluido e un corpo che non ha una forma definita, ma che, se e contenuto da un contenitore solido, tende a occupare (riempire) una parte o tutto il volume

Dettagli

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema

Dettagli

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Nota bene: prima di cominciare scrivere chiaramente il proprio nome e cognome sui fogli e sui diagrammi allegati. I dati del compito sono personalizzati secondo le iniziali: nel seguito, N indica il numero

Dettagli

Equazione dell'energia. Fenomeni di Trasporto

Equazione dell'energia. Fenomeni di Trasporto Equazione dell'energia Fenomeni di Trasporto 1 Trasporto convettivo di energia La portata volumetrica che attraversa l elemento di superficie ds perpendicolare all asse x è La portata di energia che attraversa

Dettagli

Corso di MECCANICA DEL VOLO Modulo Prestazioni. Lezione n.2. Prof. D. P. Coiro

Corso di MECCANICA DEL VOLO Modulo Prestazioni. Lezione n.2. Prof. D. P. Coiro Corso di MECCANICA DEL VOLO Modulo Prestazioni Lezione n.2 Prof. D. P. Coiro coiro@unina.it www.dias.unina.it/adag/ Corso di Meccanica del Volo - Mod. Prestazioni - Prof. D. Corio - Intro Il Velivolo 1

Dettagli

Idrodinamica prova scritta 12/03/ Compito A

Idrodinamica prova scritta 12/03/ Compito A Idrodinamica prova scritta 1/03/007 - Compito Calcolare la spinta S esercitata dal liquido in movimento sulla superficie laterale del gomito illustrato in figura, avente sezione circolare, posto su un

Dettagli

Teorie per il calcolo dei coefficienti di trasporto di materia (interfaccia fluido-fluido) Fenomeni di Trasporto

Teorie per il calcolo dei coefficienti di trasporto di materia (interfaccia fluido-fluido) Fenomeni di Trasporto Teorie per il calcolo dei coefficienti di trasporto di materia (interfaccia fluido-fluido) Fenomeni di Trasporto 1 Teoria del film (Lewis, 1924) Si assume che il trasporto di materia avvenga in uno strato

Dettagli

Soluzioni della prova scritta di Fisica Generale

Soluzioni della prova scritta di Fisica Generale Scienze e Tecnologie dell Ambiente Soluzioni della prova scritta di Fisica Generale 1 Febbraio 2011 Parte 1 Esercizio 1 Un punto parte dall origine dell asse x con velocità v 0 positiva. Il punto viaggia

Dettagli

INTRODUZIONE ALLA TERMODINAMICA. Supponiamo di voler studiare il comportamento di una determinata quantità di gas contenuta

INTRODUZIONE ALLA TERMODINAMICA. Supponiamo di voler studiare il comportamento di una determinata quantità di gas contenuta INTRODUZIONE ALLA TERMODINAMICA Supponiamo di voler studiare il comportamento di una determinata quantità di gas contenuta in un recipiente, ad esempio 5g di ossigeno. Dato l elevato numero di molecole

Dettagli

Problemi di Fisica per l ammissione alla Scuola Galileiana Problema 1

Problemi di Fisica per l ammissione alla Scuola Galileiana Problema 1 Problemi di Fisica per l ammissione alla Scuola Galileiana 2015-2016 Problema 1 Un secchio cilindrico di raggio R contiene un fluido di densità uniforme ρ, entrambi ruotanti intorno al loro comune asse

Dettagli

Fenomeni di rotazione

Fenomeni di rotazione Fenomeni di rotazione Si e visto che nel caso di un fluido, data la proprietà di deformarsi quando sottoposti a sforzi di taglio, gli angoli di rotazione di un elemento di fluido rispetto ad sistema di

Dettagli

VII ESERCITAZIONE - 29 Novembre 2013

VII ESERCITAZIONE - 29 Novembre 2013 VII ESERCITAZIONE - 9 Novembre 013 I. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria.

Dettagli

4. Esercitazione 4: Dimensionamento del primo stadio di un compressore assiale

4. Esercitazione 4: Dimensionamento del primo stadio di un compressore assiale 4. Esercitazione 4: Dimensionamento del primo stadio di un compressore assiale Lo scopo della presente esercitazione è il dimensionamento del primo stadio di un compressore assiale. Con riferimento alla

Dettagli

Sesta esercitazione di Fisica I Fluidodinamica 1 PROBLEMI RISOLTI

Sesta esercitazione di Fisica I Fluidodinamica 1 PROBLEMI RISOLTI Sesta esercitazione di Fisica I Fluidodinamica 1 PROBLEMI RISOLTI 1. Un secchio colmo d'acqua pesa complessivamente 2 kg. Se è pesato mentre è sotto un rubinetto con una portata di 0.5 litri/s ed è raggiunto

Dettagli

IL MOTO DEI FLUIDI. con applicazione al sistema circolatorio

IL MOTO DEI FLUIDI. con applicazione al sistema circolatorio IL MOTO DEI FLUIDI con applicazione al sistema circolatorio Portata Pressione Moto stazionario: equazione di continuità Applicazione al sistema circolatorio: pressione e velocità del sangue Moto laminare

Dettagli

IDRODINAMICA. Si chiama portata, il volume di fluido che defluisce attraverso una sezione nell unità di tempo; si indica con il simbolo Q [L 3 /T].

IDRODINAMICA. Si chiama portata, il volume di fluido che defluisce attraverso una sezione nell unità di tempo; si indica con il simbolo Q [L 3 /T]. IDRODINAMICA Portata e velocità media Si chiama portata, il volume di fluido che defluisce attraverso una sezione nell unità di tempo; si indica con il simbolo Q [L 3 /T]. In una corrente d acqua la velocità

Dettagli

Prova scritta di Fisica Tecnica 1 Fila A 22 dicembre 2006

Prova scritta di Fisica Tecnica 1 Fila A 22 dicembre 2006 Prova scritta di Fisica Tecnica Fila A dicembre 006 Esercizio n. Un impianto a vapore per la produzione di energia elettrica opera secondo un ciclo Rankine con le seguenti caratteristice: portata di vapore

Dettagli

σ = (1.1) = = (1.4) Moto in tubi e turbolenza

σ = (1.1) = = (1.4) Moto in tubi e turbolenza Moto in tubi e turbolenza I. Introduzione In una precedente dispensa è stato analizzato il moto di scorrimento in una dimensione, cioè in quelle situazioni nelle quali il moto avviene lungo una direzione

Dettagli

Lezione 10 Moto dei fluidi

Lezione 10 Moto dei fluidi Lezione 10 Moto dei fluidi Caratterizzazione del moto Consideriamo soltanto il caso di liquidi in moto nei condotti. Parametri descrittivi del moto: Portata Q di un condotto: è il volume di liquido che

Dettagli

Costruzione di Macchine Verifica a fatica degli elementi delle macchine

Costruzione di Macchine Verifica a fatica degli elementi delle macchine Costruzione di Macchine Verifica a fatica degli elementi delle macchine In figura 1 è rappresentato schematicamente un mescolatore: l albero con la paletta è mosso da un motore elettrico asincrono trifase

Dettagli

1. Introduzione 1.1 Scopo della tesi

1. Introduzione 1.1 Scopo della tesi 1. Introduzione 1.1 Scopo della tesi Fluidizzare un letto di particelle solide con un gas è un ottima tecnica per assicurare il mescolamento delle particelle ed il contatto intimo tra le due fasi. Di conseguenza,

Dettagli

1) Per quale valore minimo della velocità angolare iniziale il cilindro riesce a compiere un giro completo.

1) Per quale valore minimo della velocità angolare iniziale il cilindro riesce a compiere un giro completo. Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I): 04-02-2016 Problema 1. Un punto materiale si muove nel piano su una guida descritta dall equazione y = sin kx [ = 12m, k

Dettagli

POLITECNICO DI MILANO Fondamenti di Fisica Sperimentale, a. a I appello, 12 luglio 2016

POLITECNICO DI MILANO Fondamenti di Fisica Sperimentale, a. a I appello, 12 luglio 2016 POLITECNICO DI MILANO Fondamenti di Fisica Sperimentale, a. a. 015-16 I appello, 1 luglio 016 Giustificare le risposte e scrivere in modo chiaro e leggibile. Scrivere in stampatello nome, cognome, matricola

Dettagli

Calcolo delle Perdite di Carico FLUSSI BIFASE METODO SHORT-CUT

Calcolo delle Perdite di Carico FLUSSI BIFASE METODO SHORT-CUT Calcolo delle Perdite di Carico FLUSSI BIFASE METODO SHORT-CUT Calcolare le perdite di carico nella tubazione, considerando il flusso bifase tutto vaporizzato comprendente sia il prodotto gassoso che quello

Dettagli

PROBLEMI E QUESITI DI TERMOLOGIA (SOLUZIONI)

PROBLEMI E QUESITI DI TERMOLOGIA (SOLUZIONI) 1 PROBLEMI E QUESITI DI TERMOLOGIA (SOLUZIONI) Qui di seguito viene riportata la risoluzione dei problemi presentati nel file Unità omonimo (enunciati). Si raccomanda di prestare molta attenzione ai ragionamenti

Dettagli

Equazione di Bernoulli (II)

Equazione di Bernoulli (II) Esercitazione di Meccanica dei fluidi con Fondamenti di Ingegneria Chimica Esercitazione 5-5 Novembre 015 Equazione di Bernoulli (II) Esercizio 1 Perdite di carico in un condotto liscio Un tubo liscio

Dettagli

RETI DI CONDOTTE PROBLEMI DI VERIFICA

RETI DI CONDOTTE PROBLEMI DI VERIFICA RETI DI CONDOTTE PROBLEMI DI VERIFICA Nei problemi che seguono, con il termine (D) si intende indicare la seguente quantità: γ(d) = 8λ D 5 gπ2 Dove λ è la funzione di resistenza, grandezza che in generale

Dettagli

FISICA per SCIENZE BIOLOGICHE A.A. 2012/2013 APPELLO 18 Luglio 2013

FISICA per SCIENZE BIOLOGICHE A.A. 2012/2013 APPELLO 18 Luglio 2013 FISICA per SCIENZE BIOLOGICHE A.A. 2012/2013 APPELLO 18 Luglio 2013 1) Un corpo di massa m = 500 g scende lungo un piano scabro, inclinato di un angolo θ = 45. Prosegue poi lungo un tratto orizzontale

Dettagli

Passaggi di stato. P = costante

Passaggi di stato. P = costante Passaggi di stato P costante Diagramma isobaro di riscaldamento, relativo ai passaggi di stato Solido Liquido vapore. Si noti che la diversa lunghezza dei tratti FG e EV vuol mettere in evidenza, qualitativamente,

Dettagli

Innalzamento capillare = E+01 cm. Pressione = E+06 Pa

Innalzamento capillare = E+01 cm. Pressione = E+06 Pa --------------- 1 -------------- Innalzamento capillare = 0.1565E+01 cm Pressione = 0.8588E+06 Pa Valor medio della tensione superficiale = 0.2001E-01 N/m --------------- 2 -------------- Calore specifico

Dettagli

Meccanica dei fluidi, dove e cosa studiare

Meccanica dei fluidi, dove e cosa studiare Meccanica dei fluidi, dove e cosa studiare Meccanica dei Fluidi AA 2015 2016 Il libro di testo adottato è Meccanica dei Fluidi di Cengel & Cimbala, McGraw Hill. Alcuni argomenti sono stati trattati con

Dettagli

BILANCI MICROSCOPICI DI QUANTITÁ DI MOTO

BILANCI MICROSCOPICI DI QUANTITÁ DI MOTO BIANCI MICROSCOPICI DI QUANTITÁ DI MOTO lineare, per cui il moto del fluido si può immaginare avvenire per strati sovrapposti, cioè per scorrimento di tali strati. FUSSI DI SCORRIMENTO. EGGE DI NEWTON

Dettagli

EQUAZIONE DELLA CONTINUITA = Bilancio di massa nel tempo dt. Massa accumulatasi nel sistema. Massa uscente dal sistema. Massa entrante nel sistema

EQUAZIONE DELLA CONTINUITA = Bilancio di massa nel tempo dt. Massa accumulatasi nel sistema. Massa uscente dal sistema. Massa entrante nel sistema SISTEMI APERTI Ipotesi: EQUILIBRIO LOCALE in ogni punto del sistema aperto le proprietà termostatice assumono il valore ce avrebbero se nell intorno di quel punto il sistema fosse uniforme Ipotesi: MOTO

Dettagli

Test Esame di Fisica

Test Esame di Fisica Test Esame di Fisica NOTA: per le domande a risposta multipla ogni risposta corretta viene valutata con un punto mentre una errata con -0.5 punti. 1) Una sola delle seguenti uguaglianze non e corretta?

Dettagli

Unità didattica 4. Quarta unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 4. Quarta unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 4 Fisica dei fluidi Stati della materia 2 Condizione di riposo di un liquido 3 La pressione idrostatica. 4 Principio di Pascal. 5 Esercizio 7 Variazione di pressione con la profondità..

Dettagli

METODI DI RAPPRESENTAZIONE DI UN SISTEMA

METODI DI RAPPRESENTAZIONE DI UN SISTEMA METODI DI RAPPRESENTAZIONE DI UN SISTEMA PROPRIETA ELEMENTARI Proprietà elementari dei componenti idraulici Proprietà elementari dei componenti termici Proprietà elementari dei componenti meccanici Proprietà

Dettagli

Calorimetria. Principio zero Trasformazioni termodinamiche Lavoro termodinamico

Calorimetria. Principio zero Trasformazioni termodinamiche Lavoro termodinamico Calorimetria Principio zero Trasformazioni termodinamiche Lavoro termodinamico Stato di un sistema In Meccanica: lo stato di una particella è definito quando per ogni istante siano note, la posizione (x,

Dettagli

Università dell Aquila - Ingegneria Prova Scritta di Fisica Generale I - 03/07/2015 Nome Cognome N. Matricola CFU

Università dell Aquila - Ingegneria Prova Scritta di Fisica Generale I - 03/07/2015 Nome Cognome N. Matricola CFU Università dell Aquila - Ingegneria Prova Scritta di Fisica Generale I - 03/07/2015 Nome Cognome N. Matricola CFU............ Tempo a disposizione (tre esercizi) 2 ore e 30 1 esercizio (esonero) 1 ora

Dettagli

Sulla superficie interna del guscio sferico (induzione totale) si avrà la carica indotta q distribuita uniformemente, quindi

Sulla superficie interna del guscio sferico (induzione totale) si avrà la carica indotta q distribuita uniformemente, quindi 1) Una sfera conduttrice di raggio r = 5 cm possiede una carica q = 10 8 C ed è posta nel centro di un guscio sferico conduttore, di raggio interno R = 20 cm, posto in contatto con la terra (a massa).

Dettagli

Applicando al pistone una forza esterna, si esercita una pressione p ext sul fluido immediatamente sottostante al pistone.

Applicando al pistone una forza esterna, si esercita una pressione p ext sul fluido immediatamente sottostante al pistone. IL PRINCIPIO DI PASCAL Consideriamo un fluido incomprimibile come in figura contenuto in un cilindro chiuso superiormente da un pistone. Applicando al pistone una forza esterna, si esercita una pressione

Dettagli

Test Esame di Fisica

Test Esame di Fisica Test Esame di Fisica NOTA: per le domande a risposta multipla ogni risposta corretta viene valutata con un punto mentre una errata con -0.5 punti. 1) Una sola delle seguenti uguaglianze non e corretta?

Dettagli

Esercizio (tratto dal Problema 4.24 del Mazzoldi 2)

Esercizio (tratto dal Problema 4.24 del Mazzoldi 2) 1 Esercizio (tratto dal Problema 4.4 del Mazzoldi ) Due masse uguali, collegate da un filo, sono disposte come in figura. L angolo vale 30 o, l altezza vale 1 m, il coefficiente di attrito massa-piano

Dettagli

1 bar = 10 Pa = 10 barie PRESSIONE PRESSIONE. N 10 dyn dyn. m 10 cm cm. Solido. Liquido. Gassoso. (pascal) m. kg 1000.

1 bar = 10 Pa = 10 barie PRESSIONE PRESSIONE. N 10 dyn dyn. m 10 cm cm. Solido. Liquido. Gassoso. (pascal) m. kg 1000. STATI DI AGGREGAZIONE DELLA MATERIA Solido Liquido Gassoso Il coro ha volume e forma ben definiti Il coro ha volume ben definito, ma assume la forma del reciiente che lo contiene Il coro occua tutto lo

Dettagli

Esercizi di elettrostatica (prima parte)

Esercizi di elettrostatica (prima parte) Esercizi di elettrostatica (prima parte) Esercizi di elettrostatica: forza di coulomb, campo elettrico. 1. Date tre cariche elettriche puntiformi identiche ( Q ) poste ai vertici di un triangolo equilatero

Dettagli

r= 2m σ = 9.1 mc/m 2 (a) Se s è la densità di carica superficiale, la carica totale sarà data dalla densità superficiale per l area della superficie:

r= 2m σ = 9.1 mc/m 2 (a) Se s è la densità di carica superficiale, la carica totale sarà data dalla densità superficiale per l area della superficie: 1) Una sfera condu/rice uniformemente carica avente raggio di 2 m ha una densità di carica superficiale di 9.1 mc/m 2. Si determini: (a) la carica totale della sfera; (b) il flusso ele/rico totale uscente

Dettagli

elio giroletti effetti del sangue reale MECCANICA FLUIDI effetti del sangue reale MECCANICA FLUIDI

elio giroletti effetti del sangue reale MECCANICA FLUIDI effetti del sangue reale MECCANICA FLUIDI UNIVERSITÀ DEGLI STUDI DI PAVIA dip. Fisica nucleare e teorica via bassi 6, 27100 pavia, italy - tel. 038298.7905 girolett@unipv.it - www.unipv.it/webgiro webgiro 1 elio giroletti effetti del sangue reale

Dettagli

Quantita` di calore = E+03 cal. `` `` `` = E+10 erg. Calore prodotto = E+06 joule = 0.

Quantita` di calore = E+03 cal. `` `` `` = E+10 erg. Calore prodotto = E+06 joule = 0. --------------- 1 -------------- Quantita` di calore = 0.2311E+03 cal. `` `` `` = 0.9672E+10 erg Calore prodotto = 0.1187E+06 joule = 0.2840E+05 cal Ampiezza del moto = 0.9511E-02 m --------------- 2 --------------

Dettagli

Protezione Civile - Regione Friuli Venezia Giulia. Protezione Civile - Regione Friuli Venezia Giulia

Protezione Civile - Regione Friuli Venezia Giulia. Protezione Civile - Regione Friuli Venezia Giulia 1 Principi di idraulica Definizioni MECCANICA DEI FLUIDI È il ramo della fisica che studia le proprietà dei fluidi, cioè liquidi, vapori e gas. Idrostatica Studia i fluidi in quiete Idrodinamica Studia

Dettagli

Lezione 8 Dinamica del corpo rigido

Lezione 8 Dinamica del corpo rigido Lezione 8 Dinamica del corpo rigido Argomenti della lezione:! Corpo rigido! Centro di massa del corpo rigido! Punto di applicazione della forza peso! Punto di applicazione della forza peso! Momento della

Dettagli

APPENDICE 1 CAMPI CONSERVATIVI CIRCUITAZIONE DI UN VETTORE LUNGO UNA LINEA CHIUSA CORRENTE DI SPOSTAMENTO

APPENDICE 1 CAMPI CONSERVATIVI CIRCUITAZIONE DI UN VETTORE LUNGO UNA LINEA CHIUSA CORRENTE DI SPOSTAMENTO APPENDICE 1 CAMPI CONSERVATIVI CIRCUITAZIONE DI UN VETTORE LUNGO UNA LINEA CHIUSA CORRENTE DI SPOSTAMENTO Quando un punto materiale P si sposta di un tratto s per effetto di una forza F costante applicata

Dettagli

Soluzioni degli esercizi

Soluzioni degli esercizi Soluzioni degli esercizi Compito 1. Formula risolutiva: t = V ρ g h / W con V = volume pozza, ρ = densità assoluta dell'acqua, h = altezza, W = potenza pompa Tempo = 0.1490E+03 s Formula risolutiva: c

Dettagli

In un vaso sanguigno si forma un aneurisma dove la sezione aumenta del 15%. Si calcoli la conseguente variazione percentuale della velocita del sangue

In un vaso sanguigno si forma un aneurisma dove la sezione aumenta del 15%. Si calcoli la conseguente variazione percentuale della velocita del sangue Esercizio In un vaso sanguigno si forma un aneurisma dove la sezione aumenta del 15%. Si calcoli la conseguente variazione percentuale della velocita del sangue 1 MOTO DI FLUIDI REALI 2 MOTO DI UN FLUIDO

Dettagli

Concetti di base. Sistemi ideali Sistemi reali SOLIDI CORPI LIQUIDI/GASSOSI (FLUIDI) SOLIDI DEFORMAZIONE ELASTICA

Concetti di base. Sistemi ideali Sistemi reali SOLIDI CORPI LIQUIDI/GASSOSI (FLUIDI) SOLIDI DEFORMAZIONE ELASTICA Reologia Concetti di base CORPI SOLIDI LIQUIDI/GASSOSI (FLUIDI) Sistemi ideali Sistemi reali SOLIDI DEFORMAZIONE ELASTICA FLUIDI DEFORM. IRREVERSIBILI (SCORRIMENTO) SOLIDI DEFORMAZIONI PERMANENTI FLUIDI

Dettagli

ESAME DI AERODINAMICA 12/12/2006

ESAME DI AERODINAMICA 12/12/2006 ESAME DI AERODINAMICA 12/12/2006 La velocità indotta nel piano y-z passante per l origine da un filamento vorticoso rettilineo semi-infinito disposto lungo l asse x e con origine in x=0, rispetto a quella

Dettagli

Dall idrostatica alla idrodinamica. Fisica con Elementi di Matematica 1

Dall idrostatica alla idrodinamica. Fisica con Elementi di Matematica 1 Dall idrostatica alla idrodinamica Fisica con Elementi di Matematica 1 Concetto di Campo Insieme dei valori che una certa grandezza fisica assume in ogni punto di una regione di spazio. Esempio: Consideriamo

Dettagli

PERDITE DI CARICO. Gianluca Simonazzi matr Michael Zecchetti matr Lezione del 28/03/2014 ora 14:30-17:30

PERDITE DI CARICO. Gianluca Simonazzi matr Michael Zecchetti matr Lezione del 28/03/2014 ora 14:30-17:30 Gianluca Simonazzi matr. 3969 Michael Zecchetti matr. 390 Lezione del 8/03/04 ora 4:30-7:30 PERDITE DI CARICO Le perdite di carico distribuite (in un tubo liscio, dritto e privo di ostacoli) dipendono

Dettagli

2 febbraio con 10 Pa, Pa, K, 1760 J mol e m mol. Con questi dati si ricava la temperatura finale. exp 422.

2 febbraio con 10 Pa, Pa, K, 1760 J mol e m mol. Con questi dati si ricava la temperatura finale. exp 422. febbraio 08. La temperatura di fusione dello zolfo monoclino alla pressione di un bar è 9.3 C. La variazione di volume molare durante la fusione è di.3 cm 3 mol -, mentre il calore latente di fusione è

Dettagli